
Package: oem (via r-universe)
September 30, 2024

Type Package

Title Orthogonalizing EM: Penalized Regression for Big Tall Data

Version 2.0.12

Maintainer Jared Huling <jaredhuling@gmail.com>

Description Solves penalized least squares problems for big tall data
using the orthogonalizing EM algorithm of Xiong et al. (2016)
<doi:10.1080/00401706.2015.1054436>. The main fitting function
is oem() and the functions cv.oem() and xval.oem() are for
cross validation, the latter being an accelerated cross
validation function for linear models. The big.oem() function
allows for out of memory fitting. A description of the
underlying methods and code interface is described in Huling
and Chien (2022) <doi:10.18637/jss.v104.i06>.

URL https://arxiv.org/abs/1801.09661,

https://github.com/jaredhuling/oem,

https://jaredhuling.org/oem/

BugReports https://github.com/jaredhuling/oem/issues

License GPL (>= 2)

Encoding UTF-8

Depends R (>= 3.2.0), bigmemory

Imports Rcpp (>= 0.11.0), Matrix, foreach, methods

LinkingTo Rcpp, RcppEigen, BH, RSpectra (>= 0.16-2), bigmemory,
RcppArmadillo

RoxygenNote 7.3.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation yes

Author Bin Dai [aut], Jared Huling [aut, cre]
(<https://orcid.org/0000-0003-0670-4845>), Yixuan Qiu [ctb],
Gael Guennebaud [cph], Jitse Niesen [cph]

1

https://doi.org/10.1080/00401706.2015.1054436
https://doi.org/10.18637/jss.v104.i06
https://arxiv.org/abs/1801.09661
https://github.com/jaredhuling/oem
https://jaredhuling.org/oem/
https://github.com/jaredhuling/oem/issues
https://orcid.org/0000-0003-0670-4845


2 big.oem

Repository CRAN

Date/Publication 2024-07-31 11:30:06 UTC

Contents
big.oem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
cv.oem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
logLik.oem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
oem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
oem.xtx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
oemfit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
plot.oem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
predict.cv.oem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
predict.oem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
predict.xval.oem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
print.summary.cv.oem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
summary.cv.oem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
xval.oem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Index 31

big.oem Orthogonalizing EM for big.matrix objects

Description

Orthogonalizing EM for big.matrix objects

Usage

big.oem(
x,
y,
family = c("gaussian", "binomial"),
penalty = c("elastic.net", "lasso", "ols", "mcp", "scad", "mcp.net", "scad.net",
"grp.lasso", "grp.lasso.net", "grp.mcp", "grp.scad", "grp.mcp.net", "grp.scad.net",
"sparse.grp.lasso"),

weights = numeric(0),
lambda = numeric(0),
nlambda = 100L,
lambda.min.ratio = NULL,
alpha = 1,
gamma = 3,
tau = 0.5,
groups = numeric(0),
penalty.factor = NULL,
group.weights = NULL,



big.oem 3

standardize = TRUE,
intercept = TRUE,
maxit = 500L,
tol = 1e-07,
irls.maxit = 100L,
irls.tol = 0.001,
compute.loss = FALSE,
gigs = 4,
hessian.type = c("full", "upper.bound")

)

Arguments

x input big.matrix object pointing to design matrix Each row is an observation,
each column corresponds to a covariate

y numeric response vector of length nobs.

family "gaussian" for least squares problems, "binomial" for binary response. "binomial"
currently not available.

penalty Specification of penalty type. Choices include:

• "elastic.net" - elastic net penalty, extra parameters: "alpha"
• "lasso" - lasso penalty
• "ols" - ordinary least squares
• "mcp" - minimax concave penalty, extra parameters: "gamma"
• "scad" - smoothly clipped absolute deviation, extra parameters: "gamma"
• "mcp.net" - minimax concave penalty + l2 penalty, extra parameters: "gamma",
"alpha"

• "scad.net" - smoothly clipped absolute deviation + l2 penalty, extra pa-
rameters: "gamma", "alpha"

• "grp.lasso" - group lasso penalty
• "grp.lasso.net" - group lasso penalty + l2 penalty, extra parameters:
"alpha"

• "grp.mcp" - group minimax concave penalty, extra parameters: "gamma"
• "grp.scad" - group smoothly clipped absolute deviation, extra parameters:
"gamma"

• "grp.mcp.net" - group minimax concave penalty + l2 penalty, extra pa-
rameters: "gamma", "alpha"

• "grp.scad.net" - group smoothly clipped absolute deviation + l2 penalty,
extra parameters: "gamma", "alpha"

• "sparse.grp.lasso" - sparse group lasso penalty (group lasso + lasso),
extra parameters: "tau"

Careful consideration is required for the group lasso, group MCP, and group
SCAD penalties. Groups as specified by the groups argument should be chosen
in a sensible manner.

weights observation weights. Not implemented yet. Defaults to 1 for each observation
(setting weight vector to length 0 will default all weights to 1)



4 big.oem

lambda A user supplied lambda sequence. By default, the program computes its own
lambda sequence based on nlambda and lambda.min.ratio. Supplying a value
of lambda overrides this.

nlambda The number of lambda values - default is 100.
lambda.min.ratio

Smallest value for lambda, as a fraction of lambda.max, the (data derived) entry
value (i.e. the smallest value for which all coefficients are zero). The default
depends on the sample size nobs relative to the number of variables nvars. If
nobs > nvars, the default is 0.0001, close to zero. If nobs < nvars, the default
is 0.01. A very small value of lambda.min.ratio will lead to a saturated fit
when nobs < nvars.

alpha mixing value for elastic.net, mcp.net, scad.net, grp.mcp.net, grp.scad.net.
penalty applied is (1 - alpha) * (ridge penalty) + alpha * (lasso/mcp/mcp/grp.lasso
penalty)

gamma tuning parameter for SCAD and MCP penalties. must be >= 1
tau mixing value for sparse.grp.lasso. penalty applied is (1 - tau) * (group lasso

penalty) + tau * (lasso penalty)
groups A vector of describing the grouping of the coefficients. See the example below.

All unpenalized variables should be put in group 0
penalty.factor Separate penalty factors can be applied to each coefficient. This is a number that

multiplies lambda to allow differential shrinkage. Can be 0 for some variables,
which implies no shrinkage, and that variable is always included in the model.
Default is 1 for all variables.

group.weights penalty factors applied to each group for the group lasso. Similar to penalty.factor,
this is a number that multiplies lambda to allow differential shrinkage. Can be 0
for some groups, which implies no shrinkage, and that group is always included
in the model. Default is sqrt(group size) for all groups.

standardize Logical flag for x variable standardization, prior to fitting the models. The co-
efficients are always returned on the original scale. Default is standardize =
TRUE. If variables are in the same units already, you might not wish to standard-
ize. Keep in mind that standardization is done differently for sparse matrices, so
results (when standardized) may be slightly different for a sparse matrix object
and a dense matrix object

intercept Should intercept(s) be fitted (default = TRUE) or set to zero (FALSE)
maxit integer. Maximum number of OEM iterations
tol convergence tolerance for OEM iterations
irls.maxit integer. Maximum number of IRLS iterations
irls.tol convergence tolerance for IRLS iterations. Only used if family != "gaussian"

compute.loss should the loss be computed for each estimated tuning parameter? Defaults to
FALSE. Setting to TRUE will dramatically increase computational time

gigs maximum number of gigs of memory available. Used to figure out how to break
up calculations involving the design matrix x

hessian.type only for logistic regression. if hessian.type = "full", then the full hessian is
used. If hessian.type = "upper.bound", then an upper bound of the hessian is
used. The upper bound can be dramatically faster in certain situations, ie when
n » p



big.oem 5

Value

An object with S3 class "oem"

References

Huling. J.D. and Chien, P. (2022), Fast Penalized Regression and Cross Validation for Tall Data
with the oem Package. Journal of Statistical Software 104(6), 1-24. doi:10.18637/jss.v104.i06

Examples

## Not run:
set.seed(123)
nrows <- 50000
ncols <- 100
bkFile <- "bigmat.bk"
descFile <- "bigmatk.desc"
bigmat <- filebacked.big.matrix(nrow=nrows, ncol=ncols, type="double",

backingfile=bkFile, backingpath=".",
descriptorfile=descFile,
dimnames=c(NULL,NULL))

# Each column value with be the column number multiplied by
# samples from a standard normal distribution.
set.seed(123)
for (i in 1:ncols) bigmat[,i] = rnorm(nrows)*i

y <- rnorm(nrows) + bigmat[,1] - bigmat[,2]

fit <- big.oem(x = bigmat, y = y,
penalty = c("lasso", "elastic.net",

"ols",
"mcp", "scad",
"mcp.net", "scad.net",
"grp.lasso", "grp.lasso.net",
"grp.mcp", "grp.scad",
"sparse.grp.lasso"),

groups = rep(1:20, each = 5))

fit2 <- oem(x = bigmat[,], y = y,
penalty = c("lasso", "grp.lasso"),
groups = rep(1:20, each = 5))

max(abs(fit$beta[[1]] - fit2$beta[[1]]))

layout(matrix(1:2, ncol = 2))
plot(fit)
plot(fit, which.model = 2)

## End(Not run)



6 cv.oem

cv.oem Cross validation for Orthogonalizing EM

Description

Cross validation for Orthogonalizing EM

Usage

cv.oem(
x,
y,
penalty = c("elastic.net", "lasso", "ols", "mcp", "scad", "mcp.net", "scad.net",
"grp.lasso", "grp.lasso.net", "grp.mcp", "grp.scad", "grp.mcp.net", "grp.scad.net",
"sparse.grp.lasso"),

weights = numeric(0),
lambda = NULL,
type.measure = c("mse", "deviance", "class", "auc", "mae"),
nfolds = 10,
foldid = NULL,
grouped = TRUE,
keep = FALSE,
parallel = FALSE,
ncores = -1,
...

)

Arguments

x input matrix of dimension n x p or CsparseMatrix objects of the Matrix (sparse
not yet implemented. Each row is an observation, each column corresponds to a
covariate. The cv.oem() function is optimized for n » p settings and may be very
slow when p > n, so please use other packages such as glmnet, ncvreg, grpreg,
or gglasso when p > n or p approx n.

y numeric response vector of length nobs.

penalty Specification of penalty type in lowercase letters. Choices include "lasso",
"ols" (Ordinary least squares, no penaly), "elastic.net", "scad", "mcp",
"grp.lasso"

weights observation weights. defaults to 1 for each observation (setting weight vector to
length 0 will default all weights to 1)

lambda A user supplied lambda sequence. By default, the program computes its own
lambda sequence based on nlambda and lambda.min.ratio. Supplying a value of
lambda overrides this.

type.measure measure to evaluate for cross-validation. The default is type.measure = "deviance",
which uses squared-error for gaussian models (a.k.a type.measure = "mse"



cv.oem 7

there), deviance for logistic regression. type.measure = "class" applies to
binomial only. type.measure = "auc" is for two-class logistic regression only.
type.measure = "mse" or type.measure = "mae" (mean absolute error) can be
used by all models; they measure the deviation from the fitted mean to the re-
sponse.

nfolds number of folds for cross-validation. default is 10. 3 is smallest value allowed.

foldid an optional vector of values between 1 and nfold specifying which fold each
observation belongs to.

grouped Like in glmnet, this is an experimental argument, with default TRUE, and can be
ignored by most users. For all models, this refers to computing nfolds separate
statistics, and then using their mean and estimated standard error to describe the
CV curve. If grouped = FALSE, an error matrix is built up at the observation
level from the predictions from the nfold fits, and then summarized (does not
apply to type.measure = "auc").

keep If keep = TRUE, a prevalidated list of arrasy is returned containing fitted values
for each observation and each value of lambda for each model. This means these
fits are computed with this observation and the rest of its fold omitted. The folid
vector is also returned. Default is keep = FALSE

parallel If TRUE, use parallel foreach to fit each fold. Must register parallel before hand,
such as doMC.

ncores Number of cores to use. If parallel = TRUE, then ncores will be automatically
set to 1 to prevent conflicts

... other parameters to be passed to "oem" function

Value

An object with S3 class "cv.oem"

References

Huling. J.D. and Chien, P. (2022), Fast Penalized Regression and Cross Validation for Tall Data
with the oem Package. Journal of Statistical Software 104(6), 1-24. doi:10.18637/jss.v104.i06

Examples

set.seed(123)
n.obs <- 1e4
n.vars <- 100

true.beta <- c(runif(15, -0.25, 0.25), rep(0, n.vars - 15))

x <- matrix(rnorm(n.obs * n.vars), n.obs, n.vars)
y <- rnorm(n.obs, sd = 3) + x %*% true.beta

fit <- cv.oem(x = x, y = y,
penalty = c("lasso", "grp.lasso"),
groups = rep(1:20, each = 5))



8 logLik.oem

layout(matrix(1:2, ncol = 2))
plot(fit)
plot(fit, which.model = 2)

logLik.oem log likelihood function for fitted oem objects

Description

log likelihood function for fitted oem objects

log likelihood function for fitted cross validation oem objects

log likelihood function for fitted cross validation oem objects

Usage

## S3 method for class 'oem'
logLik(object, which.model = 1, ...)

## S3 method for class 'cv.oem'
logLik(object, which.model = 1, ...)

## S3 method for class 'xval.oem'
logLik(object, which.model = 1, ...)

Arguments

object fitted "oem" model object.

which.model If multiple penalties are fit and returned in the same oem object, the which.model
argument is used to specify which model to plot. For example, if the oem object
"oemobj" was fit with argument penalty = c("lasso", "grp.lasso"), then
which.model = 2 provides a plot for the group lasso model.

... not used

Examples

set.seed(123)
n.obs <- 2000
n.vars <- 50

true.beta <- c(runif(15, -0.25, 0.25), rep(0, n.vars - 15))
x <- matrix(rnorm(n.obs * n.vars), n.obs, n.vars)
y <- rnorm(n.obs, sd = 3) + x %*% true.beta

fit <- oem(x = x, y = y, penalty = c("lasso", "mcp"), compute.loss = TRUE)

logLik(fit)



oem 9

logLik(fit, which.model = "mcp")

fit <- cv.oem(x = x, y = y, penalty = c("lasso", "mcp"), compute.loss = TRUE,
nlambda = 25)

logLik(fit)

logLik(fit, which.model = "mcp")

fit <- xval.oem(x = x, y = y, penalty = c("lasso", "mcp"), compute.loss = TRUE,
nlambda = 25)

logLik(fit)

logLik(fit, which.model = "mcp")

oem Orthogonalizing EM

Description

Orthogonalizing EM

Usage

oem(
x,
y,
family = c("gaussian", "binomial"),
penalty = c("elastic.net", "lasso", "ols", "mcp", "scad", "mcp.net", "scad.net",
"grp.lasso", "grp.lasso.net", "grp.mcp", "grp.scad", "grp.mcp.net", "grp.scad.net",
"sparse.grp.lasso"),

weights = numeric(0),
lambda = numeric(0),
nlambda = 100L,
lambda.min.ratio = NULL,
alpha = 1,
gamma = 3,
tau = 0.5,
groups = numeric(0),
penalty.factor = NULL,
group.weights = NULL,
standardize = TRUE,
intercept = TRUE,
maxit = 500L,



10 oem

tol = 1e-07,
irls.maxit = 100L,
irls.tol = 0.001,
accelerate = FALSE,
ncores = -1,
compute.loss = FALSE,
hessian.type = c("upper.bound", "full")

)

Arguments

x input matrix of dimension n x p or CsparseMatrix object of the Matrix pack-
age. Each row is an observation, each column corresponds to a covariate. The
oem() function is optimized for n » p settings and may be very slow when p >
n, so please use other packages such as glmnet, ncvreg, grpreg, or gglasso
when p > n or p approx n.

y numeric response vector of length nobs.

family "gaussian" for least squares problems, "binomial" for binary response.

penalty Specification of penalty type. Choices include:

• "elastic.net" - elastic net penalty, extra parameters: "alpha"
• "lasso" - lasso penalty
• "ols" - ordinary least squares
• "mcp" - minimax concave penalty, extra parameters: "gamma"
• "scad" - smoothly clipped absolute deviation, extra parameters: "gamma"
• "mcp.net" - minimax concave penalty + l2 penalty, extra parameters: "gamma",
"alpha"

• "scad.net" - smoothly clipped absolute deviation + l2 penalty, extra pa-
rameters: "gamma", "alpha"

• "grp.lasso" - group lasso penalty
• "grp.lasso.net" - group lasso penalty + l2 penalty, extra parameters:
"alpha"

• "grp.mcp" - group minimax concave penalty, extra parameters: "gamma"
• "grp.scad" - group smoothly clipped absolute deviation, extra parameters:
"gamma"

• "grp.mcp.net" - group minimax concave penalty + l2 penalty, extra pa-
rameters: "gamma", "alpha"

• "grp.scad.net" - group smoothly clipped absolute deviation + l2 penalty,
extra parameters: "gamma", "alpha"

• "sparse.grp.lasso" - sparse group lasso penalty (group lasso + lasso),
extra parameters: "tau"

Careful consideration is required for the group lasso, group MCP, and group
SCAD penalties. Groups as specified by the groups argument should be chosen
in a sensible manner.

weights observation weights. Not implemented yet. Defaults to 1 for each observation
(setting weight vector to length 0 will default all weights to 1)



oem 11

lambda A user supplied lambda sequence. By default, the program computes its own
lambda sequence based on nlambda and lambda.min.ratio. Supplying a value
of lambda overrides this.

nlambda The number of lambda values. The default is 100.
lambda.min.ratio

Smallest value for lambda, as a fraction of lambda.max, the (data derived) entry
value (i.e. the smallest value for which all coefficients are zero). The default
depends on the sample size nobs relative to the number of variables nvars. If
nobs > nvars, the default is 0.0001, close to zero. If nobs < nvars, the default
is 0.01. A very small value of lambda.min.ratio will lead to a saturated fit
when nobs < nvars.

alpha mixing value for elastic.net, mcp.net, scad.net, grp.mcp.net, grp.scad.net.
penalty applied is (1 - alpha) * (ridge penalty) + alpha * (lasso/mcp/mcp/grp.lasso
penalty)

gamma tuning parameter for SCAD and MCP penalties. must be >= 1

tau mixing value for sparse.grp.lasso. penalty applied is (1 - tau) * (group lasso
penalty) + tau * (lasso penalty)

groups A vector of describing the grouping of the coefficients. See the example below.
All unpenalized variables should be put in group 0

penalty.factor Separate penalty factors can be applied to each coefficient. This is a number that
multiplies lambda to allow differential shrinkage. Can be 0 for some variables,
which implies no shrinkage, and that variable is always included in the model.
Default is 1 for all variables.

group.weights penalty factors applied to each group for the group lasso. Similar to penalty.factor,
this is a number that multiplies lambda to allow differential shrinkage. Can be 0
for some groups, which implies no shrinkage, and that group is always included
in the model. Default is sqrt(group size) for all groups.

standardize Logical flag for x variable standardization, prior to fitting the models. The co-
efficients are always returned on the original scale. Default is standardize =
TRUE. If variables are in the same units already, you might not wish to standard-
ize. Keep in mind that standardization is done differently for sparse matrices, so
results (when standardized) may be slightly different for a sparse matrix object
and a dense matrix object

intercept Should intercept(s) be fitted (default = TRUE) or set to zero (FALSE)

maxit integer. Maximum number of OEM iterations

tol convergence tolerance for OEM iterations

irls.maxit integer. Maximum number of IRLS iterations

irls.tol convergence tolerance for IRLS iterations. Only used if family != "gaussian"

accelerate boolean argument. Whether or not to use Nesterov acceleration with adaptive
restarting

ncores Integer scalar that specifies the number of threads to be used

compute.loss should the loss be computed for each estimated tuning parameter? Defaults to
FALSE. Setting to TRUE will dramatically increase computational time



12 oem

hessian.type only for logistic regression. if hessian.type = "full", then the full hessian is
used. If hessian.type = "upper.bound", then an upper bound of the hessian is
used. The upper bound can be dramatically faster in certain situations, ie when
n » p

Value

An object with S3 class "oem"

References

Shifeng Xiong, Bin Dai, Jared Huling, and Peter Z. G. Qian. Orthogonalizing EM: A design-based
least squares algorithm. Technometrics, 58(3):285-293, 2016. doi:10.1080/00401706.2015.1054436

Huling. J.D. and Chien, P. (2022), Fast Penalized Regression and Cross Validation for Tall Data
with the oem Package. Journal of Statistical Software 104(6), 1-24. doi:10.18637/jss.v104.i06

Examples

set.seed(123)
n.obs <- 1e4
n.vars <- 50

true.beta <- c(runif(15, -0.25, 0.25), rep(0, n.vars - 15))

x <- matrix(rnorm(n.obs * n.vars), n.obs, n.vars)
y <- rnorm(n.obs, sd = 3) + x %*% true.beta

fit <- oem(x = x, y = y,
penalty = c("lasso", "grp.lasso", "sparse.grp.lasso"),
groups = rep(1:10, each = 5))

layout(matrix(1:3, ncol = 3))
plot(fit)
plot(fit, which.model = 2)
plot(fit, which.model = "sparse.grp.lasso")

# the oem package has support for
# sparse design matrices

library(Matrix)

xs <- rsparsematrix(n.obs * 25, n.vars * 2, density = 0.01)
ys <- rnorm(n.obs * 25, sd = 3) + as.vector(xs %*% c(true.beta, rep(0, n.vars)) )
x.dense <- as.matrix(xs)

system.time(fit <- oem(x = x.dense, y = ys,
penalty = c("lasso", "grp.lasso"),
groups = rep(1:20, each = 5), intercept = FALSE,
standardize = FALSE))

system.time(fits <- oem(x = xs, y = ys,
penalty = c("lasso", "grp.lasso"),

https://doi.org/10.1080/00401706.2015.1054436


oem.xtx 13

groups = rep(1:20, each = 5), intercept = FALSE,
standardize = FALSE, lambda = fit$lambda))

max(abs(fit$beta[[1]] - fits$beta[[1]]))
max(abs(fit$beta[[2]] - fits$beta[[2]]))

# logistic
y <- rbinom(n.obs, 1, prob = 1 / (1 + exp(-x %*% true.beta)))

system.time(res <- oem(x, y, intercept = FALSE,
penalty = c("lasso", "sparse.grp.lasso", "mcp"),
family = "binomial",
groups = rep(1:10, each = 5),
nlambda = 10,
irls.tol = 1e-3, tol = 1e-8))

layout(matrix(1:3, ncol = 3))
plot(res)
plot(res, which.model = 2)
plot(res, which.model = "mcp")

# sparse design matrix
xs <- rsparsematrix(n.obs * 2, n.vars, density = 0.01)
x.dense <- as.matrix(xs)
ys <- rbinom(n.obs * 2, 1, prob = 1 / (1 + exp(-x %*% true.beta)))

system.time(res.gr <- oem(x.dense, ys, intercept = FALSE,
penalty = "grp.lasso",
family = "binomial",
nlambda = 10,
groups = rep(1:5, each = 10),
irls.tol = 1e-3, tol = 1e-8))

system.time(res.gr.s <- oem(xs, ys, intercept = FALSE,
penalty = "grp.lasso",
family = "binomial",
nlambda = 10,
groups = rep(1:5, each = 10),
irls.tol = 1e-3, tol = 1e-8))

max(abs(res.gr$beta[[1]] - res.gr.s$beta[[1]]))

oem.xtx Orthogonalizing EM with precomputed XtX

Description

Orthogonalizing EM with precomputed XtX



14 oem.xtx

Usage

oem.xtx(
xtx,
xty,
family = c("gaussian", "binomial"),
penalty = c("elastic.net", "lasso", "ols", "mcp", "scad", "mcp.net", "scad.net",
"grp.lasso", "grp.lasso.net", "grp.mcp", "grp.scad", "grp.mcp.net", "grp.scad.net",
"sparse.grp.lasso"),

lambda = numeric(0),
nlambda = 100L,
lambda.min.ratio = NULL,
alpha = 1,
gamma = 3,
tau = 0.5,
groups = numeric(0),
scale.factor = numeric(0),
penalty.factor = NULL,
group.weights = NULL,
maxit = 500L,
tol = 1e-07,
irls.maxit = 100L,
irls.tol = 0.001

)

Arguments

xtx input matrix equal to crossprod(x) / nrow(x). where x is the design matrix.
It is highly recommended to scale by the number of rows in x. If xtx is scaled,
xty must also be scaled or else results may be meaningless!

xty numeric vector of length nvars. Equal to crosprod(x, y) / nobs. It is highly
recommended to scale by the number of rows in x.

family "gaussian" for least squares problems, "binomial" for binary response. (only
gaussian implemented currently)

penalty Specification of penalty type. Choices include:

• "elastic.net" - elastic net penalty, extra parameters: "alpha"
• "lasso" - lasso penalty
• "ols" - ordinary least squares
• "mcp" - minimax concave penalty, extra parameters: "gamma"
• "scad" - smoothly clipped absolute deviation, extra parameters: "gamma"
• "mcp.net" - minimax concave penalty + l2 penalty, extra parameters: "gamma",
"alpha"

• "scad.net" - smoothly clipped absolute deviation + l2 penalty, extra pa-
rameters: "gamma", "alpha"

• "grp.lasso" - group lasso penalty
• "grp.lasso.net" - group lasso penalty + l2 penalty, extra parameters:
"alpha"



oem.xtx 15

• "grp.mcp" - group minimax concave penalty, extra parameters: "gamma"
• "grp.scad" - group smoothly clipped absolute deviation, extra parameters:
"gamma"

• "grp.mcp.net" - group minimax concave penalty + l2 penalty, extra pa-
rameters: "gamma", "alpha"

• "grp.scad.net" - group smoothly clipped absolute deviation + l2 penalty,
extra parameters: "gamma", "alpha"

• "sparse.grp.lasso" - sparse group lasso penalty (group lasso + lasso),
extra parameters: "tau"

Careful consideration is required for the group lasso, group MCP, and group
SCAD penalties. Groups as specified by the groups argument should be chosen
in a sensible manner.

lambda A user supplied lambda sequence. By default, the program computes its own
lambda sequence based on nlambda and lambda.min.ratio. Supplying a value
of lambda overrides this.

nlambda The number of lambda values - default is 100.
lambda.min.ratio

Smallest value for lambda, as a fraction of lambda.max, the (data derived) entry
value (i.e. the smallest value for which all coefficients are zero). The default
depends on the sample size nobs relative to the number of variables nvars. The
default is 0.0001

alpha mixing value for elastic.net, mcp.net, scad.net, grp.mcp.net, grp.scad.net.
penalty applied is (1 - alpha) * (ridge penalty) + alpha * (lasso/mcp/mcp/grp.lasso
penalty)

gamma tuning parameter for SCAD and MCP penalties. must be >= 1

tau mixing value for sparse.grp.lasso. penalty applied is (1 - tau) * (group lasso
penalty) + tau * (lasso penalty)

groups A vector of describing the grouping of the coefficients. See the example below.
All unpenalized variables should be put in group 0

scale.factor of length nvars === ncol(xtx) == length(xty) for scaling columns of x. The
standard deviation for each column of x is a common choice for scale.factor.
Coefficients will be returned on original scale. Default is no scaling.

penalty.factor Separate penalty factors can be applied to each coefficient. This is a number that
multiplies lambda to allow differential shrinkage. Can be 0 for some variables,
which implies no shrinkage, and that variable is always included in the model.
Default is 1 for all variables.

group.weights penalty factors applied to each group for the group lasso. Similar to penalty.factor,
this is a number that multiplies lambda to allow differential shrinkage. Can be 0
for some groups, which implies no shrinkage, and that group is always included
in the model. Default is sqrt(group size) for all groups.

maxit integer. Maximum number of OEM iterations

tol convergence tolerance for OEM iterations

irls.maxit integer. Maximum number of IRLS iterations

irls.tol convergence tolerance for IRLS iterations. Only used if family != "gaussian"



16 oem.xtx

Value

An object with S3 class "oem"

References

Huling. J.D. and Chien, P. (2022), Fast Penalized Regression and Cross Validation for Tall Data
with the oem Package. Journal of Statistical Software 104(6), 1-24. doi:10.18637/jss.v104.i06

Examples

set.seed(123)
n.obs <- 1e4
n.vars <- 100

true.beta <- c(runif(15, -0.25, 0.25), rep(0, n.vars - 15))

x <- matrix(rnorm(n.obs * n.vars), n.obs, n.vars)
y <- rnorm(n.obs, sd = 3) + x %*% true.beta

fit <- oem(x = x, y = y,
penalty = c("lasso", "elastic.net",

"ols",
"mcp", "scad",
"mcp.net", "scad.net",
"grp.lasso", "grp.lasso.net",
"grp.mcp", "grp.scad",
"sparse.grp.lasso"),

standardize = FALSE, intercept = FALSE,
groups = rep(1:20, each = 5))

xtx <- crossprod(x) / n.obs
xty <- crossprod(x, y) / n.obs

fit.xtx <- oem.xtx(xtx = xtx, xty = xty,
penalty = c("lasso", "elastic.net",

"ols",
"mcp", "scad",
"mcp.net", "scad.net",
"grp.lasso", "grp.lasso.net",
"grp.mcp", "grp.scad",
"sparse.grp.lasso"),

groups = rep(1:20, each = 5))

max(abs(fit$beta[[1]][-1,] - fit.xtx$beta[[1]]))
max(abs(fit$beta[[2]][-1,] - fit.xtx$beta[[2]]))

layout(matrix(1:2, ncol = 2))
plot(fit.xtx)
plot(fit.xtx, which.model = 2)



oemfit 17

oemfit Deprecated functions

Description

These functions have been renamed and deprecated in oem: oemfit() (use oem()), cv.oemfit()
(use cv.oem()), print.oemfit(), plot.oemfit(), predict.oemfit(), and coef.oemfit().

Usage

oemfit(
formula,
data = list(),
lambda = NULL,
nlambda = 100,
lambda.min.ratio = NULL,
tolerance = 0.001,
maxIter = 1000,
standardized = TRUE,
numGroup = 1,
penalty = c("lasso", "scad", "ols", "elastic.net", "ngarrote", "mcp"),
alpha = 3,
evaluate = 0,
condition = -1

)

cv.oemfit(
formula,
data = list(),
lambda = NULL,
type.measure = c("mse", "mae"),
...,
nfolds = 10,
foldid,
penalty = c("lasso", "scad", "elastic.net", "ngarrote", "mcp")

)

## S3 method for class 'oemfit'
plot(
x,
xvar = c("norm", "lambda", "loglambda", "dev"),
xlab = iname,
ylab = "Coefficients",
...

)

## S3 method for class 'oemfit'



18 oemfit

predict(
object,
newx,
s = NULL,
type = c("response", "coefficients", "nonzero"),
...

)

## S3 method for class 'oemfit'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

formula an object of ’formula’ (or one that can be coerced to that class): a symbolic
description of the model to be fitted. The details of model specification are
given under ’Details’

data an optional data frame, list or environment (or object coercible by ’as.data.frame’
to a data frame) containing the variables in the model. If not found in ’data’,
the variables are taken from ’environment(formula)’, typically the environment
from which ’oemfit’ is called.

lambda A user supplied lambda sequence. Typical usage is to have the program compute
its own lambda sequence based on nlambda and lambda.min.ratio. Supplying
a value of lambda overrides this. WARNING: use with care. Do not supply
a single value for lambda (for predictions after CV use predict() instead).
Supply instead a decreasing sequence of lambda values. oemfit relies on its
warms starts for speed, and its often faster to fit a whole path than compute a
single fit.

nlambda The number of lambda values - default is 100.
lambda.min.ratio

Smallest value for lambda, as a fraction of lambda.max, the (data derived) entry
value (i.e. the smallest value for which all coefficients are zero). The default
depends on the sample size nobs relative to the number of variables nvars. If
nobs > nvars, the default is 0.0001, close to zero. If nobs < nvars, the default
is 0.01. A very small value of lambda.min.ratio will lead to a saturated fit in
the nobs < nvars case.

tolerance Convergence tolerance for OEM. Each inner OEM loop continues until the max-
imum change in the objective after any coefficient update is less than tolerance.
Defaults value is 1E-3.

maxIter Maximum number of passes over the data for all lambda values; default is 1000.

standardized Logical flag for x variable standardization, prior to fitting the model sequence.
The coefficients are always returned on the original scale. Default is standardize=TRUE.
If variables are in the same units already, you might not wish to standardize.

numGroup Integer value for the number of groups to use for OEM fitting. Default is 1.

penalty type in lower letters. Different types include ’lasso’, ’scad’, ’ols’ (ordinary least
square), ’elastic-net’, ’ngarrote’ (non-negative garrote) and ’mcp’.

alpha alpha value for scad and mcp.



plot.oem 19

evaluate debugging argument

condition Debugging for different ways of calculating OEM.

type.measure type.measure measure to evaluate for cross-validation. type.measure = "mse"
(mean squared error) or type.measure = "mae" (mean absolute error)

... arguments to be passed to oemfit()

nfolds number of folds for cross-validation. default is 10.

foldid an optional vector of values between 1 and nfold specifying which fold each
observation belongs to.

x fitted oemfit object

xvar what is on the X-axis. "norm" plots against the L1-norm of the coefficients,
"lambda" against the log-lambda sequence, and "dev" against the percent de-
viance explained.

xlab x-axis label

ylab y-axis label

object fitted oemfit object

newx matrix of new values for x at which predictions are to be made. Must be a matrix.

s Value(s) of the penalty parameter lambda at which predictions are required. De-
fault is the entire sequence used to create the model.

type not used.

digits significant digits in print out.

Details

The sequence of models implied by ’lambda’ is fit by OEM algorithm.

Author(s)

Bin Dai

plot.oem Plot method for Orthogonalizing EM fitted objects

Description

Plot method for Orthogonalizing EM fitted objects

Plot method for Orthogonalizing EM fitted objects



20 plot.oem

Usage

## S3 method for class 'oem'
plot(
x,
which.model = 1,
xvar = c("norm", "lambda", "loglambda", "dev"),
labsize = 0.6,
xlab = iname,
ylab = NULL,
main = x$penalty[which.model],
...

)

## S3 method for class 'cv.oem'
plot(x, which.model = 1, sign.lambda = 1, ...)

## S3 method for class 'xval.oem'
plot(
x,
which.model = 1,
type = c("cv", "coefficients"),
xvar = c("norm", "lambda", "loglambda", "dev"),
labsize = 0.6,
xlab = iname,
ylab = NULL,
main = x$penalty[which.model],
sign.lambda = 1,
...

)

Arguments

x fitted "oem" model object

which.model If multiple penalties are fit and returned in the same oem object, the which.model
argument is used to specify which model to plot. For example, if the oem object
"oemobj" was fit with argument penalty = c("lasso", "grp.lasso"), then
which.model = 2 provides a plot for the group lasso model.

xvar What is on the X-axis. "norm" plots against the L1-norm of the coefficients,
"lambda" against the log-lambda sequence, and "dev" against the percent de-
viance explained.

labsize size of labels for variable names. If labsize = 0, then no variable names will be
plotted

xlab label for x-axis

ylab label for y-axis

main main title for plot

... other graphical parameters for the plot



plot.oem 21

sign.lambda Either plot against log(lambda) (default) or its negative if sign.lambda = -1.

type one of "cv" or "coefficients". type = "cv" will produce a plot of cross val-
idation results like plot.cv.oem. type = "coefficients" will produce a coeffi-
cient path plot like plot.oem()

Examples

set.seed(123)
n.obs <- 1e4
n.vars <- 100
n.obs.test <- 1e3

true.beta <- c(runif(15, -0.5, 0.5), rep(0, n.vars - 15))

x <- matrix(rnorm(n.obs * n.vars), n.obs, n.vars)
y <- rnorm(n.obs, sd = 3) + x %*% true.beta

fit <- oem(x = x, y = y, penalty = c("lasso", "grp.lasso"), groups = rep(1:10, each = 10))

layout(matrix(1:2, ncol = 2))
plot(fit, which.model = 1)
plot(fit, which.model = 2)

set.seed(123)
n.obs <- 1e4
n.vars <- 100
n.obs.test <- 1e3

true.beta <- c(runif(15, -0.5, 0.5), rep(0, n.vars - 15))

x <- matrix(rnorm(n.obs * n.vars), n.obs, n.vars)
y <- rnorm(n.obs, sd = 3) + x %*% true.beta

fit <- cv.oem(x = x, y = y, penalty = c("lasso", "grp.lasso"), groups = rep(1:10, each = 10))

layout(matrix(1:2, ncol = 2))
plot(fit, which.model = 1)
plot(fit, which.model = "grp.lasso")

set.seed(123)
n.obs <- 1e4
n.vars <- 100
n.obs.test <- 1e3

true.beta <- c(runif(15, -0.5, 0.5), rep(0, n.vars - 15))

x <- matrix(rnorm(n.obs * n.vars), n.obs, n.vars)
y <- rnorm(n.obs, sd = 3) + x %*% true.beta

fit <- xval.oem(x = x, y = y, penalty = c("lasso", "grp.lasso"), groups = rep(1:10, each = 10))

layout(matrix(1:4, ncol = 2))



22 predict.cv.oem

plot(fit, which.model = 1)
plot(fit, which.model = 2)

plot(fit, which.model = 1, type = "coef")
plot(fit, which.model = 2, type = "coef")

predict.cv.oem Prediction function for fitted cross validation oem objects

Description

Prediction function for fitted cross validation oem objects

Usage

## S3 method for class 'cv.oem'
predict(
object,
newx,
which.model = "best.model",
s = c("lambda.min", "lambda.1se"),
...

)

Arguments

object fitted "cv.oem" model object

newx Matrix of new values for x at which predictions are to be made. Must be a
matrix; can be sparse as in the CsparseMatrix objects of the Matrix package
This argument is not used for type = c("coefficients","nonzero")

which.model If multiple penalties are fit and returned in the same oem object, the which.model
argument is used to specify which model to make predictions for. For exam-
ple, if the oem object "oemobj" was fit with argument penalty = c("lasso",
"grp.lasso"), then which.model = 2 provides predictions for the group lasso
model. For predict.cv.oem(), can specify "best.model" to use the best
model as estimated by cross-validation

s Value(s) of the penalty parameter lambda at which predictions are required. De-
fault is the entire sequence used to create the model. For predict.cv.oem(),
can also specify "lambda.1se" or "lambda.min" for best lambdas estimated by
cross validation

... used to pass the other arguments for predict.oem

Value

An object depending on the type argument



predict.oem 23

Examples

set.seed(123)
n.obs <- 1e4
n.vars <- 100
n.obs.test <- 1e3

true.beta <- c(runif(15, -0.5, 0.5), rep(0, n.vars - 15))

x <- matrix(rnorm(n.obs * n.vars), n.obs, n.vars)
y <- rnorm(n.obs, sd = 3) + x %*% true.beta
x.test <- matrix(rnorm(n.obs.test * n.vars), n.obs.test, n.vars)
y.test <- rnorm(n.obs.test, sd = 3) + x.test %*% true.beta

fit <- cv.oem(x = x, y = y,
penalty = c("lasso", "grp.lasso"),
groups = rep(1:10, each = 10),
nlambda = 10)

preds.best <- predict(fit, newx = x.test, type = "response", which.model = "best.model")

apply(preds.best, 2, function(x) mean((y.test - x) ^ 2))

preds.gl <- predict(fit, newx = x.test, type = "response", which.model = "grp.lasso")

apply(preds.gl, 2, function(x) mean((y.test - x) ^ 2))

preds.l <- predict(fit, newx = x.test, type = "response", which.model = 1)

apply(preds.l, 2, function(x) mean((y.test - x) ^ 2))

predict.oem Prediction method for Orthogonalizing EM fitted objects

Description

Prediction method for Orthogonalizing EM fitted objects

Usage

## S3 method for class 'oem'
predict(
object,
newx,
s = NULL,
which.model = 1,
type = c("link", "response", "coefficients", "nonzero", "class"),
...

)



24 predict.oem

Arguments

object fitted "oem" model object
newx Matrix of new values for x at which predictions are to be made. Must be a

matrix; can be sparse as in the CsparseMatrix objects of the Matrix package.
This argument is not used for type=c("coefficients","nonzero")

s Value(s) of the penalty parameter lambda at which predictions are required. De-
fault is the entire sequence used to create the model.

which.model If multiple penalties are fit and returned in the same oem object, the which.model
argument is used to specify which model to make predictions for. For exam-
ple, if the oem object oemobj was fit with argument penalty = c("lasso",
"grp.lasso"), then which.model = 2 provides predictions for the group lasso
model.

type Type of prediction required. type = "link" gives the linear predictors for the
"binomial" model; for "gaussian" models it gives the fitted values. type =
"response" gives the fitted probabilities for "binomial". type = "coefficients"
computes the coefficients at the requested values for s. type = "class" applies
only to "binomial" and produces the class label corresponding to the maximum
probability.

... not used

Value

An object depending on the type argument

Examples

set.seed(123)
n.obs <- 1e4
n.vars <- 100
n.obs.test <- 1e3

true.beta <- c(runif(15, -0.5, 0.5), rep(0, n.vars - 15))

x <- matrix(rnorm(n.obs * n.vars), n.obs, n.vars)
y <- rnorm(n.obs, sd = 3) + x %*% true.beta
x.test <- matrix(rnorm(n.obs.test * n.vars), n.obs.test, n.vars)
y.test <- rnorm(n.obs.test, sd = 3) + x.test %*% true.beta

fit <- oem(x = x, y = y,
penalty = c("lasso", "grp.lasso"),
groups = rep(1:10, each = 10),
nlambda = 10)

preds.lasso <- predict(fit, newx = x.test, type = "response", which.model = 1)
preds.grp.lasso <- predict(fit, newx = x.test, type = "response", which.model = 2)

apply(preds.lasso, 2, function(x) mean((y.test - x) ^ 2))
apply(preds.grp.lasso, 2, function(x) mean((y.test - x) ^ 2))



predict.xval.oem 25

predict.xval.oem Prediction function for fitted cross validation oem objects

Description

Prediction function for fitted cross validation oem objects

Usage

## S3 method for class 'xval.oem'
predict(
object,
newx,
which.model = "best.model",
s = c("lambda.min", "lambda.1se"),
...

)

Arguments

object fitted "cv.oem" model object

newx Matrix of new values for x at which predictions are to be made. Must be a
matrix; can be sparse as in the CsparseMatrix objects of the Matrix package
This argument is not used for type=c("coefficients","nonzero")

which.model If multiple penalties are fit and returned in the same oem object, the which.model
argument is used to specify which model to make predictions for. For exam-
ple, if the oem object "oemobj" was fit with argument penalty = c("lasso",
"grp.lasso"), then which.model = 2 provides predictions for the group lasso
model. For predict.cv.oem(), can specify "best.model" to use the best
model as estimated by cross-validation

s Value(s) of the penalty parameter lambda at which predictions are required. De-
fault is the entire sequence used to create the model. For predict.cv.oem, can
also specify "lambda.1se" or "lambda.min" for best lambdas estimated by
cross validation

... used to pass the other arguments for predict.oem()

Value

An object depending on the type argument

Examples

set.seed(123)
n.obs <- 1e4
n.vars <- 100
n.obs.test <- 1e3



26 print.summary.cv.oem

true.beta <- c(runif(15, -0.5, 0.5), rep(0, n.vars - 15))

x <- matrix(rnorm(n.obs * n.vars), n.obs, n.vars)
y <- rnorm(n.obs, sd = 3) + x %*% true.beta
x.test <- matrix(rnorm(n.obs.test * n.vars), n.obs.test, n.vars)
y.test <- rnorm(n.obs.test, sd = 3) + x.test %*% true.beta

fit <- xval.oem(x = x, y = y,
penalty = c("lasso", "grp.lasso"),
groups = rep(1:10, each = 10),
nlambda = 10)

preds.best <- predict(fit, newx = x.test, type = "response", which.model = "best.model")

apply(preds.best, 2, function(x) mean((y.test - x) ^ 2))

preds.gl <- predict(fit, newx = x.test, type = "response", which.model = "grp.lasso")

apply(preds.gl, 2, function(x) mean((y.test - x) ^ 2))

preds.l <- predict(fit, newx = x.test, type = "response", which.model = 1)

apply(preds.l, 2, function(x) mean((y.test - x) ^ 2))

print.summary.cv.oem print method for summary.cv.oem objects

Description

print method for summary.cv.oem objects

Usage

## S3 method for class 'summary.cv.oem'
print(x, digits, ...)

Arguments

x a "summary.cv.oem" object

digits digits to display

... not used



summary.cv.oem 27

summary.cv.oem summary method for cross validation Orthogonalizing EM fitted ob-
jects

Description

summary method for cross validation Orthogonalizing EM fitted objects

summary method for cross validation Orthogonalizing EM fitted objects

Usage

## S3 method for class 'cv.oem'
summary(object, ...)

## S3 method for class 'xval.oem'
summary(object, ...)

Arguments

object fitted "cv.oem" object

... not used

xval.oem Fast cross validation for Orthogonalizing EM

Description

Fast cross validation for Orthogonalizing EM

Usage

xval.oem(
x,
y,
nfolds = 10L,
foldid = NULL,
type.measure = c("mse", "deviance", "class", "auc", "mae"),
ncores = -1,
family = c("gaussian", "binomial"),
penalty = c("elastic.net", "lasso", "ols", "mcp", "scad", "mcp.net", "scad.net",
"grp.lasso", "grp.lasso.net", "grp.mcp", "grp.scad", "grp.mcp.net", "grp.scad.net",
"sparse.grp.lasso"),

weights = numeric(0),
lambda = numeric(0),
nlambda = 100L,



28 xval.oem

lambda.min.ratio = NULL,
alpha = 1,
gamma = 3,
tau = 0.5,
groups = numeric(0),
penalty.factor = NULL,
group.weights = NULL,
standardize = TRUE,
intercept = TRUE,
maxit = 500L,
tol = 1e-07,
irls.maxit = 100L,
irls.tol = 0.001,
compute.loss = FALSE

)

Arguments

x input matrix of dimension n x p (sparse matrices not yet implemented). Each
row is an observation, each column corresponds to a covariate. The xval.oem()
function is optimized for n » p settings and may be very slow when p > n, so
please use other packages such as glmnet, ncvreg, grpreg, or gglasso when p
> n or p approx n.

y numeric response vector of length nobs = nrow(x).

nfolds integer number of cross validation folds. 3 is the minimum number allowed.
defaults to 10

foldid an optional vector of values between 1 and nfold specifying which fold each
observation belongs to.

type.measure measure to evaluate for cross-validation. The default is type.measure = "deviance",
which uses squared-error for gaussian models (a.k.a type.measure = "mse"
there), deviance for logistic regression. type.measure = "class" applies to
binomial only. type.measure = "auc" is for two-class logistic regression only.
type.measure="mse" or type.measure="mae" (mean absolute error) can be
used by all models; they measure the deviation from the fitted mean to the re-
sponse.

ncores Integer scalar that specifies the number of threads to be used

family "gaussian" for least squares problems, "binomial" for binary response (not
implemented yet).

penalty Specification of penalty type. Choices include:

• "elastic.net" - elastic net penalty, extra parameters: "alpha"
• "lasso" - lasso penalty
• "ols" - ordinary least squares
• "mcp" - minimax concave penalty, extra parameters: "gamma"
• "scad" - smoothly clipped absolute deviation, extra parameters: "gamma"
• "mcp.net" - minimax concave penalty + l2 penalty, extra parameters: "gamma",
"alpha"



xval.oem 29

• "scad.net" - smoothly clipped absolute deviation + l2 penalty, extra pa-
rameters: "gamma", "alpha"

• "grp.lasso" - group lasso penalty
• "grp.lasso.net" - group lasso penalty + l2 penalty, extra parameters:
"alpha"

• "grp.mcp" - group minimax concave penalty, extra parameters: "gamma"
• "grp.scad" - group smoothly clipped absolute deviation, extra parameters:
"gamma"

• "grp.mcp.net" - group minimax concave penalty + l2 penalty, extra pa-
rameters: "gamma", "alpha"

• "grp.scad.net" - group smoothly clipped absolute deviation + l2 penalty,
extra parameters: "gamma", "alpha"

• "sparse.grp.lasso" - sparse group lasso penalty (group lasso + lasso),
extra parameters: "tau"

Careful consideration is required for the group lasso, group MCP, and group
SCAD penalties. Groups as specified by the groups argument should be chosen
in a sensible manner.

weights observation weights. defaults to 1 for each observation (setting weight vector to
length 0 will default all weights to 1)

lambda A user supplied lambda sequence. By default, the program computes its own
lambda sequence based on nlambda and lambda.min.ratio. Supplying a value
of lambda overrides this.

nlambda The number of lambda values - default is 100.
lambda.min.ratio

Smallest value for lambda, as a fraction of lambda.max, the (data derived) entry
value (i.e. the smallest value for which all coefficients are zero). The default
depends on the sample size nobs relative to the number of variables nvars. If
nobs > nvars, the default is 0.0001, close to zero.

alpha mixing value for elastic.net, mcp.net, scad.net, grp.mcp.net, grp.scad.net.
penalty applied is (1 - alpha) * (ridge penalty) + alpha * (lasso/mcp/mcp/grp.lasso
penalty)

gamma tuning parameter for SCAD and MCP penalties. must be >= 1

tau mixing value for sparse.grp.lasso. penalty applied is (1 - tau) * (group lasso
penalty) + tau * (lasso penalty)

groups A vector of describing the grouping of the coefficients. See the example below.
All unpenalized variables should be put in group 0

penalty.factor Separate penalty factors can be applied to each coefficient. This is a number that
multiplies lambda to allow differential shrinkage. Can be 0 for some variables,
which implies no shrinkage, and that variable is always included in the model.
Default is 1 for all variables.

group.weights penalty factors applied to each group for the group lasso. Similar to penalty.factor,
this is a number that multiplies lambda to allow differential shrinkage. Can be 0
for some groups, which implies no shrinkage, and that group is always included
in the model. Default is sqrt(group size) for all groups.



30 xval.oem

standardize Logical flag for x variable standardization, prior to fitting the models. The co-
efficients are always returned on the original scale. Default is standardize =
TRUE. If variables are in the same units already, you might not wish to standard-
ize.

intercept Should intercept(s) be fitted (default = TRUE) or set to zero (FALSE)

maxit integer. Maximum number of OEM iterations

tol convergence tolerance for OEM iterations

irls.maxit integer. Maximum number of IRLS iterations

irls.tol convergence tolerance for IRLS iterations. Only used if family != "gaussian"

compute.loss should the loss be computed for each estimated tuning parameter? Defaults to
FALSE. Setting to TRUE will dramatically increase computational time

Value

An object with S3 class "xval.oem"

References

Huling. J.D. and Chien, P. (2022), Fast Penalized Regression and Cross Validation for Tall Data
with the oem Package. Journal of Statistical Software 104(6), 1-24. doi:10.18637/jss.v104.i06

Examples

set.seed(123)
n.obs <- 1e4
n.vars <- 100

true.beta <- c(runif(15, -0.25, 0.25), rep(0, n.vars - 15))

x <- matrix(rnorm(n.obs * n.vars), n.obs, n.vars)
y <- rnorm(n.obs, sd = 3) + x %*% true.beta

system.time(fit <- oem(x = x, y = y,
penalty = c("lasso", "grp.lasso"),
groups = rep(1:20, each = 5)))

system.time(xfit <- xval.oem(x = x, y = y,
penalty = c("lasso", "grp.lasso"),
groups = rep(1:20, each = 5)))

system.time(xfit2 <- xval.oem(x = x, y = y,
penalty = c("lasso", "grp.lasso",

"mcp", "scad",
"mcp.net", "scad.net",
"grp.lasso", "grp.lasso.net",
"grp.mcp", "grp.scad",
"sparse.grp.lasso"),

groups = rep(1:20, each = 5)))



Index

big.oem, 2

cv.oem, 6, 17
cv.oemfit (oemfit), 17

logLik.cv.oem (logLik.oem), 8
logLik.oem, 8
logLik.xval.oem (logLik.oem), 8

oem, 9, 17
oem-deprecated (oemfit), 17
oem.xtx, 13
oemfit, 17

plot.cv.oem (plot.oem), 19
plot.oem, 19
plot.oemfit (oemfit), 17
plot.xval.oem (plot.oem), 19
predict.cv.oem, 22
predict.oem, 23
predict.oemfit (oemfit), 17
predict.xval.oem, 25
print.oemfit (oemfit), 17
print.summary.cv.oem, 26

summary.cv.oem, 27
summary.xval.oem (summary.cv.oem), 27

xval.oem, 27

31


	big.oem
	cv.oem
	logLik.oem
	oem
	oem.xtx
	oemfit
	plot.oem
	predict.cv.oem
	predict.oem
	predict.xval.oem
	print.summary.cv.oem
	summary.cv.oem
	xval.oem
	Index

