
Package: npcurePK (via r-universe)
September 17, 2024

Title Mixture Cure Model Estimation with Cure Status Partially Known

Version 1.0-2

Date 2023-05-05

Maintainer Wende Clarence Safari <wende.safari@lshtm.ac.uk>

Depends R (>= 4.2.0)

Description Performs nonparametric estimation in mixture cure models
when the cure status is partially known. For details, see
Safari et al (2021) <doi:10.1002/bimj.202100156>, Safari et al
(2022) <doi:10.1177/09622802221115880> and Safari et al (2023)
<doi:10.1007/s10985-023-09591-x>.

License GPL (>= 2)

Encoding UTF-8

Imports DescTools, data.table, parallel, doParallel, foreach, npcure

Suggests knitr, pinp, rmarkdown

VignetteBuilder knitr

LazyData true

NeedsCompilation no

Author Wende Clarence Safari [aut, cre]
(<https://orcid.org/0000-0003-4639-7552>), Ignacio
López-de-Ullibarri [aut]
(<https://orcid.org/0000-0002-3438-6621>), María Amalia Jácome
[aut] (<https://orcid.org/0000-0001-7000-9623>)

Repository CRAN

Date/Publication 2023-05-07 10:40:02 UTC

Contents
controlpars . 2
latency_curepk . 3
npcurePK-internal . 7
prob_curepk . 7

1

https://doi.org/10.1002/bimj.202100156
https://doi.org/10.1177/09622802221115880
https://doi.org/10.1007/s10985-023-09591-x
https://orcid.org/0000-0003-4639-7552
https://orcid.org/0000-0002-3438-6621
https://orcid.org/0000-0001-7000-9623

2 controlpars

prodlim_curepk . 11
sarcoma . 15

Index 17

controlpars Control Values for the Bootstrap

Description

This function returns a list of values for the control parameters of the functions that will be used for
the bootstrap bandwidth selector.

Usage

controlpars(b = 100L, hbound = c(0.1, 3), hl = 30L, hgrid_save = FALSE,
nnfrac = 0.25, fpilot = NULL, qt = 0.9, ncores = 1L,
seed = NULL, ...)

Arguments

b An integer giving the number of bootstrap resamples, 100 by default.
hbound A numeric vector of length 2 specifying the minimum (default, 0.1) and maxi-

mum (default, 3), respectively, of the initial grid of bandwidths as a multiple of
the standardized interquartile range of the covariate values.

hl A numeric value giving the length of the initial grid of bandwidths. The default
is 10.

hgrid_save A logical value specifying if the grids of bandwidths must be saved as a compo-
nent of the list returned by the prodlim_curepk_boot function. The default is
FALSE.

nnfrac A numeric value giving the fraction of the sample size that determines the order
of the nearest neighbor used when choosing the pilot bandwidth. The default is
0.25.

fpilot A function name or NULL. If NULL, the default, the hpilot function is used for
computing a pilot bandwidth in case that one is needed. If not NULL, it must
be the name of a user-defined function, given as a function name or as a char-
acter string. This function must necessarily have an argument x0, playing the
same role than in hpilot, and must return a value of the same length than x0.
If fpilot has more arguments, they are passed through the . . . argument (see
below).

qt In bandwidth selection for the product-limit estimator, a numeric value spec-
ifying the order of a quantile of the observed times. It determines the right
boundary of the integration interval in the computation of the ISE (the lower
limit is 0). The default is 0.9 (90th quantile).

ncores The number of cores used in parallel computations.
seed An optional integer passed to set.seed() to set the randomization seed.
... Arguments of fpilot, if fpilot is not NULL.

latency_curepk 3

Details

The output of controlpars is a list of control parameters required by the functions which use
the bootstrap. This is mainly the case of the prodlimcurePKhboot function, which compute the
bootstrap bandwidth selectors of the estimators of the survival, latency and the probability of cure.
Since these functions are indirectly called by prodlimcurePKhboot function when their h argument
is missing, the output of controlpars is also the expected (and default) way of passing to them the
parameters for bandwidth selection.

latency_curepk Compute Estimator of Latency Function when Cure Status is Partially
Known

Description

This function computes the nonparametric estimator of the latency function when cure status is
partially known proposed by Safari et al (2023).

Usage

latency_curepk(x, t, d, xinu, dataset, x0, h, local = TRUE,
bootpars = if (!missing(h)) NULL else controlpars())

Arguments

x If dataset is missing, a numeric object giving the covariate values. If dataset
is a data frame, it is interpreted as the name of the variable corresponding to the
covariate in the data frame.

t If dataset is missing, a numeric object giving the observed times. If dataset
is a data frame, it is interpreted as the name of the variable corresponding to the
observed times in the data frame.

d If dataset is missing, an integer object giving the values of the uncensoring
indicator. Censored observations must be coded as 0, uncensored ones as 1. If
dataset is a data frame, it is interpreted as the name of the variable corresponding
to the uncensoring indicator in the data frame.

xinu If dataset is missing, an integer object giving the values of the cure status
indicator. Uncensored and unknown censored observations must be coded as
0, known to be cured censored ones as 1. If dataset is a data frame, it is
interpreted as the name of the variable corresponding to the cure status indicator
in the data frame.

dataset An optional data frame in which the variables named in x, t, d and xinu are
interpreted. If it is missing, x, t, d and xinu must be objects of the workspace.

x0 A numeric vector of covariate values where the estimates of the latency function
will be computed.

h A numeric matrix of bandwidths.

4 latency_curepk

local A logical value, TRUE by default, specifying whether local or global band-
widths are used.

bootpars A list of parameters controlling the bootstrap when computing the bootstrap
bandwidths of the product-limit estimator. B, the number of bootstrap resam-
ples, and nnfrac, the fraction of the sample size that determines the order of the
nearest neighbor used for choosing a pilot bandwidth. If h is missing the list of
parameters is extended to be the same used for computing the bootstrap band-
width. The default is the value returned by the controlpars function called
without arguments.

Details

This function computes an estimator of the latency function S0(t | x) = P (Y > t | Y < ∞, X =
x) when the cure status is partially known, introduced in Safari et al (2023). It is based on the
relationship

S(t | x) = 1− p(x) + p(x)S0(t | x)
, using the kernel estimator of the cure rate 1− p(x) in Safari et al (2022) and the survival function
S(t | x) in Safari et al (2021), with Nadaraya-Watson weights and bandwidth h1 for the cure rate
and h2 for the survival function. If there are not individuals known to be cured (xinu=0), then the
kernel estimator of the cure rate in López-Cheda et al (2017) is computed.

The latency estimator is computed with the pair of bandwidths in h. One bandwidth h[1,] is used
for the estimation of 1− p(x) and another bandwidth h[2,] is used for the estimation of S(t | x).
If the smoothing parameter h is not provided, then the bootstrap bandwidth selector in Safari et al
(2023) is used. The kernel considered is Epanechnikov kernel. The function is available only for
one continuous covariate X .

Value

A list of components:

h The numeric matrix (2 x length(x0)) of bandwidths used in the estimation.
One bandwidth h[1,] is used for the estimation of 1− p(x) and another band-
width h[2,] is used for the estimation of S(t | x). If h argument is miss-
ing, the bootstrap bandwidth computed with the control parameters in argument
bootpars.

x0 The numeric vector of covariate values where the estimate of the latency func-
tion is computed.

prob_cure The estimate of the cure probability 1 - p(x0) with bandwidth h[1,]. It is a
vector of the same length as x0.

t The observed time values, where the latency function is estimated.
surv Estimates of the survival function for each one of the covariate values specified

by the x0 argument and the bandwidths in h[2,]. It is a matrix of dimension
n × length(x0) if local bandwidths or bootstrap bandwidths are used, or an
array for global bandwidths instead.

latency Estimates of the latency for each one of the covariate values specified by the x0
argument and the bandwidths in h. It is a matrix of dimension n × length(x0)
if local bandwidths or bootstrap bandwidths are used, or an array for global
bandwidths instead.

latency_curepk 5

References

López-Cheda, A., Jácome, M.A., Cao, R. (2017). Nonparametric latency estimation for mixture
cure models. TEST 26:353-376. doi:10.1007/s1174901605151.

Safari, W. C., López-de-Ullibarri I., Jácome, M. A. (2021). A product-limit estimator of the condi-
tional survival function when cure status is partially known. Biometrical Journal, 63(5): 984-1005.
doi:10.1002/bimj.202000173.

Safari, W. C., López-de-Ullibarri I., Jácome, M. A. (2022). Nonparametric kernel estimation of the
probability of cure in a mixture cure model when the cure status is partially observed. Statistical
Methods in Medical Research, 31(11):2164-2188. doi:10.1177/09622802221115880.

Safari, W. C., López-de-Ullibarri I., Jácome, M. A. (2023). Latency function estimation under the
mixture cure model when the cure status is available. Lifetime Data Analysis. doi:10.1007/s10985-
02309591x.

See Also

controlpars

Examples

library(npcurePK)

Data-generating function
n: sample size
x_cov_range: range of covariate values
p_knowncure: probability of known cure
data_gen <- function(n, x_cov_range, p_knowncure) {

probability of being susceptible
p0 <- function(x) exp(2*x)/(1 + exp(2*x))
covariate values
x <- runif(n, x_cov_range[1], x_cov_range[2])
censoring times
c <- rexp(n)
u <- runif(n)
v <- runif(n)
data <- data.frame(matrix(0, nrow = n, ncol = 4L,

dimnames = list(NULL, c("x", "t", "d", "xinu"))))
data[, "x"] <- x
for (i in 1:n) {

if (u[i] > p0(x[i])) {
Cured individuals (all of them are censored: Yi = infty,
Ti = Ci, delta = 0, nu = 1)
data[i, "t"] <- c[i]
if (v[i] < p_knowncure)

data[i, "xinu"] <- 1
} else {

Uncured individual (Yi < infty, Ti = min(Yi, Ci),
delta = 1(Yi < Ci), nu = 0)
Uncensored individual (d = 1): cure status is
observed (xi = 1), i.e., xinu = 0
Censored individual (d = 0): cure status is

https://doi.org/10.1007/s11749-016-0515-1
https://doi.org/10.1002/bimj.202000173
https://doi.org/10.1177/09622802221115880
https://doi.org/10.1007/s10985-023-09591-x
https://doi.org/10.1007/s10985-023-09591-x

6 latency_curepk

unknown (xi = 0), i.e., xi.nu = 0
y <- rweibull(1, shape = 0.5 * (x[i] + 4))
data[i, "t"] <- ifelse(v[i] < p_knowncure, y, min(y, c[i]))
if (data[i, "t"] == y) data[i, "d"] <- 1

}
}
return(data)

}

set.seed(123)
data <- data_gen(n = 100, x_cov_range = c(-2, 2), p_knowncure = 0.8)

Latency estimates for one single covariate value x0 = 0 and using...
x0 <- 0

... (a) one single fixed bandwidth h = [1.1, 1]
h[1,] = 1.1 is used for estimating p(x) at x0 = 0
h[2,] = 1 is used for estimating S(t|x) at x0 = 0
The latency estimates are saved in an array (n × 1)
S0_1 <- latency_curepk(x, t, d, xinu, data, x0 = 0,

h = matrix(c(1.1, 1), nrow = 2, ncol = 1, byrow = TRUE),
local = TRUE)

Plot predicted latency curve for covariate value x0 = 0 and bandwidths
h = [1.1, 1]
plot(S0_1$t, S0_1$latency, type = "s", xlab = "Time",

ylab = "Latency function", ylim = c(0, 1))
The true latency function is included as reference
lines(S0_1$t, 1 - pweibull(S0_1$t, shape = 0.5 * (x0 + 4)))

... (b) two fixed bandwidths h = [1.1, 1] and h = [1.5, 2]
One estimate of the latency S0(t|x0 = 0) is obtained using h[1, 1] = 1.1
for estimating p(x) and h[2,1] = 1 for estimating S(t|x)
Second estimate of the latency S0(t|x0 = 0) is obtained using h[1, 2] = 1.5
using h[1,2] = 1.5 for estimating p(x) and h[2,2] = 2 for estimating S(t|x)
The estimates are saved in an array (n × 2)
S0_2 <- latency_curepk(x, t, d, xinu, data, x0 = c(0, 0),

h = matrix(c(1.1, 1, 1.5, 2), nrow = 2, ncol = 2,
byrow = FALSE), local = TRUE)

Plot predicted latency curve for covariate value x0 = 0 and bandwidths
h = [1.1, 1] and and h = [1.5, 2]
plot(S0_2$t, S0_2$latency[, 1], type = "s", xlab = "Time",

ylab = "Latency function", ylim = c(0, 1))
lines(S0_2$t, S0_2$latency[, 2], type = "s", lwd = 2)
The true latency function is included as reference
lines(S0_2$t, 1 - pweibull(S0_2$t, shape = 0.5 * (x0 + 4)))

... (c) with the bootstrap bandwidth selector (the default when the
bandwidth argument h is not provided).
The bootstrap bandwidth is searched with parallel computation
(ncores = 2) in a grid of 9 bandwidths (hl = 9) between 0.2 and 2 times
the standardized interquartile range of the covariate values
(hbound = c(0.1, 2)). The latency estimates are saved in an array of

npcurePK-internal 7

dimension (n, 1)
library(doParallel)
(S0_3 <- latency_curepk(x, t, d, xinu, data, x0 = 0,

bootpars = controlpars(b = 50, hl = 9,
hbound = c(0.1, 2), ncores = 2)))

plot(S0_3$t, S0_3$latency[, 1], type = "s", xlab = "Time",
ylab = "Latency function", ylim = c(0, 1))

The true latency function is included as reference
lines(S0_3$t, 1 - pweibull(S0_3$t, shape = 0.5 * (x0 + 4)))

npcurePK-internal Internal npcurePK Functions

Description

Internal functions of the package.

Details

Internal functions not to be called by the user.

prob_curepk Compute Estimator of Cure Probability when Cure Status is Partially
Known

Description

This function computes the nonparametric estimator of the cure probability when cure status is
partially known proposed by Safari et al (2022).

Usage

prob_curepk(x, t, d, xinu, dataset, x0, h, local = TRUE,
bootpars = if (!missing(h)) NULL else controlpars())

Arguments

x If dataset is missing, a numeric object giving the covariate values. If dataset
is a data frame, it is interpreted as the name of the variable corresponding to the
covariate in the data frame.

t If dataset is missing, a numeric object giving the observed times. If dataset
is a data frame, it is interpreted as the name of the variable corresponding to the
observed times in the data frame.

8 prob_curepk

d If dataset is missing, an integer object giving the values of the uncensoring
indicator. Censored observations must be coded as 0, uncensored ones as 1. If
dataset is a data frame, it is interpreted as the name of the variable corresponding
to the uncensoring indicator in the data frame.

xinu If dataset is missing, an integer object giving the values of the cure status
indicator. Uncensored and unknown censored observations must be coded as
0, known to be cured censored ones as 1. If dataset is a data frame, it is
interpreted as the name of the variable corresponding to the cure status indicator
in the data frame.

dataset An optional data frame in which the variables named in x, t, d and xinu are
interpreted. If it is missing, x, t, d and xinu must be objects of the workspace.

x0 A numeric vector of covariate values where the estimates of the cure probability
will be computed.

h A numeric vector of bandwidths.

local A logical value, TRUE by default, specifying whether local or global band-
widths are used.

bootpars A list of parameters controlling the bootstrap when computing the bootstrap
bandwidths of the cure probability estimator. B, the number of bootstrap resam-
ples, and nnfrac, the fraction of the sample size that determines the order of the
nearest neighbor used for choosing a pilot bandwidth. If h is missing the list of
parameters is extended to be the same used for computing the bootstrap band-
width. The default is the value returned by the controlpars function called
without arguments.

Details

Mixture cure model writes the conditional survival function S(t | x) = P (Y > t | X = x) as

S(t | x) = 1− p(x) + p(x)S0(t | x)

where 1− p(x) = P (Y = ∞ | X = x) is the probability of cure.

This function computes the kernel estimator of the probability of cure 1 − p(x) in Safari et al
(2022). It is based on the previous relationship and the generalized product-limit estimator of the
conditional survival function S(t | x) in Safari et al (2021), using the Nadaraya-Watson weights,
when the cure status is partially known. If there are not individuals known to be cured (xinu=0),
then the nonparametric estimator of the cure rate in López-Cheda et al (2017) is computed.

The Epanechnikov kernel is used. If the smoothing parameter h is not provided, then the bootstrap
bandwidth selector in Safari et al (2022) is used. The function is available only for one continuous
covariate X .

Value

A list of components:

h The numeric vector of bandwidths used in the estimation. If h argument is miss-
ing, the bootstrap bandwidth computed with the control parameters in argument
bootpars.

prob_curepk 9

x0 The numeric vector of covariate values where the estimate of the cure probability
is computed.

prob_cure The estimate of the cure probability 1-p(x0) with bandwidth h. It is a vector of
the same length as x0.

References

Beran, R. (1981). Nonparametric regression with randomly censored survival data. Technical Re-
port. Berkeley, University of California.

López-Cheda, A. Cao, R., Jácome, M.A., Van Keilegom, I. (2017). Nonparametric incidence es-
timation and bootstrap bandwidth selection in mixture cure models. Computational Statistics and
Data Analysis 105:144-165. doi:10.1016/j.csda.2016.08.002.

Safari, W. C., López-de-Ullibarri I., Jácome, M. A. (2021). A product-limit estimator of the condi-
tional survival function when cure status is partially known. Biometrical Journal, 63(5): 984-1005.
doi:10.1002/bimj.202000173.

Safari, W. C., López-de-Ullibarri I., Jácome, M. A. (2022). Nonparametric kernel estimation of the
probability of cure in a mixture cure model when the cure status is partially observed. Statistical
Methods in Medical Research, 31(11):2164-2188. doi:10.1177/09622802221115880.

See Also

controlpars

Examples

library(npcurePK)

Data-generating function
n: sample size
x_cov_range: range of covariate values
p_knowncure: probability of known cure
data_gen <- function(n, x_cov_range, p_knowncure) {

probability of being susceptible
p0 <- function(x) exp(2*x)/(1 + exp(2*x))
covariate values
x <- runif(n, x_cov_range[1], x_cov_range[2])
censoring times
c <- rexp(n)
u <- runif(n)
v <- runif(n)
data <- data.frame(matrix(0, nrow = n, ncol = 4L,

dimnames = list(NULL, c("x", "t", "d", "xinu"))))
data[, "x"] <- x
for (i in 1:n) {

if (u[i] > p0(x[i])) {
Cured individuals (all of them are censored: Yi = infty,
Ti = Ci, delta = 0, nu = 1)
data[i, "t"] <- c[i]
if (v[i] < p_knowncure)

data[i, "xinu"] <- 1

https://doi.org/10.1016/j.csda.2016.08.002
https://doi.org/10.1002/bimj.202000173
https://doi.org/10.1177/09622802221115880

10 prob_curepk

} else {
Uncured individual (Yi < infty, Ti = min(Yi, Ci),
delta = 1(Yi < Ci), nu = 0)
Uncensored individual (d = 1): cure status is
observed (xi = 1), i.e., xinu = 0
Censored individual (d = 0): cure status is
unknown (xi = 0), i.e., xi.nu = 0
y <- rweibull(1, shape = 0.5 * (x[i] + 4))
data[i, "t"] <- ifelse(v[i] < p_knowncure, y, min(y, c[i]))
if (data[i, "t"] == y) data[i, "d"] <- 1

}
}
return(data)

}

set.seed(123)
data <- data_gen(n = 100, x_cov_range = c(-2, 2), p_knowncure = 0.8)

Cure rate estimates for one single covariate value x0 = 0 and using ...
... (a) one single fixed bandwidth h = 0.5
p1 <- prob_curepk(x, t, d, xinu, data, x0 = 0,

h = 0.5, local = TRUE)

... (b) a vector of bandwidths h = c(0.25, 0.5, 0.75, 1)
p2 <- prob_curepk(x, t, d, xinu, data, x0 = c(0, 0, 0, 0),

h = c(0.25, 0.5, 0.75, 1), local = TRUE)

... (c) a bootstrap bandwidth (the default when the bandwidths
argument h is not provided).
The bootstrap bandwidth is searched in a grid of 10 bandwidths (hl = 10)
between 0.2 and 2 times the standardized interquartile range of the
covariate values (hbound = c(0.1, 3)).
(p3 <- prob_curepk(x, t, d, xinu, data, x0 = 0))
Equivalently

(p3 <- prob_curepk(x, t, d, xinu, data, x0 = 0,
bootpars = controlpars(hl = 10, hbound = c(0.1, 3))))

Cure rate estimates for a vector of 20 covariate values and using ...
x0 = seq(from = min(data$x), to = max(data$x), length.out = 15)
... (a) one single fixed bandwidth h = 0.5
p4 <- prob_curepk(x, t, d, xinu, data, x0 = x0, h = 0.5, local = FALSE)
Plot predicted cure probabilities for covariate values x0 and bandwidths
h = 0.5
plot(p4$x0, p4$prob_cure, xlab = "Covariate X", type = "l",

ylab = "Probability of cure", ylim = c(0, 1))
The true cure rate is included as reference
lines(p4$x0, 1 - exp(2*x0)/(1 + exp(2*x0)), lwd = 2)

... (b) a vector of bandwidths h = c(0.5, 0.75, 1)
p5 <- prob_curepk(x, t, d, xinu, data, x0 = x0, h = c(0.5, 0.75, 1),

local = FALSE)

prodlim_curepk 11

Plot predicted cure probabilities for covariate values x0 and bandwidths
h = 0.5
plot(p5$x0, p5$prob_cure[1,], xlab = "Covariate X", type = "l",

ylab = "Probability of cure", ylim = c(0, 1))
The estimates with bandwidth h = 0.75 and h = 1 are added
lines(p5$x0, p5$prob_cure[2,])
lines(p5$x0, p5$prob_cure[3,])
The true cure rate is included as reference
lines(p5$x0, 1 - exp(2*x0)/(1 + exp(2*x0)), lwd = 2)

... (c) the bootstrap bandwidth
(p6 <- prob_curepk(x, t, d, xinu, data, x0 = x0,

bootpars = controlpars(b = 50, ncores = 2, seed = 123)))
Plot predicted cure probabilities for covariate values x0 and bootstrap
bandwidths
plot(p6$x0, p6$prob_cure, xlab = "Covariate X", type = "l",

ylab = "Probability of cure", ylim = c(0, 1))
The true cure rate is included as reference
lines(p6$x0, 1 - exp(2*x0)/(1 + exp(2*x0)), lwd = 2)

prodlim_curepk Compute Product-Limit Estimator of Conditional Survival Function
when Cure Status is Partially Known

Description

This function computes the nonparametric estimator of the conditional survival function when cure
status is partially known proposed by Safari et al (2021).

Usage

prodlim_curepk(x, t, d, xinu, dataset, x0, h, local = TRUE,
bootpars = if (!missing(h)) NULL else controlpars())

Arguments

x If dataset is missing, a numeric object giving the covariate values. If dataset
is a data frame, it is interpreted as the name of the variable corresponding to the
covariate in the data frame.

t If dataset is missing, a numeric object giving the observed times. If dataset
is a data frame, it is interpreted as the name of the variable corresponding to the
observed times in the data frame.

d If dataset is missing, an integer object giving the values of the uncensoring
indicator. Censored observations must be coded as 0, uncensored ones as 1. If
dataset is a data frame, it is interpreted as the name of the variable corresponding
to the uncensoring indicator in the data frame.

12 prodlim_curepk

xinu If dataset is missing, an integer object giving the values of the cure status
indicator. Uncensored and unknown censored observations must be coded as
0, known to be cured censored ones as 1. If dataset is a data frame, it is
interpreted as the name of the variable corresponding to the cure status indicator
in the data frame.

dataset An optional data frame in which the variables named in x, t, d and xinu are
interpreted. If it is missing, x, t, d and xinu must be objects of the workspace.

x0 A numeric vector of covariate values where the estimates of the conditional
survival function will be computed.

h A numeric vector of bandwidths.

local A logical value, TRUE by default, specifying whether local or global band-
widths are used.

bootpars A list of parameters controlling the bootstrap when computing the bootstrap
bandwidths of the product-limit estimator. B, the number of bootstrap resam-
ples, and nnfrac, the fraction of the sample size that determines the order of the
nearest neighbor used for choosing a pilot bandwidth. If h is missing the list of
parameters is extended to be the same used for computing the bootstrap band-
width. The default is the value returned by the controlpars function called
without arguments.

Details

Mixture cure model writes the conditional survival function S(t | x) = P (Y > t | X = x)
as S(t | x) = 1 − p(x) + p(x)S0(t | x). This function computes the generalized product-limit
estimator of the conditional survival function S(t | x), using the Nadaraya-Watson weights, when
the cure status is partially known, introduced in Safari et al (2021). If there are not individuals
known to be cured (xinu=0), then the usual generalized product-limit estimator in Beran (1981) is
computed.

The Epanechnikov kernel is used. If the smoothing parameter h is not provided, then the bootstrap
bandwidth selector in Safari et al (2021) is used. The function is available only for one continuous
covariate X .

Value

A list of components:

h The numeric vector of bandwidths used in the estimation. If h argument is miss-
ing, the bootstrap bandwidth computed with the control parameters in argument
bootpars.

x0 The numeric vector of covariate values where the estimate of the conditional
survival function is computed.

t The observed time values, where the conditional survival function is estimated.

surv Estimates of the survival function for each one of the covariate values specified
by the x0 argument and the bandwidths in h. It is a matrix of dimension n ×
length(x0) if local bandwidths or bootstrap bandwidths are used, or an array of
dimension n× length(x0)× length(h) for global bandwidths instead.

prodlim_curepk 13

References

Beran, R. (1981). Nonparametric regression with randomly censored survival data. Technical Re-
port. Berkeley, University of California.

Safari, W. C., López-de-Ullibarri I., Jácome, M. A. (2021). A product-limit estimator of the condi-
tional survival function when cure status is partially known. Biometrical Journal, 63(5): 984-1005.
doi:10.1002/bimj.202000173.

See Also

controlpars

Examples

library(npcurePK)

Data-generating function
n: sample size
x_cov_range: range of covariate values
p_knowncure: probability of known cure
data_gen <- function(n, x_cov_range, p_knowncure) {

probability of being susceptible
p0 <- function(x) exp(2*x)/(1 + exp(2*x))
covariate values
x <- runif(n, x_cov_range[1], x_cov_range[2])
censoring times
c <- rexp(n)
u <- runif(n)
v <- runif(n)
data <- data.frame(matrix(0, nrow = n, ncol = 4L,

dimnames = list(NULL, c("x", "t", "d", "xinu"))))
data[, "x"] <- x
for (i in 1:n) {

if (u[i] > p0(x[i])) {
Cured individuals (all of them are censored: Yi = infty,
Ti = Ci, delta = 0, nu = 1)
data[i, "t"] <- c[i]
if (v[i] < p_knowncure)

data[i, "xinu"] <- 1
} else {

Uncured individual (Yi < infty, Ti = min(Yi, Ci),
delta = 1(Yi < Ci), nu = 0)
Uncensored individual (d = 1): cure status is
observed (xi = 1), i.e., xinu = 0
Censored individual (d = 0): cure status is
unknown (xi = 0), i.e., xi.nu = 0
y <- rweibull(1, shape = 0.5 * (x[i] + 4))
data[i, "t"] <- ifelse(v[i] < p_knowncure, y, min(y, c[i]))
if (data[i, "t"] == y) data[i, "d"] <- 1

}
}
return(data)

https://doi.org/10.1002/bimj.202000173

14 prodlim_curepk

}

set.seed(123)
data <- data_gen(n = 100, x_cov_range = c(-2, 2), p_knowncure = 0.8)

Covariate values where the conditional survival function is estimated
x0 <- c(0, 0.5)

Survival estimates for covariate values x0 = c(0, 0.5)
... (a) with 3 global bandwidths (0.5, 1, 1.25)
The survival function S(t|x) is estimated for each value of x0 with the three
bandwidths (local == FALSE).
The estimates are saved in an array (n x length(x0) x length(h))
S1 <- prodlim_curepk(x, t, d, xinu, data, x0 = x0, h = c(0.5, 1, 1.25), local = FALSE)

Plot predicted survival curve for covariate value x0 = 0.5 and bandwidth
h = 0.5
x0 <- 0.5
plot(S1$t, S1$surv[, 2, 1], type = "s", xlab = "Time",

ylab = "Survival probability", ylim = c(0, 1))
The true survival curve is included as reference
lines(S1$t, 1 - exp(2*x0)/(1 + exp(2*x0)) + exp(2*x0)/(1 + exp(2*x0))*

(1 - pweibull(S1$t, shape = 0.5 * (x0 + 4))), lwd = 2)

Plot predicted survival curve for covariate value x0 = 0.5 and all
bandwidths
plot(S1$t, S1$surv[, 2, 1], type = "s", xlab = "Time",

ylab = "Survival probability", ylim = c(0, 1))
lines(S1$t, S1$surv[, 2, 2], type = "s", lwd = 2)
lines(S1$t, S1$surv[, 2, 3], type = "s", lwd = 3)
The true survival curve is included as reference
lines(S1$t, 1 - exp(2*x0)/(1 + exp(2*x0)) + exp(2*x0)/(1 + exp(2*x0))*

(1 - pweibull(S1$t, shape = 0.5 * (x0 + 4))), lwd = 2)

... (b) with local bandwidths h = (3, 1)
The survival function S(t|x) is estimated for each value of x0 with the
corresponding assigned bandwidth (local == TRUE).
Note that the length of the vector x0 and the bandwidth h must be the same.
The estimates are saved in a matrix of dimension (n, length(x0))
x0 <- c(0, 0.5)
h <- c(3, 1)
S3 <- prodlim_curepk(x, t, d, xinu, data, x0 = x0, h = h, local = TRUE)
Plot predicted survival curve for covariate value x = 0 and its bandwidth
(h = 3)
plot(S3$t, S3$surv[, 1], type = "s", xlab = "Time",

ylab = "Survival probability", ylim = c(0, 1))
The true survival curve is included as reference
x0 <- 0
lines(S3$t, 1 - exp(2*x0)/(1 + exp(2*x0)) + exp(2*x0)/(1 + exp(2*x0))*

(1 - pweibull(S3$t, shape = 0.5 * (x0 + 4))), lwd = 2)

... (c) with the bootstrap bandwidth selector in x0 = 0 (the default
when the bandwidth argument h is not provided).

sarcoma 15

The bootstrap bandwidth is searched in a grid of 10 bandwidths (hl = 10)
between 0.2 and 2 times the standardized interquartile range of the
covariate values (hbound = c(0.1, 2)).
x0 <- 0
(S4 <- prodlim_curepk(x, t, d, xinu, data, x0 = x0))
Equivalently
(S4 <- prodlim_curepk(x, t, d, xinu, data, x0 = x0,

bootpars = controlpars(hl = 10, hbound = c(0.1, 2))))
Plot predicted survival curve for covariate value x = 0 and the bootstrap
bandwidth
plot(S4$t, S4$surv[, 1], type = "s", xlab = "Time",

ylab = "Survival probability", ylim = c(0, 1))
The true survival curve is included as reference
lines(S4$t, 1 - exp(2*x0)/(1 + exp(2*x0)) + exp(2*x0)/(1 + exp(2*x0))*

(1 - pweibull(S4$t, shape = 0.5 * (x0 + 4))), lwd = 2)

... (d) with parallel computation (The bootstrap bandwidth is searched with
b = 100 bootstrap resamples and 2 cores)
library(doParallel)
(S5 <- prodlim_curepk(x, t, d, xinu, data, x0 = x0,

bootpars = controlpars(b = 100, ncores = 2)))
Plot predicted survival curve for covariate value x = 0 and the bootstrap
bandwidth
plot(S5$t, S5$surv[, 1], type = "s", xlab = "Time",

ylab = "Survival probability", ylim = c(0, 1))
The true survival curve is included as reference
lines(S5$t, 1 - exp(2*x0)/(1 + exp(2*x0)) + exp(2*x0)/(1 + exp(2*x0))*

(1 - pweibull(S5$t, shape = 0.5 * (x0 + 4))), lwd = 2)

sarcoma Sarcoma Dataset

Description

Sarcoma is a rare type of cancer that represents 1% of all adult solid malignancies (Choy, 2014).
If a tumor can be surgically removed to render the patient with sarcoma free of detectable disease,
5 years is the survival time at which sarcoma oncologists assume long-term remissions. sarcoma
dataset contains the observed survival time of 232 patients until death from sarcoma, and covariates
such as the age at diagnosis. Patients tumor free for more than 5 years were assumed to be long-term
survivors (known to be cured, xinu = 1).

Usage

sarcoma
data(sarcoma, package = "npcurePK")

16 sarcoma

Format

A data frame with 232 rows and 4 variables:

x Age (years) of patients at diagnosis.

t Observed time until death from sarcoma.

d Censoring status (0 = censored, 1 = death from sarcoma).

xinu Cure status (0 = dead or unknown, 1 = tumor free for more than 5 years).

Source

Provided by the authors to serve as an example.

References

Choy, E. (2014). Sarcoma after 5 years of progression-free survival: Lessons from the French
sarcoma group. Cancer, 120(19), 2942-2943.

Examples

Survival estimates of patients aged 40 and 90 years old
computed with bootstrap bandwidths
(seed is used for bootstrap resampling)
(S1 <- prodlim_curepk(x, t, d, xinu, sarcoma, x0 = c(40, 90),

bootpars = controlpars(b = 100, ncores = 2, seed = 123)))
plot(S1$t, S1$surv[, 1], type = "s", xlab = "Time",

ylab = "Survival probability", ylim = c(0, 1))
lines(S1$t, S1$surv[, 2], type = "s")

Index

∗ datasets
sarcoma, 15

controlpars, 2, 5, 9, 13
controlpars (controlpars), 2

latency_curepk, 3
latency_curepk (latency_curepk), 3
latency_curepk_boot

(npcurePK-internal), 7

npcurePK-internal, 7

prob_curepk, 7
prob_curepk (prob_curepk), 7
prob_curepk_boot (npcurePK-internal), 7
prodlim_curepk, 11
prodlim_curepk (prodlim_curepk), 11
prodlim_curepk_boot

(npcurePK-internal), 7

sarcoma, 15
sarcoma (sarcoma), 15

17

	controlpars
	latency_curepk
	npcurePK-internal
	prob_curepk
	prodlim_curepk
	sarcoma
	Index

