Package 'oeli'

Title: Utilities for Developing Data Science Software
Description: Some general helper functions that I (and maybe others) find useful when developing data science software.
Authors: Lennart Oelschläger [aut, cre]
Maintainer: Lennart Oelschläger <[email protected]>
License: GPL (>= 3)
Version: 0.7.1
Built: 2024-12-27 06:44:26 UTC
Source: CRAN

Help Index


Check correlation matrix

Description

These functions check whether the input fulfills the properties of a correlation matrix.

Usage

check_correlation_matrix(x, dim = NULL, tolerance = sqrt(.Machine$double.eps))

assert_correlation_matrix(
  x,
  dim = NULL,
  tolerance = sqrt(.Machine$double.eps),
  .var.name = checkmate::vname(x),
  add = NULL
)

test_correlation_matrix(x, dim = NULL, tolerance = sqrt(.Machine$double.eps))

Arguments

x

[any]
Object to check.

dim

[integer(1)]
The matrix dimension.

tolerance

[numeric(1)]
A non-negative tolerance value.

.var.name

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic implemented in vname.

add

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

Value

Same as documented in check_matrix.

See Also

Other matrix helpers: check_covariance_matrix(), check_transition_probability_matrix(), cov_to_chol(), diff_cov(), insert_matrix_column(), matrix_diagonal_indices(), matrix_indices(), sample_correlation_matrix(), sample_covariance_matrix(), sample_transition_probability_matrix(), stationary_distribution()

Examples

M <- matrix(c(1,  0.9,  0.9, 0.9,  1,  -0.9, 0.9,  -0.9,  1), nrow = 3)
check_correlation_matrix(M)
test_correlation_matrix(M)
## Not run: 
assert_correlation_matrix(M)

## End(Not run)

Check covariance matrix

Description

These functions check whether the input fulfills the properties of a covariance matrix.

Usage

check_covariance_matrix(x, dim = NULL, tolerance = sqrt(.Machine$double.eps))

assert_covariance_matrix(
  x,
  dim = NULL,
  tolerance = sqrt(.Machine$double.eps),
  .var.name = checkmate::vname(x),
  add = NULL
)

test_covariance_matrix(x, dim = NULL, tolerance = sqrt(.Machine$double.eps))

Arguments

x

[any]
Object to check.

dim

[integer(1)]
The matrix dimension.

tolerance

[numeric(1)]
A non-negative tolerance value.

.var.name

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic implemented in vname.

add

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

Value

Same as documented in check_matrix.

See Also

Other matrix helpers: check_correlation_matrix(), check_transition_probability_matrix(), cov_to_chol(), diff_cov(), insert_matrix_column(), matrix_diagonal_indices(), matrix_indices(), sample_correlation_matrix(), sample_covariance_matrix(), sample_transition_probability_matrix(), stationary_distribution()

Examples

M <- matrix(c(1, 2, 3, 2, 1, 2, 3, 2, 1), nrow = 3)
check_covariance_matrix(M)
test_covariance_matrix(M)
## Not run: 
assert_covariance_matrix(M)

## End(Not run)

Check list of lists

Description

These functions check whether the input is a list that contains list elements.

Usage

check_list_of_lists(x, len = NULL)

assert_list_of_lists(
  x,
  len = NULL,
  .var.name = checkmate::vname(x),
  add = NULL
)

test_list_of_lists(x, len = NULL)

Arguments

x

[any]
Object to check.

len

[integer(1)]
Exact expected length of x.

.var.name

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic implemented in vname.

add

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

Value

Same as documented in check_list.

See Also

Other list helpers: merge_lists()

Examples

L <- list(list(1), list(2), 3)
check_list_of_lists(L)
test_list_of_lists(L)
## Not run: 
assert_list_of_lists(L)

## End(Not run)

Check numeric vector

Description

These functions check whether the input is a numeric vector.

Usage

check_numeric_vector(
  x,
  lower = -Inf,
  upper = Inf,
  finite = FALSE,
  any.missing = TRUE,
  all.missing = TRUE,
  len = NULL,
  min.len = NULL,
  max.len = NULL,
  unique = FALSE,
  sorted = FALSE,
  names = NULL,
  typed.missing = FALSE,
  null.ok = FALSE
)

assert_numeric_vector(
  x,
  lower = -Inf,
  upper = Inf,
  finite = FALSE,
  any.missing = TRUE,
  all.missing = TRUE,
  len = NULL,
  min.len = NULL,
  max.len = NULL,
  unique = FALSE,
  sorted = FALSE,
  names = NULL,
  typed.missing = FALSE,
  null.ok = FALSE,
  .var.name = checkmate::vname(x),
  add = NULL
)

test_numeric_vector(
  x,
  lower = -Inf,
  upper = Inf,
  finite = FALSE,
  any.missing = TRUE,
  all.missing = TRUE,
  len = NULL,
  min.len = NULL,
  max.len = NULL,
  unique = FALSE,
  sorted = FALSE,
  names = NULL,
  typed.missing = FALSE,
  null.ok = FALSE
)

Arguments

x

[any]
Object to check.

lower

[numeric(1)]
Lower value all elements of x must be greater than or equal to.

upper

[numeric(1)]
Upper value all elements of x must be lower than or equal to.

finite

[logical(1)]
Check for only finite values? Default is FALSE.

any.missing

[logical(1)]
Are vectors with missing values allowed? Default is TRUE.

all.missing

[logical(1)]
Are vectors with no non-missing values allowed? Default is TRUE. Note that empty vectors do not have non-missing values.

len

[integer(1)]
Exact expected length of x.

min.len

[integer(1)]
Minimal length of x.

max.len

[integer(1)]
Maximal length of x.

unique

[logical(1)]
Must all values be unique? Default is FALSE.

sorted

[logical(1)]
Elements must be sorted in ascending order. Missing values are ignored.

names

[character(1)]
Check for names. See checkNamed for possible values. Default is “any” which performs no check at all. Note that you can use checkSubset to check for a specific set of names.

typed.missing

[logical(1)]
If set to FALSE (default), all types of missing values (NA, NA_integer_, NA_real_, NA_character_ or NA_character_) as well as empty vectors are allowed while type-checking atomic input. Set to TRUE to enable strict type checking.

null.ok

[logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is performed, all additional checks are disabled.

.var.name

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic implemented in vname.

add

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

Value

Same as documented in check_numeric.

See Also

Other vector helpers: check_probability_vector(), chunk_vector(), insert_vector_entry(), map_indices(), match_numerics(), permutations(), split_vector_at(), subsets(), vector_occurrence()

Examples

x <- c(1, 2, "3")
check_numeric_vector(x)
test_numeric_vector(x)
## Not run: 
assert_numeric_vector(x)

## End(Not run)

Check probability vector

Description

These functions check whether the input fulfills the properties of a probability matrix.

Usage

check_probability_vector(x, len = NULL, tolerance = sqrt(.Machine$double.eps))

assert_probability_vector(
  x,
  len = NULL,
  tolerance = sqrt(.Machine$double.eps),
  .var.name = checkmate::vname(x),
  add = NULL
)

test_probability_vector(x, len = NULL, tolerance = sqrt(.Machine$double.eps))

Arguments

x

[any]
Object to check.

len

[integer(1)]
Exact expected length of x.

tolerance

[numeric(1)]
A non-negative tolerance value.

.var.name

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic implemented in vname.

add

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

Value

Same as documented in check_numeric.

See Also

Other vector helpers: check_numeric_vector(), chunk_vector(), insert_vector_entry(), map_indices(), match_numerics(), permutations(), split_vector_at(), subsets(), vector_occurrence()

Examples

p <- c(0.2, 0.3, 0.6)
check_probability_vector(p)
test_probability_vector(p)
## Not run: 
assert_probability_vector(p)

## End(Not run)

Check transition probability matrix

Description

These functions check whether the input is a transition probability matrix.

Usage

check_transition_probability_matrix(
  x,
  dim = NULL,
  tolerance = sqrt(.Machine$double.eps)
)

assert_transition_probability_matrix(
  x,
  dim = NULL,
  tolerance = sqrt(.Machine$double.eps),
  .var.name = checkmate::vname(x),
  add = NULL
)

test_transition_probability_matrix(
  x,
  dim = NULL,
  tolerance = sqrt(.Machine$double.eps)
)

Arguments

x

[any]
Object to check.

dim

[integer(1)]
The matrix dimension.

tolerance

[numeric(1)]
A non-negative tolerance value.

.var.name

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic implemented in vname.

add

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

Value

Same as documented in check_matrix.

See Also

Other matrix helpers: check_correlation_matrix(), check_covariance_matrix(), cov_to_chol(), diff_cov(), insert_matrix_column(), matrix_diagonal_indices(), matrix_indices(), sample_correlation_matrix(), sample_covariance_matrix(), sample_transition_probability_matrix(), stationary_distribution()

Examples

T <- matrix(c(0.8,  0.2,  0.1, 0.1,  0.7,  0.4, 0.1,  0.1,  0.6), nrow = 3)
check_transition_probability_matrix(T)
test_transition_probability_matrix(T)
## Not run: 
assert_transition_probability_matrix(T)

## End(Not run)

Split a vector into chunks

Description

This function either

  • splits a vector into n chunks of equal size (type = 1),

  • splits a vector into chunks of size n (type = 2).

Usage

chunk_vector(x, n, type = 1, strict = FALSE)

Arguments

x

[atomic()']
A vector of elements.

n

[integer(1)]
A number smaller or equal length(x).

type

[1 | 2]
Either

  • 1 (default) to split x into n chunks of equal size,

  • or 2 to split x into chunks of size n.

strict

[logical(1)]
Set to TRUE to fail if length(x) is not a multiple of n, or FALSE (default), else.

Value

A list.

See Also

Other vector helpers: check_numeric_vector(), check_probability_vector(), insert_vector_entry(), map_indices(), match_numerics(), permutations(), split_vector_at(), subsets(), vector_occurrence()

Examples

x <- 1:12
chunk_vector(x, n = 3, type = 1)
chunk_vector(x, n = 3, type = 2)
try(chunk_vector(x, n = 5, strict = TRUE))

Simulate correlated regressor values

Description

This function simulates regressor values from various marginal distributions with custom correlations.

Usage

correlated_regressors(
  labels,
  n = 100,
  marginals = list(),
  correlation = diag(length(labels)),
  verbose = FALSE
)

Arguments

labels

[character()]
Unique labels for the regressors.

n

[integer(1)]
The number of values per regressor.

marginals

[list()]
Optionally marginal distributions for regressors. If not specified, standard normal marginal distributions are used.

Each list entry must be named according to a regressor label, and the following distributions are currently supported:

discrete distributions
  • Poisson: list(type = "poisson", lambda = ...)

  • categorical: list(type = "categorical", p = c(...))

continuous distributions
  • normal: list(type = "normal", mean = ..., sd = ...)

  • uniform: list(type = "uniform", min = ..., max = ...)

correlation

[matrix()]
A correlation matrix of dimension length(labels), where the (p, q)-th entry defines the correlation between regressor labels[p] and labels[q].

verbose

[logical(1)]
Print information about the simulated regressors?

Value

A data.frame with n rows and length(labels) columns.

References

This function heavily depends on the {SimMultiCorrData} package.

See Also

Other simulation helpers: ddirichlet_cpp(), dmvnorm_cpp(), dtnorm_cpp(), dwishart_cpp(), simulate_markov_chain()

Examples

labels <- c("P", "C", "N1", "N2", "U")
n <- 100
marginals <- list(
  "P" = list(type = "poisson", lambda = 2),
  "C" = list(type = "categorical", p = c(0.3, 0.2, 0.5)),
  "N1" = list(type = "normal", mean = -1, sd = 2),
  "U" = list(type = "uniform", min = -2, max = -1)
)
correlation <- matrix(
  c(1, -0.3, -0.1, 0, 0.5,
    -0.3, 1, 0.3, -0.5, -0.7,
    -0.1, 0.3, 1, -0.3, -0.3,
    0, -0.5, -0.3, 1, 0.1,
    0.5, -0.7, -0.3, 0.1, 1),
  nrow = 5, ncol = 5
)
data <- correlated_regressors(
  labels = labels, n = n, marginals = marginals, correlation = correlation
)
head(data)

Cholesky root of covariance matrix

Description

These functions compute the Cholesky root elements of a covariance matrix and, conversely, build a covariance matrix from its Cholesky root elements.

Usage

cov_to_chol(cov, unique = TRUE)

chol_to_cov(chol)

unique_chol(chol)

Arguments

cov

[matrix()]
A covariance matrix.

It can also be the zero matrix, in which case the Cholesky root is defined as the zero matrix.

unique

[logical(1)]
Ensure that the Cholesky decomposition is unique by restricting the diagonal elements to be positive?

chol

[numeric()]
Cholesky root elements.

Value

For cov_to_chol a numeric vector of Cholesky root elements.

For chol_to_cov a covariance matrix.

See Also

Other matrix helpers: check_correlation_matrix(), check_covariance_matrix(), check_transition_probability_matrix(), diff_cov(), insert_matrix_column(), matrix_diagonal_indices(), matrix_indices(), sample_correlation_matrix(), sample_covariance_matrix(), sample_transition_probability_matrix(), stationary_distribution()

Examples

cov <- sample_covariance_matrix(4)
chol <- cov_to_chol(cov)
all.equal(cov, chol_to_cov(chol))

Dirichlet distribution

Description

The function ddirichlet() computes the density of a Dirichlet distribution.

The function rdirichlet() samples from a Dirichlet distribution.

The functions with suffix ⁠_cpp⁠ perform no input checks, hence are faster.

Usage

ddirichlet_cpp(x, concentration, log = FALSE)

rdirichlet_cpp(concentration)

ddirichlet(x, concentration, log = FALSE)

rdirichlet(n = 1, concentration)

Arguments

x

[numeric()]
A probability vector.

concentration

[numeric()]
A concentration vector of the same length as x.

log

[logical(1)]
Return the logarithm of the density value?

n

[integer(1)]
The number of samples.

Value

For ddirichlet(): The density value.

For rdirichlet(): If n = 1 a vector of length p, else a matrix of dimension n times p with samples as rows.

See Also

Other simulation helpers: correlated_regressors(), dmvnorm_cpp(), dtnorm_cpp(), dwishart_cpp(), simulate_markov_chain()

Examples

x <- c(0.5, 0.3, 0.2)
concentration <- 1:3

# compute density
ddirichlet(x = x, concentration = concentration)
ddirichlet(x = x, concentration = concentration, log = TRUE)

# sample
rdirichlet(concentration = 1:3)
rdirichlet(n = 4, concentration = 1:2)

Deleting data.frame columns

Description

This function deletes columns of a data.frame by name.

Usage

delete_columns_data.frame(df, column_names)

Arguments

df

[data.frame]
A data.frame.

column_names

[character()]
The name(s) of column(s) of df to delete.

Value

The input df without the columns defined by column_names.

See Also

Other data.frame helpers: group_data.frame(), round_data.frame()

Examples

df <- data.frame("label" = c("A", "B"), "number" = 1:10)
delete_columns_data.frame(df = df, column_names = "label")
delete_columns_data.frame(df = df, column_names = "number")
delete_columns_data.frame(df = df, column_names = c("label", "number"))

Dictionary R6 Object

Description

Provides a simple key-value interface based on R6.

Active bindings

keys

[character()]
Available keys.

alias

[list()]
Available keys per alias value.

Methods

Public methods


Method new()

Initializing a new Dictionary object.

Usage
Dictionary$new(
  key_name,
  alias_name = NULL,
  value_names = character(),
  value_assert = alist(),
  allow_overwrite = TRUE,
  keys_reserved = character(),
  alias_choices = NULL,
  dictionary_name = NULL
)
Arguments
key_name

[character(1)]
The name for the key variable.

alias_name

[NULL | character(1)]
Optionally the name for the alias variable.

value_names

[character(0)]
The names of the values connected to a key.

value_assert

[alist(1)]
For each element in value_names, values_assert can have an identically named element of the form checkmate::assert_*(...), where ... can be any argument for the assertion function except for the x argument.

allow_overwrite

[logical(1)]
Allow overwriting existing keys with new values? Duplicate keys are never allowed.

keys_reserved

[character()]
Names that must not be used as keys.

alias_choices

[NULL or character()]
Optionally possible values for the alias. Can also be NULL, then all alias values are allowed.

dictionary_name

[NULL or character()]
Optionally the name for the dictionary.


Method add()

Adding an element to the dictionary.

Usage
Dictionary$add(...)
Arguments
...

Values for

  • the key variable key_name (must be a single character),

  • the alias variable alias_name (optionally, must then be a character vector),

  • all the variables specified for value_names (if any, they must comply to the value_assert checks).


Method get()

Getting elements from the dictionary.

Usage
Dictionary$get(key, value = NULL)
Arguments
key

[character(1)]
A value for the key variable key_name. Use the $keys method for available keys.

value

[NULL | character(1)]
One of the elements in value_names, selecting the required value. Can also be NULL (default) for all values connected to the key, returned as a list.


Method remove()

Removing elements from the dictionary (and associated alias, if any).

Usage
Dictionary$remove(key)
Arguments
key

[character(1)]
A value for the key variable key_name. Use the $keys method for available keys.


Method print()

Printing details of the dictionary.

Usage
Dictionary$print()

See Also

Other package helpers: Storage, identical_structure(), input_check_response(), match_arg(), package_logo(), print_data.frame(), print_matrix(), system_information(), unexpected_error(), user_confirm()

Examples

# TODO

Difference and un-difference covariance matrix

Description

These functions difference and un-difference random vectors and covariance matrices.

Usage

diff_cov(cov, ref = 1)

undiff_cov(cov_diff, ref = 1)

delta(ref = 1, dim)

M(ranking = seq_len(dim), dim)

Arguments

cov, cov_diff

[matrix()]
A (differenced) covariance matrix of dimension dim (or dim - 1, respectively).

ref

[integer(1)]
The reference row between 1 and dim for differencing that maps cov to cov_diff, see details.

dim

[integer(1)]
The matrix dimension.

ranking

[integer()]
The integers 1 to dim in arbitrary order.

Details

Assume xN(0,Σ)x \sim N(0, \Sigma) is a multivariate normally distributed random vector of dimension nn. We may want to consider the differenced vector

x~=(x1xk,x2xk,,xnxk),\tilde x = (x_1 - x_k, x_2 - x_k, \dots, x_n - x_k)',

excluding the kkth element (hence, x~\tilde x is of dimension (n1)×1(n - 1) \times 1). Formally, x~=Δkx\tilde x = \Delta_k x, where Δk\Delta_k is a difference operator that depends on the reference row kk. More precise, Δk\Delta_k is the identity matrix of dimension nn without row kk and with 1-1s in column kk. The difference operator Δk\Delta_k can be computed via delta(ref = k, dim = n).

Then, x~N(0,Σ~)\tilde x \sim N(0, \tilde \Sigma), where

Σ~=ΔkΣΔk\tilde{\Sigma} = \Delta_k \Sigma \Delta_k'

is the differenced covariance matrix with respect to row k=1,,nk = 1,\dots,n. The differenced covariance matrix Σ~\tilde \Sigma can be computed via diff_delta(Sigma, ref = k).

Since Δk\Delta_k is a non-bijective mapping, Σ\Sigma cannot be uniquely restored from Σ~\tilde \Sigma. However, it is possible to compute a non-unique solution Σ0\Sigma_0, such that ΔkΣ0Δk=Σ~\Delta_k \Sigma_0 \Delta_k = \tilde \Sigma. For such a non-unique solution, we add a column and a row of zeros at column and row number kk to Σ~\tilde{\Sigma}, respectively. An "un-differenced" covariance matrix Σ0\Sigma_0 can be computed via undiff_delta(Sigma_diff, ref = k).

As a alternative to Δk\Delta_k, the function M() returns a matrix for taking differences such that the resulting vector is negative.

Value

A (differenced or un-differenced) covariance matrix.

See Also

Other matrix helpers: check_correlation_matrix(), check_covariance_matrix(), check_transition_probability_matrix(), cov_to_chol(), insert_matrix_column(), matrix_diagonal_indices(), matrix_indices(), sample_correlation_matrix(), sample_covariance_matrix(), sample_transition_probability_matrix(), stationary_distribution()

Examples

n <- 4
Sigma <- sample_covariance_matrix(dim = n)
k <- 2
x <- c(1, 3, 2, 4)

# build difference operator
delta_k <- delta(ref = k, dim = n)

# difference vector
delta_k %*% x

# difference Sigma
(Sigma_diff <- diff_cov(Sigma, ref = k))

# un-difference Sigma
(Sigma_0 <- undiff_cov(Sigma_diff, ref = k))

# difference again
Sigma_diff_2 <- diff_cov(Sigma_0, ref = k)
all.equal(Sigma_diff, Sigma_diff_2)

# difference such that the resulting vector is negative
M(ranking = order(x, decreasing = TRUE), dim = n) %*% x

Multivariate normal distribution

Description

The function dmvnorm() computes the density of a multivariate normal distribution.

The function rmvnorm() samples from a multivariate normal distribution.

The functions with suffix ⁠_cpp⁠ perform no input checks, hence are faster.

The univariate normal distribution is available as the special case p = 1.

Usage

dmvnorm_cpp(x, mean, Sigma, log = FALSE)

rmvnorm_cpp(mean, Sigma, log = FALSE)

dmvnorm(x, mean, Sigma, log = FALSE)

rmvnorm(n = 1, mean, Sigma, log = FALSE)

Arguments

x

[numeric()]
A quantile vector of length p.

mean

[numeric()]
The mean vector of length p.

For dmvnorm() and rmvnorm(), it can also be of length 1 for convenience, then rep(mean, p) is considered.

Sigma

[matrix()]
The covariance matrix of dimension p.

It can also be a zero matrix.

For rmvnorm(), arbitrary dimensions (i.e., full rows and corresponding columns) of Sigma can be 0.

For dmvnorm() and rmvnorm() and if p = 1, it can also be a single numeric for convenience. Note that Sigma is this case is a variance, which is a different format than in stats::dnorm() or stats::rnorm, which require a standard deviation.

log

[logical(1)]
For dmvnorm(): Return the logarithm of the density value?

For rmvnorm(): Draw from a log-normal distribution?

n

[integer(1)]
An integer, the number of requested samples.

Value

For dmvnorm(): The density value.

For rmvnorm(): If n = 1 a vector of length p (note that it is a column vector for rmvnorm_cpp()), else a matrix of dimension n times p with samples as rows.

See Also

Other simulation helpers: correlated_regressors(), ddirichlet_cpp(), dtnorm_cpp(), dwishart_cpp(), simulate_markov_chain()

Examples

x <- c(0, 0)
mean <- c(0, 0)
Sigma <- diag(2)

# compute density
dmvnorm(x = x, mean = mean, Sigma = Sigma)
dmvnorm(x = x, mean = mean, Sigma = Sigma, log = TRUE)

# sample
rmvnorm(n = 3, mean = mean, Sigma = Sigma)
rmvnorm(mean = mean, Sigma = Sigma, log = TRUE)

Measure computation time

Description

This function measures the computation time of a call.

Usage

do.call_timed(what, args, units = "secs")

Arguments

what, args

Passed to do.call.

units

Passed to difftime.

Details

This function is a wrapper for do.call.

Value

A list of the two elements "result" (the results of the do.call call) and "time" (the computation time).

See Also

Other function helpers: function_arguments(), function_body(), function_defaults(), quiet(), timed(), try_silent(), variable_name()

Examples

## Not run: 
what <- function(s) {
  Sys.sleep(s)
  return(s)
}
args <- list(s = 1)
do.call_timed(what = what, args = args)

## End(Not run)

Truncated normal distribution

Description

The function dtnorm() computes the density of a truncated normal distribution.

The function rtnorm() samples from a truncated normal distribution.

The function dttnorm() and rttnorm() compute the density and sample from a two-sided truncated normal distribution, respectively.

The functions with suffix ⁠_cpp⁠ perform no input checks, hence are faster.

Usage

dtnorm_cpp(x, mean, sd, point, above, log = FALSE)

dttnorm_cpp(x, mean, sd, lower, upper, log = FALSE)

rtnorm_cpp(mean, sd, point, above, log = FALSE)

rttnorm_cpp(mean, sd, lower, upper, log = FALSE)

dtnorm(x, mean, sd, point, above, log = FALSE)

dttnorm(x, mean, sd, lower, upper, log = FALSE)

rtnorm(mean, sd, point, above, log = FALSE)

rttnorm(mean, sd, lower, upper, log = FALSE)

Arguments

x

[numeric(1)]
A quantile.

mean

[numeric(1)]
The mean.

sd

[numeric(1)]
The non-negative standard deviation.

point, lower, upper

[numeric(1)]
The truncation point.

above

[logical(1)]
Truncate from above? Else, from below.

log

[logical(1)]
Return the logarithm of the density value?

Value

For dtnorm() and dttnorm(): The density value.

For rtnorm() and rttnorm(): The random draw

See Also

Other simulation helpers: correlated_regressors(), ddirichlet_cpp(), dmvnorm_cpp(), dwishart_cpp(), simulate_markov_chain()

Examples

x <- c(0, 0)
mean <- c(0, 0)
Sigma <- diag(2)

# compute density
dmvnorm(x = x, mean = mean, Sigma = Sigma)
dmvnorm(x = x, mean = mean, Sigma = Sigma, log = TRUE)

# sample
rmvnorm(n = 3, mean = mean, Sigma = Sigma)
rmvnorm(mean = mean, Sigma = Sigma, log = TRUE)

Wishart distribution

Description

The function dwishart() computes the density of a Wishart distribution.

The function rwishart() samples from a Wishart distribution.

The functions with suffix ⁠_cpp⁠ perform no input checks, hence are faster.

Usage

dwishart_cpp(x, df, scale, log = FALSE, inv = FALSE)

rwishart_cpp(df, scale, inv = FALSE)

dwishart(x, df, scale, log = FALSE, inv = FALSE)

rwishart(df, scale, inv = FALSE)

Arguments

x

[matrix()]
A covariance matrix of dimension p.

df

[integer()]
The degrees of freedom greater of equal p.

scale

[matrix()]
The scale covariance matrix of dimension p.

log

[logical(1)]
Return the logarithm of the density value?

inv

[logical(1)]
Use this inverse Wishart distribution?

Value

For dwishart(): The density value.

For rwishart(): A matrix, the random draw.

See Also

Other simulation helpers: correlated_regressors(), ddirichlet_cpp(), dmvnorm_cpp(), dtnorm_cpp(), simulate_markov_chain()

Examples

x <- diag(2)
df <- 4
scale <- diag(2)

# compute density
dwishart(x = x, df = df, scale = scale)
dwishart(x = x, df = df, scale = scale, log = TRUE)
dwishart(x = x, df = df, scale = scale, inv = TRUE)

# sample
rwishart(df = df, scale = scale)
rwishart(df = df, scale = scale, inv = TRUE)

Get function arguments

Description

This function returns the names of function arguments.

Usage

function_arguments(f, with_default = TRUE, with_ellipsis = TRUE)

Arguments

f

[function]
A function.

with_default

[logical(1)]
Include function arguments that have default values?

with_ellipsis

[logical(1)]
Include the "..." argument if present?

Value

A character vector.

See Also

Other function helpers: do.call_timed(), function_body(), function_defaults(), quiet(), timed(), try_silent(), variable_name()

Examples

f <- function(a, b = 1, c = "", ...) { }
function_arguments(f)
function_arguments(f, with_default = FALSE)
function_arguments(f, with_ellipsis = FALSE)

Extract function body

Description

This function extracts the body of a function as a single character.

Usage

function_body(fun, braces = FALSE, nchar = getOption("width") - 4)

Arguments

fun

[function]
A function.

braces

[logical(1)]
Remove "{" and "}" at start and end (if any)?

nchar

[integer(1)]
The maximum number of characters before abbreviation, at least 3.

Value

A character, the body of f.

See Also

Other function helpers: do.call_timed(), function_arguments(), function_defaults(), quiet(), timed(), try_silent(), variable_name()

Examples

fun <- mean.default
function_body(fun)
function_body(fun, braces = TRUE)
function_body(fun, nchar = 30)

Get default function arguments

Description

This function returns the default function arguments (if any).

Usage

function_defaults(f, exclude = NULL)

Arguments

f

[function]
A function.

exclude

[NULL | character()]
Argument names to exclude.

Can be NULL (default) to not exclude any argument names.

Value

A named list.

See Also

Other function helpers: do.call_timed(), function_arguments(), function_body(), quiet(), timed(), try_silent(), variable_name()

Examples

f <- function(a, b = 1, c = "", ...) { }
function_defaults(f)
function_defaults(f, exclude = "b")

Grouping of a data.frame

Description

This function groups a data.frame according to values of one column.

Usage

group_data.frame(df, by, keep_by = TRUE)

Arguments

df

[data.frame]
A data.frame.

by

[character(1)]
The name of a column of df to group by.

keep_by

[logical(1)]
Keep the grouping column by?

Value

A list of data.frames, subsets of df.

See Also

Other data.frame helpers: delete_columns_data.frame(), round_data.frame()

Examples

df <- data.frame("label" = c("A", "B"), "number" = 1:10)
group_data.frame(df = df, by = "label")
group_data.frame(df = df, by = "label", keep_by = FALSE)

Check if two objects have identical structure

Description

This function determines whether two objects have the same structure,

  • which includes the mode, class and dimension

  • but does not include concrete values or attributes.

Usage

identical_structure(x, y)

Arguments

x, y

[any]
Two objects.

Value

Either TRUE if x and y have the same structure, and FALSE, else.

References

Inspired by https://stackoverflow.com/a/45548885/15157768.

See Also

Other package helpers: Dictionary, Storage, input_check_response(), match_arg(), package_logo(), print_data.frame(), print_matrix(), system_information(), unexpected_error(), user_confirm()

Examples

identical_structure(integer(1), 1L)
identical_structure(diag(2), matrix(rnorm(4), 2, 2))
identical_structure(diag(2), data.frame(diag(2)))

Standardized response to input check

Description

This function provides a standardized response to input checks, ensuring consistency.

Usage

input_check_response(
  check,
  var_name = NULL,
  error = TRUE,
  prefix = "Input {.var {var_name}} is bad:"
)

Arguments

check

[TRUE | character(1) | list()]
Matches the return value of the ⁠check*⁠ functions from the {checkmate} package, i.e., either TRUE if the check was successful, or a character (the error message) else.

Can also be a list of multiple such values for alternative criteria, where at least one must be TRUE for a successful check.

var_name

[NULL | character(1)]
Optionally specifies the name of the input being checked. This name will be used for the default value of the prefix argument.

error

[logical(1)]
If check is not TRUE (or no element in check is TRUE, if check is a list), throw an error?

prefix

[character(1)]
A prefix for the thrown error message, only relevant if error is TRUE.

Value

TRUE if check is TRUE (or any element in check is TRUE, if check is a list) . Else, depending on error:

  • If error is TRUE, throws an error.

  • If error is FALSE, returns FALSE.

See Also

Other package helpers: Dictionary, Storage, identical_structure(), match_arg(), package_logo(), print_data.frame(), print_matrix(), system_information(), unexpected_error(), user_confirm()

Examples

x <- "1"
y <- 1

### check is successful
input_check_response(
  check = checkmate::check_character(x),
  var_name = "x",
  error = TRUE
)

### alternative checks
input_check_response(
  check = list(
    checkmate::check_character(x),
    checkmate::check_character(y)
  ),
  var_name = "x",
  error = TRUE
)

### standardized check response
## Not run: 
input_check_response(
  check = checkmate::check_character(y),
  var_name = "y",
  error = TRUE
)

input_check_response(
  check = list(
    checkmate::check_flag(x),
    checkmate::check_character(y)
  ),
  var_name = "y",
  error = TRUE
)

## End(Not run)

Insert column in matrix

Description

This function inserts a column into a matrix.

Usage

insert_matrix_column(A, x, p)

Arguments

A

[matrix()]
A matrix.

x

[atomic()]
The column to be added, of length nrow(A).

Can also be a single value.

p

[⁠integer())⁠]
The position(s) where to add the column, one or more of:

  • p = 0 appends the column left

  • p = ncol(A) appends the column right

  • p = n inserts the column between the n-th and (n + 1)-th column of A.

Value

A matrix.

See Also

Other matrix helpers: check_correlation_matrix(), check_covariance_matrix(), check_transition_probability_matrix(), cov_to_chol(), diff_cov(), matrix_diagonal_indices(), matrix_indices(), sample_correlation_matrix(), sample_covariance_matrix(), sample_transition_probability_matrix(), stationary_distribution()

Examples

A <- diag(3)
x <- 1:3
insert_matrix_column(A, x, 0)
insert_matrix_column(A, x, 1)
insert_matrix_column(A, x, 2)
insert_matrix_column(A, x, 3)

### also single value
x <- 2
insert_matrix_column(A, x, 0)

### also multiple positions
insert_matrix_column(A, x, 0:3)

### also trivial case
insert_matrix_column(matrix(nrow = 0, ncol = 0), integer(), integer())

Insert entry in vector

Description

This function inserts a value into a vector.

Usage

insert_vector_entry(v, x, p)

Arguments

v

[atomic()]
A vector.

x

[atomic(1)]
The entry to be added.

p

[⁠integer())⁠]
The position(s) where to add the value, one or more of:

  • p = 0 appends the value left

  • p = length(v) appends the value right

  • p = n inserts the value between the n-th and (n + 1)-th entry of v.

Value

A vector.

See Also

Other vector helpers: check_numeric_vector(), check_probability_vector(), chunk_vector(), map_indices(), match_numerics(), permutations(), split_vector_at(), subsets(), vector_occurrence()

Examples

v <- 1:3
x <- 0
insert_vector_entry(v, x, 0)
insert_vector_entry(v, x, 1)
insert_vector_entry(v, x, 2)
insert_vector_entry(v, x, 3)

### also multiple positions
insert_vector_entry(v, x, 0:3)

### also trivial case
insert_vector_entry(integer(), integer(), integer())

Map indices

Description

This function maps indices from an input vector to corresponding sequences of grouped indices. Each element from the input specifies a group to be mapped from the sequence, determined by the grouping size n.

Usage

map_indices(indices, n)

Arguments

indices

[integer()]
An index vector, where each element specifies a group to be mapped from the sequence.

n

[integer]
The size of each group of consecutive indices.

Details

This function is useful when working with indices arranged in fixed-size groups, where each group can be referenced by a single index. For example, if indices are structured in chunks of 3, calling this function with n = 3 will map the corresponding groups of 3 consecutive indices for the given input indices, see the examples.

Value

An integer vector, containing the mapped indices according to the specified group size.

See Also

Other vector helpers: check_numeric_vector(), check_probability_vector(), chunk_vector(), insert_vector_entry(), match_numerics(), permutations(), split_vector_at(), subsets(), vector_occurrence()

Examples

# Example: Map indices based on groups of 3
map_indices(c(1, 3, 5), 3)

Argument matching

Description

This function matches function arguments and is a modified version of match.arg.

Usage

match_arg(arg, choices, several.ok = FALSE, none.ok = FALSE)

Arguments

arg

[character()]
The function argument.

choices

[character()]
Allowed values for arg.

several.ok

[logical(1)]
Is arg allowed to have more than one element?

none.ok

[logical(1)]
Is arg allowed to have zero elements?

Value

The un-abbreviated version of the exact or unique partial match if there is one. Otherwise, an error is signaled if several.ok is FALSE or none.ok is FALSE. When several.ok is TRUE and (at least) one element of arg has a match, all un-abbreviated versions of matches are returned. When none.ok is TRUE and arg has zero elements, character(0) is returned.

See Also

Other package helpers: Dictionary, Storage, identical_structure(), input_check_response(), package_logo(), print_data.frame(), print_matrix(), system_information(), unexpected_error(), user_confirm()


Best-possible match of two numeric vectors

Description

This function matches the indices of two numeric vectors as good as possible (that means with the smallest possible sum of deviations).

Usage

match_numerics(x, y)

Arguments

x, y

[numeric()]
Two vectors of the same length.

Value

An integer vector of length length(x) with the positions of y in x.

See Also

Other vector helpers: check_numeric_vector(), check_probability_vector(), chunk_vector(), insert_vector_entry(), map_indices(), permutations(), split_vector_at(), subsets(), vector_occurrence()

Examples

x <- c(-1, 0, 1)
y <- c(0.1, 1.5, -1.2)
match_numerics(x, y)

Get indices of matrix diagonal

Description

This function returns the indices of the diagonal elements of a quadratic matrix.

Usage

matrix_diagonal_indices(n, triangular = NULL)

Arguments

n

[integer(1)]
The matrix dimension.

triangular

[NULL or character(1)]
If NULL (default), all elements of the matrix are considered. If "lower" ("upper"), only the lower- (upper-) triangular matrix is considered.

Value

An integer vector.

See Also

Other matrix helpers: check_correlation_matrix(), check_covariance_matrix(), check_transition_probability_matrix(), cov_to_chol(), diff_cov(), insert_matrix_column(), matrix_indices(), sample_correlation_matrix(), sample_covariance_matrix(), sample_transition_probability_matrix(), stationary_distribution()

Examples

# indices of diagonal elements
n <- 3
matrix(1:n^2, n, n)
matrix_diagonal_indices(n)

# indices of diagonal elements of lower-triangular matrix
L <- matrix(0, n, n)
L[lower.tri(L, diag=TRUE)] <- 1:((n * (n + 1)) / 2)
L
matrix_diagonal_indices(n, triangular = "lower")

# indices of diagonal elements of upper-triangular matrix
U <- matrix(0, n, n)
U[upper.tri(U, diag=TRUE)] <- 1:((n * (n + 1)) / 2)
U
matrix_diagonal_indices(n, triangular = "upper")

Get matrix indices

Description

This function returns matrix indices as character.

Usage

matrix_indices(x, prefix = "", exclude_diagonal = FALSE)

Arguments

x

[matrix]
A matrix.

prefix

[character(1)]
A prefix for the indices.

exclude_diagonal

[logical(1)]
Exclude indices where row equals column?

Value

A character vector.

See Also

Other matrix helpers: check_correlation_matrix(), check_covariance_matrix(), check_transition_probability_matrix(), cov_to_chol(), diff_cov(), insert_matrix_column(), matrix_diagonal_indices(), sample_correlation_matrix(), sample_covariance_matrix(), sample_transition_probability_matrix(), stationary_distribution()

Examples

M <- diag(3)
matrix_indices(M)
matrix_indices(M, "M_")
matrix_indices(M, "M_", TRUE)

Merge named lists

Description

This function merges lists based on their element names. Elements are only included in the final output list, if no former list has contributed an element with the same name.

Usage

merge_lists(...)

Arguments

...

One or more named list(s).

Value

A list.

See Also

Other list helpers: check_list_of_lists()

Examples

merge_lists(list("a" = 1, "b" = 2), list("b" = 3, "c" = 4, "d" = NULL))

Build permutations

Description

This function creates all permutations of a given vector.

Usage

permutations(x)

Arguments

x

[atomic()]
Any vector.

Value

A list of all permutations of x.

References

Modified version of https://stackoverflow.com/a/20199902/15157768.

See Also

Other vector helpers: check_numeric_vector(), check_probability_vector(), chunk_vector(), insert_vector_entry(), map_indices(), match_numerics(), split_vector_at(), subsets(), vector_occurrence()

Examples

permutations(1:3)
permutations(LETTERS[1:3])

Silence R code

Description

This function silences warnings, messages and any cat() or print() output from R expressions or functions.

Usage

quiet(x, print_cat = TRUE, message = TRUE, warning = TRUE)

Arguments

x

[expression]
Any function or expression or value assignment expression.

print_cat

[logical(1)]
Silence print() and cat() outputs?

message

[logical(1)]
Silence messages?

warning

[logical(1)]
Silence warnings?

Value

Invisibly the expression x.

References

This function is a modified version of quiet.

See Also

Other function helpers: do.call_timed(), function_arguments(), function_body(), function_defaults(), timed(), try_silent(), variable_name()

Examples

f <- function() {
  warning("warning")
  message("message")
  cat("cat")
  print("print")
}
quiet(f())

Round numeric columns of a data.frame

Description

This function rounds (only) the numeric columns of a data.frame.

Usage

round_data.frame(df, digits = 0)

Arguments

df

[data.frame]
A data.frame.

digits

[integer(1) | NULL ]
The number of decimal places to be used.

Negative values are allowed, resulting in rounding to a power of ten.

Can be NULL to not round.

Value

A data.frame.

See Also

Other data.frame helpers: delete_columns_data.frame(), group_data.frame()

Examples

df <- data.frame("label" = c("A", "B"), "number" = rnorm(10))
round_data.frame(df, digits = 1)

Sample correlation matrix

Description

This function samples a correlation matrix by sampling a covariance matrix from an inverse Wishart distribution and transforming it to a correlation matrix.

Usage

sample_correlation_matrix(dim, df = dim, scale = diag(dim))

Arguments

dim

[integer(1)]
The dimension.

df

[integer(1)]
The degrees of freedom of the inverse Wishart distribution greater or equal dim.

scale

[matrix()]
The scale covariance matrix of the inverse Wishart distribution of dimension dim.

Value

A correlation matrix.

See Also

Other matrix helpers: check_correlation_matrix(), check_covariance_matrix(), check_transition_probability_matrix(), cov_to_chol(), diff_cov(), insert_matrix_column(), matrix_diagonal_indices(), matrix_indices(), sample_covariance_matrix(), sample_transition_probability_matrix(), stationary_distribution()

Examples

sample_correlation_matrix(dim = 3)

Sample covariance matrix

Description

This function samples a covariance matrix from an inverse Wishart distribution.

Usage

sample_covariance_matrix(dim, df = dim, scale = diag(dim), diag = FALSE)

Arguments

dim

[integer(1)]
The dimension.

df

[integer(1)]
The degrees of freedom of the inverse Wishart distribution greater or equal dim.

scale

[matrix()]
The scale covariance matrix of the inverse Wishart distribution of dimension dim.

diag

[logical(1)]
Diagonal matrix?

Value

A covariance matrix.

See Also

Other matrix helpers: check_correlation_matrix(), check_covariance_matrix(), check_transition_probability_matrix(), cov_to_chol(), diff_cov(), insert_matrix_column(), matrix_diagonal_indices(), matrix_indices(), sample_correlation_matrix(), sample_transition_probability_matrix(), stationary_distribution()

Examples

sample_covariance_matrix(dim = 3)

Sample transition probability matrices

Description

This function returns a random, squared matrix of dimension dim that fulfills the properties of a transition probability matrix.

Usage

sample_transition_probability_matrix(dim, state_persistent = TRUE)

Arguments

dim

[integer(1)]
The dimension.

state_persistent

[logical(1)]
Put more probability on the diagonal?

Value

A transition probability matrix.

See Also

Other matrix helpers: check_correlation_matrix(), check_covariance_matrix(), check_transition_probability_matrix(), cov_to_chol(), diff_cov(), insert_matrix_column(), matrix_diagonal_indices(), matrix_indices(), sample_correlation_matrix(), sample_covariance_matrix(), stationary_distribution()

Examples

sample_transition_probability_matrix(dim = 3)

Simulate Markov chain

Description

This function simulates a Markov chain.

Usage

simulate_markov_chain(Gamma, T, delta = oeli::stationary_distribution(Gamma))

Arguments

Gamma

[matrix()]
A transition probability matrix.

T

[integer(1)]
The length of the Markov chain.

delta

[numeric()]
A probability vector, the initial distribution.

By default, delta is the stationary distribution of Gamma.

Value

A numeric vector of length T with states.

See Also

Other simulation helpers: correlated_regressors(), ddirichlet_cpp(), dmvnorm_cpp(), dtnorm_cpp(), dwishart_cpp()

Examples

Gamma <- sample_transition_probability_matrix(dim = 3)
simulate_markov_chain(Gamma = Gamma, T = 10)

Split a vector at positions

Description

This function splits a vector at specific positions.

Usage

split_vector_at(x, at)

Arguments

x

[atomic()']
A vector of elements.

at

[integer()]
Index position(s) just before to split.

For example, at = n splits before the nth element of x.

Value

A list.

References

Based on https://stackoverflow.com/a/19274414.

See Also

Other vector helpers: check_numeric_vector(), check_probability_vector(), chunk_vector(), insert_vector_entry(), map_indices(), match_numerics(), permutations(), subsets(), vector_occurrence()

Examples

x <- 1:10
split_vector_at(x, c(2, 3, 5, 7))

Stationary distribution

Description

This function computes the stationary distribution corresponding to a transition probability matrix.

Usage

stationary_distribution(tpm, soft_fail = FALSE)

Arguments

tpm

[matrix()]
A transition probability matrix.

soft_fail

[logical(1)]
Return the discrete uniform distribution if the computation of the stationary distribution fails for some reason? Else, throw an error.

Value

A numeric vector.

See Also

Other matrix helpers: check_correlation_matrix(), check_covariance_matrix(), check_transition_probability_matrix(), cov_to_chol(), diff_cov(), insert_matrix_column(), matrix_diagonal_indices(), matrix_indices(), sample_correlation_matrix(), sample_covariance_matrix(), sample_transition_probability_matrix()

Examples

tpm <- matrix(0.05, nrow = 3, ncol = 3)
diag(tpm) <- 0.9
stationary_distribution(tpm)

Storage R6 Object

Description

Provides a simple indexing interface for list elements based on R6. Basically, it allows to store items in a list and to regain them based on identifiers defined by the user.

Value

The output depends on the method:

  • $new() returns a Storage object.

  • $add(), $remove(), and $print() invisibly return the Storage object (to allow for method chaining)

  • $get() returns the requested element(s)

  • $number() returns an integer

  • $indices() return an integer vector

Setting identifiers

An identifier is a character, typically a binary property. Identifiers can be negated by placing an exclamation mark ("!") in front of them. Identifiers that have been assigned to other elements previously do not need to be specified again for new elements; instead, a default value can be used. This default value can be defined either globally for all cases (via the $missing_identifier field) or separately for each specific case (via the method argument).

User confirmation

If desired, the user can be asked for confirmation when adding, extracting, or removing elements using identifiers. This behavior can be set globally through the $confirm field or customized separately for each specific case via the method argument.

Active bindings

identifier

[character()]
The identifiers used.

confirm

[logical(1)]
The default value for confirmations.

missing_identifier

[logical(1)]
The default value for not specified identifiers.

hide_warnings

[logical(1)]
Hide warnings (for example if unknown identifiers are selected)?

Methods

Public methods


Method new()

Initializing a Storage object.

Usage
Storage$new()

Method add()

Adding an element.

Usage
Storage$add(
  x,
  identifier,
  confirm = interactive() & self$confirm,
  missing_identifier = self$missing_identifier
)
Arguments
x

[any()]
An object to be saved.

identifier

[character()]
Pne or more identifiers (the identifier "all" is reserved to select all elements).

confirm

[logical(1)]
Prompted for confirmation?

missing_identifier

[logical(1) | NA]
The value for not specified identifiers.


Method get()

Getting elements.

Usage
Storage$get(
  identifier = character(),
  ids = integer(),
  logical = "and",
  confirm = interactive() & self$confirm,
  missing_identifier = self$missing_identifier,
  id_names = FALSE
)
Arguments
identifier

[character()]
Pne or more identifiers (the identifier "all" is reserved to select all elements).

ids

[integer()]
One or more ids.

logical

[character(1)]
In the case that multiple identifiers are selected, how should they be combined? Options are:

  • "and" (the default): the identifiers are combined with logical and (all identifiers must be TRUE)

  • "or": the identifiers are combined with logical or (at least one identifier must be TRUE)

confirm

[logical(1)]
Prompted for confirmation?

missing_identifier

[logical(1) | NA]
The value for not specified identifiers.

id_names

[logical(1)]
Name the elements according to their ids?


Method remove()

removing elements

Usage
Storage$remove(
  identifier = character(),
  ids = integer(),
  logical = "and",
  confirm = interactive() & self$confirm,
  missing_identifier = self$missing_identifier,
  shift_ids = TRUE
)
Arguments
identifier

[character()]
Pne or more identifiers (the identifier "all" is reserved to select all elements).

ids

[integer()]
One or more ids.

logical

[character(1)]
In the case that multiple identifiers are selected, how should they be combined? Options are:

  • "and" (the default): the identifiers are combined with logical and (all identifiers must be TRUE)

  • "or": the identifiers are combined with logical or (at least one identifier must be TRUE)

confirm

[logical(1)]
Prompted for confirmation?

missing_identifier

[logical(1) | NA]
The value for not specified identifiers.

shift_ids

[logical(1)]
Shift ids when in-between elements are removed?


Method number()

Computing the number of identified elements.

Usage
Storage$number(
  identifier = "all",
  missing_identifier = self$missing_identifier,
  logical = "and",
  confirm = FALSE
)
Arguments
identifier

[character()]
Pne or more identifiers (the identifier "all" is reserved to select all elements).

missing_identifier

[logical(1) | NA]
The value for not specified identifiers.

logical

[character(1)]
In the case that multiple identifiers are selected, how should they be combined? Options are:

  • "and" (the default): the identifiers are combined with logical and (all identifiers must be TRUE)

  • "or": the identifiers are combined with logical or (at least one identifier must be TRUE)

confirm

[logical(1)]
Prompted for confirmation?


Method indices()

Returning indices based on defined identifiers.

Usage
Storage$indices(
  identifier = "all",
  logical = "and",
  confirm = interactive() & self$confirm
)
Arguments
identifier

[character()]
Pne or more identifiers (the identifier "all" is reserved to select all elements).

logical

[character(1)]
In the case that multiple identifiers are selected, how should they be combined? Options are:

  • "and" (the default): the identifiers are combined with logical and (all identifiers must be TRUE)

  • "or": the identifiers are combined with logical or (at least one identifier must be TRUE)

confirm

[logical(1)]
Prompted for confirmation?


Method print()

Printing details of the saved elements.

Usage
Storage$print(...)
Arguments
...

Currently not used.

See Also

Other package helpers: Dictionary, identical_structure(), input_check_response(), match_arg(), package_logo(), print_data.frame(), print_matrix(), system_information(), unexpected_error(), user_confirm()

Examples

### 1. Create a `Storage` object:
my_storage <- Storage$new()

# 2. Add elements along with identifiers:
my_storage$
  add(42, c("number", "rational"))$
  add(pi, c("number", "!rational"))$
  add("fear of black cats", c("text", "!rational"))$
  add("wearing a seat belt", c("text", "rational"))$
  add(mean, "function")

# 3. What elements are stored?
print(my_storage)

# 4. Extract elements based on identifiers:
my_storage$get("rational")
my_storage$get("!rational")
my_storage$get(c("text", "!rational"))
my_storage$get("all") # get all elements
my_storage$get(c("text", "!text"))
my_storage$get(c("text", "!text"), logical = "or")

# 5. Extract elements based on ids:
my_storage$get(ids = 4:5)
my_storage$get(ids = 4:5, id_names = TRUE) # add the ids as names

Generate vector subsets

Description

This function generates subsets of a vector.

Usage

subsets(v, n = seq_along(v))

Arguments

v

[atomic()']
A vector of elements.

n

[integer(1)']
The requested subset sizes.

Value

A list, each element is a subset of v.

See Also

Other vector helpers: check_numeric_vector(), check_probability_vector(), chunk_vector(), insert_vector_entry(), map_indices(), match_numerics(), permutations(), split_vector_at(), vector_occurrence()

Examples

v <- 1:3
subsets(v)
subsets(v, c(1, 3)) # only subsets of length 1 or 3
subsets(integer())  # trivial case works

General system level information

Description

This function returns a list of general system level information.

Usage

system_information()

Value

A list with elements:

  • maschine, the model name of the device

  • cores, the number of cores

  • ram, the size of the RAM

  • os, the operating system

  • rversion, the R version used

See Also

Other package helpers: Dictionary, Storage, identical_structure(), input_check_response(), match_arg(), package_logo(), print_data.frame(), print_matrix(), unexpected_error(), user_confirm()

Examples

system_information()

Interrupt long evaluations

Description

This function interrupts an evaluation after a certain number of seconds. Note the limitations documented in setTimeLimit.

Usage

timed(expression, seconds = Inf, on_time_out = "silent")

Arguments

expression

[expression]
An R expression to be evaluated.

seconds

[numeric(1)]
The number of seconds.

on_time_out

[character(1)]
Defines what action to take if the evaluation time exceeded, either:

  • "error" to throw an error exception

  • "warning" to return NULL along with a warning

  • "silent" (the default) to just return NULL

Value

The value of expression or, if the evaluation time exceeded, whatever is specified for on_time_out.

See Also

Other function helpers: do.call_timed(), function_arguments(), function_body(), function_defaults(), quiet(), try_silent(), variable_name()

Examples

foo <- function(x) {
  for (i in 1:10) Sys.sleep(x / 10)
  return(x)
}
timed(foo(0.5), 1)
timed(foo(1.5), 1)

Try an expression silently

Description

This function tries to execute expr and returns a string with the error message if the execution failed.

Usage

try_silent(expr)

Arguments

expr

[expression]
An R expression to be evaluated.

Details

This function is a wrapper for try.

Value

Either the value of expr or in case of a failure an object of class fail, which contains the error message.

See Also

Other function helpers: do.call_timed(), function_arguments(), function_body(), function_defaults(), quiet(), timed(), variable_name()

Examples

## Not run: 
try_silent(1 + 1)
try_silent(1 + "1")

## End(Not run)

Handling of an unexpected error

Description

This function reacts to an unexpected error by throwing an error and linking to an issue site with the request to submit an issue.

Usage

unexpected_error(
  msg = "Ups, an unexpected error occured.",
  issue_link = "https://github.com/loelschlaeger/oeli/issues"
)

Arguments

msg

[character(1)]
An error message.

issue_link

[character(1)]
The URL to an issues site.

Value

No return value, but it throws an error.

See Also

Other package helpers: Dictionary, Storage, identical_structure(), input_check_response(), match_arg(), package_logo(), print_data.frame(), print_matrix(), system_information(), user_confirm()


User confirmation

Description

This function asks in an interactive question a binary question.

Usage

user_confirm(question = "Question?", default = FALSE)

Arguments

question

[character(1)]
The binary question to ask. It should end with a question mark.

default

[logical(1)]
The default decision.

Value

Either TRUE or FALSE.

See Also

Other package helpers: Dictionary, Storage, identical_structure(), input_check_response(), match_arg(), package_logo(), print_data.frame(), print_matrix(), system_information(), unexpected_error()


Determine variable name

Description

This function tries to determine the name of a variable passed to a function.

Usage

variable_name(variable, fallback = "unnamed")

Arguments

variable

[any]
Any object.

fallback

[character(1)]
A fallback name if for some reason the actual variable name (which must be a single character) cannot be determined.

Value

A character, the variable name.

See Also

Other function helpers: do.call_timed(), function_arguments(), function_body(), function_defaults(), quiet(), timed(), try_silent()

Examples

variable_name(a)
f <- function(x) variable_name(x)
f(x = a)

Find the positions of first or last occurrence of unique vector elements

Description

This function finds the positions of first or last occurrence of unique vector elements.

Usage

vector_occurrence(x, type = "first")

Arguments

x

[atomic()]
A vector.

type

[character(1)]
Either "first" for the first or "last" for the last occurrence.

Value

An integer vector, the positions of the unique vector elements. The ordering corresponds to unique(x), i.e., the ii-th element in the output is the (first or last) occurrence of the ii-th element from unique(x).

See Also

Other vector helpers: check_numeric_vector(), check_probability_vector(), chunk_vector(), insert_vector_entry(), map_indices(), match_numerics(), permutations(), split_vector_at(), subsets()

Examples

x <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
unique(x)
vector_occurrence(x, "first")
vector_occurrence(x, "last")