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nsRFA-package Non-supervised Regional Frequency Analysis

Description

The estimation of hydrological variables in ungauged basins is a very important topic for many
purposes, from research to engineering applications and water management (see the PUB project,
Sivapalan et al., 2003). Regardless of the method used to perform such estimation, the underlying
idea is to transfer the hydrological information from gauged to ungauged sites. When observa-
tions of the same variable at different measuring sites are available and many data samples are used
together as source of information, the methods are called regional methods. The well known re-
gional frequency analysis (e.g. Hosking and Wallis, 1997), where the interest is in the assessment
of the frequency of hydrological events, belong to this class of methods. In literature, the main
studied variable is the flood peak and the most used regional approach is the index-flood method
of Dalrymple (1960), in which it is implicitly assumed that the flood frequency distribution for dif-
ferent sites belonging to a homogeneous region is the same except for a site-specific scale factor,
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the index-flood (see Hosking and Wallis, 1997, for details). Hence, the estimation of the flood fre-
quency distribution for an ungauged site can be divided into two parts: estimation of the index-flood
(more in general, the index-value) through linear/non-linear relations with climatic and basin de-
scriptors; estimation of the adimentional flood frequency distribution, the growth curve, assigning
the ungauged basin to one homogeneous region.

nsRFA is a collection of statistical tools for objective (non-supervised) applications of the Regional
Frequency Analysis methods in hydrology. This does not mean that Regional Frequency Analysis
should be non-supervised. These tools are addressed to experts, to help their expert judgement. The
functions in nsRFA allow the application of the index-flood method in the following points:

- regionalization of the index-value;
- formation of homogeneous regions for the growth curves;
- fit of a distribution function to the empirical growth curve of each region;

Regionalization of the index-value
The index-value can be either the sample mean (e.g. Hosking and Wallis, 1997) or the sample me-
dian (e.g. Robson and Reed, 1999) or another scale parameter. Many methodological approaches
are available for the index-value estimation, and their differences can be related to the amount of in-
formation available. Excluding direct methods, that use information provided by flow data available
at the station of interest, regional estimation methods require ancillary hydrological and physical
information. Those methods can be divided in two classes: the multiregressive approach and the hy-
drological simulation approach. For both of them, the best estimator is the one that optimizes some
criterion, such as the minimum error, the minimum variance or the maximum efficiency. Due to its
simplicity, the most frequently used method is the multiregressive approach (see e.g. Kottegoda &
Rosso, 1998; Viglione et al., 2007a), that relates the index-flow to catchment characteristics, such
as climatic indices, geologic and morphologic parameters, land cover type, etc., through linear or
non-linear equations.

R provides the functions lm and nls for linear and non-linear regressions (package stats). With
the package nsRFA, a tool to select the best linear regressions given a set of candidate descriptors,
bestlm, is provided. In REGRDIAGNOSTICS several functions are provided to analyze the output
of lm, such as: the coefficient of determination (classic and adjusted); the Student t significance
test; the variance inflation factor (VIF); the root mean squared error (RMSE); the mean absolute
error (MAE); the prediction intervals; predicted values by a jackknife (cross-validation) procedure.
The functions in DIAGNOSTICS provide more general diagnostics of model results (that can be also
non-linear), comparing estimated values with observed values.

More details are provided in vignettes:

nsRFA_ex01 How to use the package nsRFA (example 1):
Regional frequency analysis of the annual flows in Piemonte
and Valle d’Aosta

that can be accessed via vignette("nsRFA_ex01", package="nsRFA").

Formation of homogeneous regions for the growth curves
Different techniques exist, for example those that lead to the formation of fixed regions through
cluster analysis (Hosking and Wallis, 1997, Viglione, 2007), or those based on the method of the
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region of influence (ROI, Burn, 1990). The regional procedure can be divided into two parts:
the formation of regions and the assignment of an ungauged site to one of them. Concerning the
first point, the sites are grouped according to their similarity in terms of those basin descriptors
that are assumed to explain the shape of the growth curve. This shape is usually quantified in
a parametric way. For instance, the coefficient of variation (CV) or the L-CV of the curve can
be used for this purpose. The package nsRFA provide the functions in moments and Lmoments
to calculate sample moments and L-moments. Subsequently, the selected parameter is related with
basin descriptors through a linear or a more complex model. A regression analysis is performed with
different combination of descriptors, and descriptors that are strongly related with the parameter are
used to group sites in regions. The same tools used for the regionalization of the index value, i.e.
bestlm, REGRDIAGNOSTICS and DIAGNOSTICS, can be used if the parametric method is chosen.

nsRFA also provide a non-parametric approach that considers the dimensionless growth curve as
a whole (see, Viglione et al., 2006; Viglione, 2007). The multiregressive approach can still be
used if we reason in terms of (dis)similarity between pairs of basins in the following way: (1)
for each couple of stations, a dissimilarity index between non-dimensional curves is calculated
using a quantitatively predefined metric, for example using the Anderson-Darling statistic (A2), and
organising the distances in a matrix with AD.dist; (2) for each basin descriptor, the absolute value
(or another metric) of the difference between its measure in two basins is used as distance between
them, using dist of the package stats to obtain distance matrices; (4) a multiregressive approach
(bestlm, lm) is applied considering the matrices as variables and the basin descriptors associated
to the best regression are chosen; (5) the significance of the linear relationship between distance
matrices is assessed through the Mantel test with mantel.lm.

In the suitable-descriptor’s space, stations with similar descriptor values can be grouped into dis-
joint regions through a cluster analysis (using functions in traceWminim) or the ROI method can
be used adapting a region to the ungauged basin (roi). In both cases, the homogeneity of the re-
gions can be assessed with the functions in HOMTESTS, where the Hosking and Wallis heterogeneity
measures (HW.tests, see Hosking and Wallis, 1997) and the Anderson-Darling homogeneity test
(ADbootstrap.test, see Viglione et al., 2007b) are provided.

More details are provided in vignettes:

nsRFA_ex01 How to use the package nsRFA (example 1):
Regional frequency analysis of the annual flows in Piemonte
and Valle d’Aosta

nsRFA_ex02 How to use the package nsRFA (example 2):
Region-Of-Influence approach, some FEH examples

that can be accessed via vignette("nsRFA_ex01", package="nsRFA").

Fit of a distribution function to the empirical growth curve of each region
Once an homogeneous region is defined, the empirical growth curves can be pooled together and a
probability distribution can be fitted to the pooled sample. The choice of the best distribution can be
assisted by a Model Selection Criteria with MSClaio2008 (see, Laio et al., 2008). The parameters of
the selected distribution can be estimated using the method of moments (moment_estimation), L-
moments (par.GEV, par.genpar, par.gamma, ...) or maximum-likelihood (MLlaio2004). Goodness-
of-fit tests are also available: the Anderson-Darling goodness of fit test with GOFlaio2004 (Laio.
2004), and Monte-Carlo based tests with GOFmontecarlo. Confidence intervals for the fitted distri-
bution can be calculated with a Markov Chain Monte Carlo algorithm, using BayesianMCMC.
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More details are provided in vignettes:

nsRFA_ex01 How to use the package nsRFA (example 1):
Regional frequency analysis of the annual flows in Piemonte
and Valle d’Aosta

MSClaio2008 Model selection techniques for the frequency analysis
of hydrological extremes: the MSClaio2008 R function

that can be accessed via vignette("nsRFA_ex01", package="nsRFA").

Other functions
varLmoments provides distribution-free unbiased estimators of the variances and covariances of
sample L-moments, as described in Elamir and Seheult (2004).

More details are provided in vignettes:

Fig1ElamirSeheult Figure 1 in Elamir and Seheult (2004)

Details

Package: nsRFA
Version: 0.7

The package provides several tools for Regional Frequency Analysis of hydrological variables. The
first version dates to 2006 and was developed in Turin at the Politecnico by Alberto Viglione.

For a complete list of the functions, use library(help="nsRFA").

Main changes in version 0.7

0.7-17: removal of old Fortran code and therefore of functions bestlm (and therefore the vignette nsRFA_ex01) and HW.original;
0.7-12: refinement of function BayesianMCMC allowing several threshold and new function BayesianMCMCreg;
0.7-1: refinement of function BayesianMCMC;
0.7-0: plotting position for historical information in DISTPLOTS;

Main changes in version 0.6

0.6-9: new vignette Fig11GriffisStedinger;
0.6-8: exponential and Gumbel distributions added in GOFmontecarlo;
0.6-6: some plotting position/probability plots have been added in DISTPLOTS;
0.6-4: refinement of function BayesianMCMC;
0.6-2: new vignette nsRFA_ex02;
0.6-2: refinement of function BayesianMCMC;
0.6-0: new vignette nsRFA_ex01;
0.6-0: new function bestlm;
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0.6-0: the plotting position/probability plots in DISTPLOTS have been reshaped;
0.6-0: this list of changes has been added;

Author(s)

Alberto Viglione

Maintainer: Alberto Viglione <viglione@hydro.tuwien.ac.at>
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AD.dist Anderson-Darling distance matrix for growth curves

Description

Distance matrix for growth curves. Every element of the matrix is the Anderson-Darling statistic
calculated between two series.

Usage

AD.dist (x, cod, index=2)

Arguments

x vector representing data from many samples defined with cod

cod array that defines the data subdivision among sites

index if index=1 samples are divided by their average value; if index=2 (default)
samples are divided by their median value

Details

The Anderson-Darling statistic used here is the one defined in https://en.wikipedia.org/wiki/
Anderson-Darling_test as A2.

Value

AD.dist returns the distance matrix between growth-curves built with the Anderson-Darling statis-
tic.

Note

For information on the package and the Author, and for all the references, see nsRFA.

See Also

traceWminim, roi.

https://en.wikipedia.org/wiki/Anderson-Darling_test
https://en.wikipedia.org/wiki/Anderson-Darling_test
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Examples

data(hydroSIMN)

annualflows
summary(annualflows)
x <- annualflows["dato"][,]
cod <- annualflows["cod"][,]

# Ad.dist
AD.dist(x,cod) # it takes some time

Ardechedata Data-sample

Description

Systematic flood data and historical flood data for the Ard\‘eche region (France) as described
in: \ Naulet, R. (2002). Utilisation de l’information des crues historiques pour une meilleure
pr\’ed\’etermination du risque d’inondation. Application au bassin de l’Ard\‘eche \‘a Vallon Pont-
d’Arc et St-Martin d’Ard\‘eche. PhD thesis at CEMAGREF, Lyon, and at the Universit\’e du
Qu\’ebec, pp. 322. \ and \ Nguyen, C.C. (2012). Am\’elioration des approches Bay\’esiennes
MCMC pour l’analyse r\’egionale des crues (Improvement of BayesianMCMC approaches for re-
gional flood frequency analyses). PhD thesis at the University of Nantes, pp. 192.

Usage

data(Ardechedata)

Format

Ardeche_areas, areas (km2) of the gauged and ungauged catchments in the Ard\‘eche region
(France); Ardeche_ungauged_extremes, flood peaks (m3/s) reconstructed in ungauged catchments
and number of years for which the peak was not exceeded; Beauvene_cont, sistematic flood peaks
(m3/s) recorded at one station; Chambonas_cont, sistematic flood peaks (m3/s) recorded at one sta-
tion; SaintLaurent_cont, sistematic flood peaks (m3/s) recorded at one station; SaintMartin_cont,
sistematic flood peaks (m3/s) recorded at one station; SaintMartin_hist, values for historical
peaks (m3/s) for one station and for flood perception thresholds (m3/s) non exceeded in the periods
indicated; Vogue_cont, sistematic flood peaks (m3/s) recorded at one station.

Examples

data(Ardechedata)
SaintMartin_cont
SaintMartin_hist
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BayesianMCMC Bayesian MCMC frequency analysis

Description

Bayesian Markov Chain Monte Carlo algorithm for flood frequency analysis with historical and
other information. The user can choose between a local and a regional analysis.

Usage

BayesianMCMC (xcont, xhist=NA, infhist=NA, suphist=NA,
nbans=NA, seuil=NA, nbpas=1000, nbchaines=3,
confint=c(0.05, 0.95), dist="GEV",
apriori=function(...){1},
parameters0=NA, varparameters0=NA)

BayesianMCMCcont (x, nbpas=NA)
BayesianMCMCreg (xcont, scont, xhist=NA, infhist=NA, suphist=NA, shist=NA,

nbans=NA, seuil=NA, nbpas=1000, nbchaines=3,
confint=c(0.05, 0.95), dist="GEV",
apriori=function(...){1},
parameters0=NA, varparameters0=NA)

BayesianMCMCregcont (x, nbpas=NA)
plotBayesianMCMCreg_surf (x, surf, ask=FALSE, ...)
## S3 method for class 'BayesianMCMC'
plot(x, which=1, ask=FALSE, ...)
## S3 method for class 'BayesianMCMC'
print(x, ...)
## S3 method for class 'BayesianMCMCreg'
plot(x, which=1, ask=FALSE, ...)
## S3 method for class 'BayesianMCMCreg'
print(x, ...)

Arguments

x object of class BayesianMCMC, output of function BayesianMCMC

xcont vector of systematic data

scont vector of upstream catchment surfaces of systematic data

xhist vector of historical data and/or extreme discharges at ungauged sites

infhist vector of inferior limit for historical data and/or extreme discharges at ungauged
sites

suphist vector of superior limit for historical data and/or extreme discharges at ungauged
sites

shist vector of upstream catchment surfaces of extreme discharges at ungauged sites
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nbans period (in years) over which every threshold has not been exceeded except for
the historical data and/or extreme discharges at ungauged sites. If several values
of xhist for a same threshold, put the number of years associated to the threshold
on the first row, then put 0 (see examples)

seuil threshold not exceeded in the historical period except for the historical data
and/or extreme discharges at ungauged sites (several thresholds allowed).

nbpas number of iterations for the MCMC algorithm

nbchaines number of chains for the MCMC algorithm

confint confidence limits for the flood quantiles

dist distribution: normal "NORM", log-normal with 2 parameters "LN", Exponential
"EXP", Gumbel "GUMBEL", Generalized Extreme Value "GEV", Generalized Lo-
gistic "GENLOGIS", Generalized Pareto "GENPAR", log-normal with 3 parameters
"LN3", Pearson type III "P3", (log-Pearson type III "LP3", not implemented yet)

apriori function of the parameters of the model ‘proportional to’ their a-priori guessed
distribution. The default fuction returns always 1, i.e. there is no a-priori infor-
mation

parameters0 initial values of the parameters for the MCMC algorithm

varparameters0 initial values of the parameter variances for the MCMC algorithm

which a number of a vector of numbers that defines the graph to plot (see details)

ask if TRUE, the interactive mode is run

surf a particular surface (number or vector), not necessarily being a surface included
in the scont or shist vectors

... other arguments

Details

Supported cases
These functions are taking 4 cases into account, depending on the type of data provided: - Using
only the systematic data: xcont provided, xhist=NA, infhist=NA and suphist=NA - Using censored
information, historical flood known: xcont and xhist provided, infhist=NA and suphist=NA - Using
censored information, historical flood unknown precisely but its lower limit known: xcont and
infhist provided, xhist=NA and suphist=NA - Taking into account flood estimation intervals: infhist
and suphist (respectively lower and upper limits) provided, xcont provided, xhist=NA - Please note
that every other case is NOT supported. For example, you can’t have some historical flood values
perfectly known as well as some other for which you only know a lower limit or an interval.

Regarding the perception thresholds: - By definition, the number of exceedances of each perception
threshold within its application period has to be known precisely, and all the floods exceeding the
threshold have to be included in xhist (or infhist or suphist). - Several thresholds are allowed. - It is
possible to include in xhist (or infhist or suphist) historical values that do not exceed the associated
perception threshold. - If for one or several thresholds you only know that this or these threshold
have never been exceeded and no more information is available on floods that did not exceed the
threshold(s), this case is also supported. In this case, put for the historical flood corresponding to
the threshold xhist=-1 (or infhist=-1 or infhist=suphist=-1).

Bayesian inference
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Bayesian inference uses a numerical estimate of the degree of belief in a hypothesis before evidence
has been observed and calculates a numerical estimate of the degree of belief in the hypothesis after
evidence has been observed. The name ‘Bayesian’ comes from the frequent use of Bayes’ theorem
in the inference process. In our case the problem is: which is the probability that a frequency
function P (of type defined in dist) has parameters θ, given that we have observed the realizations
D (defined in xcont, xhist, infhist, suphist, nbans, seuil). The Bayes’ theorem writes

P (θ|D) =
P (D|θ) · P (θ)

P (D)

where P (θ|D) is the conditional probability of θ, given D (it is also called the posterior probability
because it is derived from or depends upon the specified value of D) and is the result we are inter-
ested in; P (θ) is the prior probability or marginal probability of θ (‘prior’ in the sense that it does
not take into account any information about D), and can be given using the input apriori (it can
be used to account for causal information); P (D|θ) is the conditional probability of D given θ and
it is defined choosing dist and depending on the availability of historical data; P (D) is the prior
or marginal probability of D, and acts as a normalizing constant. Intuitively, Bayes’ theorem in this
form describes the way in which one’s beliefs about observing θ are updated by having observed
D.

Since complex models cannot be processed in closed form by a Bayesian analysis, namely because
of the extreme difficulty in computing the normalization factor P (D), simulation-based Monte
Carlo techniques as the MCMC approaches are used.

MCMC Metropolis algorithm
Markov chain Monte Carlo (MCMC) methods (which include random walk Monte Carlo methods),
are a class of algorithms for sampling from probability distributions based on constructing a Markov
chain that has the desired distribution as its equilibrium distribution. The state of the chain after a
large number of steps is then used as a sample from the desired distribution. The quality of the
sample improves as a function of the number of steps.

The MCMC is performed here through a simple Metropolis algorithm, i.e. a Metropolis-Hastings
algorithm with symmetric proposal density. The Metropolis-Hastings algorithm can draw samples
from any probability distribution P (x), requiring only that a function proportional to the density
can be calculated at x. In Bayesian applications, the normalization factor is often extremely difficult
to compute, so the ability to generate a sample without knowing this constant of proportionality is
a major virtue of the algorithm. The algorithm generates a Markov chain in which each state xt +1
depends only on the previous state xt. The algorithm uses a Gaussian proposal density N(xt, σx),
which depends on the current state xt, to generate a new proposed sample x′. This proposal is
accepted as the next value xt + 1 = x′ if α drawn from U(0, 1) satisfies

α <
P (x′)

P (xt)

If the proposal is not accepted, then the current value of x is retained (xt + 1 = xt).

The Markov chain is started from a random initial value x0 and the algorithm is run for many
iterations until this initial state is forgotten. These samples, which are discarded, are known as
burn-in. The remaining set of accepted values of x represent a sample from the distribution P (x).
As a Gaussian proposal density (or a lognormal one for definite-positive parameters) is used, the
variance parameter σ2

x has to be tuned during the burn-in period. This is done by calculating the
acceptance rate, which is the fraction of proposed samples that is accepted in a window of the last



BayesianMCMC 13

N samples. The desired acceptance rate depends on the target distribution, however it has been
shown theoretically that the ideal acceptance rate for a one dimensional Gaussian distribution is
approx 50%, decreasing to approx 23% for an N-dimensional Gaussian target distribution. If σ2

x

is too small the chain will mix slowly (i.e., the acceptance rate will be too high, so the sampling
will move around the space slowly and converge slowly to P (x)). If σ2

x is too large the acceptance
rate will be very low because the proposals are likely to land in regions of much lower probability
density. The desired acceptance rate is fixed here to 34%.

The MCMC algorithm is based on a code developed by Eric Gaume on Scilab. It is still unstable
and not all the distributions have been tested.

Value

BayesianMCMC and BayesianMCMCcont (which just continues the simulations of BayesianMCMC for
local analyses and BayesianMCMCreg and BayesianMCMCregcont for regional analyses return the
following values:

BayesianMCMCreg and BayesianMCMCregcont (which just continues the simulations of BayesianMCMC
starting from its output) return the following values:

parameters matrix (nbpas)x(nbchaines) with the simulated sets of parameters with the MCMC
algorithm;

parametersML set of parameters correspondent to the maximum likelihood;

returnperiods return periods for which quantilesML and intervals are calculated;

quantilesML quantiles correspondent to returnperiods for the distribution whose parameters are
parametersML;

logML maximum log-likelihood;

intervals confidence intervals for the quantiles quantilesML for limits confint;

varparameters matrix (nbpas)x(nbchaines)x(number of parameters) with the simulated variances
for the MCMC algorithm;

vraisdist likelihoods for the sets parameters;

propsaut vector showing the evolution of the acceptance rate during the Bayesian MCMC fitting;

plot.BayesianMCMC and plot.BayesianMCMCreg (for a normalized surface of 1 km2) plot the
following figures:

1 data as plotting position (the Cunanne plotting position a = 0.4 is used), fitted distribution (max-
imum likelihood) and confidence intervals;

2 diagnostic plot of the MCMC simulation (parameters);

3 diagnostic plot of the MCMC simulation (likelihood and MCMC acceptance rate);

4 posterior distribution of parameters obtained with the MCMC simulation (cloud plots);

5 a-priori distribution of parameters (contour plots);

plotBayesianMCMCreg_surf plots the same plot as the first one given by plot.BayesianMCMCreg
but for each surface in argument, as well as its mean as a function of the surfaces;

Note

For information on the package and the Author, and for all the references, see nsRFA.
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Author(s)

Eric Gaume, Alberto Viglione, Jose Luis Salinas, Olivier Payrastre, Chi Cong N’guyen, Karine
Halbert

See Also

.

Examples

set.seed(2988)
serie <- rand.GEV(120, xi=40, alfa=20, k=-0.4)
serie100 <- serie[1:100]
serie100[serie100 < 250] <- NA
serie20 <- serie[101:120]
serie <- c(serie100, serie20)

plot(serie, type="h", ylim=c(0, 600), xlab="",
ylab="Annual flood peaks [m3/s]", lwd=3)

abline(h=0)
points(serie100, col=2)

## Not run:
# Using only sistematic data
only_sist <- BayesianMCMC (xcont=serie20, nbpas=5000, nbchaines=3, varparameters0=c(70, 20, 0.5),

confint=c(0.05, 0.95), dist="GEV")
plot(only_sist, which=c(1:3), ask=TRUE, ylim=c(1,600))
only_sist <- BayesianMCMCcont(only_sist)
plot(only_sist, which=c(1:3), ask=TRUE, ylim=c(1,600))
only_sist <- BayesianMCMCcont(only_sist)
plot(only_sist, which=c(1:3), ask=TRUE, ylim=c(1,600))

# Adding the information that the threshold 250 m3/s was exceeded
# 3 times in the past 100 years
with_hist_thresh <- BayesianMCMC (xcont=serie20, infhist=rep(250,3),

nbans=100, seuil=250,
nbpas=5000, nbchaines=3,
confint=c(0.05, 0.95), dist="GEV")

plot(with_hist_thresh, which=c(1:3), ask=TRUE, ylim=c(1,600))

# Assuming that the 3 historical events are known with high uncertainty
with_hist_limits <- BayesianMCMC (xcont=serie20,

infhist=c(320,320,250),
suphist=c(360,400,270),
nbans=100, seuil=250,
nbpas=5000, nbchaines=3,



BayesianMCMC 15

confint=c(0.05, 0.95), dist="GEV")
plot(with_hist_limits, which=c(1:3), ask=TRUE, ylim=c(1,600))

# Assuming that the 3 historical events are perfectly known
with_hist_known <- BayesianMCMC (xcont=serie20, xhist=serie100[!is.na(serie100)],

nbans=100, seuil=250,
nbpas=5000, nbchaines=3,
confint=c(0.05, 0.95), dist="GEV")

plot(with_hist_known, which=c(1:3), ask=TRUE, ylim=c(1,600))

# Perception threshold without available information on floods
without_info <- BayesianMCMC (xcont=serie20, xhist=-1,

nbans=100, seuil=2400,
nbpas=5000, nbchaines=3,
confint=c(0.05, 0.95), dist="GEV")

plot(without_info, which=c(1:3), ask=TRUE, ylim=c(1,600))

# Using one reasonable a-priori distribution
fNORM3 <- function (x) {
# x = vector of values
# mu = vector of means
mu = c(44, 26, -0.40)
# CM = covariance matrix
CM = matrix(c(13, 7.8, -0.055,

7.8, 15, -0.42,
-0.055, -0.42, 0.056), nrow=3, ncol=3)

CMm1 <- solve(CM)
term2 <- exp(-((x - mu) %*% CMm1 %*% (x - mu))/2)
term1 <- 1/(2*pi)^(3/2)/sqrt(det(CM))
term1*term2

}

with_hist_known2 <- BayesianMCMC (xcont=serie20, xhist=serie100[!is.na(serie100)],
nbans=100, seuil=250,
nbpas=5000, nbchaines=3, apriori=fNORM3,
confint=c(0.05, 0.95), dist="GEV")

plot(with_hist_known2, 5)
plot(with_hist_known2, 4)
plot(with_hist_known, 4)
plot(with_hist_known)
plot(with_hist_known2)

# Using one non-reasonable a-priori distribution
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fNORM3 <- function (x) {
# x = vector of values
# mu = vector of means
mu = c(30, 50, -0.10)
# CM = covariance matrix
CM = matrix(c(13, 7.8, -0.055,

7.8, 15, -0.42,
-0.055, -0.42, 0.056), nrow=3, ncol=3)

CMm1 <- solve(CM)
term2 <- exp(-((x - mu) %*% CMm1 %*% (x - mu))/2)
term2

}

with_hist_known3 <- BayesianMCMC (xcont=serie20, xhist=serie100[!is.na(serie100)],
nbans=100, seuil=250,
nbpas=5000, nbchaines=3, apriori=fNORM3,
confint=c(0.05, 0.95), dist="GEV")

plot(with_hist_known3, 5)
plot(with_hist_known3, 4)
plot(with_hist_known, 4)
plot(with_hist_known)
plot(with_hist_known3)

## End(Not run)

## Not run:
# Assuming that the historical events are perfectly known and there are 4 different thresholds
# The data file is presenting this way:

# xhist nbans seuil
# 6000 55 6000
# 7400 28 7250
# 6350 8 3050
# 4000 0 3050
# 4550 0 3050
# 3950 0 3050
# 7550 58 2400
# 4650 0 2400
# 3950 0 2400

## Warning: nbans and seuil should have the same length as xhist.

# So when a threshold is exceeded several times, replicate it as many times it is exceeded
# and part the number of years of exceedance into the number of times of exceedance
# (the way you part the nbans vector is not important, what is important is that you have
# length(nbans)=length(xhist) and the total of years for one same threshold equals the number
# of years covered by the perception threshold)
xhist_thres <- c(6000, 7400, 6350, 4000, 4550, 3950, 7550, 4650, 3950)
seuil_thres <- c(6000, 7250, rep(3050, 4), rep(2400, 3))
nbans_thres <- c(55, 28, 8, 0, 0, 0, 58, 0, 0)

# The threshold at 6000 has been exceeded for 55 years, the one at 7250 for 28 years,
# the one at 3050 for 8 years and the one at 2400 for 58 years
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with_hist_known_several_thresholds <- BayesianMCMC (xcont=serie20,
xhist=xhist_thres,

nbans=nbans_thres, seuil=seuil_thres,
nbpas=5000, nbchaines=3,
confint=c(0.05, 0.95), dist="GEV",
varparameters0=c(NA, NA, 0.5))

plot(with_hist_known_several_thresholds, which=c(1:3), ask=TRUE)

## REGIONAL:
# Regional analysis, assuming that the 3 historical events are perfectly known and
# there are 2 perception thresholds
regional_with_hist_known <- BayesianMCMCreg (xcont=serie20,

scont=c(rep(507,9),rep(2240,11)),
xhist=serie100[!is.na(serie100)],

shist=c(495, 495, 87),
nbans=c(100, 0, 50), seuil=c(312, 312, 221),
nbpas=5000, nbchaines=3,
confint=c(0.05, 0.95), dist="GEV",
varparameters0=c(NA, NA, NA, 0.5))

plot(regional_with_hist_known, which=1:3, ask=TRUE, ylim=c(1,600))

surf=c(571, 2240)
plotBayesianMCMCreg_surf(regional_with_hist_known, surf)

## End(Not run)

DIAGNOSTICS Diagnostics of models

Description

Diagnostics of model results, it compares estimated values y with observed values x.

Usage

R2 (x, y, na.rm=FALSE)
RMSE (x, y, na.rm=FALSE)
MAE (x, y, na.rm=FALSE)
RMSEP (x, y, na.rm=FALSE)
MAEP (x, y, na.rm=FALSE)

Arguments

x observed values

y estimated values

na.rm logical. Should missing values be removed?
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Details

If xi are the observed values, yi the estimated values, with i = 1, ..., n, and x̄ the sample mean of
xi, then:

R2 = 1−
∑n

1 (xi − yi)
2∑n

1 x
2
i − nx̄2

RMSE =

√√√√ 1

n

n∑
1

(xi − yi)2

MAE =
1

n

n∑
1

|xi − yi|

RMSEP =

√√√√ 1

n

n∑
1

((xi − yi)/xi)2

MAEP =
1

n

n∑
1

|(xi − yi)/xi|

See https://en.wikipedia.org/wiki/Coefficient_of_determination, https://en.wikipedia.
org/wiki/Mean_squared_error and https://en.wikipedia.org/wiki/Mean_absolute_error
for other details.

Value

R2 returns the coefficient of determination R2 of a model.

RMSE returns the root mean squared error of a model.

MAE returns the mean absolute error of a model.

RMSE returns the percentual root mean squared error of a model.

MAE returns the percentual mean absolute error of a model.

Note

For information on the package and the Author, and for all the references, see nsRFA.

See Also

lm, summary.lm, predict.lm, REGRDIAGNOSTICS

Examples

data(hydroSIMN)

datregr <- parameters
regr0 <- lm(Dm ~ .,datregr); summary(regr0)
regr1 <- lm(Dm ~ Am + Hm + Ybar,datregr); summary(regr1)

obs <- parameters[,"Dm"]
est0 <- regr0$fitted.values

https://en.wikipedia.org/wiki/Coefficient_of_determination
https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Mean_absolute_error
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est1 <- regr1$fitted.values

R2(obs, est0)
R2(obs, est1)

RMSE(obs, est0)
RMSE(obs, est1)

MAE(obs, est0)
MAE(obs, est1)

RMSEP(obs, est0)
RMSEP(obs, est1)

MAEP(obs, est0)
MAEP(obs, est1)

DISTPLOTS Empirical distribution plots

Description

Sample values are plotted against their empirical distribution in graphs where points belonging to a
particular distribution should lie on a straight line.

Usage

plotpos (x, a=0, orient="xF", ...)
plotposRP (x, a=0, orient="xF", ...)
loglogplot (x, a=0, orient="xF", ...)
unifplot (x, a=0, orient="xF", line=FALSE, ...)
normplot (x, a=0, orient="xF", line=FALSE, ...)
lognormplot (x, a=0, orient="xF", line=FALSE, ...)
studentplot (x, df, a=0, orient="xF", line=FALSE,...)
logisplot (x, a=0, orient="xF", line=FALSE,...)
gammaplot (x, shape, a=0, orient="xF", line=FALSE,...)
expplot (x, a=0, orient="xF", line=FALSE,...)
paretoplot (x, a=0, orient="xF", line=FALSE,...)
gumbelplot (x, a=0, orient="xF", line=FALSE, ...)
frechetplot (x, a=0, orient="xF", line=FALSE,...)
weibullplot (x, a=0, orient="xF", line=FALSE,...)
plotposRPhist (xcont, xhist=NA, infhist=NA, suphist=NA, nbans=NA, seuil=NA,

col12=c(1,1), a=0, orient="xF", ...)
pointspos (x, a=0, orient="xF", ...)
pointsposRP (x, a=0, orient="xF", ...)
loglogpoints (x, a=0, orient="xF", ...)
unifpoints (x, a=0, orient="xF", ...)
normpoints (x, a=0, orient="xF", ...)
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studentpoints (x, df, a=0, orient="xF", ...)
logispoints (x, a=0, orient="xF", ...)
gammapoints (x, shape, a=0, orient="xF", ...)
exppoints (x, a=0, orient="xF", ...)
gumbelpoints (x, a=0, orient="xF", ...)
weibullpoints (x, a=0, orient="xF", ...)
regionalplotpos (x, cod, a=0, orient="xF", ...)
regionalnormplot (x, cod, a=0, orient="xF", ...)
regionallognormplot (x, cod, a=0, orient="xF", ...)
regionalexpplot (x, cod, a=0, orient="xF", ...)
regionalparetoplot (x, cod, a=0, orient="xF", ...)
regionalgumbelplot (x, cod, a=0, orient="xF", ...)
regionalfrechetplot (x, cod, a=0, orient="xF", ...)
pointsposRPhist (xcont, xhist=NA, infhist=NA, suphist=NA, nbans=NA, seuil=NA,

col12=c(1,1), a=0, orient="xF", ...)

Arguments

x vector representing a data-sample

xcont vector of systematic data (see BayesianMCMC)

xhist vector of historical data (see BayesianMCMC)

infhist inferior limit for historical data (see BayesianMCMC)

suphist superior limit for historical data (see BayesianMCMC)

nbans period (in years) over which the threshold has not been exceeded except for the
historical data (see BayesianMCMC)

seuil threshold non exceeded in the historical period except for the historical data (see
BayesianMCMC)

df degrees of freedom (> 0, maybe non-integer) of the Student t distribution. ’df =
Inf’ is allowed.

shape shape parameter of the distribution

a plotting position parameter, normally between 0 and 0.5 (the default value here,
corresponding to the Hazen plotting position, see details)

orient if orient="xF" the abscissa will be x and the ordinate F

line if TRUE (default) a straight line indicating the normal, lognormal, ..., distribu-
tion with parameters estimated from x is plotted

cod array that defines the data subdivision among sites

col12 vector of 2 elements containing the colors for the systematic and historical data
respectively

... graphical parameters as xlab, ylab, main, ...

Details

A brief introduction on Probability Plots (or Quantile-Quantile plots) is available on https://en.
wikipedia.org/wiki/Q-Q_plot. For plotting positions see https://en.wikipedia.org/wiki/
Plotting_position.

https://en.wikipedia.org/wiki/Q-Q_plot
https://en.wikipedia.org/wiki/Q-Q_plot
https://en.wikipedia.org/wiki/Plotting_position
https://en.wikipedia.org/wiki/Plotting_position


DISTPLOTS 21

For the quantiles of the comparison distribution typically the Weibull formula k/(n + 1) is used
(default here). Several different formulas have been used or proposed as symmetrical plotting posi-
tions. Such formulas have the form

(k − a)/(n+ 1− 2a)

for some value of a in the range from 0 to 1/2. The above expression k/(n+ 1) is one example of
these, for a = 0. The Filliben plotting position has a = 0.3175 and the Cunanne plotting position
has a = 0.4 should be nearly quantile-unbiased for a range of distributions. The Hazen plotting po-
sition, widely used by engineers, has a = 0.5. The Blom’s plotting position, a = 3/8, gives nearly
unbiased quantiles for the normal distribution, while the Gringeton plotting position, a = 0.44, is
optimized for the largest observations from a Gumbel distribution. For the generalized Pareto, the
GEV and related distributions of the Type I (Gumbel) and Weibull, a = 0.35 is suggested.

For large sample size, n, there is little difference between these various expressions.

Value

Representation of the values of x vs their empirical probability function F in a cartesian, uniform,
normal, lognormal or Gumbel plot. plotpos and unifplot are analogous except for the axis no-
tation, unifplot has the same notation as normplot, lognormplot, ... plotposRP is analogous
to plotpos but the frequencies F are expressed as Return Periods T = 1/(1 − F ). With the de-
fault settings, F is defined with the Weibull plotting position F = k/(n + 1). The straight line
(if line=TRUE) indicate the uniform, normal, lognormal or Gumbel distribution with parameters
estimated from x. The regional plots draw samples of a region on the same plot.

pointspos, normpoints, ... are the analogous of points, they can be used to add points or lines to
plotpos, normplot, ... normpoints can be used either on normplot or lognormplot. exppoints
can be used either on expplot or paretoplot (since the log-transformed Pareto random variable
is exponentially distributed). gumbelpoints can be used either on gumbelplot or frechetplot
(since the log-transformed Frechet random variable is distributed as a Gumbel).

loglogplot plots the logarithm of sample vs the logarithm of the empirical exceedance probability.
For the log-log plot, the tail probability is represented by a straight line for power-law distributions
(e.g. log-pearson, log-logistic, Frechet, ..., HEAVY TAIL), but not for the other subexponential or
exponential distributions (e.g. gumbel, gamma, Pearson type III, ..., MODERATE TAIL); see El
Adlouni et al. (2008).

plotposRPhist is based on the method in Stedinger et al. (1993, pp. 18.41-42).

Note

For information on the package and the Author, and for all the references, see nsRFA.

See Also

These functons are analogous to qqnorm; for the distributions, see Normal, Lognormal, LOGNORM,
GUMBEL.

Examples

x <- rnorm(30,10,2)
plotpos(x)
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normplot(x)
normplot(x,xlab=expression(D[m]),ylab=expression(hat(F)),

main="Normal plot",cex.main=1,font.main=1)
normplot(x,line=FALSE)

x <- rlnorm(30,log(100),log(10))
normplot(x)
lognormplot(x)

x <- rand.gumb(30,1000,100)
normplot(x)
gumbelplot(x)

x <- rnorm(30,10,2)
y <- rnorm(50,10,3)
z <- c(x,y)
codz <- c(rep(1,30),rep(2,50))
regionalplotpos(z,codz)
regionalnormplot(z,codz,xlab="z")
regionallognormplot(z,codz)
regionalgumbelplot(z,codz)

plotpos(x)
pointspos(y,pch=2,col=2)

x <- rnorm(50,10,2)
F <- seq(0.01,0.99,by=0.01)
qq <- qnorm(F,10,2)
plotpos(x)
pointspos(qq,type="l")

normplot(x,line=FALSE)
normpoints(x,type="l",lty=2,col=3)

lognormplot(x)
normpoints(x,type="l",lty=2,col=3)

gumbelplot(x)
gumbelpoints(x,type="l",lty=2,col=3)

# distributions comparison in probabilistic graphs
x <- rnorm(50,10,2)
F <- seq(0.001,0.999,by=0.001)
loglikelhood <- function(param) {-sum(dgamma(x, shape=param[1],

scale=param[2], log=TRUE))}
parameters <- optim(c(1,1),loglikelhood)$par
qq <- qgamma(F,shape=parameters[1],scale=parameters[2])
plotpos(x)
pointspos(qq,type="l")

normplot(x,line=FALSE)
normpoints(qq,type="l")
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lognormplot(x,line=FALSE)
normpoints(qq,type="l")

EXP Two parameter exponential distribution and L-moments

Description

EXP provides the link between L-moments of a sample and the two parameter exponential distribu-
tion.

Usage

f.exp (x, xi, alfa)
F.exp (x, xi, alfa)
invF.exp (F, xi, alfa)
Lmom.exp (xi, alfa)
par.exp (lambda1, lambda2)
rand.exp (numerosita, xi, alfa)

Arguments

x vector of quantiles

xi vector of exp location parameters

alfa vector of exp scale parameters

F vector of probabilities

lambda1 vector of sample means

lambda2 vector of L-variances

numerosita numeric value indicating the length of the vector to be generated

Details

See https://en.wikipedia.org/wiki/Exponential_distribution for a brief introduction on
the Exponential distribution.

Definition
Parameters (2): ξ (lower endpoint of the distribution), α (scale).

Range of x: ξ ≤ x < ∞.

Probability density function:

f(x) = α−1 exp{−(x− ξ)/α}

Cumulative distribution function:

F (x) = 1− exp{−(x− ξ)/α}

https://en.wikipedia.org/wiki/Exponential_distribution
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Quantile function:
x(F ) = ξ − α log(1− F )

L-moments

λ1 = ξ + α

λ2 = 1/2 · α

τ3 = 1/3

τ4 = 1/6

Parameters
If ξ is known, α is given by α = λ1 − ξ and the L-moment, moment, and maximum-likelihood
estimators are identical. If ξ is unknown, the parameters are given by

α = 2λ2

ξ = λ1 − α

For estimation based on a single sample these estimates are inefficient, but in regional frequency
analysis they can give reasonable estimates of upper-tail quantiles.

Lmom.exp and par.exp accept input as vectors of equal length. In f.exp, F.exp, invF.exp and
rand.exp parameters (xi, alfa) must be atomic.

Value

f.exp gives the density f , F.exp gives the distribution function F , invFexp gives the quantile
function x, Lmom.exp gives the L-moments (λ1, λ2, τ3, τ4), par.exp gives the parameters (xi,
alfa), and rand.exp generates random deviates.

Note

For information on the package and the Author, and for all the references, see nsRFA.

See Also

rnorm, runif, GENLOGIS, GENPAR, GEV, GUMBEL, KAPPA, LOGNORM, P3; DISTPLOTS, GOFmontecarlo,
Lmoments.

Examples

data(hydroSIMN)
annualflows
summary(annualflows)
x <- annualflows["dato"][,]
fac <- factor(annualflows["cod"][,])
split(x,fac)

camp <- split(x,fac)$"45"
ll <- Lmoments(camp)
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parameters <- par.exp(ll[1],ll[2])
f.exp(1800,parameters$xi,parameters$alfa)
F.exp(1800,parameters$xi,parameters$alfa)
invF.exp(0.7870856,parameters$xi,parameters$alfa)
Lmom.exp(parameters$xi,parameters$alfa)
rand.exp(100,parameters$xi,parameters$alfa)

Rll <- regionalLmoments(x,fac); Rll
parameters <- par.exp(Rll[1],Rll[2])
Lmom.exp(parameters$xi,parameters$alfa)

FEH1000 Data-sample

Description

Flood Estimation Handbook flood peak data CD-ROM.

Usage

data(FEH1000)

Format

Data.frames:

am is the data.frame of the annual maximum flows with 3 columns: number, the code of the station;
date, date of the annual maximum; year, year of the annual maximum (we consider hydrologic
year: 1 october - 30 september); am, the value of the annual maximum flow [m3/s].

cd is the data.frame of parameters of 1000 catchements with 24 columns: number, the code of the
station; nominal_area, catchment drainage area [km2]; nominal_ngr_x, basin outflow coordinates
[m]; nominal_ngr_y, basin outflow coordinates [m]; ihdtm_ngr_x, basin outflow coordinates by
Institute of Hydrology digital terrain model [m]; ihdtm_ngr_y, basin outflow coordinates by In-
stitute of Hydrology digital terrain model [m]; dtm_area, catchment drainage area [km2] derived
by CEH using their DTM (IHDTM); saar4170, standard average annual rainfall 1941-1970 [mm];
bfihost, baseflow index derived from HOST soils data; sprhost, standard percentage runoff de-
rived from HOST soils data; farl, index of flood attenuation due to reservoirs and lakes; saar,
standard average annual rainfall 1961-1990 [mm]; rmed_1d, median annual maximum 1-day rain-
fall [mm]; rmed_2d, median annual maximum 2-days rainfall [mm]; rmed_1h, median annual max-
imum 1-hour rainfall [mm]; smdbar, mean SMD (soil moisture deficit) for the period 1961-1990
calculated from MORECS month-end values [mm]; propwet, proportion of time when soil mois-
ture deficit <=6 mm during 1961-90, defined using MORECS; ldp, longest drainage path [km],
defined by recording the greatest distance from a catchment node to the defined outlet; dplbar,
mean drainage path length [km]; altbar, mean catchment altitude [m]; dpsbar, mean catchement
slope [m/km]; aspbar, index representing the dominant aspect of catchment slopes (its values in-
crease clockwise from zero to 360, starting from the north). Mean direction of all inter-nodal slopes
with north being zero; aspvar, index describing the invariability in aspect of catchment slopes. Val-
ues close to one when all slopes face a similar direction; urbext1990, extent of urban and suburban
land cover in 1990 [fraction].
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Note

For information on the package and the Author, and for all the references, see nsRFA.

Source

http://www.environment-agency.gov.uk/hiflowsuk/

Examples

data(FEH1000)
names(cd)
am[1:20,]

functionsLaio Data-sample

Description

Functions for inversion calculation.

Usage

data(functionsLaio)

Format

Data.frames:

df.kgev is a data.frame with the skewness coefficient (first column) and the corresponding shape
parameter of the GEV (second column)

df.polig represents the poligamma function.

Note

For information on the package and the Author, and for all the references, see nsRFA.
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GENLOGIS Three parameter generalized logistic distribution and L-moments

Description

GENLOGIS provides the link between L-moments of a sample and the three parameter generalized
logistic distribution.

Usage

f.genlogis (x, xi, alfa, k)
F.genlogis (x, xi, alfa, k)
invF.genlogis (F, xi, alfa, k)
Lmom.genlogis (xi, alfa, k)
par.genlogis (lambda1, lambda2, tau3)
rand.genlogis (numerosita, xi, alfa, k)

Arguments

x vector of quantiles

xi vector of genlogis location parameters

alfa vector of genlogis scale parameters

k vector of genlogis shape parameters

F vector of probabilities

lambda1 vector of sample means

lambda2 vector of L-variances

tau3 vector of L-CA (or L-skewness)

numerosita numeric value indicating the length of the vector to be generated

Details

See https://en.wikipedia.org/wiki/Logistic_distribution for an introduction to the Lo-
gistic Distribution.

Definition
Parameters (3): ξ (location), α (scale), k (shape).

Range of x: −∞ < x ≤ ξ + α/k if k > 0; −∞ < x < ∞ if k = 0; ξ + α/k ≤ x < ∞ if k < 0.

Probability density function:

f(x) =
α−1e−(1−k)y

(1 + e−y)2

where y = −k−1 log{1− k(x− ξ)/α} if k ̸= 0, y = (x− ξ)/α if k = 0.

Cumulative distribution function:
F (x) = 1/(1 + e−y)

https://en.wikipedia.org/wiki/Logistic_distribution
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Quantile function: x(F ) = ξ + α[1− {(1− F )/F}k]/k if k ̸= 0, x(F ) = ξ − α log{(1− F )/F}
if k = 0.

k = 0 is the logistic distribution.

L-moments
L-moments are defined for −1 < k < 1.

λ1 = ξ + α[1/k − π/ sin(kπ)]

λ2 = αkπ/ sin(kπ)

τ3 = −k

τ4 = (1 + 5k2)/6

Parameters
k = −τ3, α = λ2 sin(kπ)

kπ , ξ = λ1 − α( 1k − π
sin(kπ) ).

Lmom.genlogis and par.genlogis accept input as vectors of equal length. In f.genlogis, F.genlogis,
invF.genlogis and rand.genlogis parameters (xi, alfa, k) must be atomic.

Value

f.genlogis gives the density f , F.genlogis gives the distribution function F , invF.genlogis
gives the quantile function x, Lmom.genlogis gives the L-moments (λ1, λ2, τ3, τ4), par.genlogis
gives the parameters (xi, alfa, k), and rand.genlogis generates random deviates.

Note

For information on the package and the Author, and for all the references, see nsRFA.

See Also

rnorm, runif, EXP, GENPAR, GEV, GUMBEL, KAPPA, LOGNORM, P3; DISTPLOTS, GOFmontecarlo, Lmoments.

Examples

data(hydroSIMN)
annualflows
summary(annualflows)
x <- annualflows["dato"][,]
fac <- factor(annualflows["cod"][,])
split(x,fac)

camp <- split(x,fac)$"45"
ll <- Lmoments(camp)
parameters <- par.genlogis(ll[1],ll[2],ll[4])
f.genlogis(1800,parameters$xi,parameters$alfa,parameters$k)
F.genlogis(1800,parameters$xi,parameters$alfa,parameters$k)
invF.genlogis(0.7697433,parameters$xi,parameters$alfa,parameters$k)
Lmom.genlogis(parameters$xi,parameters$alfa,parameters$k)
rand.genlogis(100,parameters$xi,parameters$alfa,parameters$k)
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Rll <- regionalLmoments(x,fac); Rll
parameters <- par.genlogis(Rll[1],Rll[2],Rll[4])
Lmom.genlogis(parameters$xi,parameters$alfa,parameters$k)

GENPAR Three parameter generalized Pareto distribution and L-moments

Description

GENPAR provides the link between L-moments of a sample and the three parameter generalized
Pareto distribution.

Usage

f.genpar (x, xi, alfa, k)
F.genpar (x, xi, alfa, k)
invF.genpar (F, xi, alfa, k)
Lmom.genpar (xi, alfa, k)
par.genpar (lambda1, lambda2, tau3)
rand.genpar (numerosita, xi, alfa, k)

Arguments

x vector of quantiles

xi vector of genpar location parameters

alfa vector of genpar scale parameters

k vector of genpar shape parameters

F vector of probabilities

lambda1 vector of sample means

lambda2 vector of L-variances

tau3 vector of L-CA (or L-skewness)

numerosita numeric value indicating the length of the vector to be generated

Details

See https://en.wikipedia.org/wiki/Pareto_distribution for an introduction to the Pareto
distribution.

Definition
Parameters (3): ξ (location), α (scale), k (shape).

Range of x: ξ < x ≤ ξ + α/k if k > 0; ξ ≤ x < ∞ if k ≤ 0.

Probability density function:
f(x) = α−1e−(1−k)y

https://en.wikipedia.org/wiki/Pareto_distribution
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where y = −k−1 log{1− k(x− ξ)/α} if k ̸= 0, y = (x− ξ)/α if k = 0.

Cumulative distribution function:

F (x) = 1− e−y

Quantile function: x(F ) = ξ + α[1− (1− F )k]/k if k ̸= 0, x(F ) = ξ − α log(1− F ) if k = 0.

k = 0 is the exponential distribution; k = 1 is the uniform distribution on the interval ξ < x ≤ ξ+α.

L-moments

L-moments are defined for k > −1.

λ1 = ξ + α/(1 + k)]

λ2 = α/[(1 + k)(2 + k)]

τ3 = (1− k)/(3 + k)

τ4 = (1− k)(2− k)/[(3 + k)(4 + k)]

The relation between τ3 and τ4 is given by

τ4 =
τ3(1 + 5τ3)

5 + τ3

Parameters

If ξ is known, k = (λ1−ξ)/λ2−2 and α = (1+k)(λ1−ξ); if ξ is unknown, k = (1−3τ3)/(1+τ3),
α = (1 + k)(2 + k)λ2 and ξ = λ1 − (2 + k)λ2.

Lmom.genpar and par.genpar accept input as vectors of equal length. In f.genpar, F.genpar,
invF.genpar and rand.genpar parameters (xi, alfa, k) must be atomic.

Value

f.genpar gives the density f , F.genpar gives the distribution function F , invF.genpar gives the
quantile function x, Lmom.genpar gives the L-moments (λ1, λ2, τ3, τ4), par.genpar gives the
parameters (xi, alfa, k), and rand.genpar generates random deviates.

Note

For information on the package and the Author, and for all the references, see nsRFA.

See Also

rnorm, runif, EXP, GENLOGIS, GEV, GUMBEL, KAPPA, LOGNORM, P3; DISTPLOTS, GOFmontecarlo,
Lmoments.
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Examples

data(hydroSIMN)
annualflows
summary(annualflows)
x <- annualflows["dato"][,]
fac <- factor(annualflows["cod"][,])
split(x,fac)

camp <- split(x,fac)$"45"
ll <- Lmoments(camp)
parameters <- par.genpar(ll[1],ll[2],ll[4])
f.genpar(1800,parameters$xi,parameters$alfa,parameters$k)
F.genpar(1800,parameters$xi,parameters$alfa,parameters$k)
invF.genpar(0.7161775,parameters$xi,parameters$alfa,parameters$k)
Lmom.genpar(parameters$xi,parameters$alfa,parameters$k)
rand.genpar(100,parameters$xi,parameters$alfa,parameters$k)

Rll <- regionalLmoments(x,fac); Rll
parameters <- par.genpar(Rll[1],Rll[2],Rll[4])
Lmom.genpar(parameters$xi,parameters$alfa,parameters$k)

GEV Three parameter generalized extreme value distribution and L-
moments

Description

GEV provides the link between L-moments of a sample and the three parameter generalized extreme
value distribution.

Usage

f.GEV (x, xi, alfa, k)
F.GEV (x, xi, alfa, k)
invF.GEV (F, xi, alfa, k)
Lmom.GEV (xi, alfa, k)
par.GEV (lambda1, lambda2, tau3)
rand.GEV (numerosita, xi, alfa, k)

Arguments

x vector of quantiles

xi vector of GEV location parameters

alfa vector of GEV scale parameters

k vector of GEV shape parameters

F vector of probabilities

lambda1 vector of sample means
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lambda2 vector of L-variances
tau3 vector of L-CA (or L-skewness)
numerosita numeric value indicating the length of the vector to be generated

Details

See https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution for an in-
troduction to the GEV distribution.
Definition
Parameters (3): ξ (location), α (scale), k (shape).
Range of x: −∞ < x ≤ ξ + α/k if k > 0; −∞ < x < ∞ if k = 0; ξ + α/k ≤ x < ∞ if k < 0.
Probability density function:

f(x) = α−1e−(1−k)y−e−y

where y = −k−1 log{1− k(x− ξ)/α} if k ̸= 0, y = (x− ξ)/α if k = 0.
Cumulative distribution function:

F (x) = e−e−y

Quantile function: x(F ) = ξ+α[1− (− logF )k]/k if k ̸= 0, x(F ) = ξ−α log(− logF ) if k = 0.
k = 0 is the Gumbel distribution; k = 1 is the reverse exponential distribution.
L-moments
L-moments are defined for k > −1.

λ1 = ξ + α[1− Γ(1 + k)]/k

λ2 = α(1− 2−k)Γ(1 + k)]/k

τ3 = 2(1− 3−k)/(1− 2−k)− 3

τ4 = [5(1− 4−k)− 10(1− 3−k) + 6(1− 2−k)]/(1− 2−k)

Here Γ denote the gamma function

Γ(x) =

∫ ∞

0

tx−1e−tdt

Parameters
To estimate k, no explicit solution is possible, but the following approximation has accurancy better
than 9× 10−4 for −0.5 ≤ τ3 ≤ 0.5:

k ≈ 7.8590c+ 2.9554c2

where
c =

2

3 + τ3
− log 2

log 3

The other parameters are then given by

α =
λ2k

(1− 2−k)Γ(1 + k)

ξ = λ1 − α[1− Γ(1 + k)]/k

Lmom.GEV and par.GEV accept input as vectors of equal length. In f.GEV, F.GEV, invF.GEV and
rand.GEV parameters (xi, alfa, k) must be atomic.

https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution
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Value

f.GEV gives the density f , F.GEV gives the distribution function F , invF.GEV gives the quantile
function x, Lmom.GEV gives the L-moments (λ1, λ2, τ3, τ4), par.GEV gives the parameters (xi,
alfa, k), and rand.GEV generates random deviates.

Note

For information on the package and the Author, and for all the references, see nsRFA.

See Also

rnorm, runif, EXP, GENLOGIS, GENPAR, GUMBEL, KAPPA, LOGNORM, P3; DISTPLOTS, GOFmontecarlo,
Lmoments.

Examples

data(hydroSIMN)
annualflows
summary(annualflows)
x <- annualflows["dato"][,]
fac <- factor(annualflows["cod"][,])
split(x,fac)

camp <- split(x,fac)$"45"
ll <- Lmoments(camp)
parameters <- par.GEV(ll[1],ll[2],ll[4])
f.GEV(1800,parameters$xi,parameters$alfa,parameters$k)
F.GEV(1800,parameters$xi,parameters$alfa,parameters$k)
invF.GEV(0.7518357,parameters$xi,parameters$alfa,parameters$k)
Lmom.GEV(parameters$xi,parameters$alfa,parameters$k)
rand.GEV(100,parameters$xi,parameters$alfa,parameters$k)

Rll <- regionalLmoments(x,fac); Rll
parameters <- par.GEV(Rll[1],Rll[2],Rll[4])
Lmom.GEV(parameters$xi,parameters$alfa,parameters$k)

GOFlaio2004 Goodness of fit tests

Description

Anderson-Darling goodness of fit tests for extreme-value distributions, from Laio (2004).

Usage

A2_GOFlaio (x, dist="NORM")
A2 (F)
W2 (F)
fw2 (w)
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Arguments

x data sample

dist distribution: normal "NORM", log-normal "LN", Gumbel "GUMBEL", Frechet "EV2",
Generalized Extreme Value "GEV", Pearson type III "P3", log-Pearson type III
"LP3"

F cumulative distribution function (that has to be sorted increasingly)

w Transformed test statistic (Laio, 2004)

Details

An introduction on the Anderson-Darling test is available on https://en.wikipedia.org/wiki/
Anderson-Darling_test and in the GOFmontecarlo help page. The original paper of Laio (2004)
is available on his web site.

Value

A2_GOFlaio tests the goodness of fit of a distribution with the sample x; it return the value A2

of the Anderson-Darling statistics and its non-exceedence probability P (A2). Note that P is the
probability of obtaining the test statistic A2 lower than the one that was actually observed, assuming
that the null hypothesis is true, i.e., P is one minus the p-value usually employed in statistical testing
(see https://en.wikipedia.org/wiki/P-value). If P (A2) is, for example, greater than 0.90,
the null hypothesis at significance level α = 10% is rejected.

A2 is the Anderson-Darling test statistic; it is used by A2_GOFlaio.

W2 is the Cramer-von Mises test statistic.

fw2 is the approximation of the probability distribution of w (first 2 terms) when H0 is true (Anderson-
Darling, 1952); it is used by A2_GOFlaio.

Note

For information on the package and the Author, and for all the references, see nsRFA.

See Also

GOFmontecarlo, MLlaio2004.

Examples

sm <- rand.gumb(100, 0, 1)
ml <- ML_estimation (sm, dist="GEV"); ml
F.GEV(sm, ml[1], ml[2], ml[3])
A2(sort(F.GEV(sm, ml[1], ml[2], ml[3])))
A2_GOFlaio(sm, dist="GEV")

ml <- ML_estimation (sm, dist="P3"); ml
A2(sort(sort(F.gamma(sm, ml[1], ml[2], ml[3]))))
A2_GOFlaio(sm, dist="P3")

https://en.wikipedia.org/wiki/Anderson-Darling_test
https://en.wikipedia.org/wiki/Anderson-Darling_test
https://en.wikipedia.org/wiki/P-value
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GOFmontecarlo Goodness of fit tests

Description

Anderson-Darling goodness of fit tests for Regional Frequency Analysis: Monte-Carlo method.

Usage

gofNORMtest (x)
gofEXPtest (x, Nsim=1000)
gofGUMBELtest (x, Nsim=1000)
gofGENLOGIStest (x, Nsim=1000)
gofGENPARtest (x, Nsim=1000)
gofGEVtest (x, Nsim=1000)
gofLOGNORMtest (x, Nsim=1000)
gofP3test (x, Nsim=1000)

Arguments

x data sample

Nsim number of simulated samples from the hypothetical parent distribution

Details

An introduction, analogous to the following one, on the Anderson-Darling test is available on
https://en.wikipedia.org/wiki/Anderson-Darling_test.

Given a sample xi (i = 1, . . . ,m) of data extracted from a distribution FR(x), the test is used to
check the null hypothesis H0 : FR(x) = F (x, θ), where F (x, θ) is the hypothetical distribution
and θ is an array of parameters estimated from the sample xi.

The Anderson-Darling goodness of fit test measures the departure between the hypothetical distri-
bution F (x, θ) and the cumulative frequency function Fm(x) defined as:

Fm(x) = 0 , x < x(1)

Fm(x) = i/m , x(i) ≤ x < x(i+1)

Fm(x) = 1 , x(m) ≤ x

where x(i) is the i-th element of the ordered sample (in increasing order).

The test statistic is:
Q2 = m

∫
x

[Fm(x)− F (x, θ)]
2
Ψ(x) dF (x)

where Ψ(x), in the case of the Anderson-Darling test (Laio, 2004), is Ψ(x) = [F (x, θ)(1 −
F (x, θ))]−1. In practice, the statistic is calculated as:

A2 = −m− 1

m

m∑
i=1

{
(2i− 1) ln[F (x(i), θ)] + (2m+ 1− 2i) ln[1− F (x(i), θ)]

}

https://en.wikipedia.org/wiki/Anderson-Darling_test
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The statistic A2, obtained in this way, may be confronted with the population of the A2’s that one
obtain if samples effectively belongs to the F (x, θ) hypothetical distribution. In the case of the test
of normality, this distribution is defined (see Laio, 2004). In other cases, e.g. the Pearson Type III
case, can be derived with a Monte-Carlo procedure.

Value

gofNORMtest tests the goodness of fit of a normal (Gauss) distribution with the sample x.

gofEXPtest tests the goodness of fit of a exponential distribution with the sample x.

gofGUMBELtest tests the goodness of fit of a Gumbel (EV1) distribution with the sample x.

gofGENLOGIStest tests the goodness of fit of a Generalized Logistic distribution with the sample
x.

gofGENPARtest tests the goodness of fit of a Generalized Pareto distribution with the sample x.

gofGEVtest tests the goodness of fit of a Generalized Extreme Value distribution with the sample
x.

gofLOGNORMtest tests the goodness of fit of a 3 parameters Lognormal distribution with the sample
x.

gofP3test tests the goodness of fit of a Pearson type III (gamma) distribution with the sample x.

They return the value A2 of the Anderson-Darling statistics and its non exceedence probability
P . Note that P is the probability of obtaining the test statistic A2 lower than the one that was
actually observed, assuming that the null hypothesis is true, i.e., P is one minus the p-value usually
employed in statistical testing (see https://en.wikipedia.org/wiki/P-value). If P (A2) is, for
example, greater than 0.90, the null hypothesis at significance level α = 10% is rejected.

Note

For information on the package and the Author, and for all the references, see nsRFA.

See Also

traceWminim, roi, HOMTESTS.

Examples

x <- rnorm(30,10,1)
gofNORMtest(x)

x <- rand.gamma(50, 100, 15, 7)
gofP3test(x, Nsim=200)

x <- rand.GEV(50, 0.907, 0.169, 0.0304)
gofGEVtest(x, Nsim=200)

x <- rand.genlogis(50, 0.907, 0.169, 0.0304)
gofGENLOGIStest(x, Nsim=200)

x <- rand.genpar(50, 0.716, 0.418, 0.476)
gofGENPARtest(x, Nsim=200)

https://en.wikipedia.org/wiki/P-value
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x <- rand.lognorm(50, 0.716, 0.418, 0.476)
gofLOGNORMtest(x, Nsim=200)

GUMBEL Two parameter Gumbel distribution and L-moments

Description

GUMBEL provides the link between L-moments of a sample and the two parameter Gumbel distribu-
tion.

Usage

f.gumb (x, xi, alfa)
F.gumb (x, xi, alfa)
invF.gumb (F, xi, alfa)
Lmom.gumb (xi, alfa)
par.gumb (lambda1, lambda2)
rand.gumb (numerosita, xi, alfa)

Arguments

x vector of quantiles

xi vector of gumb location parameters

alfa vector of gumb scale parameters

F vector of probabilities

lambda1 vector of sample means

lambda2 vector of L-variances

numerosita numeric value indicating the length of the vector to be generated

Details

See https://en.wikipedia.org/wiki/Fisher-Tippett_distribution for an introduction to
the Gumbel distribution.

Definition
Parameters (2): ξ (location), α (scale).

Range of x: −∞ < x < ∞.

Probability density function:

f(x) = α−1 exp[−(x− ξ)/α] exp{− exp[−(x− ξ)/α]}

Cumulative distribution function:

F (x) = exp[− exp(−(x− ξ)/α)]

https://en.wikipedia.org/wiki/Fisher-Tippett_distribution
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Quantile function: x(F ) = ξ − α log(− logF ).

L-moments

λ1 = ξ + αγ

λ2 = α log 2

τ3 = 0.1699 = log(9/8)/ log 2

τ4 = 0.1504 = (16 log 2− 10 log 3)/ log 2

Here γ is Euler’s constant, 0.5772...

Parameters

α = λ2/ log 2

ξ = λ1 − γα

Lmom.gumb and par.gumb accept input as vectors of equal length. In f.gumb, F.gumb, invF.gumb
and rand.gumb parameters (xi, alfa) must be atomic.

Value

f.gumb gives the density f , F.gumb gives the distribution function F , invF.gumb gives the quantile
function x, Lmom.gumb gives the L-moments (λ1, λ2, τ3, τ4)), par.gumb gives the parameters (xi,
alfa), and rand.gumb generates random deviates.

Note

For information on the package and the Author, and for all the references, see nsRFA.

See Also

rnorm, runif, EXP, GENLOGIS, GENPAR, GEV, KAPPA, LOGNORM, P3; DISTPLOTS, GOFmontecarlo,
Lmoments.

Examples

data(hydroSIMN)
annualflows[1:10,]
summary(annualflows)
x <- annualflows["dato"][,]
fac <- factor(annualflows["cod"][,])
split(x,fac)

camp <- split(x,fac)$"45"
ll <- Lmoments(camp)
parameters <- par.gumb(ll[1],ll[2])
f.gumb(1800,parameters$xi,parameters$alfa)
F.gumb(1800,parameters$xi,parameters$alfa)
invF.gumb(0.7686843,parameters$xi,parameters$alfa)
Lmom.gumb(parameters$xi,parameters$alfa)
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rand.gumb(100,parameters$xi,parameters$alfa)

Rll <- regionalLmoments(x,fac); Rll
parameters <- par.gumb(Rll[1],Rll[2])
Lmom.gumb(parameters$xi,parameters$alfa)

HOMTESTS Homogeneity tests

Description

Homogeneity tests for Regional Frequency Analysis.

Usage

ADbootstrap.test (x, cod, Nsim=500, index=2)
HW.tests (x, cod, Nsim=500)
DK.test (x, cod)
discordancy (x, cod)
criticalD ()

Arguments

x vector representing data from many samples defined with cod

cod array that defines the data subdivision among sites
Nsim number of regions simulated with the bootstrap of the original region
index if index=1 samples are divided by their average value; if index=2 (default)

samples are divided by their median value

Details

The Hosking and Wallis heterogeneity measures
The idea underlying Hosking and Wallis (1993) heterogeneity statistics is to measure the sample
variability of the L-moment ratios and compare it to the variation that would be expected in a
homogeneous region. The latter is estimated through repeated simulations of homogeneous regions
with samples drawn from a four parameter kappa distribution (see e.g., Hosking and Wallis, 1997,
pp. 202-204). More in detail, the steps are the following: with regards to the k samples belonging
to the region under analysis, find the sample L-moment ratios (see, Hosking and Wallis, 1997)
pertaining to the i-th site: these are the L-coefficient of variation (L-CV),

t(i) =

1
ni

∑ni

j=1

(
2(j−1)
(ni−1) − 1

)
Yi,j

1
ni

∑ni

j=1 Yi,j

the coefficient of L-skewness,

t
(i)
3 =

1
ni

∑ni

j=1

(
6(j−1)(j−2)
(ni−1)(ni−2) −

6(j−1)
(ni−1) + 1

)
Yi,j

1
ni

∑ni

j=1

(
2(j−1)
(ni−1) − 1

)
Yi,j
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and the coefficient of L-kurtosis

t
(i)
4 =

1
ni

∑ni

j=1

(
20(j−1)(j−2)(j−3)
(ni−1)(ni−2)(ni−3) −

30(j−1)(j−2)
(ni−1)(ni−2) +

12(j−1)
(ni−1) − 1

)
Yi,j

1
ni

∑ni

j=1

(
2(j−1)
(ni−1) − 1

)
Yi,j

Note that the L-moment ratios are not affected by the normalization by the index value, i.e. it is the
same to use Xi,j or Yi,j in Equations.

Define the regional averaged L-CV, L-skewness and L-kurtosis coefficients,

tR =

∑k
i=1 nit

(i)∑k
i=1 ni

tR3 =

∑k
i=1 nit

(i)
3∑k

i=1 ni

tR4 =

∑k
i=1 nit

(i)
4∑k

i=1 ni

and compute the statistic

V =

{
k∑

i=1

ni(t
(i) − tR)2/

k∑
i=1

ni

}1/2

Fit the parameters of a four-parameters kappa distribution to the regional averaged L-moment ratios
tR, tR3 and tR4 , and then generate a large number Nsim of realizations of sets of k samples. The
i-th site sample in each set has a kappa distribution as its parent and record length equal to ni. For
each simulated homogeneous set, calculate the statistic V , obtaining Nsim values. On this vector of
V values determine the mean µV and standard deviation σV that relate to the hypothesis of homo-
geneity (actually, under the composite hypothesis of homogeneity and kappa parent distribution).

An heterogeneity measure, which is called here HW1, is finally found as

θHW1 =
V − µV

σV

θHW1 can be approximated by a normal distributed with zero mean and unit variance: follow-
ing Hosking and Wallis (1997), the region under analysis can therefore be regarded as ‘acceptably
homogeneous’ if θHW1

< 1, ‘possibly heterogeneous’ if 1 ≤ θHW1
< 2, and ‘definitely hetero-

geneous’ if θHW1
≥ 2. Hosking and Wallis (1997) suggest that these limits should be treated as

useful guidelines. Even if the θHW1
statistic is constructed like a significance test, significance

levels obtained from such a test would in fact be accurate only under special assumptions: to have
independent data both serially and between sites, and the true regional distribution being kappa.

Hosking and Wallis (1993) also give alternative heterogeneity measures (that we call HW2 and
HW3), in which V is replaced by:

V2 =

k∑
i=1

ni

{
(t(i) − tR)2 + (t

(i)
3 − tR3 )

2
}1/2

/

k∑
i=1

ni

or

V3 =

k∑
i=1

ni

{
(t

(i)
3 − tR3 )

2 + (t
(i)
4 − tR4 )

2
}1/2

/

k∑
i=1

ni
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The test statistic in this case becomes

θHW2
=

V2 − µV2

σV2

or

θHW3 =
V3 − µV3

σV3

with similar acceptability limits as the HW1 statistic. Hosking and Wallis (1997) judge θHW2
and

θHW3
to be inferior to θHW1

and say that it rarely yields values larger than 2 even for grossly
heterogeneous regions.

The bootstrap Anderson-Darling test

A test that does not make any assumption on the parent distribution is the Anderson-Darling (AD)
rank test (Scholz and Stephens, 1987). The AD test is the generalization of the classical Anderson-
Darling goodness of fit test (e.g., D’Agostino and Stephens, 1986), and it is used to test the hypoth-
esis that k independent samples belong to the same population without specifying their common
distribution function.

The test is based on the comparison between local and regional empirical distribution functions.
The empirical distribution function, or sample distribution function, is defined by F (x) = j

η , x(j) ≤
x < x(j+1), where η is the size of the sample and x(j) are the order statistics, i.e. the observations
arranged in ascending order. Denote the empirical distribution function of the i-th sample (local) by
F̂i(x), and that of the pooled sample of all N = n1 + ... + nk observations (regional) by HN (x).
The k-sample Anderson-Darling test statistic is then defined as

θAD =

k∑
i=1

ni

∫
all x

[F̂i(x)−HN (x)]2

HN (x)[1−HN (x)]
dHN (x)

If the pooled ordered sample is Z1 < ... < ZN , the computational formula to evaluate θAD is:

θAD =
1

N

k∑
i=1

1

ni

N−1∑
j=1

(NMij − jni)
2

j(N − j)

where Mij is the number of observations in the i-th sample that are not greater than Zj . The ho-
mogeneity test can be carried out by comparing the obtained θAD value to the tabulated percentage
points reported by Scholz and Stephens (1987) for different significance levels.

The statistic θAD depends on the sample values only through their ranks. This guarantees that the
test statistic remains unchanged when the samples undergo monotonic transformations, an impor-
tant stability property not possessed by HW heterogeneity measures. However, problems arise in
applying this test in a common index value procedure. In fact, the index value procedure corre-
sponds to dividing each site sample by a different value, thus modifying the ranks in the pooled
sample. In particular, this has the effect of making the local empirical distribution functions much
more similar to the other, providing an impression of homogeneity even when the samples are
highly heterogeneous. The effect is analogous to that encountered when applying goodness-of-fit
tests to distributions whose parameters are estimated from the same sample used for the test (e.g.,
D’Agostino and Stephens, 1986; Laio, 2004). In both cases, the percentage points for the test
should be opportunely redetermined. This can be done with a nonparametric bootstrap approach
presenting the following steps: build up the pooled sample S of the observed non-dimensional data.
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Sample with replacement from S and generate k artificial local samples, of size n1, . . . , nk. Divide
each sample for its index value, and calculate θ(1)AD. Repeat the procedure for Nsim times and obtain
a sample of θ(j)AD, j = 1, . . . , Nsim values, whose empirical distribution function can be used as
an approximation of GH0

(θAD), the distribution of θAD under the null hypothesis of homogene-
ity. The acceptance limits for the test, corresponding to any significance level α, are then easily
determined as the quantiles of GH0

(θAD) corresponding to a probability (1− α).

We will call the test obtained with the above procedure the bootstrap Anderson-Darling test, here-
after referred to as AD.

Durbin and Knott test
The last considered homogeneity test derives from a goodness-of-fit statistic originally proposed
by Durbin and Knott (1971). The test is formulated to measure discrepancies in the dispersion of
the samples, without accounting for the possible presence of discrepancies in the mean or skewness
of the data. Under this aspect, the test is similar to the HW1 test, while it is analogous to the
AD test for the fact that it is a rank test. The original goodness-of-fit test is very simple: suppose
to have a sample Xi, i = 1, ..., n, with hypothetical distribution F (x); under the null hypothesis
the random variable F (Xi) has a uniform distribution in the (0, 1) interval, and the statistic D =∑n

i=1 cos[2πF (Xi)] is approximately normally distributed with mean 0 and variance 1 (Durbin and
Knott, 1971). D serves the purpose of detecting discrepancy in data dispersion: if the variance of
Xi is greater than that of the hypothetical distribution F (x), D is significantly greater than 0, while
D is significantly below 0 in the reverse case. Differences between the mean (or the median) of Xi

and F (x) are instead not detected by D, which guarantees that the normalization by the index value
does not affect the test.

The extension to homogeneity testing of the Durbin and Knott (DK) statistic is straightforward:
we substitute the empirical distribution function obtained with the pooled observed data, HN (x),
for F (x) in D, obtaining at each site a statistic

Di =

ni∑
j=1

cos[2πHN (Xj)]

which is normal under the hypothesis of homogeneity. The statistic θDK =
∑k

i=1 D
2
i has then a chi-

squared distribution with k−1 degrees of freedom, which allows one to determine the acceptability
limits for the test, corresponding to any significance level α.

Comparison among tests
The comparison (Viglione et al, 2007) shows that the Hosking and Wallis heterogeneity measure
HW1 (only based on L-CV) is preferable when skewness is low, while the bootstrap Anderson-
Darling test should be used for more skewed regions. As for HW2, the Hosking and Wallis hetero-
geneity measure based on L-CV and L-CA, it is shown once more how much it lacks power.

Our suggestion is to guide the choice of the test according to a compromise between power and
Type I error of the HW1 and AD tests. The L-moment space is divided into two regions: if the
tR3 coefficient for the region under analysis is lower than 0.23, we propose to use the Hosking
and Wallis heterogeneity measure HW1; if tR3 > 0.23, the bootstrap Anderson-Darling test is
preferable.

Value

ADbootstrap.test and DK.test test gives its test statistic and its distribution value P . If P is,
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for example, 0.92, samples shouldn’t be considered heterogeneous with significance level minor of
8%.

HW.tests gives the two Hosking and Wallis heterogeneity measures H1 and H2; following Hosking
and Wallis (1997), the region under analysis can therefore be regarded as ‘acceptably homogeneous’
if H1 < 1, ‘possibly heterogeneous’ if 1 ≤ H1 < 2, and ‘definitely heterogeneous’ if H ≥ 2.

discordancy returns the discordancy measure D of Hosking and Wallis for all sites. Hosking and
Wallis suggest to consider a site discordant if D ≥ 3 if N ≥ 15 (where N is the number of sites
considered in the region). For N < 15 the critical values of D can be listed with criticalD.

Note

For information on the package and the Author, and for all the references, see nsRFA.

See Also

traceWminim, roi, KAPPA, HW.original.

Examples

data(hydroSIMN)
annualflows
summary(annualflows)
x <- annualflows["dato"][,]
cod <- annualflows["cod"][,]
split(x,cod)

#ADbootstrap.test(x,cod,Nsim=100) # it takes some time
#HW.tests(x,cod) # it takes some time
DK.test(x,cod)

fac <- factor(annualflows["cod"][,],levels=c(34:38))
x2 <- annualflows[!is.na(fac),"dato"]
cod2 <- annualflows[!is.na(fac),"cod"]

ADbootstrap.test(x2,cod2,Nsim=100)
ADbootstrap.test(x2,cod2,index=1,Nsim=200)
HW.tests(x2,cod2,Nsim=100)
DK.test(x2,cod2)

discordancy(x,cod)

criticalD()

hydroSIMN Data-sample

Description

SIMN (Servizio Idrografico e Mareografico Nazionale) flow data samples and catchment parame-
ters.
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Usage

data(hydroSIMN)

Format

Data.frames:

annualflows is the data.frame of the annual flows with 3 columns: cod, the code of the station;
anno, the year; dato, the value of the annual flow [mm].

parameters is the data.frame of parameters of 47 catchements with 16 columns: cod, the code of
the station; Dm, the mean annual streamflow [mm] as reported in the ‘Pubblicazione n. 17’; Am, the
mean annual rainfall [mm] as reported in the ‘Pubblicazione n. 17’; S, area of the plane projection
of the drainage basin [km2]; Hm, mean elevation of the drainage basin [m a.s.l.]; Pm, mean slope of
the basin [%]:

Pm = arctg(2(Hmed −Hmin)/
√
S)

where S is the basin area, Hmed the median elevation and Hmin the elevation of the closing section.
Pm is a slope measure of a square equivalent basin, and does not account for basin shape; LLDP,
length of the longest drainage path [km]. The longest drainage path is the longest path between the
basin outlet and the most distant point on the basin border, following drainage directions. Actually
the longest drainage path corresponds to the main stream plus the path on the hillslope that connects
the stream source to the basin border; PLDP, slope of the longest drainage path [%]. Average of the
slope values associated to each pixel in the longest drainage path; S2000, area above 2000 m a.s.l.
[%]; EST, ‘easting’, sine of the angle between the segment connecting the center of mass and the
outlet of the basin and the north. EST is 1 if the basin is oriented eastward, -1 if it is oriented
westward; NORD, ‘northing’, cosine of the angle between the segment connecting the center of mass
and the outlet of the basin and the north. NORD is 1 if the basin is oriented northward, -1 if it is
oriented southward; Rc, circularity ratio Rc. Ratio between the basin area and the area of a circle
having the same perimeter:

Rc =
4πS

P 2

where P is the watershed perimeter; Xbar, longitude [deg] of the centroid of the plane projection of
the drainage basin; Ybar, latitude [deg] of the centroid of the plane projection of the drainage basin;
IT, Thornthwaite index: a global moisture index that can be estimated, in its simplest form, as the
ratio

IT =
Am − ET0

ET0

where ET0 is the mean annual potential evapotranspiration on the basin; IB, Budyko index: a
radiational aridity index expressed as

IB =
Rn

λAm

where Rn is the mean annual net radiation and λ is the latent vaporization heat. Values assumed by
IB are lower than 1 for humid regions and greater than 1 in arid regions.

meanmonthlyflows is the data.frame of the mean monthly streamflows [mm] as reported in the
‘Pubblicazione n. 17’. It has 13 columns because the first one, cod, is the code of the station.

monthlyflows is the data.frame of the monthly streamflows [mm] with 4 columns: cod, the code
of the station; anno, the year; mese, the month; dato, the value of the annual flow [mm].
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Note

For information on the package and the Author, and for all the references, see nsRFA.

Examples

data(hydroSIMN)
annualflows
summary(annualflows)
x <- annualflows["dato"][,]
cod <- annualflows["cod"][,]
split(x,cod)
sapply(split(x,cod),mean)
sapply(split(x,cod),median)
sapply(split(x,cod),quantile)
sapply(split(x,cod),Lmoments)

parameters

KAPPA Four parameter kappa distribution and L-moments

Description

KAPPA provides the link between L-moments of a sample and the four parameter kappa distribution.

Usage

f.kappa (x, xi, alfa, k, h)
F.kappa (x, xi, alfa, k, h)
invF.kappa (F, xi, alfa, k, h)
Lmom.kappa (xi, alfa, k, h)
par.kappa (lambda1, lambda2, tau3, tau4)
rand.kappa (numerosita, xi, alfa, k, h)

Arguments

x vector of quantiles
xi vector of kappa location parameters
alfa vector of kappa scale parameters
k vector of kappa third parameters
h vector of kappa fourth parameters
F vector of probabilities
lambda1 vector of sample means
lambda2 vector of L-variances
tau3 vector of L-CA (or L-skewness)
tau4 vector of L-kurtosis
numerosita numeric value indicating the length of the vector to be generated
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Details

Definition
Parameters (4): ξ (location), α (scale), k, h.

Range of x: upper bound is ξ + α/k if k > 0, ∞ if k ≤ 0; lower bound is ξ + α(1 − h−k)/k if
h > 0, ξ + α/k if h ≤ 0 and k < 0 and −∞ if h ≤ 0 and k ≥ 0

Probability density function:

f(x) = α−1[1− k(x− ξ)/α]1/k−1[F (x)]1−h

Cumulative distribution function:

F (x) = {1− h[1− k(x− ξ)/α]1/k}1/h

Quantile function:

x(F ) = ξ +
α

k

[
1−

(
1− Fh

h

)k
]

h = −1 is the generalized logistic distribution; h = 0 is the generalized eztreme value distribution;
h = 1 is the generalized Pareto distribution.

L-moments
L-moments are defined for h ≥ 0 and k > −1, or if h < 0 and −1 < k < −1/h.

λ1 = ξ + α(1− g1)/k

λ2 = α(g1 − g2)/k

τ3 = (−g1 + 3g2 − 2g3)/(g1 − g2)

τ4 = (−g1 + 6g2 − 10g3 + 5g4)/(g1 − g2)

where gr = rΓ(1+k)Γ(r/h)
h1+kΓ(1+k+r/h)

if h > 0; gr = rΓ(1+k)Γ(−k−r/h)
(−h)1+kΓ(1−r/h)

if h < 0;

Here Γ denote the gamma function

Γ(x) =

∫ ∞

0

tx−1e−tdt

Parameters
There are no simple expressions for the parameters in terms of the L-moments. However they can
be obtained with a numerical algorithm considering the formulations of τ3 and τ4 in terms of k and
h. Here we use the function optim to minimize (t3 − τ3)

2 + (t4 − τ4)
2 where t3 and t4 are the

sample L-moment ratios.

Lmom.kappa and par.kappa accept input as vectors of equal length. In f.kappa, F.kappa, invF.kappa
and rand.kappa parameters (xi, alfa, k, h) must be atomic.

Value

f.kappa gives the density f , F.kappa gives the distribution function F , invFkappa gives the quan-
tile function x, Lmom.kappa gives the L-moments (λ1, λ2, τ3, τ4), par.kappa gives the parameters
(xi, alfa, k, h), and rand.kappa generates random deviates.
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Note

For information on the package and the Author, and for all the references, see nsRFA.

See Also

rnorm, runif, EXP, GENLOGIS, GENPAR, GEV, GUMBEL, LOGNORM, P3; optim, DISTPLOTS, GOFmontecarlo,
Lmoments.

Examples

data(hydroSIMN)
annualflows
summary(annualflows)
x <- annualflows["dato"][,]
fac <- factor(annualflows["cod"][,])
split(x,fac)

camp <- split(x,fac)$"45"
ll <- Lmoments(camp)
parameters <- par.kappa(ll[1],ll[2],ll[4],ll[5])
f.kappa(1800,parameters$xi,parameters$alfa,parameters$k,parameters$h)
F.kappa(1800,parameters$xi,parameters$alfa,parameters$k,parameters$h)
invF.kappa(0.771088,parameters$xi,parameters$alfa,parameters$k,parameters$h)
Lmom.kappa(parameters$xi,parameters$alfa,parameters$k,parameters$h)
rand.kappa(100,parameters$xi,parameters$alfa,parameters$k,parameters$h)

Rll <- regionalLmoments(x,fac); Rll
parameters <- par.kappa(Rll[1],Rll[2],Rll[4],Rll[5])
Lmom.kappa(parameters$xi,parameters$alfa,parameters$k,parameters$h)

Lmoments Hosking and Wallis sample L-moments

Description

Lmoments provides the estimate of L-moments of a sample or regional L-moments of a region.

Usage

Lmoments (x)
regionalLmoments (x,cod)
LCV (x)
LCA (x)
Lkur (x)

Arguments

x vector representing a data-sample (or data from many samples defined with cod
in the case of regionalLmoments)

cod array that defines the data subdivision among sites
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Details

The estimation of L-moments is based on a sample of size n, arranged in ascending order. Let
x1:n ≤ x2:n ≤ · · · ≤ xn:n be the ordered sample. An unbiased estimator of the probability
weighted moments βr is:

br = n−1
n∑

j=r+1

(j − 1)(j − 2) . . . (j − r)

(n− 1)(n− 2) . . . (n− r)
xj:n

The sample L-moments are defined by:
l1 = b0

l2 = 2b1 − b0

l3 = 6b2 − 6b1 + b0

l4 = 20b3 − 30b2 + 12b1 − b0

and in general

lr+1 =

r∑
k=0

(−1)r−k(r + k)!

(k!)2(r − k)!
bk

where r = 0, 1, . . . , n− 1.

The sample L-moment ratios are defined by

tr = lr/l2

and the sample L-CV by
t = l2/l1

Sample regional L-CV, L-skewness and L-kurtosis coefficients are defined as

tR =

∑k
i=1 nit

(i)∑k
i=1 ni

tR3 =

∑k
i=1 nit

(i)
3∑k

i=1 ni

tR4 =

∑k
i=1 nit

(i)
4∑k

i=1 ni

Value

Lmoments gives the L-moments (l1, l2, t, t3, t4), regionalLmoments gives the regional weighted
L-moments (lR1 , lR2 , tR, tR3 , tR4 ), LCV gives the coefficient of L-variation, LCA gives the L-skewness
and Lkur gives the L-kurtosis of x.

Note

For information on the package and the Author, and for all the references, see nsRFA.
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See Also

mean, var, sd, HOMTESTS.

Examples

x <- rnorm(30,10,2)
Lmoments(x)

data(hydroSIMN)
annualflows
summary(annualflows)
x <- annualflows["dato"][,]
cod <- annualflows["cod"][,]
split(x,cod)
camp <- split(x,cod)$"45"
Lmoments(camp)
sapply(split(x,cod),Lmoments)

regionalLmoments(x,cod)

LOGNORM Three parameter lognormal distribution and L-moments

Description

LOGNORM provides the link between L-moments of a sample and the three parameter log-normal
distribution.

Usage

f.lognorm (x, xi, alfa, k)
F.lognorm (x, xi, alfa, k)
invF.lognorm (F, xi, alfa, k)
Lmom.lognorm (xi, alfa, k)
par.lognorm (lambda1, lambda2, tau3)
rand.lognorm (numerosita, xi, alfa, k)

Arguments

x vector of quantiles
xi vector of lognorm location parameters
alfa vector of lognorm scale parameters
k vector of lognorm shape parameters
F vector of probabilities
lambda1 vector of sample means
lambda2 vector of L-variances
tau3 vector of L-CA (or L-skewness)
numerosita numeric value indicating the length of the vector to be generated
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Details

See https://en.wikipedia.org/wiki/Log-normal_distribution for an introduction to the
lognormal distribution.

Definition

Parameters (3): ξ (location), α (scale), k (shape).

Range of x: −∞ < x ≤ ξ + α/k if k > 0; −∞ < x < ∞ if k = 0; ξ + α/k ≤ x < ∞ if k < 0.

Probability density function:

f(x) =
eky−y2/2

α
√
2π

where y = −k−1 log{1− k(x− ξ)/α} if k ̸= 0, y = (x− ξ)/α if k = 0.

Cumulative distribution function:
F (x) = Φ(x)

where Φ(x) =
∫ x

−∞ ϕ(t)dt.

Quantile function: x(F ) has no explicit analytical form.

k = 0 is the Normal distribution with parameters ξ and alpha.

L-moments

L-moments are defined for all values of k.

λ1 = ξ + α(1− ek
2/2)/k

λ2 = α/kek
2/2[1− 2Φ(−k/

√
2)]

There are no simple expressions for the L-moment ratios τr with r ≥ 3. Here we use the rational-
function approximation given in Hosking and Wallis (1997, p. 199).

Parameters

The shape parameter k is a function of τ3 alone. No explicit solution is possible. Here we use the
approximation given in Hosking and Wallis (1997, p. 199).

Given k, the other parameters are given by

α =
λ2ke

−k2/2

1− 2Φ(−k/
√
2)

ξ = λ1 −
α

k
(1− ek

2/2)

Lmom.lognorm and par.lognorm accept input as vectors of equal length. In f.lognorm, F.lognorm,
invF.lognorm and rand.lognorm parameters (xi, alfa, k) must be atomic.

Value

f.lognorm gives the density f , F.lognorm gives the distribution function F , invFlognorm gives
the quantile function x, Lmom.lognorm gives the L-moments (λ1, λ2, τ3, τ4), par.lognorm gives
the parameters (xi, alfa, k), and rand.lognorm generates random deviates.

https://en.wikipedia.org/wiki/Log-normal_distribution
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Note

For information on the package and the Author, and for all the references, see nsRFA.

See Also

rnorm, runif, EXP, GENLOGIS, GENPAR, GEV, GUMBEL, KAPPA, P3; DISTPLOTS, GOFmontecarlo,
Lmoments.

Examples

data(hydroSIMN)
annualflows
summary(annualflows)
x <- annualflows["dato"][,]
fac <- factor(annualflows["cod"][,])
split(x,fac)

camp <- split(x,fac)$"45"
ll <- Lmoments(camp)
parameters <- par.lognorm(ll[1],ll[2],ll[4])
f.lognorm(1800,parameters$xi,parameters$alfa,parameters$k)
F.lognorm(1800,parameters$xi,parameters$alfa,parameters$k)
invF.lognorm(0.7529877,parameters$xi,parameters$alfa,parameters$k)
Lmom.lognorm(parameters$xi,parameters$alfa,parameters$k)
rand.lognorm(100,parameters$xi,parameters$alfa,parameters$k)

Rll <- regionalLmoments(x,fac); Rll
parameters <- par.lognorm(Rll[1],Rll[2],Rll[4])
Lmom.lognorm(parameters$xi,parameters$alfa,parameters$k)

MLlaio2004 Maximum likelihood parameters estimation

Description

Maximum Likelihood estimation of parameters for extreme-value distributions, from Laio (2004).

Usage

ML_estimation (x, dist="NORM")
moment_estimation (x, dist="NORM")

Arguments

x data sample

dist distribution: normal "NORM", Gumbel "GUMBEL", Generalized Extreme Value
"GEV", Pearson type III "P3" and, only for sample_generator, Exponential
"EXP"
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Value

ML_estimation estimate the parameters of the distribution dist from a sample x using the maxi-
mum likelihood approach.

moment_estimation estimate the parameters of the distribution dist from a sample x using the
moment method.

Note

For information on the package and the Author, and for all the references, see nsRFA.

See Also

GOFlaio2004.

Examples

# sample from an EV1 distribution
sm <- rand.gumb(100, 0, 1)
moment_estimation (sm, dist="GEV")
ML_estimation (sm, dist="GEV")

F.GEV(sm, -0.051, 0.97, -0.024)
rand.GEV (100, -0.051, 0.97, -0.024)
moment_estimation (sm, dist="P3")
ML_estimation (sm, dist="P3")

moments Sample moments

Description

moments provides the estimate of the first 4 moment-statistics of a sample.

Usage

moments (x)
CV (x)
skew (x)
kurt (x)

Arguments

x vector representing a data-sample
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Details

Skewness and kurtosis are defined as:

skew = n−1

∑n
i=1 (xi −mean(x))

3

sd(x)3

kurt = n−1

∑n
i=1 (xi −mean(x))

4

sd(x)4
− 3

where n is the size of x. See https://en.wikipedia.org/wiki/Skewness and https://en.
wikipedia.org/wiki/Kurtosis for additional informations.

Note

For information on the package and the Author, and for all the references, see nsRFA.

See Also

mean, var, sd, Lmoments.

Examples

x <- rnorm(30,10,2)
moments(x)

data(hydroSIMN)
x <- annualflows["dato"][,]
cod <- annualflows["cod"][,]
sapply(split(x,cod),moments)

MSClaio2008 Model Selection Criteria

Description

Model selection criteria for the frequency analysis of hydrological extremes, from Laio et al (2008).

Usage

MSClaio2008 (sample, dist=c("NORM","LN","GUMBEL","EV2","GEV","P3","LP3"),
crit=c("AIC", "AICc", "BIC", "ADC"))

## S3 method for class 'MSClaio2008'
print(x, digits=max(3, getOption("digits") - 3), ...)
## S3 method for class 'MSClaio2008'
summary(object, ...)
## S3 method for class 'MSClaio2008'
plot(x, ...)

https://en.wikipedia.org/wiki/Skewness
https://en.wikipedia.org/wiki/Kurtosis
https://en.wikipedia.org/wiki/Kurtosis
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Arguments

sample data sample

dist distributions: normal "NORM", 2 parameter log-normal "LN", Gumbel "GUMBEL",
Frechet "EV2", Generalized Extreme Value "GEV", Pearson type III "P3", log-
Pearson type III "LP3"

crit Model-selection criteria: Akaike Information Criterion "AIC", Akaike Informa-
tion Criterion corrected "AICc", Bayesian Information Criterion "BIC", Anderson-
Darling Criterion "ADC"

x object of class MSClaio2008, output of MSClaio2008()

object object of class MSClaio2008, output of MSClaio2008()

digits minimal number of "significant" digits, see ’print.default’

... other arguments

Details

The following lines are extracted from Laio et al. (2008). See the paper for more details and
references.

Model selection criteria
The problem of model selection can be formalized as follows: a sample of n data, D = (x1, . . . , xn),
arranged in ascending order is available, sampled from an unknown parent distribution f(x); Nm

operating models, Mj , j = 1, . . . , Nm, are used to represent the data. The operating models are in
the form of probability distributions, Mj = gj(x, θ̂), with parameters θ̂ estimated from the available
data sample D. The scope of model selection is to identify the model Mopt which is better suited
to represent the data, i.e. the model which is closer in some sense to the parent distribution f(x).

Three different model selection criteria are considered here, namely, the Akaike Information Crite-
rion (AIC), the Bayesian Information Criterion (BIC), and the Anderson-Darling Criterion (ADC).
Of the three methods, the first two belong to the category of classical literature approaches, while
the third derives from a heuristic interpretation of the results of a standard goodness-of-fit test (see
Laio, 2004).

Akalike Information Criterion
The Akaike information Criterion (AIC) for the j-th operational model can be computed as

AICj = −2ln(Lj(θ̂)) + 2pj

where

Lj(θ̂) =

n∏
i=1

gj(xi, θ̂)

is the likelihood function, evaluated at the point θ = θ̂ corresponding to the maximum likelihood
estimator of the parameter vector θ and pj is the number of estimated parameter of the j-th opera-
tional model. In practice, after the computation of the AICj , for all of the operating models, one
selects the model with the minimum AIC value, AICmin.

When the sample size, n, is small, with respect to the number of estimated parameters, p, the AIC
may perform inadequately. In those cases a second-order variant of AIC, called AICc, should be
used:

AICcj = −2ln(Lj(θ̂)) + 2pj(n/(n− pj − 1))
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Indicatively, AICc should be used when n/p < 40.

Bayesian Information Criterion
The Bayesian Information Criterion (BIC) for the j-th operational model reads

BICj = −2ln(Lj(θ̂)) + ln(n)pj

In practical application, after the computation of the BICj , for all of the operating models, one
selects the model with the minimum BIC value, BICmin.

Anderson-Darling Criterion
The Anderson-Darling criterion has the form:

ADCj = 0.0403 + 0.116((∆AD,j − ϵj)/βj)
(ηj/0.851)

if 1.2ϵj < ∆AD,j ,

ADCj = [0.0403 + 0.116((0.2ϵj)/βj)
(ηj/0.851)](∆AD,j − 0.2ϵj/ϵj)

if 1.2ϵj ≥ ∆AD,j , where ∆AD,j is the discrepancy measure characterizing the criterion, the
Anderson-Darling statistic A2 in GOFlaio2004, and ϵj , βj and ηj are distribution-dependent co-
efficients that are tabled by Laio [2004, Tables 3 and 5] for a set of seven distributions commonly
employed for the frequency analysis of extreme events. In practice, after the computation of the
ADCj , for all of the operating models, one selects the model with the minimum ADC value,
ADCmin.

Value

MSClaio2008 returns the value of the criteria crit (see Details) chosen applied to the sample, for
every distribution dist.

plot.MSClaio2008 plots the empirical distribution function of sample (Weibull plotting position)
on a log-normal probability plot, plots the candidate distributions dist (whose parameters are eval-
uated with the maximum likelihood technique, see MLlaio2004, and highlights the ones chosen by
the criteria crit.)

Note

For information on the package and the Author, and for all the references, see nsRFA.

See Also

GOFlaio2004, MLlaio2004.

Examples

data(FEH1000)

sitedata <- am[am[,1]==53004, ] # data of site 53004
serieplot(sitedata[,4], sitedata[,3])
MSC <- MSClaio2008(sitedata[,4])
MSC
summary(MSC)
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plot(MSC)

sitedata <- am[am[,1]==69023, ] # data of site 69023
serieplot(sitedata[,4], sitedata[,3])
MSC <- MSClaio2008(sitedata[,4], crit=c("AIC", "ADC"))
MSC
summary(MSC)
plot(MSC)

sitedata <- am[am[,1]==83802, ] # data of site 83802
serieplot(sitedata[,4], sitedata[,3])
MSC <- MSClaio2008(sitedata[,4], dist=c("GEV", "P3", "LP3"))
MSC
summary(MSC)
plot(MSC)

# short sample, high positive L-CA
sitedata <- am[am[,1]==40012, ] # data of site 40012
serieplot(sitedata[,4], sitedata[,3])
MSC <- MSClaio2008(sitedata[,4])
MSC
summary(MSC)
plot(MSC)

# negative L-CA
sitedata <- am[am[,1]==68002, ] # data of site 68002
serieplot(sitedata[,4], sitedata[,3])
MSC <- MSClaio2008(sitedata[,4])
MSC
summary(MSC)
plot(MSC)

P3 Three parameters Pearson type III distribution and L-moments

Description

P3 provides the link between L-moments of a sample and the three parameter Pearson type III
distribution.

Usage

f.gamma (x, xi, beta, alfa)
F.gamma (x, xi, beta, alfa)
invF.gamma (F, xi, beta, alfa)
Lmom.gamma (xi, beta, alfa)
par.gamma (lambda1, lambda2, tau3)
rand.gamma (numerosita, xi, beta, alfa)
mom2par.gamma (mu, sigma, gamm)
par2mom.gamma (alfa, beta, xi)
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Arguments

x vector of quantiles

mu vector of gamma mean

sigma vector of gamma standard deviation

gamm vector of gamma third moment

F vector of probabilities

lambda1 vector of sample means

lambda2 vector of L-variances

tau3 vector of L-CA (or L-skewness)

numerosita numeric value indicating the length of the vector to be generated

alfa vector of gamma shape parameters

beta vector of gamma scale parameters

xi vector of gamma location parameters

Details

See https://en.wikipedia.org/wiki/Pearson_distribution for an introduction to the Pear-
son distribution, and https://en.wikipedia.org/wiki/Gamma_distribution for an introduc-
tion to the Gamma distribution (the Pearson type III distribution is, essentially, a Gamma distribu-
tion with 3 parameters).

Definition

Parameters (3): ξ (location), β (scale), α (shape). Moments (3): µ (mean), σ (standard deviation),
γ (skewness).

If γ ̸= 0, let α = 4/γ2, β = 1
2σ|γ|, and ξ = µ− 2σ/γ. If γ > 0, then the range of x is ξ ≤ x < ∞

and

f(x) =
(x− ξ)α−1e−(x−ξ)/β

βαΓ(α)

F (x) = G

(
α,

x− ξ

β

)
/Γ(α)

If γ = 0, then the distribution is Normal, the range of x is −∞ < x < ∞ and

f(x) = ϕ

(
x− µ

σ

)

F (x) = Φ

(
x− µ

σ

)
where ϕ(x) = (2π)−1/2 exp(−x2/2) and Φ(x) =

∫ x

−∞ ϕ(t)dt.

If γ < 0, then the range of x is −∞ < x ≤ ξ and

f(x) =
(ξ − x)α−1e−(ξ−x)/β

βαΓ(α)

https://en.wikipedia.org/wiki/Pearson_distribution
https://en.wikipedia.org/wiki/Gamma_distribution
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F (x) = G

(
α,

ξ − x

β

)
/Γ(α)

In each case, x(F ) has no explicit analytical form. Here Γ is the gamma function, defined as

Γ(x) =

∫ ∞

0

tx−1e−tdt

and

G(α, x) =

∫ x

0

tα−1e−tdt

is the incomplete gamma function.

γ = 2 is the exponential distribution; γ = 0 is the Normal distribution; γ = −2 is the reverse
exponential distribution.

The parameters µ, σ and γ are the conventional moments of the distribution.

L-moments

Assuming γ > 0, L-moments are defined for 0 < α < ∞.

λ1 = ξ + αβ

λ2 = π−1/2βΓ(α+ 1/2)/Γ(α)

τ3 = 6I1/3(α, 2α)− 3

where Ix(p, q) is the incomplete beta function ratio

Ix(p, q) =
Γ(p+ q)

Γ(p)Γ(q)

∫ x

0

tp−1(1− t)q−1dt

There is no simple expression for τ4. Here we use the rational-funcion approximation given by
Hosking and Wallis (1997, pp. 201-202).

The corresponding results for γ < 0 are obtained by changing the signs of λ1, τ3 and ξ wherever
they occur above.

Parameters

alpha is obtained with an approximation. If 0 < |τ3| < 1/3, let z = 3πτ23 and use

α ≈ 1 + 0.2906z

z + 0.1882z2 + 0.0442z3

if 1/3 < |τ3| < 1, let z = 1− |τ3| and use

α ≈ 0.36067z − 0.59567z2 + 0.25361z3

1− 2.78861z + 2.56096z2 − 0.77045z3

Given α, then γ = 2α−1/2sign(τ3), σ = λ2π
1/2α1/2Γ(α)/Γ(α+ 1/2), µ = λ1.

Lmom.gamma and par.gamma accept input as vectors of equal length. In f.gamma, F.gamma, invF.gamma
and rand.gamma parameters (mu, sigma, gamm) must be atomic.
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Value

f.gamma gives the density f , F.gamma gives the distribution function F , invFgamma gives the quan-
tile function x, Lmom.gamma gives the L-moments (λ1, λ2, τ3, τ4), par.gamma gives the parameters
(mu, sigma, gamm), and rand.gamma generates random deviates.

mom2par.gamma returns the parameters α, β and ξ, given the parameters (moments) µ, σ, γ.

Note

For information on the package and the Author, and for all the references, see nsRFA.

See Also

rnorm, runif, EXP, GENLOGIS, GENPAR, GEV, GUMBEL, KAPPA, LOGNORM; DISTPLOTS, GOFmontecarlo,
Lmoments.

Examples

data(hydroSIMN)
annualflows
summary(annualflows)
x <- annualflows["dato"][,]
fac <- factor(annualflows["cod"][,])
split(x,fac)

camp <- split(x,fac)$"45"
ll <- Lmoments(camp)
parameters <- par.gamma(ll[1],ll[2],ll[4])
f.gamma(1800,parameters$xi,parameters$beta,parameters$alfa)
F.gamma(1800,parameters$xi,parameters$beta,parameters$alfa)
invF.gamma(0.7511627,parameters$xi,parameters$beta,parameters$alfa)
Lmom.gamma(parameters$xi,parameters$beta,parameters$alfa)
rand.gamma(100,parameters$xi,parameters$beta,parameters$alfa)

Rll <- regionalLmoments(x,fac); Rll
parameters <- par.gamma(Rll[1],Rll[2],Rll[4])
Lmom.gamma(parameters$xi,parameters$beta,parameters$alfa)

moments <- par2mom.gamma(parameters$alfa,parameters$beta,parameters$xi); moments
mom2par.gamma(moments$mu,moments$sigma,moments$gamm)

REGRDIAGNOSTICS Diagnostics of regressions

Description

Diagnostics of the output of lm, that is used to fit linear models.
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Usage

R2.lm (x)
prt.lm (x)
mantel.lm (x, Nperm = 1000)
vif.lm (x)
RMSE.lm (x)
MAE.lm (x)
predinterval.lm (x, level = 0.95)
jackknife1.lm (x)
RMSEjk.lm (x)
MAEjk.lm (x)

Arguments

x object of class “lm” (output of ‘lm’)

Nperm number of permutations

level significance level

Details

mantel.lm is performed under the assumption that the dependent distance matrix is variable, while
the independent distance matrices are fixed and measured without error (they are not related to ran-
dom variables, see Smouse et al., 1986). Under this assumption, the significance of the regression
between distance matrices can be evaluated simultaneously permuting the rows and corresponding
columns in only the dependent distance matrix, while the others are held constant.

Value

R2.lm returns the coefficient of determination R2 and the adjusted coefficient of determination R2
adj

of the regression.

prt.lm returns the probability Pr(> |t|) of the significance test (Student t) of the independent
variables. If the value is 0.06 for a regressor, its coefficient is not significantly different from 0 for
a test with significance level of 5%.

mantel.lm returns the probability P of the Mantel test on every variable conditionated to the others.
It substitutes prt.lm when dealing with distance matrices. If P is, for example, 0.92, the variable
should be considered significant with significance level greater of 8%.

vif.lm returns the variance inflation factors (VIF) of the independent values of the regression. If
V IF > 5 (or 10) there is a problem of multicollinearity.

RMSE.lm returns the root mean squared error of the regression.

MAE.lm returns the mean absolute error of the regression.

predinterval.lm returns the prediction intervals at a specified level in correspondence to the
fitted data.

jackknife1.lm returns predicted values by a jackknife (cross-validation) procedure. The proce-
dure (remove 1 observation, fit the model, estimate in the removed point) is repeated for all the
points.
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RMSEjk.lm returns the root mean squared error of the cross-validation (performed with jackknife1.lm).

MAEjk.lm returns the mean absolute error of the cross-validation (performed with jackknife1.lm).

Note

For information on the package and the Author, and for all the references, see nsRFA.

See Also

lm, summary.lm, predict.lm

Examples

data(hydroSIMN)

D <- annualflows["dato"][,]
cod <- annualflows["cod"][,]

#Dm <- tapply(D,cod,mean)
#datregr <- cbind(Dm,parameters)
datregr <- parameters
regr0 <- lm(Dm ~ .,datregr); summary(regr0)
regr1 <- lm(Dm ~ Am + Hm + Ybar,datregr); summary(regr1)

R2.lm(regr0)
R2.lm(regr1)

prt.lm(regr0)
prt.lm(regr1)

vif.lm(regr0)
vif.lm(regr1)

RMSE.lm(regr0)
RMSE.lm(regr1)

MAE.lm(regr0)
MAE.lm(regr1)

predinterval.lm(regr0)

jackknife1.lm(regr0)
jackknife1.lm(regr1)

RMSEjk.lm(regr0)
RMSEjk.lm(regr1)

MAEjk.lm(regr0)
MAEjk.lm(regr1)

# mantel test on distance matrices
#Y <- AD.dist(D,cod) # it takes some time



62 roi

#X <- data.frame(apply(datregr[,c("Hm","Ybar")],2,dist))
#dati <- cbind(X)
#modello <- lm(Y ~ Hm + Ybar, dati)
#mantel.lm(modello, Nperm=100)

roi Region of influence

Description

Formation of clusters for Regional Frequency Analysis: region of influence (Burn, 1990).

Usage

roi (p.ungauged, p.gauged, cod.p, x=NULL, cod=NULL)
roi.hom (p.ungauged, p.gauged, cod.p, x, cod,
test="HW", limit=2, Nsim=500, index=2)

roi.st.year (p.ungauged, p.gauged, cod.p, x, cod,
test="HW", station.year=500, Nsim=500, index=2)

Arguments

x vector representing data from many samples defined with cod

cod array that defines the data subdivision among sites

index if index=1 samples are divided by their average value; if index=2 (default)
samples are divided by their median value

p.ungauged parameters of the ungauged site (1 row)

p.gauged parameters of gauged sites

cod.p code of gauged sites

test homogeneity test to apply: "HW" (default) or "AD" (in roi.st.year you can
choose "HW and AD" too

limit limit over which regions must be considered heterogeneous: for example 2 for
"HW" or .95 for "AD"

Nsim number of simulations in "HW" or "AD" tests

station.year number of station years to form the region

Details

The Euclidean distance is used. Given p different classification variables, the distance between two
elements i and j is:

dij =

√√√√1

p

p∑
h=1

(xhi − xhj)2

where xhi is the value of the h-th variable of the i-th element.
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Value

roi returns the ‘region of influence’ for the site defined with p.ungauged. It the gauged sites
ordered according to the euclidean distance against the site of interest (the distance is evaluated in
the space defined by parameters p.ungauged and p.gauged). If x=NULL and cod=NULL (default),
a data.frame with the ordered sites and the distances against the site of interest is returned. If x
and cod are provided, the data.frame will contain also statistics of samples (number of data n and
L-moments).

roi.hom returns the ‘region of influence’ for the site defined with p.ungauged. It returns codes
of gauged sites that form an homogeneous region according to the Hosking and Wallis "HW" or
Anderson-Darling "AD" tests. The region is formed using distances in the space defined by param-
eters p.ungauged and p.gauged.

roi.st.year returns the ‘region of influence’ for the site defined with p.ungauged. It returns codes
of gauged sites that form a region and the risult of homogeneity tests, according to the station-year
criterion. It also return the similarity ranking factor Si, the weights wi and the regional L-moments
as evaluated in the Flood Estimation Handbook (Robson and Reed, 1999). The region is formed
using distances in the space defined by parameters p.ungauged and p.gauged.

Note

For information on the package and the Author, and for all the references, see nsRFA.

See Also

traceWminim, AD.dist, HOMTESTS for the definition of the Hosking and Wallis "HW" or Anderson-
Darling "AD" tests.

Examples

data(hydroSIMN)
parameters
summary(parameters)

annualflows
summary(annualflows)
x <- annualflows["dato"][,]
cod <- annualflows["cod"][,]

roi(parameters[5,3:5],parameters[-5,3:5],parameters[-5,1])
roi(parameters[5,3:5],parameters[-5,3:5],parameters[-5,1],x,cod)

# roi.hom
#roi.hom(parameters[5,3:5],parameters[-5,3:5],parameters[-5,1],x,cod)

# it takes some time
#roi.hom(parameters[5,3:5],parameters[-5,3:5],parameters[-5,1],x,cod,
# test="AD",limit=.95) # it takes some time

#roi.hom(parameters[8,3:5],parameters[-8,3:5],
# parameters[-8,1],x,cod) # it takes some time
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# roi.st.year
roi.st.year(parameters[5,3:5],parameters[-5,3:5],

parameters[-5,1],x,cod)
roi.st.year(parameters[5,3:5],parameters[-5,3:5],parameters[-5,1],

x,cod,test="AD",station.year=100)

SERIESPLOTS Series plots

Description

Plots for time-series investigation.

Usage

serieplot (x, t, lim.x=c(min(x),max(x)), lim.t=c(min(t),max(t)),
...)

consistencyplot (t, cod, cex.axis=.8, mark.code=TRUE, ...)

Arguments

x data sample

t vector representing time (e.g. years) of data-samples defined with cod

lim.x, lim.t plot limits

cod array that defines the data subdivision among sites

cex.axis dimensions of points and labels

mark.code if TRUE (default) codes of samples are plotted on y axis

... graphical parameters as xlab, ylab, main, ...

Value

consistencyplot displays time-series consistency.

Note

For information on the package and the Author, and for all the references, see nsRFA.

See Also

plot, DISTPLOTS
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Examples

data(hydroSIMN)
annualflows[c(1:10),]
x <- annualflows["dato"][,]
y <- annualflows["anno"][,]
cod <- annualflows["cod"][,]
consistencyplot(y,cod)

for (i in unique(cod)) {
serieplot(x[cod==i], y[cod==i], c(0,max(x)), c(min(y),max(y)),

xlab="", ylab="D [mm]", main=i)
readline()

}

STATICPLOTS Static plots

Description

Plots from books and articles.

Usage

Lmoment.ratio.diagram (grid=TRUE, ...)
Lspace.HWvsAD (grid=TRUE, ...)
Lspace.limits (grid=TRUE, ...)

Arguments

grid should a grid be plotted?

... other arguments

Value

Lmoment.ratio.diagram plots points corresponding to two parameters distributions and lines cor-
responding to three parameters distributions on the ’L-CA - L-kur’ plane. The distributions are: E =
exponential, G = gumbel, L = logistic, N = normal, U = uniform, GLO = generalized logistic, GEV
= generalized extreme-value, GPA = generalized Pareto, LN3 = lognormal, PE3 = Pearson type III.

Lspace.HWvsAD separate regions, in ’L-CA - L-CV’ space, where the homogeneity tests of Hosking
and Wallis (HW) and Anderson-Darling (AD) are preferable.

Lspace.limits displays limits for regional L-moments in the ’L-CA - L-CV’.

Note

For information on the package and the Author, and for all the references, see nsRFA.
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See Also

EXP, GENLOGIS, GENPAR, LOGNORM, GUMBEL, GEV, P3

Examples

Lmoment.ratio.diagram()
Lspace.HWvsAD()
Lspace.limits()

data(hydroSIMN)
annualflows[c(1:10),]
x <- annualflows["dato"][,]
cod <- annualflows["cod"][,]
rlm <- regionalLmoments(x,cod)
Lmoment.ratio.diagram()
points(rlm["lcaR"],rlm["lkurR"],col="red",pch=19)

Lspace.HWvsAD()
points(rlm["lcaR"],rlm["lcvR"],col="red",pch=19)

traceWminim Cluster analysis: disjoint regions

Description

Formation of disjoint regions for Regional Frequency Analysis.

Usage

traceWminim (X, centers)
sumtraceW (clusters, X)
nearest (clusters, X)

Arguments

X a numeric matrix of characteristics, or an object that can be coerced to such a
matrix (such as a numeric vector or a data frame with all numeric columns)

centers the number of clusters

clusters a numeric vector containing the subdivision of X in clusters

Details

The Euclidean distance is used. Given p different classification variables, the distance between two
elements i and j is:

dij =

√√√√1

p

p∑
h=1

(xhi − xhj)2
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where xhi is the value of the h-th variable of the i-th element.

The function traceWminim is a composition of a jerarchical algorithm, the Ward (1963) one, and
an optimisation procedure consisting in the minimisation of:

W =

k∑
i=1

 ni∑
j=1

δ2ij


where k is the number of clusters (obtained initially with Ward’s algorithm), ni is the number of
sites in the i-th cluster and δij is the Euclidean distance between the j-th element of the i-th group
and the center of mass of the i-th cluster. W is calculated with sumtraceW. The algorithm consist
in moving a site from one cluster to another if this makes W decrease.

Value

traceWminim gives a vector defining the subdivision of elements characterized by X in n=centers
clusters.

sumtraceW gives W (it is used by traceWminim).

nearest gives the nearest site to the centers of mass of clusters (it is used by traceWminim).

Note

For information on the package and the Author, and for all the references, see nsRFA.

See Also

roi, AD.dist.

Examples

data(hydroSIMN)
parameters
summary(parameters)

# traceWminim
param <- parameters[c("Hm","Ybar")]
n <- dim(param)[1]; k <- dim(param)[2]
param.norm <- (param - matrix(apply(param,2,mean),nrow=n,ncol=k,

byrow=TRUE))/matrix(apply(param,2,sd),
nrow=n,ncol=k,byrow=TRUE)

clusters <- traceWminim(param.norm,4);
names(clusters) <- parameters["cod"][,]
clusters

annualflows
summary(annualflows)
x <- annualflows["dato"][,]
cod <- annualflows["cod"][,]

fac <- factor(annualflows["cod"][,],
levels=names(clusters[clusters==1]))
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x1 <- annualflows[!is.na(fac),"dato"]
cod1 <- annualflows[!is.na(fac),"cod"]
#HW.tests(x1,cod1) # it takes some time

fac <- factor(annualflows["cod"][,],
levels=names(clusters[clusters==3]))

x3 <- annualflows[!is.na(fac),"dato"]
cod3 <- annualflows[!is.na(fac),"cod"]
#HW.tests(x3,cod3) # it takes some time

varLmoments Exact variance structure of sample L-moments

Description

varLmoments provides distribution-free unbiased estimators of the variances and covariances of
sample L-moments.

Usage

varLmoments (x, matrix=TRUE)
varLCV (x)
varLCA (x)
varLkur (x)

Arguments

x vector representing a data-sample

matrix if TRUE (default), the matrix of estimates of the variance structure (variance and
covariance) i of sample L-moments is returned; if FALSE, a vector containing
var(l1), var(l2), var(l3), var(l4), var(t), var(t3) and var(t4) is returned.

Details

The estimation of the exact variance structure of sample L-moments is based on Elamir et Seheult
(2004).

Value

varLmoments gives the matrix of unbiased estimates of the variance structure of sample L-moments:
this is a 4x4 matrix containg var(l1), var(l2), var(l3), var(l4) on the main diagonal, and the
correspondant covariances elsewhere (cov(l1, l2), cov(l1, l3), etc.);

varLCV gives the unbiased estimate of the variance of sample coefficient of L-variation of x;

varLCA gives the unbiased estimate of the variance of sample L-skewness of x;

varLkur gives the unbiased estimate of the variance of sample L-kurtosis of x.
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Note

For information on the package and the Author, and for all the references, see nsRFA.

See Also

var, Lmoments.

Examples

x <- rnorm(30,10,2)
varLmoments(x)
varLmoments(x, FALSE)

varLCV(x)
varLCA(x)
varLkur(x)

data(hydroSIMN)
x <- annualflows["dato"][,]
cod <- annualflows["cod"][,]
dvarLmom <- function(x) {diag(varLmoments(x))}
sapply(split(x,cod),dvarLmom)
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