Title: | Nonparametric Spatial Statistics |
---|---|
Description: | Multidimensional nonparametric spatial (spatio-temporal) geostatistics. S3 classes and methods for multidimensional: linear binning, local polynomial kernel regression (spatial trend estimation), density and variogram estimation. Nonparametric methods for simultaneous inference on both spatial trend and variogram functions (for spatial processes). Nonparametric residual kriging (spatial prediction). For details on these methods see, for example, Fernandez-Casal and Francisco-Fernandez (2014) <doi:10.1007/s00477-013-0817-8> or Castillo-Paez et al. (2019) <doi:10.1016/j.csda.2019.01.017>. |
Authors: | Ruben Fernandez-Casal [aut, cre] |
Maintainer: | Ruben Fernandez-Casal <[email protected]> |
License: | GPL (>= 2) |
Version: | 0.7-13 |
Built: | 2024-11-16 06:34:10 UTC |
Source: | CRAN |
This package implements nonparametric methods for inference on multidimensional spatial (or spatio-temporal) processes, which may be (especially) useful in (automatic) geostatistical modeling and interpolation.
Nonparametric methods for inference on both spatial trend and variogram functions:
np.fitgeo
(automatically) fits an isotropic nonparametric geostatistical model
by estimating the trend and the variogram (using a bias-corrected estimator) iteratively
(by calling h.cv
, locpol
, np.svariso.corr
and
fitsvar.sb.iso
at each iteration).
locpol
, np.den
and np.svar
use local polynomial kernel methods to compute
nonparametric estimates of a multidimensional regression function,
a probability density function or a semivariogram (or their first
derivatives), respectively.
Estimates of these functions can be constructed for any dimension
(the amount of available memory is the only limitation).
To speed up computations, linear binning is used to discretize the data.
A full bandwidth matrix and a multiplicative triweight kernel is used
to compute the weights. Main calculations are performed in FORTRAN
using the LAPACK library.
np.svariso.corr
computes a bias-corrected nonparametric semivariogram
estimate using an iterative algorithm similar to that described in
Fernandez-Casal and Francisco-Fernandez (2014). This procedure tries to correct
the bias due to the direct use of residuals, obtained from a
nonparametric estimation of the trend function, in semivariogram estimation.
fitsvar.sb.iso
fits a ‘nonparametric’ isotropic Shapiro-Botha variogram
model by WLS. Currently, only isotropic semivariogram estimation is supported.
Nonparametric residual kriging (sometimes called external drift kriging):
np.kriging
computes residual kriging predictions
(and the corresponding simple kriging standard errors).
kriging.simple
computes simple kriging predictions, standard errors
Currently, only global simple kriging is implemented in this package.
Users are encouraged to use krige
(or krige.cv
)
utilities in gstat package together with as.vgm
for local kriging.
Among the other functions intended for direct access by the user, the following
(methods for multidimensional linear binning, local polynomial kernel regression,
density or variogram estimation) could be emphasized: binning
, bin.den
,
svar.bin
, h.cv
and interp
.
There are functions for plotting data joint with a legend representing a
continuous color scale. splot
allows to combine a standard R plot
with a legend. spoints
, simage
and spersp
draw the corresponding high-level plot with a legend strip for the color scale.
These functions are based on image.plot
of package fields.
There are also some functions which can be used to interact with other packages.
For instance, as.variogram
(geoR) or as.vgm
(gstat).
Important suggestions and contributions to some techniques included here were made by Sergio Castillo-Paez (Universidad de las Fuerzas Armadas ESPE, Ecuador) and Tomas Cotos-Yañez (Dep. Statistics, University of Vigo, Spain).
Ruben Fernandez-Casal (Dep. Mathematics, University of A Coruña, Spain). Please send comments, error reports or suggestions to [email protected].
Castillo-Páez S., Fernández-Casal R. and García-Soidán P. (2019) A nonparametric bootstrap method for spatial data, 137, Comput. Stat. Data Anal., 1-15, doi:10.1016/j.csda.2019.01.017.
Fernandez-Casal R., Castillo-Paez S. and Francisco-Fernandez M. (2018) Nonparametric geostatistical risk mapping, Stoch. Environ. Res. Ris. Assess., 32, 675-684, doi:10.1007/s00477-017-1407-y.
Fernandez-Casal R., Castillo-Paez S. and Garcia-Soidan P. (2017) Nonparametric estimation of the small-scale variability of heteroscedastic spatial processes, Spa. Sta., 22, 358-370, doi:10.1016/j.spasta.2017.04.001.
Fernandez-Casal R. and Francisco-Fernandez M. (2014) Nonparametric bias-corrected variogram estimation under non-constant trend, Stoch. Environ. Res. Ris. Assess., 28, 1247-1259, doi:10.1007/s00477-013-0817-8.
Fernandez-Casal R., Gonzalez-Manteiga W. and Febrero-Bande M. (2003) Flexible Spatio-Temporal Stationary Variogram Models, Statistics and Computing, 13, 127-136, doi:10.1023/A:1023204525046.
Rupert D. and Wand M.P. (1994) Multivariate locally weighted least squares regression. The Annals of Statistics, 22, 1346-1370.
Shapiro A. and Botha J.D. (1991) Variogram fitting with a general class of conditionally non-negative definite functions. Computational Statistics and Data Analysis, 11, 87-96.
Wand M.P. (1994) Fast Computation of Multivariate Kernel Estimators. Journal of Computational and Graphical Statistics, 3, 433-445.
Wand M.P. and Jones M.C. (1995) Kernel Smoothing. Chapman and Hall, London.
The Deaf Smith County (Texas, bordering New Mexico) was selected as an alternate site for a possible nuclear waste disposal repository in the 1980s. This site was later dropped on grounds of contamination of the aquifer, the source of much of the water supply for west Texas. In a study conducted by the U.S. Department of Energy, piezometric-head data were obtained at 85 locations (irregularly scattered over the Texas panhandle) by drilling a narrow pipe through the aquifer.
This data set has been used in numerous papers. For instance, Cressie (1989) lists the data and uses it to illustrate kriging, and Cressie (1993, section 4.1) gives a detailed description of the data and results of different geostatistical analyses.
A data frame with 85 observations on the following 3 variables:
relative longitude position (miles).
relative latitude position (miles).
piezometric-head levels (feet above sea level).
Harper, W.V. and Furr, J.M. (1986) Geostatistical analysis of potentiometric data in the Wolfcamp Aquifer of the Palo Duro Basin, Texas. Technical Report BMI/ONWI-587, Bettelle Memorial Institute, Columbus, OH.
Cressie, N. (1989) Geostatistics. The American Statistician, 43, 197-202.
Cressie, N. (1993) Statistics for Spatial Data. New York. Wiley.
summary(aquifer) with(aquifer, spoints(lon, lat, head, main = "Wolfcamp aquifer"))
summary(aquifer) with(aquifer, spoints(lon, lat, head, main = "Wolfcamp aquifer"))
S3 class data.grid
methods.
as.data.grid(object, ...) ## S3 method for class 'SpatialGridDataFrame' as.data.grid(object, data.ind = NULL, ...) ## S3 method for class 'data.grid' as.data.frame( x, row.names = NULL, optional = FALSE, data.ind = NULL, coords = FALSE, sp = FALSE, check.names = coords, ... )
as.data.grid(object, ...) ## S3 method for class 'SpatialGridDataFrame' as.data.grid(object, data.ind = NULL, ...) ## S3 method for class 'data.grid' as.data.frame( x, row.names = NULL, optional = FALSE, data.ind = NULL, coords = FALSE, sp = FALSE, check.names = coords, ... )
object |
(gridded data) used to select a method. |
... |
further arguments passed to |
data.ind |
integer or character vector with the indexes or names of the components. |
x |
a |
row.names |
|
optional |
logical; Not currently used (see |
coords |
logical; if |
sp |
logical; if |
check.names |
logical; if |
as.data.grid
returns a data.grid
object.
as.data.frame
returns a data frame.
Converts a npsp object to a sp object.
as.sp(obj, ...) ## S3 method for class 'grid.par' as.sp(obj, ...) ## S3 method for class 'data.grid' as.sp(obj, data.ind = NULL, proj4string = CRS(as.character(NA)), ...)
as.sp(obj, ...) ## S3 method for class 'grid.par' as.sp(obj, ...) ## S3 method for class 'data.grid' as.sp(obj, data.ind = NULL, proj4string = CRS(as.character(NA)), ...)
obj |
a |
... |
further arguments passed to or from other methods. |
data.ind |
integer or character; vector with indexes or names of the data components. |
proj4string |
a |
as.sp.grid.par
returns a GridTopology-class
object.
as.sp.data.grid
returns a SpatialGridDataFrame-class
object.
Creates a bin.den
-class
(gridded binned density) object
with linear binning counts.
bin.den(x, nbin = NULL) as.bin.den(object, ...) ## S3 method for class 'data.grid' as.bin.den(object, weights.ind = 1, ...) ## S3 method for class 'bin.den' as.bin.den(object, ...)
bin.den(x, nbin = NULL) as.bin.den(object, ...) ## S3 method for class 'data.grid' as.bin.den(object, weights.ind = 1, ...) ## S3 method for class 'bin.den' as.bin.den(object, ...)
x |
vector or matrix of covariates (e.g. spatial coordinates). Columns correspond with dimensions and rows with observations. |
nbin |
vector with the number of bins on each dimension. |
object |
(gridded data) used to select a method. |
... |
further arguments passed to or from other methods. |
weights.ind |
integer or character with the index or name of the component containing the bin counts/weights. |
If parameter nbin
is not specified is set to pmax(25, rule.binning(x))
.
Returns an S3 object of class
bin.den
(extends data.grid
).
A list with the following 3 components:
binw |
vector or array (dimension |
grid |
|
data |
a list with a component |
np.den
, h.cv
, bin.data
,
locpol
, rule.binning
.
binden <- bin.den(earthquakes[, c("lon", "lat")], nbin = c(30,30)) bindat <- binning(earthquakes[, c("lon", "lat")], earthquakes$mag, nbin = c(30,30)) all.equal(binden, as.bin.den(bindat))
binden <- bin.den(earthquakes[, c("lon", "lat")], nbin = c(30,30)) bindat <- binning(earthquakes[, c("lon", "lat")], earthquakes$mag, nbin = c(30,30)) all.equal(binden, as.bin.den(bindat))
Discretizes the data into a regular grid (computes a binned approximation) using the multivariate linear binning technique described in Wand (1994).
binning(x, y = NULL, nbin = NULL, set.NA = FALSE, window = NULL, ...) as.bin.data(object, ...) ## S3 method for class 'data.grid' as.bin.data(object, data.ind = 1, weights.ind = NULL, ...) ## S3 method for class 'bin.data' as.bin.data(object, ...) ## S3 method for class 'SpatialGridDataFrame' as.bin.data(object, data.ind = 1, weights.ind = NULL, ...)
binning(x, y = NULL, nbin = NULL, set.NA = FALSE, window = NULL, ...) as.bin.data(object, ...) ## S3 method for class 'data.grid' as.bin.data(object, data.ind = 1, weights.ind = NULL, ...) ## S3 method for class 'bin.data' as.bin.data(object, ...) ## S3 method for class 'SpatialGridDataFrame' as.bin.data(object, data.ind = 1, weights.ind = NULL, ...)
x |
vector or matrix of covariates (e.g. spatial coordinates). Columns correspond with covariates (coordinate dimension) and rows with data. |
y |
vector of data (response variable). |
nbin |
vector with the number of bins on each dimension. |
set.NA |
logical. If |
window |
spatial window (values outside this window will be masked), currently an sp-object of class
extending |
... |
further arguments passed to |
object |
(gridded data) used to select a method. |
data.ind |
integer (or character) with the index (or name) of the component containing the bin averages. |
weights.ind |
integer (or character) with the index (or name) of the component
containing the bin counts/weights (if not specified, they are set to
|
If parameter nbin
is not specified is set to pmax(25, rule.binning(x))
.
Setting set.NA = TRUE
(equivalent to biny[binw == 0] <- NA
)
may be useful for plotting the binned averages $biny
(the hat matrix should be handled with care when using locpol
).
If y != NULL
, an S3 object of class
bin.data
(gridded binned data; extends bin.den
) is returned.
A data.grid
object with the following 4 components:
biny |
vector or array (dimension |
binw |
vector or array (dimension |
grid |
|
data |
a list with 3 components:
|
If y == NULL
, bin.den
is called and a
bin.den
-class
object is returned.
Wand M.P. (1994) Fast Computation of Multivariate Kernel Estimators. Journal of Computational and Graphical Statistics, 3, 433-445.
data.grid
, locpol
, bin.den
,
h.cv
.
with(earthquakes, spoints(lon, lat, mag, main = "Earthquake data")) bin <- binning(earthquakes[, c("lon", "lat")], earthquakes$mag, nbin = c(30,30), set.NA = TRUE) simage(bin, main = "Binning averages") with(earthquakes, points(lon, lat, pch = 20))
with(earthquakes, spoints(lon, lat, mag, main = "Earthquake data")) bin <- binning(earthquakes[, c("lon", "lat")], earthquakes$mag, nbin = c(30,30), set.NA = TRUE) simage(bin, main = "Binning averages") with(earthquakes, points(lon, lat, pch = 20))
Retrieves the (spatial) coordinates of the object.
coords(x, ...) ## S3 method for class 'grid.par' coords(x, ...) ## S3 method for class 'data.grid' coords(x, masked = FALSE, ...)
coords(x, ...) ## S3 method for class 'grid.par' coords(x, ...) ## S3 method for class 'data.grid' coords(x, masked = FALSE, ...)
x |
a (spatial) object used to select a method. |
... |
further arguments passed to or from other methods. |
masked |
logical; If |
A matrix of coordinates (columns correspond with dimensions and rows with data).
Returns the coordinate values in each dimension.
coordvalues(x, ...) ## S3 method for class 'grid.par' coordvalues(x, ...) ## S3 method for class 'data.grid' coordvalues(x, ...)
coordvalues(x, ...) ## S3 method for class 'grid.par' coordvalues(x, ...) ## S3 method for class 'data.grid' coordvalues(x, ...)
x |
a (spatial) object used to select a method. |
... |
further arguments passed to or from other methods. |
A list with the (unique) coordinates along each axis.
Computes covariance values (or pseudo-covariances) given a variogram model or covariance estimates given a semivariogram estimate.
covar(x, h, ...) ## S3 method for class 'svarmod' covar(x, h, sill = x$sill, discretize = FALSE, ...) ## S3 method for class 'np.svar' covar(x, h, sill = NULL, ...)
covar(x, h, ...) ## S3 method for class 'svarmod' covar(x, h, sill = x$sill, discretize = FALSE, ...) ## S3 method for class 'np.svar' covar(x, h, sill = NULL, ...)
x |
variogram model ( |
h |
vector (isotropic case) or matrix of lag values. |
... |
further arguments passed to or from other methods. |
sill |
(theoretical or estimated) variance |
discretize |
logical. If |
A vector of (pseudo) covariance values or covariance estimates.
Returns and (optionally) prints the total and/or partial (since the last call to this function) real and CPU times.
cpu.time(..., reset = FALSE, total = TRUE, last = TRUE, flush = FALSE)
cpu.time(..., reset = FALSE, total = TRUE, last = TRUE, flush = FALSE)
... |
objects (describing the last operation) to be printed (using |
reset |
logical; if |
total |
logical; if |
last |
logical; if |
flush |
logical; if |
Invisibly returns a list with the following 3 components
(objects of class "proc_time"
):
time |
user, system, and total elapsed times for the currently running R process
(result of a call to |
last , total
|
differences between the corresponding |
proc.time
, system.time
, flush.console
.
cpu.time(reset=TRUE) res <- median(runif(100000)) cpu.time('\nSample median of', 100000, 'values =', res) res <- median(runif(1000)) cpu.time('\nSample median of', 1000, 'values =', res)
cpu.time(reset=TRUE) res <- median(runif(100000)) cpu.time('\nSample median of', 100000, 'values =', res) res <- median(runif(1000)) cpu.time('\nSample median of', 1000, 'values =', res)
Defines data on a full regular (spatial) grid.
Constructor function of the data.grid
-class
.
data.grid( ..., grid = NULL, window = NULL, mask = NULL, set.NA = FALSE, warn = FALSE )
data.grid( ..., grid = NULL, window = NULL, mask = NULL, set.NA = FALSE, warn = FALSE )
... |
vectors or arrays of data with length equal to |
grid |
|
window |
spatial window (values outside this window will be masked), currently an sp-object of class
extending |
mask |
logical; vector (or array) indicating the selected values (not masked). |
set.NA |
logical; If |
warn |
logical; If |
If parameter grid.par
is not specified it is set from first argument.
S3 "version" of the SpatialGridDataFrame
-class
of the sp package.
Returns an object of class
data.grid
, a list with
the arguments as components.
as.data.grid
, grid.par
, mask
,
binning
, locpol
.
# Grid parameters grid <- grid.par(n = c(15,15), min = c(x = -1, y = -1), max = c(1, 1)) coordinates <- coords(grid) plot(coordinates) coordvs <- coordvalues(grid) abline(v = coordvs[[1]], lty = 3) abline(h = coordvs[[2]], lty = 3) # Gridded data y <- apply(coordinates, 1, function(x) x[1]^2 - x[2]^2 ) datgrid <- data.grid(y = y, grid = grid) spersp(datgrid, main = 'f(x,y) = x^2 - y^2') dim(datgrid) all.equal(coordinates, coords(datgrid))
# Grid parameters grid <- grid.par(n = c(15,15), min = c(x = -1, y = -1), max = c(1, 1)) coordinates <- coords(grid) plot(coordinates) coordvs <- coordvalues(grid) abline(v = coordvs[[1]], lty = 3) abline(h = coordvs[[2]], lty = 3) # Gridded data y <- apply(coordinates, 1, function(x) x[1]^2 - x[2]^2 ) datgrid <- data.grid(y = y, grid = grid) spersp(datgrid, main = 'f(x,y) = x^2 - y^2') dim(datgrid) all.equal(coordinates, coords(datgrid))
Computes the discretization nodes of a ‘nonparametric’ extended Shapiro-Botha variogram model, following Gorsich and Genton (2004), as the scaled roots of Bessel functions.
disc.sb(nx, dk = 0, rmax = 1)
disc.sb(nx, dk = 0, rmax = 1)
nx |
number of discretization nodes. |
dk |
dimension of the kappa function ( |
rmax |
maximum lag considered. |
If dk >= 1
, the nodes are computed as:
where
are the first
roots of
,
is the Bessel function of order
and
is the maximum lag considered. The computation of the zeros of the Bessel
function is done using the efficient algorithm developed by Ball (2000).
If dk == 0
(corresponding to a model valid in any spatial dimension),
the nodes are computed so the gaussian variogram models involved have
practical ranges:
A vector with the discretization nodes.
Ball, J.S. (2000) Automatic computation of zeros of Bessel functions and other special functions. SIAM Journal on Scientific Computing, 21, 1458-1464.
Gorsich, D.J. and Genton, M.G. (2004) On the discretization of nonparametric covariogram estimators. Statistics and Computing, 14, 99-108.
disc.sb( 12, 1, 1.0) nx <- 1 dk <- 0 x <- disc.sb(nx, dk, 1.0) h <- seq(0, 1, length = 100) plot(h, kappasb(x * h, 0), type="l", ylim = c(0, 1)) abline(h = 0.05, lty = 2)
disc.sb( 12, 1, 1.0) nx <- 1 dk <- 0 x <- disc.sb(nx, dk, 1.0) h <- seq(0, 1, length = 100) plot(h, kappasb(x * h, 0), type="l", ylim = c(0, 1)) abline(h = 0.05, lty = 2)
The data set consists of 1859 earthquakes (with magnitude above or equal to 2.0 in Richter's scale), which occurred from 25 November 1944 to 16 October 2013 in the northwest (NW) part of the Iberian Peninsula. The area considered is limited by the coordinates 41N-44N and 6W-10W, which contains the autonomic region of Galicia (Spain) and northern Portugal.
A data frame with 1859 observations on the following 6 variables:
Date and time (POSIXct format).
Time (years since first event).
Longitude.
Latitude.
Depth (km).
Magnitude (Richter's scale).
National Geographic Institute (IGN) of Spain:
https://www.ign.es/web/ign/portal/sis-area-sismicidad.
Francisco-Fernandez M., Quintela-del-Rio A. and Fernandez-Casal R. (2012) Nonparametric methods for spatial regression. An application to seismic events, Environmetrics, 23, 85-93.
str(earthquakes) summary(earthquakes) with(earthquakes, spoints(lon, lat, mag, main = "Earthquake data"))
str(earthquakes) summary(earthquakes) with(earthquakes, spoints(lon, lat, mag, main = "Earthquake data"))
Fits a ‘nonparametric’ isotropic Shapiro-Botha variogram model by WLS through
quadratic programming.
Following Gorsich and Genton (2004), the nodes are selected as the scaled
roots of Bessel functions (see disc.sb
).
fitsvar.sb.iso( esv, dk = 4 * ncol(esv$data$x), nx = NULL, rmax = esv$grid$max, min.contrib = 10, method = c("cressie", "equal", "npairs", "linear"), iter = 10, tol = sqrt(.Machine$double.eps) )
fitsvar.sb.iso( esv, dk = 4 * ncol(esv$data$x), nx = NULL, rmax = esv$grid$max, min.contrib = 10, method = c("cressie", "equal", "npairs", "linear"), iter = 10, tol = sqrt(.Machine$double.eps) )
esv |
pilot semivariogram estimate, a |
dk |
dimension of the kappa function ( |
nx |
number of discretization nodes. Defaults to |
rmax |
maximum lag considered in the discretization (range of the fitted variogram on output). |
min.contrib |
minimum number of (equivalent) contributing pairs (pilot estimates with a lower number are ignored, with a warning). |
method |
string indicating the WLS fitting method to be used
(e.g. |
iter |
maximum number of interations of the WLS algorithm (used only
if |
tol |
absolute convergence tolerance (used only
if |
The fit is done using a (possibly iterated) weighted least squares criterion, minimizing:
The different options for the argument method
define the WLS algorithm used:
"cressie"
The default method. The procedure is
iterative, with (OLS) used for the first step
and with the weights recalculated at each iteration,
following Cressie (1985), until convergence:
where
is the (equivalent) number of contributing pairs in the
estimation at lag
.
"equal"
Ordinary least squares: .
"npairs"
"linear"
(default fitting method in gstat package).
Function solve.QP
of quadprog package is used
to solve a strictly convex quadratic program. To avoid problems, the Cholesky decomposition
of the matrix corresponding to the original problem is computed using chol
with pivot = TRUE
.
If this matrix is only positive semi-definite (non-strictly convex QP),
the number of discretization nodes will be less than nx
.
Returns the fitted variogram model, an object of class
fitsvar
.
A svarmod
object
with additional components esv
(pilot semivariogram estimate) and fit
containing:
u |
vector of lags/distances. |
sv |
vector of pilot semivariogram estimates. |
fitted.sv |
vector of fitted semivariances. |
w |
vector of (least squares) weights. |
wls |
value of the objective function. |
method |
string indicating the WLS fitting method used. |
iter |
number of WLS iterations (if |
Ball, J.S. (2000) Automatic computation of zeros of Bessel functions and other special functions. SIAM Journal on Scientific Computing, 21, 1458-1464.
Cressie, N. (1985) Fitting variogram models by weighted least squares. Mathematical Geology, 17, 563-586.
Cressie, N. (1993) Statistics for Spatial Data. New York. Wiley.
Fernandez Casal R., Gonzalez Manteiga W. and Febrero Bande M. (2003) Flexible Spatio-Temporal Stationary Variogram Models, Statistics and Computing, 13, 127-136.
Gorsich, D.J. and Genton, M.G. (2004) On the discretization of nonparametric covariogram estimators. Statistics and Computing, 14, 99-108.
Shapiro, A. and Botha, J.D. (1991) Variogram fitting with a general class of conditionally non-negative definite functions. Computational Statistics and Data Analysis, 11, 87-96.
svarmod.sb.iso
, disc.sb
, plot.fitsvar
.
# Trend estimation lp <- locpol(aquifer[,1:2], aquifer$head, nbin = c(41,41), h = diag(100, 2), hat.bin = TRUE) # 'np.svariso.corr()' requires a 'lp$locpol$hat' component # Variogram estimation esvar <- np.svariso.corr(lp, maxlag = 150, nlags = 60, h = 60, plot = FALSE) # Variogram fitting svm2 <- fitsvar.sb.iso(esvar) # dk = 2 svm3 <- fitsvar.sb.iso(esvar, dk = 0) # To avoid negative covariances... svm4 <- fitsvar.sb.iso(esvar, dk = 10) # To improve fit... plot(svm4, main = "Nonparametric bias-corrected semivariogram and fitted models", legend = FALSE) plot(svm3, add = TRUE) plot(svm2, add = TRUE, lty = 3) legend("bottomright", legend = c("NP estimates", "fitted model (dk = 10)", "dk = 0", "dk = 2"), lty = c(NA, 1, 1, 3), pch = c(1, NA, NA, NA), lwd = c(1, 2, 1, 1))
# Trend estimation lp <- locpol(aquifer[,1:2], aquifer$head, nbin = c(41,41), h = diag(100, 2), hat.bin = TRUE) # 'np.svariso.corr()' requires a 'lp$locpol$hat' component # Variogram estimation esvar <- np.svariso.corr(lp, maxlag = 150, nlags = 60, h = 60, plot = FALSE) # Variogram fitting svm2 <- fitsvar.sb.iso(esvar) # dk = 2 svm3 <- fitsvar.sb.iso(esvar, dk = 0) # To avoid negative covariances... svm4 <- fitsvar.sb.iso(esvar, dk = 10) # To improve fit... plot(svm4, main = "Nonparametric bias-corrected semivariogram and fitted models", legend = FALSE) plot(svm3, add = TRUE) plot(svm2, add = TRUE, lty = 3) legend("bottomright", legend = c("NP estimates", "fitted model (dk = 10)", "dk = 0", "dk = 2"), lty = c(NA, 1, 1, 3), pch = c(1, NA, NA, NA), lwd = c(1, 2, 1, 1))
Defines a full regular (spatial) grid.
Constructor function of the grid.par
-class
.
grid.par( n, min, max = min + (n - 1) * lag, lag = (max - min)/(n - 1), dimnames = names(min) )
grid.par( n, min, max = min + (n - 1) * lag, lag = (max - min)/(n - 1), dimnames = names(min) )
n |
integer vector; number of nodes in each dimension. |
min |
vector; minimum values of the coordinates. |
max |
vector; maximum values of the coordinates (optional). |
lag |
vector; lag in each dimension (optional). |
dimnames |
character vector; names used to label the dimensions. |
All parameters must have the same length.
Only one of the arguments max
or lag
must be specified.
S3 'version' of the GridTopology
-class
of the sp package.
Returns an object of class grid.par
, a list with the arguments as components
and an additional component $nd = length(n)
.
grid.par(n = c(100, 100), min = c(-10, 42), max = c(-7.5, 44)) grid.par(n = c(100, 100), min = c(-10, 42), lag = c(0.03, 0.02))
grid.par(n = c(100, 100), min = c(-10, 42), max = c(-7.5, 44)) grid.par(n = c(100, 100), min = c(-10, 42), lag = c(0.03, 0.02))
Selects the bandwidth of a local polynomial kernel (regression, density or variogram) estimator using (standard or modified) CV, GCV or MASE criteria.
h.cv(bin, ...) ## S3 method for class 'bin.data' h.cv( bin, objective = c("CV", "GCV", "MASE"), h.start = NULL, h.lower = NULL, h.upper = NULL, degree = 1, ncv = ifelse(objective == "CV", 2, 0), cov.bin = NULL, DEalgorithm = FALSE, warn = TRUE, tol.mask = npsp.tolerance(2), ... ) ## S3 method for class 'bin.den' h.cv( bin, h.start = NULL, h.lower = NULL, h.upper = NULL, degree = 1, ncv = 2, DEalgorithm = FALSE, ... ) ## S3 method for class 'svar.bin' h.cv( bin, loss = c("MRSE", "MRAE", "MSE", "MAE"), h.start = NULL, h.lower = NULL, h.upper = NULL, degree = 1, ncv = 1, DEalgorithm = FALSE, warn = FALSE, ... ) hcv.data( bin, objective = c("CV", "GCV", "MASE"), h.start = NULL, h.lower = NULL, h.upper = NULL, degree = 1, ncv = ifelse(objective == "CV", 1, 0), cov.dat = NULL, DEalgorithm = FALSE, warn = TRUE, ... )
h.cv(bin, ...) ## S3 method for class 'bin.data' h.cv( bin, objective = c("CV", "GCV", "MASE"), h.start = NULL, h.lower = NULL, h.upper = NULL, degree = 1, ncv = ifelse(objective == "CV", 2, 0), cov.bin = NULL, DEalgorithm = FALSE, warn = TRUE, tol.mask = npsp.tolerance(2), ... ) ## S3 method for class 'bin.den' h.cv( bin, h.start = NULL, h.lower = NULL, h.upper = NULL, degree = 1, ncv = 2, DEalgorithm = FALSE, ... ) ## S3 method for class 'svar.bin' h.cv( bin, loss = c("MRSE", "MRAE", "MSE", "MAE"), h.start = NULL, h.lower = NULL, h.upper = NULL, degree = 1, ncv = 1, DEalgorithm = FALSE, warn = FALSE, ... ) hcv.data( bin, objective = c("CV", "GCV", "MASE"), h.start = NULL, h.lower = NULL, h.upper = NULL, degree = 1, ncv = ifelse(objective == "CV", 1, 0), cov.dat = NULL, DEalgorithm = FALSE, warn = TRUE, ... )
bin |
object used to select a method (binned data, binned density or binned semivariogram). |
... |
further arguments passed to or from other methods (e.g. parameters of the optimization routine). |
objective |
character; optimal criterion to be used ("CV", "GCV" or "MASE"). |
h.start |
vector; initial values for the parameters (diagonal elements) to be optimized over.
If |
h.lower |
vector; lower bounds on each parameter (diagonal elements) to be optimized.
Defaults to |
h.upper |
vector; upper bounds on each parameter (diagonal elements) to be optimized.
Defaults to |
degree |
degree of the local polynomial used. Defaults to 1 (local linear estimation). |
ncv |
integer; determines the number of cells leaved out in each dimension.
(0 to GCV considering all the data, |
cov.bin |
(optional) covariance matrix of the binned data or semivariogram model
( |
DEalgorithm |
logical; if |
warn |
logical; sets the handling of warning messages
(normally due to the lack of data in some neighborhoods).
If |
tol.mask |
tolerance used in the aproximations. Defaults to |
loss |
character; CV error. See "Details" bellow. |
cov.dat |
covariance matrix of the data or semivariogram model
(of class extending |
Currently, only diagonal bandwidths are supported.
h.cv
methods use binning approximations to the objective function values
(in almost all cases, an averaged squared error).
If ncv > 0
, estimates are computed by leaving out binning cells with indexes within
the intervals , at each dimension i, where
denotes the index of the estimation location.
corresponds with
traditional cross-validation and
with modified CV
(it may be appropriate for dependent data; see e.g. Chu and Marron, 1991, for the one dimensional case).
Setting
ncv >= 2
would be recommended for sparse data (as linear binning is used).
For standard GCV, set ncv = 0
(the whole data would be used).
For theoretical MASE, set bin = binning(x, y = trend.teor)
, cov = cov.teor
and ncv = 0
.
If DEalgorithm == FALSE
, the "L-BFGS-B"
method in optim
is used.
The different options for the argument loss
in h.cv.svar.bin()
define the CV error
considered in semivariogram estimation:
"MSE"
Mean squared error
"MRSE"
Mean relative squared error
"MAE"
Mean absolute error
"MRAE"
Mean relative absolute error
hcv.data
evaluates the objective function at the original data
(combining a binning approximation to the nonparametric estimates with a linear interpolation),
this can be very slow (and memory demanding; consider using h.cv
instead).
If ncv > 1
(modified CV), a similar algorithm to that in h.cv
is used,
estimates are computed by leaving out binning cells with indexes within
the intervals .
Returns a list containing the following 3 components:
h |
the best (diagonal) bandwidth matrix found. |
value |
the value of the objective function corresponding to |
objective |
the criterion used. |
Chu, C.K. and Marron, J.S. (1991) Comparison of Two Bandwidth Selectors with Dependent Errors. The Annals of Statistics, 19, 1906-1918.
Francisco-Fernandez M. and Opsomer J.D. (2005) Smoothing parameter selection methods for nonparametric regression with spatially correlated errors. Canadian Journal of Statistics, 33, 539-558.
locpol
, locpolhcv
, binning
,
np.den
, np.svar
.
# Trend estimation bin <- binning(earthquakes[, c("lon", "lat")], earthquakes$mag) hcv <- h.cv(bin, ncv = 2) lp <- locpol(bin, h = hcv$h) # Alternatively, `locpolhcv()` could be called instead of the previous code. simage(lp, main = 'Smoothed magnitude') contour(lp, add = TRUE) with(earthquakes, points(lon, lat, pch = 20)) # Density estimation hden <- h.cv(as.bin.den(bin)) den <- np.den(bin, h = hden$h) plot(den, main = 'Estimated log(density)')
# Trend estimation bin <- binning(earthquakes[, c("lon", "lat")], earthquakes$mag) hcv <- h.cv(bin, ncv = 2) lp <- locpol(bin, h = hcv$h) # Alternatively, `locpolhcv()` could be called instead of the previous code. simage(lp, main = 'Smoothed magnitude') contour(lp, add = TRUE) with(earthquakes, points(lon, lat, pch = 20)) # Density estimation hden <- h.cv(as.bin.den(bin)) den <- np.den(bin, h = hden$h) plot(den, main = 'Estimated log(density)')
Computes a linear interpolation of multidimensional regularly gridded data.
interp(object, ...) ## S3 method for class 'grid.par' interp(object, data, newx, ...) ## S3 method for class 'data.grid' interp(object, data.ind = 1, newx, ...) ## S3 method for class 'locpol.bin' predict(object, newx = NULL, hat.data = FALSE, ...) ## S3 method for class 'np.den' predict(object, newx = NULL, ...)
interp(object, ...) ## S3 method for class 'grid.par' interp(object, data, newx, ...) ## S3 method for class 'data.grid' interp(object, data.ind = 1, newx, ...) ## S3 method for class 'locpol.bin' predict(object, newx = NULL, hat.data = FALSE, ...) ## S3 method for class 'np.den' predict(object, newx = NULL, ...)
object |
(gridded data) object used to select a method. |
... |
further arguments passed to or from other methods. |
data |
vector or array of data values. |
newx |
vector or matrix with the (irregular) locations to interpolate. Columns correspond with dimensions and rows with data. |
data.ind |
integer (or character) with the index (or name) of the data component. |
hat.data |
logical; if |
interp
methods are interfaces to the fortran routine interp_data_grid
(in grid_module.f90
).
predict.locpol.bin
is an interface to the fortran routine
predict_lp
(in lp_module.f90
).
A list with two components:
x |
interpolation locations. |
y |
interpolated values. |
If newx == NULL
, predict.locpol.bin
returns the estimates
(and optionally the hat matrix) corresponding to the data
(otherwise interp.data.grid
is called).
Linear extrapolation is performed from the end nodes of the grid.
WARNING: May fail with missing values (especially if object$locpol$ncv > 0
).
Computes the coefficients of an extended Shapiro-Botha variogram model.
kappasb(x, dk = 0)
kappasb(x, dk = 0)
x |
numeric vector (on which the kappa function will be evaluated). |
dk |
dimension of the kappa function. |
If dk >= 1
, the coefficients are computed as:
where is the Bessel function of order
.
If dk == 0
, the coefficients are computed as:
(corresponding to a model valid in any spatial dimension).
NOTE: some authors denote these functions as .
A vector with the coefficients of an extended Shapiro-Botha variogram model.
Shapiro, A. and Botha, J.D. (1991) Variogram fitting with a general class of conditionally non-negative definite functions. Computational Statistics and Data Analysis, 11, 87-96.
kappasb(seq(0, 6*pi, len = 10), 2) curve(kappasb(x/5, 0), xlim = c(0, 6*pi), ylim = c(-1, 1), lty = 2) for (i in 1:10) curve(kappasb(x, i), col = gray((i-1)/10), add = TRUE) abline(h = 0, lty = 3)
kappasb(seq(0, 6*pi, len = 10), 2) curve(kappasb(x/5, 0), xlim = c(0, 6*pi), ylim = c(-1, 1), lty = 2) for (i in 1:10) curve(kappasb(x, i), col = gray((i-1)/10), add = TRUE) abline(h = 0, lty = 3)
Estimates a multidimensional regression function (and its first derivatives) using local polynomial kernel smoothing (and linear binning).
locpol(x, ...) ## Default S3 method: locpol( x, y, h = NULL, nbin = NULL, degree = 1 + as.numeric(drv), drv = FALSE, hat.bin = FALSE, ncv = 0, set.NA = FALSE, ... ) ## S3 method for class 'bin.data' locpol( x, h = NULL, degree = 1 + as.numeric(drv), drv = FALSE, hat.bin = FALSE, ncv = 0, ... ) ## S3 method for class 'svar.bin' locpol(x, h = NULL, degree = 1, drv = FALSE, hat.bin = TRUE, ncv = 0, ...) ## S3 method for class 'bin.den' locpol(x, h = NULL, degree = 1 + as.numeric(drv), drv = FALSE, ncv = 0, ...) locpolhcv( x, y, nbin = NULL, objective = c("CV", "GCV", "MASE"), degree = 1 + as.numeric(drv), drv = FALSE, hat.bin = FALSE, set.NA = FALSE, ncv = ifelse(objective == "CV", 2, 0), cov.dat = NULL, ... )
locpol(x, ...) ## Default S3 method: locpol( x, y, h = NULL, nbin = NULL, degree = 1 + as.numeric(drv), drv = FALSE, hat.bin = FALSE, ncv = 0, set.NA = FALSE, ... ) ## S3 method for class 'bin.data' locpol( x, h = NULL, degree = 1 + as.numeric(drv), drv = FALSE, hat.bin = FALSE, ncv = 0, ... ) ## S3 method for class 'svar.bin' locpol(x, h = NULL, degree = 1, drv = FALSE, hat.bin = TRUE, ncv = 0, ...) ## S3 method for class 'bin.den' locpol(x, h = NULL, degree = 1 + as.numeric(drv), drv = FALSE, ncv = 0, ...) locpolhcv( x, y, nbin = NULL, objective = c("CV", "GCV", "MASE"), degree = 1 + as.numeric(drv), drv = FALSE, hat.bin = FALSE, set.NA = FALSE, ncv = ifelse(objective == "CV", 2, 0), cov.dat = NULL, ... )
x |
a (data) object used to select a method. |
... |
further arguments passed to or from other methods (e.g. to |
y |
vector of data (response variable). |
h |
(full) bandwidth matrix (controls the degree of smoothing; only the upper triangular part of h is used). |
nbin |
vector with the number of bins on each dimension. |
degree |
degree of the local polynomial used. Defaults to 1 (local linear estimation). |
drv |
logical; if |
hat.bin |
logical; if |
ncv |
integer; determines the number of cells leaved out in each dimension. Defaults to 0 (the full data is used) and it is not normally changed by the user in this setting. See "Details" below. |
set.NA |
logical. If |
objective |
character; optimal criterion to be used ("CV", "GCV" or "MASE"). |
cov.dat |
covariance matrix of the data or semivariogram model
(of class extending |
Standard generic function with a default method (interface to the
fortran routine lp_raw
), in which argument x
is a vector or matrix of covariates (e.g. spatial coordinates).
If parameter nbin
is not specified is set to pmax(25, rule.binning(x))
.
A multiplicative triweight kernel is used to compute the weights.
If ncv > 0
, estimates are computed by leaving out cells with indexes within
the intervals , at each dimension i, where
denotes the index of the estimation position.
corresponds with
traditional cross-validation and
with modified CV
(see e.g. Chu and Marron, 1991, for the one dimensional case).
Setting set.NA = TRUE
(equivalent to biny[binw == 0] <- NA
)
may be useful for plotting the binned averages $biny
(the hat matrix should be handled with care).
locpolhcv
calls hcv.data
to obtain an "optimal"
bandwith (additional arguments ...
are passed to this function).
Argument ncv
is only used here at the bandwith
selection stage (estimation is done with all the data).
Returns an S3 object of class locpol.bin
(locpol + bin data + grid par.).
A bin.data
object with the additional (some optional) 3 components:
est |
vector or array (dimension |
locpol |
a list with 7 components:
|
deriv |
(if requested) matrix of first derivatives. |
locpol.svar.bin
returns an S3 object of class np.svar
(locpol semivar + bin semivar + grid par.).
locpol.bin.den
returns an S3 object of class np.den
(locpol den + bin den + grid par.).
Chu, C.K. and Marron, J.S. (1991) Comparison of Two Bandwidth Selectors with Dependent Errors. The Annals of Statistics, 19, 1906-1918.
Rupert D. and Wand M.P. (1994) Multivariate locally weighted least squares regression. The Annals of Statistics, 22, 1346-1370.
binning
, data.grid
,
np.svariso
, svar.bin
,
np.den
, bin.den
, hcv.data
,
rule.binning
.
lp <- locpol(earthquakes[, c("lon", "lat")], earthquakes$mag, h = diag(2, 2), nbin = c(41,41)) simage(lp, main = "Smoothed magnitude") contour(lp, add = TRUE) bin <- binning(earthquakes[, c("lon", "lat")], earthquakes$mag, nbin = c(41,41)) lp2 <- locpol(bin, h = diag(2, 2)) all.equal(lp, lp2) den <- locpol(as.bin.den(bin), h = diag(1, 2)) plot(den, log = FALSE, main = 'Estimated density')
lp <- locpol(earthquakes[, c("lon", "lat")], earthquakes$mag, h = diag(2, 2), nbin = c(41,41)) simage(lp, main = "Smoothed magnitude") contour(lp, add = TRUE) bin <- binning(earthquakes[, c("lon", "lat")], earthquakes$mag, nbin = c(41,41)) lp2 <- locpol(bin, h = diag(2, 2)) all.equal(lp, lp2) den <- locpol(as.bin.den(bin), h = diag(1, 2)) plot(den, log = FALSE, main = 'Estimated density')
Filters the data that satisfy a condition.
mask(x, ...) ## Default S3 method: mask(x, tol.mask = 0, ...) ## S3 method for class 'data.grid' mask(x, mask = NULL, window = NULL, set.NA = FALSE, warn = FALSE, ...) ## S3 method for class 'bin.den' mask( x, mask = mask.default(x$binw, npsp.tolerance(2)), window = NULL, set.NA = FALSE, warn = TRUE, ... ) ## S3 method for class 'bin.data' mask( x, mask = NULL, window = NULL, set.NA = FALSE, warn = FALSE, filter.lp = TRUE, ... ) ## S3 method for class 'locpol.bin' mask( x, mask = mask.default(x$binw, npsp.tolerance(2)), window = NULL, set.NA = FALSE, warn = TRUE, filter.lp = TRUE, ... )
mask(x, ...) ## Default S3 method: mask(x, tol.mask = 0, ...) ## S3 method for class 'data.grid' mask(x, mask = NULL, window = NULL, set.NA = FALSE, warn = FALSE, ...) ## S3 method for class 'bin.den' mask( x, mask = mask.default(x$binw, npsp.tolerance(2)), window = NULL, set.NA = FALSE, warn = TRUE, ... ) ## S3 method for class 'bin.data' mask( x, mask = NULL, window = NULL, set.NA = FALSE, warn = FALSE, filter.lp = TRUE, ... ) ## S3 method for class 'locpol.bin' mask( x, mask = mask.default(x$binw, npsp.tolerance(2)), window = NULL, set.NA = FALSE, warn = TRUE, filter.lp = TRUE, ... )
x |
object used to select a method (binned data, ...). |
... |
further arguments passed to or from other methods |
tol.mask |
tolerance. |
mask |
logical; vector (or array) indicating the selected values (not masked). |
window |
spatial window (values outside this window will be masked), currently an sp-object of class
extending |
set.NA |
logical; If |
warn |
logical; If |
filter.lp |
logical; If |
mask.default
returns the logical vector x > tol.mask
.
mask.bin.den
, mask.bin.data
and mask.locpol.bin
return an object of the same class as x
with the additional component $mask
and optionally $window
.
locpol
, locpolhcv
, binning
,
np.svar
, npsp.tolerance
.
mask(1:10, 5) bin <- binning(aquifer[,1:2], aquifer$head, nbin = c(41,41), set.NA = TRUE) str(mask(bin, mask(bin$binw), warn = TRUE)) str(mask(bin, mask(bin$binw, 1)))
mask(1:10, 5) bin <- binning(aquifer[,1:2], aquifer$head, nbin = c(41,41), set.NA = TRUE) str(mask(bin, mask(bin$binw), warn = TRUE)) str(mask(bin, mask(bin$binw, 1)))
Estimates a multidimensional probability density function (and its first derivatives) using local polynomial kernel smoothing of linearly binned data.
np.den(x, ...) ## Default S3 method: np.den( x, nbin = NULL, h = NULL, degree = 1 + as.numeric(drv), drv = FALSE, ncv = 0, ... ) ## S3 method for class 'bin.den' np.den(x, h = NULL, degree = 1 + as.numeric(drv), drv = FALSE, ncv = 0, ...) ## S3 method for class 'bin.data' np.den(x, h = NULL, degree = 1 + as.numeric(drv), drv = FALSE, ncv = 0, ...) ## S3 method for class 'svar.bin' np.den(x, h = NULL, degree = 1 + as.numeric(drv), drv = FALSE, ncv = 0, ...)
np.den(x, ...) ## Default S3 method: np.den( x, nbin = NULL, h = NULL, degree = 1 + as.numeric(drv), drv = FALSE, ncv = 0, ... ) ## S3 method for class 'bin.den' np.den(x, h = NULL, degree = 1 + as.numeric(drv), drv = FALSE, ncv = 0, ...) ## S3 method for class 'bin.data' np.den(x, h = NULL, degree = 1 + as.numeric(drv), drv = FALSE, ncv = 0, ...) ## S3 method for class 'svar.bin' np.den(x, h = NULL, degree = 1 + as.numeric(drv), drv = FALSE, ncv = 0, ...)
x |
a (data) object used to select a method. |
... |
further arguments passed to or from other methods. |
nbin |
vector with the number of bins on each dimension. |
h |
(full) bandwidth matrix (controls the degree of smoothing; only the upper triangular part of h is used). |
degree |
degree of the local polynomial used. Defaults to 1 (local linear estimation). |
drv |
logical; if |
ncv |
integer; determines the number of cells leaved out in each dimension. Defaults to 0 (the full data is used) and it is not normally changed by the user in this setting. See "Details" below. |
Standard generic function with a default method (interface to the
fortran routine lp_data_grid
), in which argument x
is a vector or matrix of covariates (e.g. spatial coordinates).
In this case, the data are binned (calls bin.den
) and the local fitting
procedure is applied to the scaled bin counts (calls np.den.bin.den
).
If parameter nbim
is not specified is set to rep(25, ncol(x))
.
A multiplicative triweight kernel is used to compute the weights.
If ncv > 1
, estimates are computed by leaving out cells with indexes within
the intervals , at each dimension i, where
denotes the index of the estimation position.
Returns an S3 object of class np.den
(locpol den + bin den + grid par.).
A bin.den
object with the additional (some optional) 3 components:
est |
vector or array (dimension |
locpol |
a list with 6 components:
|
deriv |
(if requested) matrix of first derivatives. |
Wand, M.P. and Jones, M.C. (1995) Kernel Smoothing. Chapman and Hall, London.
bin.den
, binning
, h.cv
,
data.grid
.
bin.den <- binning(earthquakes[, c("lon", "lat")], nbin = c(30,30)) h.den <- h.cv(bin.den) den <- np.den(bin.den, h = h.den$h) plot(den, main = 'Estimated log(density)')
bin.den <- binning(earthquakes[, c("lon", "lat")], nbin = c(30,30)) h.den <- h.cv(bin.den) den <- np.den(bin.den, h = h.den$h) plot(den, main = 'Estimated log(density)')
Fits a nonparametric (isotropic) geostatistical model
(jointly estimates the trend and the variogram) by calling
locpol
, np.svariso.corr
(or np.svariso
) and
fitsvar.sb.iso
iteratively.
At each iteration, the trend estimation bandwith is updated
by a call to h.cv
.
np.fitgeo(x, ...) ## Default S3 method: np.fitgeo( x, y, nbin = NULL, iter = 2, h = NULL, tol = 0.05, set.NA = FALSE, h.svar = NULL, corr.svar = iter > 0, maxlag = NULL, nlags = NULL, dk = 0, svm.resid = FALSE, hat.bin = corr.svar, warn = FALSE, plot = FALSE, window = NULL, ... ) ## S3 method for class 'locpol.bin' np.fitgeo( x, svm, iter = 1, tol = 0.05, h.svar = svm$esv$locpol$h, dk = 0, corr.svar = TRUE, svm.resid = FALSE, hat.bin = corr.svar, warn = FALSE, plot = FALSE, ... ) ## S3 method for class 'fitgeo' np.fitgeo( x, iter = 1, tol = 0.05, h.svar = x$svm$esv$locpol$h, dk = x$svm$par$dk, corr.svar = TRUE, svm.resid = FALSE, hat.bin = corr.svar, warn = FALSE, plot = FALSE, ... )
np.fitgeo(x, ...) ## Default S3 method: np.fitgeo( x, y, nbin = NULL, iter = 2, h = NULL, tol = 0.05, set.NA = FALSE, h.svar = NULL, corr.svar = iter > 0, maxlag = NULL, nlags = NULL, dk = 0, svm.resid = FALSE, hat.bin = corr.svar, warn = FALSE, plot = FALSE, window = NULL, ... ) ## S3 method for class 'locpol.bin' np.fitgeo( x, svm, iter = 1, tol = 0.05, h.svar = svm$esv$locpol$h, dk = 0, corr.svar = TRUE, svm.resid = FALSE, hat.bin = corr.svar, warn = FALSE, plot = FALSE, ... ) ## S3 method for class 'fitgeo' np.fitgeo( x, iter = 1, tol = 0.05, h.svar = x$svm$esv$locpol$h, dk = x$svm$par$dk, corr.svar = TRUE, svm.resid = FALSE, hat.bin = corr.svar, warn = FALSE, plot = FALSE, ... )
x |
a (data) object used to select a method. |
... |
further arguments passed to |
y |
vector of data (response variable). |
nbin |
vector with the number of bins on each dimension. |
iter |
maximum number of iterations (of the whole algorithm). |
h |
initial bandwidth matrix for trend estimation
(final bandwidth if |
tol |
relative convergence tolerance (semivariogram). |
set.NA |
logical. If |
h.svar |
bandwidth matrix for variogram estimation. |
corr.svar |
logical; if |
maxlag |
maximum lag. Defaults to 55% of largest lag. |
nlags |
number of lags. Defaults to 101. |
dk |
dimension of the Shapiro-Botha variogram model (see |
svm.resid |
logical; if |
hat.bin |
logical; if |
warn |
logical; sets the handling of warning messages in bandwidth selection ( |
plot |
logical; if |
window |
spatial window (values outside this window will be masked), currently an sp-object of class
extending |
svm |
(fitted) variogram model (object of class
|
Currently, only isotropic semivariogram estimation is supported.
If parameter h
is not specified,
h.cv
is called with the default values (modified CV) to set it.
If parameter h.svar
is not specified,
is set to 1.5*h.cv.svar.bin()$h
.
Setting corr.svar = TRUE
may be very slow (and memory demanding) when the number of data is large
(note also that the bias in the residual variogram decreases when the sample size increases).
Returns an object of class
fitgeo
(extends
np.geo
). A locpol.bin
object with the additional
(some optional) 3 components:
svm |
fitted variogram model (object of class
|
svm0 |
(if requested) fitted residual variogram model (object of class
|
residuals |
model residuals. |
locpol
, fitsvar.sb.iso
, np.svar
,
np.svariso.corr
, np.geo
.
geomod <- np.fitgeo(aquifer[,1:2], aquifer$head, svm.resid = TRUE) plot(geomod) # Uncorrected variogram estimator geomod0 <- np.fitgeo(aquifer[,1:2], aquifer$head, iter = 0, corr.svar = FALSE) plot(geomod0) # Additional iteration with bias-corrected variogram estimator geomod1 <- np.fitgeo(geomod0, corr.svar = TRUE, svm.resid = TRUE) plot(geomod1)
geomod <- np.fitgeo(aquifer[,1:2], aquifer$head, svm.resid = TRUE) plot(geomod) # Uncorrected variogram estimator geomod0 <- np.fitgeo(aquifer[,1:2], aquifer$head, iter = 0, corr.svar = FALSE) plot(geomod0) # Additional iteration with bias-corrected variogram estimator geomod1 <- np.fitgeo(geomod0, corr.svar = TRUE, svm.resid = TRUE) plot(geomod1)
Defines a nonparametric geostatistical model
(not intended to be used regularly; see np.fitgeo
).
Constructor function of the np.geo
and fitgeo
S3 class
es.
np.geo(lp, svm, svm0 = NULL, nbin = lp$grid$n)
np.geo(lp, svm, svm0 = NULL, nbin = lp$grid$n)
lp |
local polynomial estimate of the trend function (object of class
|
svm |
(fitted) variogram model (object of class
|
svm0 |
(fitted) residual variogram model (object of class
|
nbin |
number of bins on each dimension. |
Returns an object of class
np.geo
(extends locpol.bin
), the lp
argument with
the others and the vector of residuals as additional components.
np.fitgeo
, locpol
, fitsvar.sb.iso
.
Compute simple kriging or residual kriging predictions (and also the corresponding simple kriging standard errors ). Currently, only global (residual) simple kriging is implemented.
np.kriging(object, ...) ## Default S3 method: np.kriging( object, svm, lp.resid = NULL, ngrid = object$grid$n, intermediate = FALSE, ... ) ## S3 method for class 'np.geo' np.kriging(object, ngrid = object$grid$n, intermediate = FALSE, ...) kriging.simple(x, y, newx, svm, intermediate = FALSE)
np.kriging(object, ...) ## Default S3 method: np.kriging( object, svm, lp.resid = NULL, ngrid = object$grid$n, intermediate = FALSE, ... ) ## S3 method for class 'np.geo' np.kriging(object, ngrid = object$grid$n, intermediate = FALSE, ...) kriging.simple(x, y, newx, svm, intermediate = FALSE)
object |
object used to select a method:
local polynomial estimate of the trend (class |
... |
further arguments passed to or from other methods. |
svm |
semivariogram model (of class extending |
lp.resid |
residuals (defaults to |
ngrid |
number of grid nodes in each dimension. |
intermediate |
logical, determines whether the intermediate computations
are included in the output (component |
x |
vector/matrix with data locations (each component/row is an observation location). |
y |
vector of data (response variable). |
newx |
vector/matrix with the (irregular) locations to predict
(each component/row is a prediction location).
or an object extending |
np.kriging()
, and kriging.simple()
when newx
defines
gridded data (extends grid.par
or data.grid
classes),
returns an S3 object of class krig.grid
(kriging results + grid par.).
A data.grid
object with the additional (some optional) components:
kpred |
vector or array (dimension |
ksd |
vector or array with the kriging standard deviations. |
kriging |
(if requested) a list with 4 components:
|
When newx
is a matrix of coordinates (where each row is a prediction location),
kriging.simple()
returns a list with the previous components (kpred
, ksd
and, if requested, kriging
).
geomod <- np.fitgeo(aquifer[,1:2], aquifer$head) krig.grid <- np.kriging(geomod, ngrid = c(96, 96)) # 9216 locations old.par <- par(mfrow = c(1,2)) simage(krig.grid, 'kpred', main = 'Kriging predictions', xlab = "Longitude", ylab = "Latitude", reset = FALSE ) simage(krig.grid, 'ksd', main = 'Kriging sd', xlab = "Longitude", ylab = "Latitude" , col = hot.colors(256), reset = FALSE) par(old.par)
geomod <- np.fitgeo(aquifer[,1:2], aquifer$head) krig.grid <- np.kriging(geomod, ngrid = c(96, 96)) # 9216 locations old.par <- par(mfrow = c(1,2)) simage(krig.grid, 'kpred', main = 'Kriging predictions', xlab = "Longitude", ylab = "Latitude", reset = FALSE ) simage(krig.grid, 'ksd', main = 'Kriging sd', xlab = "Longitude", ylab = "Latitude" , col = hot.colors(256), reset = FALSE) par(old.par)
Estimates a multidimensional semivariogram (and its first derivatives) using local polynomial kernel smoothing of linearly binned semivariances.
np.svar(x, ...) ## Default S3 method: np.svar( x, y, h = NULL, maxlag = NULL, nlags = NULL, minlag = maxlag/nlags, degree = 1, drv = FALSE, hat.bin = TRUE, ncv = 0, ... ) ## S3 method for class 'svar.bin' np.svar(x, h = NULL, degree = 1, drv = FALSE, hat.bin = TRUE, ncv = 0, ...) np.svariso( x, y, h = NULL, maxlag = NULL, nlags = NULL, minlag = maxlag/nlags, degree = 1, drv = FALSE, hat.bin = TRUE, ncv = 0, ... ) np.svariso.hcv( x, y, maxlag = NULL, nlags = NULL, minlag = maxlag/nlags, degree = 1, drv = FALSE, hat.bin = TRUE, loss = c("MRSE", "MRAE", "MSE", "MAE"), ncv = 1, warn = FALSE, ... ) np.svariso.corr( lp, x = lp$data$x, h = NULL, maxlag = NULL, nlags = NULL, minlag = maxlag/nlags, degree = 1, drv = FALSE, hat.bin = TRUE, tol = 0.05, max.iter = 10, plot = FALSE, verbose = plot, ylim = c(0, 2 * max(svar$biny, na.rm = TRUE)) )
np.svar(x, ...) ## Default S3 method: np.svar( x, y, h = NULL, maxlag = NULL, nlags = NULL, minlag = maxlag/nlags, degree = 1, drv = FALSE, hat.bin = TRUE, ncv = 0, ... ) ## S3 method for class 'svar.bin' np.svar(x, h = NULL, degree = 1, drv = FALSE, hat.bin = TRUE, ncv = 0, ...) np.svariso( x, y, h = NULL, maxlag = NULL, nlags = NULL, minlag = maxlag/nlags, degree = 1, drv = FALSE, hat.bin = TRUE, ncv = 0, ... ) np.svariso.hcv( x, y, maxlag = NULL, nlags = NULL, minlag = maxlag/nlags, degree = 1, drv = FALSE, hat.bin = TRUE, loss = c("MRSE", "MRAE", "MSE", "MAE"), ncv = 1, warn = FALSE, ... ) np.svariso.corr( lp, x = lp$data$x, h = NULL, maxlag = NULL, nlags = NULL, minlag = maxlag/nlags, degree = 1, drv = FALSE, hat.bin = TRUE, tol = 0.05, max.iter = 10, plot = FALSE, verbose = plot, ylim = c(0, 2 * max(svar$biny, na.rm = TRUE)) )
x |
object used to select a method. Usually a matrix with the coordinates of the data locations (columns correspond with dimensions and rows with data). |
... |
further arguments passed to or from other methods. |
y |
vector of data (response variable). |
h |
(full) bandwidth matrix (controls the degree of smoothing; only the upper triangular part of h is used). |
maxlag |
maximum lag. Defaults to 55% of largest lag. |
nlags |
number of lags. Defaults to 101. |
minlag |
minimun lag. |
degree |
degree of the local polynomial used. Defaults to 1 (local linear estimation). |
drv |
logical; if |
hat.bin |
logical; if |
ncv |
integer; determines the number of cells leaved out in each dimension. Defaults to 0 (the full data is used) and it is not normally changed by the user in this setting. See "Details" below. |
loss |
character; CV error. See "Details" bellow. |
warn |
logical; sets the handling of warning messages
(normally due to the lack of data in some neighborhoods).
If |
lp |
local polynomial estimate of the trend function (object of class
|
tol |
convergence tolerance. The algorithm stops if the average of the
relative squared diferences is less than |
max.iter |
maximum number of iterations. Defaults to 10. |
plot |
logical; if |
verbose |
logical; if |
ylim |
y-limits of the plot (if |
Currently, only isotropic semivariogram estimation is supported.
If parameter nlags
is not specified is set to 101
.
The computation of the hat matrix of the binned semivariances (hat.bin = TRUE
)
allows for the computation of approximated estimation variances (e.g. in fitsvar.sb.iso
).
A multiplicative triweight kernel is used to compute the weights.
np.svariso.hcv
calls h.cv
to obtain an "optimal"
bandwith (additional arguments ...
are passed to this function).
Argument ncv
is only used here at the bandwith selection stage
(estimation is done with all the data).
np.svariso.corr
computes a bias-corrected nonparametric semivariogram
estimate using an iterative algorithm similar to that described in
Fernandez-Casal and Francisco-Fernandez (2014). This procedure tries to correct
the bias due to the direct use of residuals (obtained in this case from a
nonparametric estimation of the trend function) in semivariogram estimation.
Returns an S3 object of class np.svar
(locpol svar + binned svar + grid par.),
extends svar.bin
, with the additional (some optional) 3 components:
est |
vector or array with the local polynomial semivariogram estimates. |
locpol |
a list of 6 components:
|
deriv |
(if requested) matrix of estimated first semivariogram derivatives. |
Fernandez Casal R., Gonzalez Manteiga W. and Febrero Bande M. (2003) Space-time dependency modeling using general classes of flexible stationary variogram models, J. Geophys. Res., 108, 8779, doi:10.1029/2002JD002909.
Garcia-Soidan P.H., Gonzalez-Manteiga W. and Febrero-Bande M. (2003) Local linear regression estimation of the variogram, Stat. Prob. Lett., 64, 169-179.
Fernandez-Casal R. and Francisco-Fernandez M. (2014) Nonparametric bias-corrected variogram estimation under non-constant trend, Stoch. Environ. Res. Ris. Assess, 28, 1247-1259.
Utilities to interact with the geoR package.
as.variogram(x, ...) ## S3 method for class 'svar.bin' as.variogram(x, ...) ## S3 method for class 'np.svar' as.variogram(x, ...) as.variomodel(m, ...) ## S3 method for class 'svarmod' as.variomodel(m, ...)
as.variogram(x, ...) ## S3 method for class 'svar.bin' as.variogram(x, ...) ## S3 method for class 'np.svar' as.variogram(x, ...) as.variomodel(m, ...) ## S3 method for class 'svarmod' as.variomodel(m, ...)
x |
|
... |
further arguments passed to or from other methods. |
m |
variogram model (e.g. |
as.variogram
tries to convert a semivariogram estimate
to an object of the (not fully documented) geoR-class
variogram
(see e.g. variog
).
as.variomodel
tries to convert a semivariogram model
to an object of the geoR-class
variomodel
(see e.g. variofit
).
as.variogram()
returns an object of the (not fully documented) geoR-class
variogram
.
as.variomodel()
returns an object of the geoR-class variomodel
.
variog
, variofit
, variomodel
,
svar.bin
, np.svar
.
Utilities to interact with the gstat package.
as.vgm(x, ...) ## S3 method for class 'variomodel' as.vgm(x, ...) ## S3 method for class 'svarmod' as.vgm(x, ...) vgm.tab.svarmod(x, h = seq(0, x$range, length = 1000), sill = x$sill, ...) ## S3 method for class 'sb.iso' as.vgm(x, h = seq(0, x$range, length = 1000), sill = x$sill, ...)
as.vgm(x, ...) ## S3 method for class 'variomodel' as.vgm(x, ...) ## S3 method for class 'svarmod' as.vgm(x, ...) vgm.tab.svarmod(x, h = seq(0, x$range, length = 1000), sill = x$sill, ...) ## S3 method for class 'sb.iso' as.vgm(x, h = seq(0, x$range, length = 1000), sill = x$sill, ...)
x |
variogram model object (used to select a method). |
... |
further arguments passed to or from other methods. |
h |
vector of lags at which the covariogram is evaluated. |
sill |
sill of the covariogram (or pseudo-sill). |
Tries to convert a variogram object to vgm
(variogramModel
-class
of gstat package).
S3 generic function.
as.vgm.variomodel
tries to convert an object of class variomodel
defined in geoR (interface to as.vgm.variomodel
defined in gstat).
vgm.tab.svarmod
converts a svarmod
object to a
variogramModel
-class
object of type "Tab"
(one-dimensional covariance table).
as.vgm.sb.iso
is an alias of vgm.tab.svarmod
.
A variogramModel
-class
object of the gstat package.
Returns a (convergence, taper, approximation,...) tolerance.
Defaults to .Machine$double.eps^(1/level)
, typically about 1e-8
.
npsp.tolerance(level = 2, warn = TRUE)
npsp.tolerance(level = 2, warn = TRUE)
level |
numerical, |
warn |
logical; If |
Returns .Machine$double.eps^(1/level)
if level >= 1
,
in other case 1 - .Machine$double.eps
.
curve(npsp.tolerance, 1, 1000) abline(h = npsp.tolerance(0, FALSE), lty = 2)
curve(npsp.tolerance, 1, 1000) abline(h = npsp.tolerance(0, FALSE), lty = 2)
Plots the trend estimates and the fitted variogram model.
## S3 method for class 'fitgeo' plot(x, y = NULL, main.trend = "Trend estimates", main.svar = NULL, ...)
## S3 method for class 'fitgeo' plot(x, y = NULL, main.trend = "Trend estimates", main.svar = NULL, ...)
x |
a nonparametric geostatistical model object.
Typically an output of |
y |
ignored argument. |
main.trend |
title for the trend plot. |
main.svar |
title for the semivariogram plot. |
... |
additional graphical parameters
(to be passed to |
No return value, called for side effects (generate the plot).
geomod <- np.fitgeo(aquifer[,1:2], aquifer$head) plot(geomod)
geomod <- np.fitgeo(aquifer[,1:2], aquifer$head) plot(geomod)
The data set consists of total precipitations during March 2016 recorded over 1053 locations on the continental part of USA.
A SpatialPointsDataFrame
with 1053 observations on the
following 6 variables:
total precipitations (square-root of rainfall inches),
five-digit Weather station identifier,
factor containing the U.S. state,
and the following attributes
:
list with data and variable labels,
SpatialPolygons
with the boundary
of the continental part of USA,
SpatialPolygons
with the U.S. state boundaries.
National Climatic Data Center:
https://www.ncdc.noaa.gov/cdo-web/datasets.
Fernandez-Casal R., Castillo-Paez S. and Francisco-Fernandez M. (2017) Nonparametric geostatistical risk mapping, Stoch. Environ. Res. Ris. Assess., doi:10.1007/s00477-017-1407-y.
Fernandez-Casal R., Castillo-Paez S. and Garcia-Soidan P. (2017) Nonparametric estimation of the small-scale variability of heteroscedastic spatial processes, Spa. Sta., doi:10.1016/j.spasta.2017.04.001.
summary(precipitation) scattersplot(precipitation)
summary(precipitation) scattersplot(precipitation)
Draw an image, perspective, contour or filled contour plot for data
on a bidimensional regular grid (S3 methods for class "data.grid
").
## S3 method for class 'data.grid' image( x, data.ind = 1, xlab = NULL, ylab = NULL, useRaster = all(dim(x) > dev.size("px")), ... ) ## S3 method for class 'data.grid' persp(x, data.ind = 1, xlab = NULL, ylab = NULL, zlab = NULL, ...) ## S3 method for class 'data.grid' contour(x, data.ind = 1, filled = FALSE, xlab = NULL, ylab = NULL, ...)
## S3 method for class 'data.grid' image( x, data.ind = 1, xlab = NULL, ylab = NULL, useRaster = all(dim(x) > dev.size("px")), ... ) ## S3 method for class 'data.grid' persp(x, data.ind = 1, xlab = NULL, ylab = NULL, zlab = NULL, ...) ## S3 method for class 'data.grid' contour(x, data.ind = 1, filled = FALSE, xlab = NULL, ylab = NULL, ...)
x |
a " |
data.ind |
integer (or character) with the index (or name) of the component containing the values to be used for coloring the rectangles. |
xlab |
label for the x axis, defaults to |
ylab |
label for the y axis, defaults to |
useRaster |
logical; if |
... |
additional graphical parameters (to be passed to main plot function). |
zlab |
label for the z axis, defaults to |
filled |
logical; if |
image()
and contour()
do not return any value, call for secondary
effects (generate the corresponding plot).
persp()
invisibly returns the viewing transformation matrix (see
persp
for details), a 4 x 4 matrix that can be used to superimpose
additional graphical elements using the function trans3d
.
image
, persp
, contour
,
filled.contour
, data.grid
.
# Regularly spaced 2D data grid <- grid.par(n = c(50, 50), min = c(-1, -1), max = c(1, 1)) f2d <- function(x) x[1]^2 - x[2]^2 trend <- apply(coords(grid), 1, f2d) set.seed(1) y <- trend + rnorm(prod(dim(grid)), 0, 0.1) gdata <- data.grid(trend = trend, y = y, grid = grid) # perspective plot persp(gdata, main = 'Trend', theta = 40, phi = 20, ticktype = "detailed") # filled contour plot contour(gdata, main = 'Trend', filled = TRUE, color.palette = jet.colors) # Multiple plots with a common legend: scale.range <- c(-1.2, 1.2) scale.color <- jet.colors(64) # 1x2 plot with some room for the legend... old.par <- par(mfrow = c(1,2), omd = c(0.05, 0.85, 0.05, 0.95)) image(gdata, zlim = scale.range, main = 'Trend', col = scale.color) contour(gdata, add = TRUE) image(gdata, 'y', zlim = scale.range, main = 'Data', col = scale.color) contour(gdata, 'y', add = TRUE) par(old.par) # the legend can be added to any plot... splot(slim = scale.range, col = scale.color, add = TRUE)
# Regularly spaced 2D data grid <- grid.par(n = c(50, 50), min = c(-1, -1), max = c(1, 1)) f2d <- function(x) x[1]^2 - x[2]^2 trend <- apply(coords(grid), 1, f2d) set.seed(1) y <- trend + rnorm(prod(dim(grid)), 0, 0.1) gdata <- data.grid(trend = trend, y = y, grid = grid) # perspective plot persp(gdata, main = 'Trend', theta = 40, phi = 20, ticktype = "detailed") # filled contour plot contour(gdata, main = 'Trend', filled = TRUE, color.palette = jet.colors) # Multiple plots with a common legend: scale.range <- c(-1.2, 1.2) scale.color <- jet.colors(64) # 1x2 plot with some room for the legend... old.par <- par(mfrow = c(1,2), omd = c(0.05, 0.85, 0.05, 0.95)) image(gdata, zlim = scale.range, main = 'Trend', col = scale.color) contour(gdata, add = TRUE) image(gdata, 'y', zlim = scale.range, main = 'Data', col = scale.color) contour(gdata, 'y', add = TRUE) par(old.par) # the legend can be added to any plot... splot(slim = scale.range, col = scale.color, add = TRUE)
Compute the number of classes for a histogram, the number of nodes of a binning grid, etc.
rule(x, d = 1, rule = c("Rice", "Sturges", "scott", "FD"), ...) rule.binning(x, ...) ## Default S3 method: rule.binning(x, d = ncol(x), a = 2, b = d + 1, ...) rule.svar(x, ...) ## Default S3 method: rule.svar(x, d = ncol(x), a = 2, b = d + 1, ...) ## S3 method for class 'bin.den' rule.svar(x, ...)
rule(x, d = 1, rule = c("Rice", "Sturges", "scott", "FD"), ...) rule.binning(x, ...) ## Default S3 method: rule.binning(x, d = ncol(x), a = 2, b = d + 1, ...) rule.svar(x, ...) ## Default S3 method: rule.svar(x, d = ncol(x), a = 2, b = d + 1, ...) ## S3 method for class 'bin.den' rule.svar(x, ...)
x |
data vector or object used to select a method. |
d |
(spatial) dimension. |
rule |
character; rule to be used. |
... |
further arguments passed to or from other methods. |
a |
scale values. |
b |
exponent values. |
The Rice Rule,
is a simple alternative to Sturges's rule (
nclass.Sturges
).
The rule values (vector or scalar).
rule.binning
returns a vector with the suggested number of bins
on each dimension.
rule.binning.default
returns rep(ceiling(a * nrow(x) ^ (1 / b)), d)
.
rule.svar
returns the suggested number of bins
for variogram estimation.
rule.svar.default
returns ceiling(a * (nrow(x)^2 / 4) ^ (1 / b))
.
hist
, nclass.Sturges
, nclass.scott
,
nclass.FD
,
binning
, np.den
, bin.den
.
Draws (in a 2 by 2 layout) the following plots: a scatter plot with a color scale, the scatter plots of the response against the (first two) coordinates and the histogram of the response values.
scattersplot(x, ...) ## Default S3 method: scattersplot( x, z, main, xlab, ylab, zlab, col = hot.colors(128), lowess = TRUE, density = FALSE, omd = c(0.05, 0.95, 0.01, 0.95), ... ) ## S3 method for class 'SpatialPointsDataFrame' scattersplot( x, data.ind = 1, main, xlab, ylab, zlab, col = hot.colors(128), lowess = TRUE, density = FALSE, omd = c(0.05, 0.95, 0.01, 0.95), ... )
scattersplot(x, ...) ## Default S3 method: scattersplot( x, z, main, xlab, ylab, zlab, col = hot.colors(128), lowess = TRUE, density = FALSE, omd = c(0.05, 0.95, 0.01, 0.95), ... ) ## S3 method for class 'SpatialPointsDataFrame' scattersplot( x, data.ind = 1, main, xlab, ylab, zlab, col = hot.colors(128), lowess = TRUE, density = FALSE, omd = c(0.05, 0.95, 0.01, 0.95), ... )
x |
object used to select a method. |
... |
additional graphical parameters (to be passed to |
z |
vector of data (response variable). |
main |
an overall title for the plot. |
xlab |
a title for the axis corresponding to the first coordinate. |
ylab |
a title for the axis corresponding to the second coordinate. |
zlab |
a title for the axis corresponding to the response. |
col |
color table used to set up the color scale (see |
lowess |
logical. If |
density |
logical. If |
omd |
a vector of the form |
data.ind |
integer (or character) with the index (or name) of the data component. |
Standard generic function with a default method, in which argument x
is a matrix with the spatial coordinates (each row is a point).
scattersplot.SpatialPointsDataFrame
sets default values for some of the arguments
from attributes of the object x
(if present; see e.g. precipitation
).
No return value, called for side effects (generate the plot).
splot
, spoints
, lowess
,
density
simage
(generic function) draws an image (a grid of colored rectangles)
and (optionally) adds a legend strip with the color scale
(calls splot
and image
).
plot.np.den
calls simage.data.grid
(contour
and points
also by default).
simage(x, ...) ## Default S3 method: simage( x = seq(0, 1, len = nrow(s)), y = seq(0, 1, len = ncol(s)), s, slim = range(s, finite = TRUE), col = jet.colors(128), breaks = NULL, legend = TRUE, horizontal = FALSE, legend.shrink = 1, legend.width = 1.2, legend.mar = ifelse(horizontal, 3.1, 5.1), legend.lab = NULL, bigplot = NULL, smallplot = NULL, lab.breaks = NULL, axis.args = NULL, legend.args = NULL, reset = TRUE, xlab = NULL, ylab = NULL, asp = NA, ... ) ## S3 method for class 'data.grid' simage(x, data.ind = 1, xlab = NULL, ylab = NULL, ...) ## S3 method for class 'np.den' plot( x, y = NULL, log = TRUE, contour = TRUE, points = TRUE, col = hot.colors(128), tolerance = npsp.tolerance(), reset = TRUE, ... )
simage(x, ...) ## Default S3 method: simage( x = seq(0, 1, len = nrow(s)), y = seq(0, 1, len = ncol(s)), s, slim = range(s, finite = TRUE), col = jet.colors(128), breaks = NULL, legend = TRUE, horizontal = FALSE, legend.shrink = 1, legend.width = 1.2, legend.mar = ifelse(horizontal, 3.1, 5.1), legend.lab = NULL, bigplot = NULL, smallplot = NULL, lab.breaks = NULL, axis.args = NULL, legend.args = NULL, reset = TRUE, xlab = NULL, ylab = NULL, asp = NA, ... ) ## S3 method for class 'data.grid' simage(x, data.ind = 1, xlab = NULL, ylab = NULL, ...) ## S3 method for class 'np.den' plot( x, y = NULL, log = TRUE, contour = TRUE, points = TRUE, col = hot.colors(128), tolerance = npsp.tolerance(), reset = TRUE, ... )
x |
grid values for |
... |
additional graphical parameters (to be passed to |
y |
grid values for |
s |
matrix containing the values to be used for coloring the rectangles (NAs are allowed).
Note that |
slim |
limits used to set up the color scale. |
col |
color table used to set up the color scale (see |
breaks |
(optional) numeric vector with the breakpoints for the color scale:
must have one more breakpoint than |
legend |
logical; if |
horizontal |
logical; if |
legend.shrink |
amount to shrink the size of legend relative to the full height or width of the plot. |
legend.width |
width in characters of the legend strip. Default is 1.2, a little bigger that the width of a character. |
legend.mar |
width in characters of legend margin that has the axis. Default is 5.1 for a vertical legend and 3.1 for a horizontal legend. |
legend.lab |
label for the axis of the color legend. Default is no label as this is usual evident from the plot title. |
bigplot |
plot coordinates for main plot. If not passed these will be determined within the function. |
smallplot |
plot coordinates for legend strip. If not passed these will be determined within the function. |
lab.breaks |
if breaks are supplied these are text string labels to put at each break value. This is intended to label axis on a transformed scale such as logs. |
axis.args |
additional arguments for the axis function used to create
the legend axis (see |
legend.args |
arguments for a complete specification of the legend
label. This is in the form of list and is just passed to the |
reset |
logical; if |
xlab |
label for the x axis, defaults to a description of |
ylab |
label for the y axis, defaults to a description of |
asp |
the y/x aspect ratio, see |
data.ind |
integer (or character) with the index (or name) of the component containing the values to be used for coloring the rectangles. |
log |
logical; if |
contour |
logical; if |
points |
logical; if |
tolerance |
tolerance value (lower values are masked). |
Invisibly returns a list with the following 3 components:
bigplot |
plot coordinates of the main plot. These values may be useful for drawing a plot without the legend that is the same size as the plots with legends. |
smallplot |
plot coordinates of the secondary plot (legend strip). |
old.par |
previous graphical parameters ( |
After exiting, the plotting region may be changed
(par("plt")
) to make it possible to add more features to the plot
(set reset = FALSE
to avoid this).
Based on image.plot
function from package fields:
fields, Tools for spatial data.
Copyright 2004-2013, Institute for Mathematics Applied Geosciences.
University Corporation for Atmospheric Research.
Modified by Ruben Fernandez-Casal <[email protected]>.
splot
, spoints
, spersp
,
image
, image.plot
, data.grid
.
# Regularly spaced 2D data nx <- c(40, 40) # ndata = prod(nx) x1 <- seq(-1, 1, length.out = nx[1]) x2 <- seq(-1, 1, length.out = nx[2]) trend <- outer(x1, x2, function(x,y) x^2 - y^2) simage( x1, x2, trend, main = 'Trend') # Multiple plots set.seed(1) y <- trend + rnorm(prod(nx), 0, 0.1) x <- as.matrix(expand.grid(x1 = x1, x2 = x2)) # two-dimensional grid # local polynomial kernel regression lp <- locpol(x, y, nbin = nx, h = diag(c(0.3, 0.3))) # 1x2 plot old.par <- par(mfrow = c(1,2)) simage( x1, x2, y, main = 'Data', reset = FALSE) simage(lp, main = 'Estimated trend', reset = FALSE) par(old.par)
# Regularly spaced 2D data nx <- c(40, 40) # ndata = prod(nx) x1 <- seq(-1, 1, length.out = nx[1]) x2 <- seq(-1, 1, length.out = nx[2]) trend <- outer(x1, x2, function(x,y) x^2 - y^2) simage( x1, x2, trend, main = 'Trend') # Multiple plots set.seed(1) y <- trend + rnorm(prod(nx), 0, 0.1) x <- as.matrix(expand.grid(x1 = x1, x2 = x2)) # two-dimensional grid # local polynomial kernel regression lp <- locpol(x, y, nbin = nx, h = diag(c(0.3, 0.3))) # 1x2 plot old.par <- par(mfrow = c(1,2)) simage( x1, x2, y, main = 'Data', reset = FALSE) simage(lp, main = 'Estimated trend', reset = FALSE) par(old.par)
spersp
(generic function) draws a perspective plot of a surface over
the x-y
plane with the facets being filled with different colors
and (optionally) adds a legend strip with the color scale
(calls splot
and persp
).
spersp(x, ...) ## Default S3 method: spersp( x = seq(0, 1, len = nrow(z)), y = seq(0, 1, len = ncol(z)), z, s = z, slim = range(s, finite = TRUE), col = jet.colors(128), breaks = NULL, legend = TRUE, horizontal = FALSE, legend.shrink = 0.8, legend.width = 1.2, legend.mar = ifelse(horizontal, 3.1, 5.1), legend.lab = NULL, bigplot = NULL, smallplot = NULL, lab.breaks = NULL, axis.args = NULL, legend.args = NULL, reset = TRUE, xlab = NULL, ylab = NULL, zlab = NULL, theta = 40, phi = 20, ticktype = "detailed", cex.axis = 0.75, ... ) ## S3 method for class 'data.grid' spersp( x, data.ind = 1, s = x[[data.ind]], xlab = NULL, ylab = NULL, zlab = NULL, ... )
spersp(x, ...) ## Default S3 method: spersp( x = seq(0, 1, len = nrow(z)), y = seq(0, 1, len = ncol(z)), z, s = z, slim = range(s, finite = TRUE), col = jet.colors(128), breaks = NULL, legend = TRUE, horizontal = FALSE, legend.shrink = 0.8, legend.width = 1.2, legend.mar = ifelse(horizontal, 3.1, 5.1), legend.lab = NULL, bigplot = NULL, smallplot = NULL, lab.breaks = NULL, axis.args = NULL, legend.args = NULL, reset = TRUE, xlab = NULL, ylab = NULL, zlab = NULL, theta = 40, phi = 20, ticktype = "detailed", cex.axis = 0.75, ... ) ## S3 method for class 'data.grid' spersp( x, data.ind = 1, s = x[[data.ind]], xlab = NULL, ylab = NULL, zlab = NULL, ... )
x |
grid values for |
... |
additional graphical parameters (to be passed to |
y |
grid values for |
z |
matrix containing the values to be plotted (NAs are allowed).
Note that |
s |
matrix containing the values used for coloring the facets. |
slim |
limits used to set up the color scale. |
col |
color table used to set up the color scale (see |
breaks |
(optional) numeric vector with the breakpoints for the color scale:
must have one more breakpoint than |
legend |
logical; if |
horizontal |
logical; if |
legend.shrink |
amount to shrink the size of legend relative to the full height or width of the plot. |
legend.width |
width in characters of the legend strip. Default is 1.2, a little bigger that the width of a character. |
legend.mar |
width in characters of legend margin that has the axis. Default is 5.1 for a vertical legend and 3.1 for a horizontal legend. |
legend.lab |
label for the axis of the color legend. Default is no label as this is usual evident from the plot title. |
bigplot |
plot coordinates for main plot. If not passed these will be determined within the function. |
smallplot |
plot coordinates for legend strip. If not passed these will be determined within the function. |
lab.breaks |
if breaks are supplied these are text string labels to put at each break value. This is intended to label axis on a transformed scale such as logs. |
axis.args |
additional arguments for the axis function used to create
the legend axis (see |
legend.args |
arguments for a complete specification of the legend
label. This is in the form of list and is just passed to the |
reset |
logical; if |
xlab |
label for the x axis, defaults to a description of |
ylab |
label for the y axis, defaults to a description of |
zlab |
label for the z axis, defaults to a description of |
theta |
x-y rotation angle for perspective (azimuthal direction). |
phi |
z-angle for perspective (colatitude). |
ticktype |
character; |
cex.axis |
magnification to be used for axis annotation (relative to the
current setting of |
data.ind |
integer (or character) with the index (or name) of the component
containing the |
Invisibly returns a list with the following 4 components:
pm |
the viewing transformation matrix (see |
bigplot |
plot coordinates of the main plot. These values may be useful for drawing a plot without the legend that is the same size as the plots with legends. |
smallplot |
plot coordinates of the secondary plot (legend strip). |
old.par |
previous graphical parameters ( |
After exiting, the plotting region may be changed
(par("plt")
) to make it possible to add more features to the plot
(set reset = FALSE
to avoid this).
Based on image.plot
function from package fields:
fields, Tools for spatial data.
Copyright 2004-2013, Institute for Mathematics Applied Geosciences.
University Corporation for Atmospheric Research.
Modified by Ruben Fernandez-Casal <[email protected]>.
splot
, spoints
, simage
,
image
, image.plot
, data.grid
,
persp
.
# Regularly spaced 2D data nx <- c(40, 40) # ndata = prod(nx) x1 <- seq(-1, 1, length.out = nx[1]) x2 <- seq(-1, 1, length.out = nx[2]) trend <- outer(x1, x2, function(x,y) x^2 - y^2) spersp( x1, x2, trend, main = 'Trend', zlab = 'y') # Multiple plots set.seed(1) y <- trend + rnorm(prod(nx), 0, 0.1) x <- as.matrix(expand.grid(x1 = x1, x2 = x2)) # two-dimensional grid # local polynomial kernel regression lp <- locpol(x, y, nbin = nx, h = diag(c(0.3, 0.3))) # 1x2 plot old.par <- par(mfrow = c(1,2)) spersp( x1, x2, y, main = 'Data', reset = FALSE) spersp(lp, main = 'Estimated trend', zlab = 'y', reset = FALSE) par(old.par)
# Regularly spaced 2D data nx <- c(40, 40) # ndata = prod(nx) x1 <- seq(-1, 1, length.out = nx[1]) x2 <- seq(-1, 1, length.out = nx[2]) trend <- outer(x1, x2, function(x,y) x^2 - y^2) spersp( x1, x2, trend, main = 'Trend', zlab = 'y') # Multiple plots set.seed(1) y <- trend + rnorm(prod(nx), 0, 0.1) x <- as.matrix(expand.grid(x1 = x1, x2 = x2)) # two-dimensional grid # local polynomial kernel regression lp <- locpol(x, y, nbin = nx, h = diag(c(0.3, 0.3))) # 1x2 plot old.par <- par(mfrow = c(1,2)) spersp( x1, x2, y, main = 'Data', reset = FALSE) spersp(lp, main = 'Estimated trend', zlab = 'y', reset = FALSE) par(old.par)
splot
is designed to combine a standard R plot with
a legend representing a (continuous) color scale. This is done by splitting
the plotting region into two parts. Keeping one for the main chart and
putting the legend in the other.
For instance, sxxxx
functions (spoints
, simage
and spersp
) draw the corresponding high-level plot (xxxx
),
after calling splot
, to include a legend strip for the color scale.
These functions are based on function image.plot
of package
fields, see its documentation for additional information.
jet.colors
and hot.colors
create a color table useful for contiguous
color scales and scolor
assigns colors to a numerical vector.
splot( slim = c(0, 1), col = jet.colors(128), breaks = NULL, horizontal = FALSE, legend.shrink = 0.9, legend.width = 1.2, legend.mar = ifelse(horizontal, 3.1, 5.1), legend.lab = NULL, bigplot = NULL, smallplot = NULL, lab.breaks = NULL, axis.args = NULL, legend.args = NULL, add = FALSE ) scolor(s, col = jet.colors(128), slim = range(s, finite = TRUE)) jet.colors(n) hot.colors(n, rev = TRUE)
splot( slim = c(0, 1), col = jet.colors(128), breaks = NULL, horizontal = FALSE, legend.shrink = 0.9, legend.width = 1.2, legend.mar = ifelse(horizontal, 3.1, 5.1), legend.lab = NULL, bigplot = NULL, smallplot = NULL, lab.breaks = NULL, axis.args = NULL, legend.args = NULL, add = FALSE ) scolor(s, col = jet.colors(128), slim = range(s, finite = TRUE)) jet.colors(n) hot.colors(n, rev = TRUE)
slim |
limits used to set up the color scale. |
col |
color table used to set up the color scale (see |
breaks |
(optional) numeric vector with the breakpoints for the color scale:
must have one more breakpoint than |
horizontal |
logical; if |
legend.shrink |
amount to shrink the size of legend relative to the full height or width of the plot. |
legend.width |
width in characters of the legend strip. Default is 1.2, a little bigger that the width of a character. |
legend.mar |
width in characters of legend margin that has the axis. Default is 5.1 for a vertical legend and 3.1 for a horizontal legend. |
legend.lab |
label for the axis of the color legend. Default is no label as this is usual evident from the plot title. |
bigplot |
plot coordinates for main plot. If not passed these will be determined within the function. |
smallplot |
plot coordinates for legend strip. If not passed these will be determined within the function. |
lab.breaks |
if breaks are supplied these are text string labels to put at each break value. This is intended to label axis on a transformed scale such as logs. |
axis.args |
additional arguments for the axis function used to create
the legend axis (see |
legend.args |
arguments for a complete specification of the legend
label. This is in the form of list and is just passed to the |
add |
logical; if |
s |
values to be converted to the color scale. |
n |
number of colors ( |
rev |
logical; if |
scolor
converts a real valued vector to a color scale. The range
slim
is divided into length(col) + 1
pieces of equal length.
Values which fall outside the range of the scale are coded as NA
.
jet.colors
generates a rainbow style color table similar to the MATLAB (TM)
jet color scheme. It may be appropriate to distinguish between values above and
below a central value (e.g. between positive and negative values).
hot.colors
generates a color table similar to the MATLAB (TM)
hot color scheme (reversed by default). It may be appropriate to represent values
ranging from 0 to some maximum level (e.g. density estimation).
The default value rev = TRUE
may be adecuate to grayscale convertion.
splot
invisibly returns a list with the following 3 components:
bigplot |
plot coordinates of the main plot. These values may be useful for drawing a plot without the legend that is the same size as the plots with legends. |
smallplot |
plot coordinates of the secondary plot (legend strip). |
old.par |
previous graphical parameters ( |
jet.colors
and hot.colors
return a character vector of colors (similar to
heat.colors
or terrain.colors
; see rgb
).
After exiting splot
, the plotting region may be changed
(par("plt")
) to make it possible to add more features to the plot.
Based on image.plot
function from package fields:
fields, Tools for spatial data.
Copyright 2004-2013, Institute for Mathematics Applied Geosciences.
University Corporation for Atmospheric Research.
Modified by Ruben Fernandez-Casal <[email protected]>.
spoints
, simage
, spersp
,
image
, image.plot
.
# Plot equivalent to spoints(): scale.range <- range(aquifer$head) res <- splot(slim = scale.range) with( aquifer, plot(lon, lat, col = scolor(head, slim = scale.range), pch = 16, cex = 1.5, main = "Wolfcamp aquifer data")) par(res$old.par) # restore graphical parameters # Multiple plots with a common legend: # regularly spaced 2D data... set.seed(1) nx <- c(40, 40) # ndata = prod(nx) x1 <- seq(-1, 1, length.out = nx[1]) x2 <- seq(-1, 1, length.out = nx[2]) trend <- outer(x1, x2, function(x,y) x^2 - y^2) y <- trend + rnorm(prod(nx), 0, 0.1) scale.range <- c(-1.2, 1.2) scale.color <- heat.colors(64) # 1x2 plot with some room for the legend... old.par <- par(mfrow = c(1,2), omd = c(0.05, 0.85, 0.05, 0.95)) image( x1, x2, trend, zlim = scale.range, main = 'Trend', col = scale.color) image( x1, x2, y, zlim = scale.range, main = 'Data', col = scale.color) par(old.par) # the legend can be added to any plot... splot(slim = scale.range, col = scale.color, add = TRUE) ## note that argument 'zlim' in 'image' corresponds with 'slim' in 'sxxxx' functions.
# Plot equivalent to spoints(): scale.range <- range(aquifer$head) res <- splot(slim = scale.range) with( aquifer, plot(lon, lat, col = scolor(head, slim = scale.range), pch = 16, cex = 1.5, main = "Wolfcamp aquifer data")) par(res$old.par) # restore graphical parameters # Multiple plots with a common legend: # regularly spaced 2D data... set.seed(1) nx <- c(40, 40) # ndata = prod(nx) x1 <- seq(-1, 1, length.out = nx[1]) x2 <- seq(-1, 1, length.out = nx[2]) trend <- outer(x1, x2, function(x,y) x^2 - y^2) y <- trend + rnorm(prod(nx), 0, 0.1) scale.range <- c(-1.2, 1.2) scale.color <- heat.colors(64) # 1x2 plot with some room for the legend... old.par <- par(mfrow = c(1,2), omd = c(0.05, 0.85, 0.05, 0.95)) image( x1, x2, trend, zlim = scale.range, main = 'Trend', col = scale.color) image( x1, x2, y, zlim = scale.range, main = 'Data', col = scale.color) par(old.par) # the legend can be added to any plot... splot(slim = scale.range, col = scale.color, add = TRUE) ## note that argument 'zlim' in 'image' corresponds with 'slim' in 'sxxxx' functions.
spoints
(generic function) draws a scatter plot with points filled with different colors
and (optionally) adds a legend strip with the color scale
(calls splot
and plot.default
).
spoints(x, ...) ## Default S3 method: spoints( x, y = NULL, s, slim = range(s, finite = TRUE), col = jet.colors(128), breaks = NULL, legend = TRUE, horizontal = FALSE, legend.shrink = 1, legend.width = 1.2, legend.mar = ifelse(horizontal, 3.1, 5.1), legend.lab = NULL, bigplot = NULL, smallplot = NULL, lab.breaks = NULL, axis.args = NULL, legend.args = NULL, add = FALSE, reset = TRUE, pch = 16, cex = 1.5, xlab = NULL, ylab = NULL, asp = NA, ... ) ## S3 method for class 'data.grid' spoints(x, s = x[[1]], xlab = NULL, ylab = NULL, ...) ## S3 method for class 'SpatialPointsDataFrame' spoints(x, data.ind = 1, main, xlab, ylab, legend.lab, ...)
spoints(x, ...) ## Default S3 method: spoints( x, y = NULL, s, slim = range(s, finite = TRUE), col = jet.colors(128), breaks = NULL, legend = TRUE, horizontal = FALSE, legend.shrink = 1, legend.width = 1.2, legend.mar = ifelse(horizontal, 3.1, 5.1), legend.lab = NULL, bigplot = NULL, smallplot = NULL, lab.breaks = NULL, axis.args = NULL, legend.args = NULL, add = FALSE, reset = TRUE, pch = 16, cex = 1.5, xlab = NULL, ylab = NULL, asp = NA, ... ) ## S3 method for class 'data.grid' spoints(x, s = x[[1]], xlab = NULL, ylab = NULL, ...) ## S3 method for class 'SpatialPointsDataFrame' spoints(x, data.ind = 1, main, xlab, ylab, legend.lab, ...)
x |
object used to select a method. In the default method, it provides the |
... |
additional graphical parameters (to be passed to the main plot function
or |
y |
y coordinates. Alternatively, a single argument |
s |
numerical vector containing the values used for coloring the points. |
slim |
limits used to set up the color scale. |
col |
color table used to set up the color scale (see |
breaks |
(optional) numeric vector with the breakpoints for the color scale:
must have one more breakpoint than |
legend |
logical; if |
horizontal |
logical; if |
legend.shrink |
amount to shrink the size of legend relative to the full height or width of the plot. |
legend.width |
width in characters of the legend strip. Default is 1.2, a little bigger that the width of a character. |
legend.mar |
width in characters of legend margin that has the axis. Default is 5.1 for a vertical legend and 3.1 for a horizontal legend. |
legend.lab |
label for the axis of the color legend. Default is no label as this is usual evident from the plot title. |
bigplot |
plot coordinates for main plot. If not passed, and |
smallplot |
plot coordinates for legend strip. If not passed, and |
lab.breaks |
if breaks are supplied these are text string labels to put at each break value. This is intended to label axis on a transformed scale such as logs. |
axis.args |
additional arguments for the axis function used to create
the legend axis (see |
legend.args |
arguments for a complete specification of the legend
label. This is in the form of list and is just passed to the |
add |
logical; if |
reset |
logical; if |
pch |
vector of plotting characters or symbols: see |
cex |
numerical vector giving the amount by which plotting characters
and symbols should be scaled relative to the default. This works as a multiple
of |
xlab |
label for the x axis, defaults to a description of |
ylab |
label for the y axis, defaults to a description of |
asp |
the y/x aspect ratio, see |
data.ind |
integer (or character) with the index (or name) of the data component. |
main |
an overall title for the plot. |
spoints.SpatialPointsDataFrame
sets default values for some of the arguments
from attributes of the object x
(if present; see e.g. precipitation
).
Invisibly returns a list with the following 3 components:
bigplot |
plot coordinates of the main plot. These values may be useful for drawing a plot without the legend that is the same size as the plots with legends. |
smallplot |
plot coordinates of the secondary plot (legend strip). |
old.par |
previous graphical parameters ( |
After exiting, the plotting region may be changed
(par("plt")
) to make it possible to add more features to the plot
(set reset = FALSE
to avoid this).
Based on image.plot
function from package fields:
fields, Tools for spatial data.
Copyright 2004-2013, Institute for Mathematics Applied Geosciences.
University Corporation for Atmospheric Research.
Modified by Ruben Fernandez-Casal <[email protected]>.
splot
, simage
, spersp
,
image
, image.plot
, data.grid
,
plot.default
.
with( aquifer, spoints(lon, lat, head, main = "Wolfcamp aquifer data"))
with( aquifer, spoints(lon, lat, head, main = "Wolfcamp aquifer data"))
Evaluates an svarmod
object x
at lags h
(S3 generic function).
sv(x, h, ...) ## Default S3 method: sv(x, h, ...) ## S3 method for class 'svarmod' sv(x, h, ...) ## S3 method for class 'svar.grid' sv(x, h, ...) ## S3 method for class 'sb.iso' sv(x, h, discretize = FALSE, ...)
sv(x, h, ...) ## Default S3 method: sv(x, h, ...) ## S3 method for class 'svarmod' sv(x, h, ...) ## S3 method for class 'svar.grid' sv(x, h, ...) ## S3 method for class 'sb.iso' sv(x, h, discretize = FALSE, ...)
x |
variogram model ( |
h |
vector (isotropic case) or matrix of lag values. |
... |
further arguments passed to or from other methods. |
discretize |
logical. If |
A vector of semivariance values .
Creates a svar.bin
(binned semivar. + grid parameters) object with
linearly binned semivariances (i.e. computes a binned sample variogram).
svar.bin(x, ...) ## Default S3 method: svar.bin( x, y, maxlag = NULL, nlags = NULL, minlag = maxlag/nlags, estimator = c("classical", "modulus"), ... ) svariso( x, y, maxlag = NULL, nlags = NULL, minlag = maxlag/nlags, estimator = c("classical", "modulus"), ... )
svar.bin(x, ...) ## Default S3 method: svar.bin( x, y, maxlag = NULL, nlags = NULL, minlag = maxlag/nlags, estimator = c("classical", "modulus"), ... ) svariso( x, y, maxlag = NULL, nlags = NULL, minlag = maxlag/nlags, estimator = c("classical", "modulus"), ... )
x |
object used to select a method. Usually a matrix with the coordinates of the data locations (columns correspond with dimensions and rows with data). |
... |
further arguments passed to or from other methods. |
y |
vector of data (response variable). |
maxlag |
maximum lag. Defaults to 55% of largest lag. |
nlags |
number of lags. Defaults to |
minlag |
minimun lag. |
estimator |
character, estimator name (e.g. "classical"). See "Details" below. |
Currently, only isotropic semivariogram estimation is supported.
If parameter nlags
is not specified is set to max(12, rule.svar(x))
.
Returns an S3 object of class svar.bin
(extends bin.data
),
a data.grid
object with the following 4 components:
biny |
array (dimension |
binw |
array (dimension |
grid |
|
data |
a list with 3 components:
|
svar |
a list of 2 components:
|
np.svariso
, np.svar
,
data.grid
, binning
, locpol
,
rule.svar
.
Discretizes a variogram model (to speed up variogram evaluation).
Constructor function of the svar.grid-class
.
svar.grid(svar, log = TRUE, ...) ## S3 method for class 'svarmod' svar.grid( svar, log = TRUE, n = 256, min = 10 * .Machine$double.eps, max = 1.1 * svar$range, ... )
svar.grid(svar, log = TRUE, ...) ## S3 method for class 'svarmod' svar.grid( svar, log = TRUE, n = 256, min = 10 * .Machine$double.eps, max = 1.1 * svar$range, ... )
svar |
|
log |
logical. If |
... |
further arguments passed to or from other methods. |
n |
number of lags. Defaults to 256. |
min |
minimun lag. Defaults to |
max |
maximum lag. Defaults to |
A svar.grid-class
object extending svarmod
,
bin.den
and data.grid
classes.
Utilities for plotting pilot semivariograms or fitted models.
plot.fitsvar
plots a fitted variogram model.
plot.svar.bin
plots the binned semivariances.
plot.np.svar
plots a local polynomial estimate of the semivariogram.
## S3 method for class 'fitsvar' plot( x, y = NULL, legend = TRUE, xlab = "distance", ylab = "semivariance", xlim = NULL, ylim = c(0, 1.25 * max(x$fit$sv, na.rm = TRUE)), lwd = c(1, 2), add = FALSE, ... ) ## S3 method for class 'svar.bin' plot( x, y = NULL, xlab = "distance", ylab = "semivariance", xlim = NULL, ylim = c(0, max(x$biny, na.rm = TRUE)), add = FALSE, ... ) ## S3 method for class 'np.svar' plot( x, y = NULL, xlab = "distance", ylab = "semivariance", xlim = NULL, ylim = c(0, max(x$biny, na.rm = TRUE)), add = FALSE, ... )
## S3 method for class 'fitsvar' plot( x, y = NULL, legend = TRUE, xlab = "distance", ylab = "semivariance", xlim = NULL, ylim = c(0, 1.25 * max(x$fit$sv, na.rm = TRUE)), lwd = c(1, 2), add = FALSE, ... ) ## S3 method for class 'svar.bin' plot( x, y = NULL, xlab = "distance", ylab = "semivariance", xlim = NULL, ylim = c(0, max(x$biny, na.rm = TRUE)), add = FALSE, ... ) ## S3 method for class 'np.svar' plot( x, y = NULL, xlab = "distance", ylab = "semivariance", xlim = NULL, ylim = c(0, max(x$biny, na.rm = TRUE)), add = FALSE, ... )
x |
a variogram object. Typically an output of functions
|
y |
ignored argument. |
legend |
logical; if |
xlab |
label for the x axis (defaults to "distance"). |
ylab |
label for the y axis (defaults to "semivariance"). |
xlim |
x-limits. |
ylim |
y-limits. |
lwd |
line widths for points (estimates) and lines (fitted model) respectively. |
add |
logical; if |
... |
additional graphical parameters (see |
No return value, called for side effects (generate the plot).
svariso
, np.svariso
, fitsvar.sb.iso
.
Defines a variogram model specifying the parameter values.
Constructor function of the svarmod
-class
.
svarmod( model, type = "isotropic", par, nugget = NULL, sill = NULL, range = NULL ) svarmod.sb.iso(dk, x, z, nu, range, sill = nu) svarmodels(type = "isotropic")
svarmod( model, type = "isotropic", par, nugget = NULL, sill = NULL, range = NULL ) svarmod.sb.iso(dk, x, z, nu, range, sill = nu) svarmodels(type = "isotropic")
model |
string indicating the variogram family (see Details below). |
type |
string indicating the type of variogram, e.g. "isotropic". |
par |
vector of variogram parameters. |
nugget |
nugget value |
sill |
variance |
range |
range (practical range or scale parameter) of the variogram (NA for unbounded variograms; maybe a vector for anisotropic variograms). |
dk |
dimension of the kappa function. |
x |
discretization nodes. |
z |
jumps (of the spectral distibution) at the discretization nodes. |
nu |
parameter |
svarmod
returns an svarmod
-class
object, a list
with function arguments as components.
svarmod.sb.iso
returns an S3 object of class
sb.iso
(extends svarmod
) corresponding to a ‘nonparametric’ isotropic Shapiro-Botha model.
svarmodels
returns a named character vector with the available models
of the corresponding type
(when appropriate, component values could be used as cov.model
argument in geoR routines
and component names as model
argument in gstat routines).
svarmod
does not check the consistency of the parameter values.
Shapiro, A. and Botha, J.D. (1991) Variogram fitting with a general class of conditionally non-negative definite functions. Computational Statistics and Data Analysis, 11, 87-96.
Computes the covariance matrix a corresponding to a set of spatial locations given a variogram model or a semivariogram estimate.
varcov(x, coords, ...) ## S3 method for class 'isotropic' varcov( x, coords, sill = x$sill, range.taper, discretize = nrow(coords) > 256, ... ) ## S3 method for class 'np.svar' varcov(x, coords, sill = max(x$est), range.taper = x$grid$max, ...)
varcov(x, coords, ...) ## S3 method for class 'isotropic' varcov( x, coords, sill = x$sill, range.taper, discretize = nrow(coords) > 256, ... ) ## S3 method for class 'np.svar' varcov(x, coords, sill = max(x$est), range.taper = x$grid$max, ...)
x |
variogram model ( |
coords |
matrix of coordinates (columns correspond with dimensions and rows with data). |
... |
further arguments passed to or from other methods. |
sill |
(theoretical or estimated) variance |
range.taper |
(optional) if provided, covariances corresponding to distances larger than this value are set to 0. |
discretize |
logical. If |
The covariance matrix of the data.