--- title: 'Kriging with gstat' author: 'Ruben Fernandez-Casal (ruben.fcasal@udc.es)' date: '`r paste("npsp", packageVersion("npsp"))`' output: rmarkdown::html_vignette vignette: > %\VignetteEngine{knitr::knitr} %\VignetteIndexEntry{Kriging with gstat} %\usepackage[UTF-8]{inputenc} --- ```{r setup, include=FALSE} knitr::opts_chunk$set(fig.height=5, fig.width=7, fig.align = 'center') ``` # Kriging with ***gstat*** You can use the `krige` (or `krige.cv`) utilities in `gstat` package together with `as.vgm` for (global or local) kriging... ## Wolfcamp aquifer data: ```{r fig.height=5, fig.width=7} library(npsp) # ?aquifer; str(aquifer); summary(aquifer) # Scatter plot with a color scale with(aquifer, spoints(lon, lat, head, main = "Wolfcamp aquifer data")) ``` ## Kriging ### Trend estimation ```{r} lp <- locpol(aquifer[,1:2], aquifer$head, h = diag(75, 2), hat.bin = TRUE) # np.svariso.corr: 'lp' must have a '$locpol$hat' component # Mask grid nodes far from data mask <- log(np.den(lp, h = diag(c(55,55)), degree = 0)$est) > -15 lp <- mask(lp, mask = mask) spersp(lp, main = 'Trend estimates', zlab = 'piezometric-head levels', theta = 120) cpu.time(total = FALSE) ``` ### Variogram estimation ```{r} lp.resid <- residuals(lp) esvar <- np.svariso(aquifer[,1:2], lp.resid, maxlag = 150, nlags = 60, h = 60) svm <- fitsvar.sb.iso(esvar) # dk = 2 esvar2 <- np.svariso.corr(lp, maxlag = 150, nlags = 60, h = 60) svm2 <- fitsvar.sb.iso(esvar2, dk = 0) # dk = Inf plot(svm2, main = "Nonparametric bias-corrected semivariogram and fitted models", lwd = 2) with(svm$fit, lines(u, fitted.sv, lty = 2)) cpu.time(total = FALSE) ``` ## Residual Kriging ```{r fig.height=8, fig.width=12, out.width="100%"} library(sp) library(gstat) spdf <- SpatialPointsDataFrame(aquifer[,1:2], data.frame(y = aquifer$head, r = lp.resid)) newdata <- SpatialPoints(coords(lp)) krig <- krige(r ~ 1, locations = spdf, newdata = newdata, model = as.vgm(svm), beta = 0) krig.grid <- data.grid(kpred = lp$est + krig@data$var1.pred, ksd = sqrt(krig@data$var1.var), grid = lp$grid) krig2 <- krige(r ~ 1, locations = spdf, newdata = newdata, model = as.vgm(svm2), beta = 0) krig2.grid <- data.grid(kpred = lp$est + krig2@data$var1.pred, ksd = sqrt(krig2@data$var1.var), grid = lp$grid) scale.color <- jet.colors(64) scale.range <- c(1100, 4100) # 1x2 plot with some room for the legend... old.par <- par(mfrow = c(1,2), omd = c(0.01, 0.9, 0.05, 0.95), plt= c(0.08, 0.94, 0.1, 0.8)) spersp(krig.grid, main = 'Kriging predictions', col = scale.color, legend = FALSE, theta = 120, reset = FALSE) spersp(krig2.grid, main = 'Kriging predictions \n (bias-corrected)', col = scale.color, legend = FALSE, theta = 120, reset = FALSE) par(old.par) splot(slim = scale.range, col = scale.color, legend.shrink = 0.6, add = TRUE) ``` ```{r fig.height=6, fig.width=12, out.width="100%"} old.par <- par(mfrow = c(1,2), omd = c(0.05, 0.85, 0.05, 0.95)) scale.range <- c(125, 200) scale.range <- range(krig.grid$ksd, krig2.grid$ksd, finite = TRUE) image( krig.grid, 'ksd', zlim = scale.range, # asp = 1, main = 'Kriging sd', col = scale.color) with(aquifer, points(lon, lat, cex = 0.75)) image( krig2.grid, 'ksd', zlim = scale.range, # asp = 1, main = 'Kriging sd (bias-corrected)', col = scale.color) with(aquifer, points(lon, lat, cex = 0.75)) par(old.par) splot(slim = scale.range, col = scale.color, add = TRUE) cpu.time() ``` ### Notes: * To reproduce results in SERRA paper use `data(wolfcamp)` in package `geoR`. * Results obtained with `aquifer` data set are comparable with those in Cressie (1993, section 4.1).