Package: npbr (via r-universe)

September 7, 2024

Type Package Title Nonparametric Boundary Regression Version 1.8 Date 2023-03-21 Author Abdelaati Daouia <Abdelaati.Daouia@tse-fr.eu>, Thibault Laurent <thibault.laurent@univ-tlse1.fr>, Hohsuk Noh <word5810@gmail.com> Maintainer Thibault Laurent <thibault.laurent@univ-tlse1.fr> **Depends** R (>= 4.0.0), graphics, stats, utils **Imports** Benchmarking, np, quadprog, Rglpk (>= 0.6-2), splines Description A variety of functions for the best known and most innovative approaches to nonparametric boundary estimation. The selected methods are concerned with empirical, smoothed, unrestricted as well as constrained fits under both separate and multiple shape constraints. They cover robust approaches to outliers as well as data envelopment techniques based on piecewise polynomials, splines, local linear fitting, extreme values and kernel smoothing. The package also seamlessly allows for Monte Carlo comparisons among these different estimation methods. Its use is illustrated via a number of empirical applications and simulated examples. License GPL (>= 2) NeedsCompilation yes

Repository CRAN

Date/Publication 2023-03-22 09:00:05 UTC

Contents

npbr-package			 •													 															2
air		•	 •		•	•			•			•	•			 		•					•					•		•	5
cub_spline_est	•	•	 •	•	•	•	•	•	•	•	•	•	•	•		 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6

cub_spline_kn	8
dea_est	10
dfs_momt	12
dfs_pick	14
dfs_pwm	17
green	19
kern_smooth	20
kern_smooth_bw	23
kopt_momt_pick	24
loc_est	26
loc_est_bw	29
loc_max	30
mopt_pwm	32
nuclear	33
pick_est	34
poly_degree	35
poly_est	37
post	38
quad_spline_est	39
quad_spline_kn	41
records	44
rho_momt_pick	44
rho_pwm	46
	- 49

Index

npbr-package

Nonparametric boundary regression

Description

The package npbr (Daouia et al., 2017) is the first free specialized software for data edge and frontier analysis in the statistical literature. It provides a variety of functions for the best known and most innovative approaches to nonparametric boundary estimation. The selected methods are concerned with empirical, smoothed, unrestricted as well as constrained fits under both separate and multiple shape constraints. They also cover data envelopment techniques as well as robust approaches to outliers. The routines included in **npbr** are user friendly and afford a large degree of flexibility in the estimation specifications. They provide smoothing parameter selection for the modern local linear and polynomial spline methods and for some promising extreme value techniques. Also, they seamlessly allow for Monte Carlo comparisons among the implemented estimation procedures. This package will be very useful for statisticians and applied researchers interested in employing nonparametric boundary regression models. Its use is illustrated with a number of empirical applications and simulated examples.

Details

Suppose that we have n pairs of observations (x_i, y_i) , i = 1, ..., n, from a bivariate distribution with a density f(x, y) in \mathbb{R}^2 . The support Ψ of f is assumed to be of the form

$$\Psi = \{(x, y) | y \le \varphi(x)\} \supseteq \{(x, y) | f(x, y) > 0\}$$
$$\{(x, y) | y > \varphi(x)\} \subseteq \{(x, y) | f(x, y) = 0\},$$

where the graph of φ corresponds to the locus of the curve above which the density f is zero. We consider the estimation of the frontier function φ based on the sample $\{(x_i, y_i), i = 1, ..., n\}$ in the general setting where the density f may have sudden jumps at the frontier, decay to zero or rise up to infinity as it approaches its support boundary.

The overall objective of the present package is to provide a large variety of functions for the best known approaches to nonparametric boundary regression, including the vast class of methods employed in both Monte Carlo comparisons of Daouia et al. (2016) and Noh (2014) as well as other promising nonparametric devices, namely the extreme-value techniques of Gijbels and Peng (2000), Daouia et al. (2010) and Daouia et al. (2012). The various functions in the **npbr** package are summarized in the table below. We are not aware of any other existing set of statistical routines more adapted to data envelope fitting and robust frontier estimation. Only the classical nonsmooth FDH and DEA methods can be found in some available packages dedicated to the economic literature on measurements of the production performance of enterprises, such as the programs **Benchmarking** by Bogetoft and Otto (2011) and **FEAR** by Wilson (2008). Other contributions to the econometric literature on frontier analysis by Parmeter and Racine (2013) can be found at https://socialsciences.mcmaster.ca/racinej/Gallery/Home.html. The package **npbr** is actually the first free specialized software for the statistical literature on nonparametric frontier analysis. The routines included in **npbr** are user friendly and highly flexible in terms of estimation specifications. They allow the user to locate the boundary from data by making use of both empirical and smooth fits as well as (un)constrained estimates under single and multiple shape constraints. They also integrate smoothing parameter selection for the innovative methods based on local linear techniques, polynomial splines, extreme values and kernel smoothing, though the proposed selection procedures can be computationally demanding.

In addition, the package will be extremely useful for researchers and practitioners interested in employing nonparametric boundary regression methods. On one hand, such methods are very appealing because they rely on very few assumptions and benefit from their modeling flexibility, function approximation power and ability to detect the boundary structure of data without recourse to any *a priori* parametric restrictions on the shape of the frontier and/or the distribution of noise. On the other hand, the package offers R users and statisticians in this active area of research simple functions to compute the empirical mean integrated squared error, the empirical integrated squared bias and the empirical integrated variance of the implemented frontier estimators. This seamlessly allows the interested researcher to reproduce the Monte Carlo estimates obtained in the original articles and, perhaps most importantly, to easily compare the quality of any new proposal with the competitive existing methods.

Function	Description	Reference
dea_est	DEA, FDH	Farrell (1957)
		Deprins et al. (1984),
	and linearized FDH	Hall and Park (2002)
		Jeong and Simar (2006)

loc_est	Local linear fitting	Hall et al. (1998), Hall and Park (2004)
<pre>loc_est_bw</pre>	Bandwidth choice	Hall and Park (2004)
	for local linear fitting	
poly_est	Polynomial estimation	Hall et al. (1998)
poly_degree	Optimal polynomial degree selection	Daouia et al. (2015)
dfs_momt	Moment type estimation	Daouia et al. (2010),
	• 1	Dekkers et al. (1989)
dfs_pick	Pickands type estimation	Daouia et al. (2010),
	••	Dekkers and de Haan (1989)
<pre>rho_momt_pick</pre>	Conditional tail	Daouia et al. (2010),
	index estimation	Dekkers et al. (1989),
		Dekkers and de Haan (1989)
kopt_momt_pick	Threshold selection for	Daouia et al. (2010)
	moment/Pickands frontiers	
dfs_pwm	Nonparametric frontier regularization	Daouia et al. (2012)
loc_max	Local constant estimation	Gijbels and Peng (2000)
pick_est	Local extreme-value estimation	Gijbels and Peng (2000)
<pre>quad_spline_est</pre>	Quadratic spline fitting	Daouia et al. (2015)
<pre>quad_spline_kn</pre>	Knot selection for	Daouia et al. (2015)
	quadratic spline fitting	
cub_spline_est	Cubic spline fitting	Daouia et al. (2015)
cub_spline_kn	Knot selection for	Daouia et al. (2015)
	cubic spline fitting	
kern_smooth	Nonparametric kernel	Parmeter and Racine (2013),
	boundary regression	Noh (2014)
kern_smooth_bw	Bandwidth choice for	Parmeter and Racine (2013),
	kernel boundary regression	Noh (2014)

Author(s)

Abdelaati Daouia <Abdelaati.Daouia@tse-fr.eu>, Thibault Laurent <thibault.laurent@univ-tlse1.fr>, Hohsuk Noh <word5810@gmail.com>

Maintainer: Thibault Laurent <thibault.laurent@univ-tlse1.fr>

References

Daouia, A., Florens, J.-P. and Simar, L. (2010). Frontier estimation and extreme value theory. *Bernoulli*, **16**, 1039-1063.

Daouia, A., Florens, J.-P. and Simar, L. (2012). Regularization of Nonparametric Frontier Estimators. *Journal of Econometrics*, **168**, 285-299.

Daouia, A., Laurent, T. and Noh, H. (2017). npbr: A Package for Nonparametric Boundary Regression in R. *Journal of Statistical Software*, **79**(9), 1-43. doi:10.18637/jss.v079.i09.

Daouia, A., Noh, H. and Park, B.U. (2016). Data Envelope fitting with constrained polynomial splines. *Journal of the Royal Statistical Society: Series B*, **78**(1), 3-30. doi:10.1111/rssb.12098.

air

Dekkers, A.L.M. and L. de Haan (1989). On the estimation of extreme-value index and large quantiles estimation. *Annals of Statistics*, **17**, 1795-1832.

Dekkers, A.L.M., Einmahl, J.H.J. and L. de Haan (1989). A moment estimator for the index of an extreme-value distribution. *Annals of Statistics*, **17**, 1833-1855.

Deprins, D., Simar, L. and Tulkens H. (1984). Measuring labor efficiency in post offices, in: M. Marchand, P. Pestieau and H. Tulkens (Eds), The performance of Public Enterprises: Concepts and Measurements. North-Holland, Amsterdam, 243-267.

Farrell, M.J. (1957). The measurement of productive efficiency. *Journal of the Royal Statistical Society, Series A*, **120**, 253-281.

Gijbels, I. and Peng, L. (2000). Estimation of a support curve via order statistics. *Extremes*, **3**, 251-277.

Hall, P., Park, B.U. and Stern, S.E. (1998). On polynomial estimators of frontiers and boundaries. *Journal of Multivariate Analysis*, **66**, 71-98.

Hall, P. and Park, B.U. (2004). Bandwidth choice for local polynomial estimation of smooth boundaries. *Journal of Multivariate Analysis*, **91**, 240-261.

Jeong, S.-O. and Simar, L. (2006). Linearly interpolated FDH efficiency score for nonconvex frontiers. *Journal of Multivariate Analysis*, **97**, 2141-2161.

Noh, H. (2014). Frontier Estimation using Kernel Smoothing with Data Transformation. *Journal of the Korean Statistical Society*, **43**, 503-512.

Parmeter, C. and Racine, J.S. (2013). Smooth Constrained Frontier Analysis. In *Recent Advances* and Future Directions in Causality, Prediction, and Specification Analysis: Essays in Honor of Halbert L. White, Jr., Springer Verlag, (X. Chen and N.R. Swanson Eds), 463-488.

air

European air controllers

Description

The dataset is concerned with the assessment of the efficiency of 37 European Air Controllers. The performance of each controller can be measured by its "distance" from the upper support boundary, or equivalently, the set of the most efficient controllers. This dataset is taken from Mouchart and Simar (2002). Here, the activity of the controllers is described by one input (an aggregate factor of different kind of labor) and one output (an aggregate factor of the activity produced, based on the number of controlled air movements, the number of controlled flight hours, etc.). See also Daouia, Florens and Simar (2008).

Usage

data(air)

Format

A data frame with 37 observations on the following 2 variables.

xtab an input.

ytab an output.

References

Daouia, A., Florens, J.-P. and Simar, L. (2008). Functional Convergence of Quantile-type Frontiers with Application to Parametric Approximations. *Journal of Statistical Planning and Inference*, 138, 708-725.

Mouchart, M. and L. Simar (2002). Efficiency analysis of Air Controllers: first insights, Consulting report 0202, Institut de Statistique, UCL, Belgium.

Examples

data("air")

cub_spline_est Cubic spline fitting

Description

The function cub_spline_est is an implementation of the (un)constrained cubic spline estimates proposed by Daouia, Noh and Park (2016).

Usage

Arguments

xtab	a numeric vector containing the observed inputs x_1, \ldots, x_n .
ytab	a numeric vector of the same length as xtab containing the observed outputs y_1, \ldots, y_n .
x	a numeric vector of evaluation points in which the estimator is to be computed.
kn	an integer specifying the number of inter-knot segments used in the computation of the spline estimate.
method	a character equal to "u" (unconstrained estimator), "m" (under the monotonic- ity constraint) or "mc" (under simultaneous monotonicity and concavity con- straints).
all.dea	a boolean.
control	a list of parameters to the GLPK solver. See *Details* of help(Rglpk_solve_LP).

cub_spline_est

Details

Let a and b be, respectively, the minimum and maximum of the design points x_1, \ldots, x_n . Denote a partition of [a,b] by $a = t_0 < t_1 < \cdots < t_{k_n} = b$ (see below the selection process). Let $N = k_n + 3$ and $\pi(x) = (\pi_0(x), \ldots, \pi_{N-1}(x))^T$ be the vector of normalized B-splines of order 4 based on the knot mesh $\{t_j\}$ (see Daouia et al. (2015)). The unconstrained (option method="u") cubic spline estimate of the frontier $\varphi(x)$ is then defined by $\tilde{\varphi}_n(x) = \pi(x)^T \tilde{\alpha}$, where $\tilde{\alpha}$ minimizes

$$\int_{0}^{1} \pi(x)^{T} \alpha \, dx = \sum_{j=1}^{N} \alpha_{j} \int_{0}^{1} \pi_{j}(x) \, dx$$

over $\alpha \in \mathbb{R}^N$ subject to the envelopment constraints $\pi(x_i)^T \alpha \ge y_i$, i = 1, ..., n. A simple way of choosing the knot mesh in this unconstrained setting is by considering the j/k_n th quantiles $t_j = x_{[jn/k_n]}$ of the distinct values of x_i for $j = 1, ..., k_n - 1$. The number of inter-knot segments k_n is obtained by calling the function cub_spline_kn (option method="u").

In what concerns the monotonicity constraint, we use the following sufficient condition for the monotonicity:

$$\alpha_0 \le \alpha_1 \le \dots \le \alpha_{N-1}$$

. This condition was previously used in Lu et al. (2007) and Pya and Wood (2015). Note that since the condition corresponds to linear constraints on α , the estimator satisfying the monotonocity can be obtained via linear programming.

When the estimate is required to be both monotone and concave, we use the function cub_spline_est with the option method="mc". Such estimate is obtained as the cubic spline function which minimizes the same linear objective function as the unconstrained estimate subject to the same linear envelopment constraints, the monotonicity constraint above and the additional linear concavity constraints $\pi''(t_j)^T \alpha \leq j = 0, 1, \ldots, k_n$, where the second derivative π'' is a linear spline. Regarding the choice of knots, we just apply the same scheme as for the unconstrained cubic spline estimate.

Value

Returns a numeric vector with the same length as x. Returns a vector of NA if no solution has been found by the solver (GLPK).

Author(s)

Hohsuk Noh

References

Daouia, A., Noh, H. and Park, B.U. (2016). Data Envelope fitting with constrained polynomial splines. *Journal of the Royal Statistical Society: Series B*, **78**(1), 3-30. doi:10.1111/rssb.12098.

Lu, M., Zhang, Y. and Huang, J. (2007). Estimation of the mean function with panel count data using monotone polynomial splines. *Biometrika*, **94**, 705-718.

Pya, N. and Wood, S. N. (2015). Shape constrained additive models. *Statistical Computing*, to appear.

Schumaker, L.L. (2007). Spline Functions: Basic Theory, 3rd edition, Cambridge University Press.

See Also

cub_spline_kn

Examples

```
data("air")
x.air <- seq(min(air$xtab), max(air$xtab), length.out=101)</pre>
# 1. Unconstrained cubic spline fits
# Optimal number of inter-knot segments via the BIC criterion
(kn.bic.air.u<-cub_spline_kn(air$xtab, air$ytab,</pre>
method="u", type="BIC"))
# Unconstrained spline estimate
y.cub.air.u<-cub_spline_est(air$xtab, air$ytab,</pre>
x.air, kn=kn.bic.air.u, method="u")
# 2. Monotonicity constraint
# Optimal number of inter-knot segments via the BIC criterion
(kn.bic.air.m<-cub_spline_kn(air$xtab, air$ytab,</pre>
method="m", type="BIC"))
# Monotonic splines estimate
y.cub.air.m<-cub_spline_est(air$xtab, air$ytab,</pre>
x.air, kn=kn.bic.air.m, method="m")
# 3. Monotonicity and Concavity constraints
# Optimal number of inter-knot segments via the BIC criterion
(kn.bic.air.mc<-cub_spline_kn(air$xtab, air$ytab,</pre>
method="mc", type="BIC"))
# Monotonic/Concave splines estimate
y.cub.air.mc<-cub_spline_est(air$xtab, air$ytab,</pre>
 x.air, kn=kn.bic.air.mc, method="mc", all.dea=TRUE)
# Representation
plot(x.air, y.cub.air.u, lty=1, lwd=4, col="green",
type="l", xlab="log(COST)", ylab="log(OUTPUT)")
lines(x.air, y.cub.air.m, lty=2, lwd=4, col="cyan")
lines(x.air, y.cub.air.mc, lty=3, lwd=4, col="magenta")
points(ytab~xtab, data=air)
legend("topleft", col=c("green","cyan","magenta"),
lty=c(1,2,3), legend=c("unconstrained", "monotone",
 "monotone + concave"), lwd=4, cex=0.8)
```

cub_spline_kn

AIC and BIC criteria for choosing the number of inter-knot segments in cubic spline fits

Description

Computes the optimal number of inter-knot segments for the (un)constrained cubic spline fit proposed by Daouia, Noh and Park (2016).

cub_spline_kn

Usage

```
cub_spline_kn(xtab, ytab, method, krange = 1:20, type = "AIC",
  control = list("tm_limit" = 700))
```

Arguments

xtab	a numeric vector containing the observed inputs x_1, \ldots, x_n .
ytab	a numeric vector of the same length as xtab containing the observed outputs y_1, \ldots, y_n .
method	a character equal to "u" (unconstrained estimator), "m" (under the monotonic- ity constraint) or "mc" (under simultaneous monotonicity and concavity con- straints).
krange	a vector of integers specifying the range in which the optimal number of inter- knot segments is to be selected.
type	a character equal to "AIC" or "BIC".
control	a list of parameters to the GLPK solver. See *Details* of help(Rglpk_solve_LP).

Details

The implementation of the unconstrained cubic spline smoother $\tilde{\varphi}_n$ (see cub_spline_est) is based on the knot mesh $\{t_j\}$, with $t_j = x_{[jn/k_n]}$ being the j/k_n th quantile of the distinct values of x_i for $j = 1, \ldots, k_n - 1$. Because the number of knots k_n determines the complexity of the spline approximation, its choice may then be viewed as model selection through the minimization of the following two information criteria:

$$AIC(k) = \log\left(\sum_{i=1}^{n} (\tilde{\varphi}_n(x_i) - y_i)\right) + (k+2)/n,$$
$$BIC(k) = \log\left(\sum_{i=1}^{n} (\tilde{\varphi}_n(x_i) - y_i)\right) + \log n \cdot (k+2)/2n.$$

The first one (option type = "AIC") is similar to the famous Akaike information criterion (Akaike, 1973) and the second one (option type = "BIC") to the Bayesian information criterion (Schwartz, 1978). For the implementation of the concave cubic spline estimator, just apply the same scheme as for the unconstrained version.

Value

Returns an integer.

Author(s)

Hohsuk Noh.

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle, in *Second International Symposium of Information Theory*, eds. B. N. Petrov and F. Csaki, Budapest: Akademia Kiado, 267–281.

Daouia, A., Noh, H. and Park, B.U. (2016). Data Envelope fitting with constrained polynomial splines. *Journal of the Royal Statistical Society: Series B*, **78**(1), 3-30. doi:10.1111/rssb.12098.

Schwartz, G. (1978). Estimating the dimension of a model, Annals of Statistics, 6, 461–464.

See Also

cub_spline_est.

Examples

```
data("air")
# a. Unconstrained cubic spline fits
(kn.bic.air.u<-cub_spline_kn(air$xtab, air$ytab,
method="u", type="BIC"))
# b. Monotone cubic spline smoother
(kn.bic.air.m<-cub_spline_kn(air$xtab, air$ytab,
method="m", type="BIC"))
# c. Monotone and Concave cubic spline smoother
(kn.bic.air.mc<-cub_spline_kn(air$xtab, air$ytab,
method="mc", type="BIC"))</pre>
```

dea_est

DEA, FDH and linearized FDH estimators.

Description

The function implements the empirical FDH (free disposal hull), LFDH (linearized FDH) and DEA (data envelopment analysis) frontier estimators.

Usage

```
dea_est(xtab, ytab, x, type = "dea")
```

Arguments

xtab	a numeric vector containing the observed inputs x_1, \ldots, x_n .
ytab	a numeric vector of the same length as xtab containing the observed outputs
	$y_1,\ldots,y_n.$
х	a numeric vector of evaluation points in which the estimator is to be computed.
type	a character equal to "dea", "fdh" or "lfdh".

dea_est

Details

There are mainly two usual frontier estimation methods for preserving monotonicity: the free disposal hull (FDH) introduced by Deprins *et al.* (1984) and the data envelopment analysis (DEA) initiated by Farrell (1957). The FDH boundary is the lowest "stair-case" monotone curve covering all the data points

$$\varphi_n(x) := \max\{y_i, \, i : x_i \le x\}$$

An improved version of this estimator, referred to as the linearized FDH (LFDH), is obtained by drawing the polygonal line smoothing the staircase FDH curve. It has been considered in Hall and Park (2002) and Jeong and Simar (2006). When the joint support of data is in addition convex, the DEA estimator is defined as the least concave majorant of the FDH frontier (see also Gijbels *et al.* (1999)). We employ the function DEA from the package **Benchmarking** to implement the function dea_est.

Value

Returns a numeric vector with the same length as x.

Author(s)

Hohsuk Noh.

References

Bogetoft, P. and Otto, L. (2011), Benchmarking with DEA, SFA and R, Springer-Verlag.

Deprins, D., Simar, L. and H. Tulkens (1984). Measuring labor efficiency in post offices, in *The performance of Public Enterprises: Concepts and Measurements* (M. Marchand, P. Pestieau and H. Tulkens Eds), North-Holland, Amsterdam, 243–267.

Farrell, M.J. (1957). The measurement of productive efficiency. *Journal of the Royal Statistical Society: Series A*, 120, 253–281.

Gijbels, I., Mammen, E., Park, B.U. and Simar, L. (1999). On estimation of monotone and concave frontier functions, *Journal of American Statistical Association*, 94, 220–228.

Hall, P. and Park, B.U. (2002). New methods for bias correction at endpoints and boundaries, *Annals of Statistics*, 30, 1460-1479.

Jeong, S.-O. and Simar, L. (2006). Linearly interpolated FDH efficiency score for nonconvex frontiers, *Journal of Multivariate Analysis*, 97, 2141–2161.

See Also

quad_spline_est, cub_spline_est.

Examples

```
data("green")
plot(OUTPUT~COST, data=green)
x <- seq(min(green$COST), max(green$COST), length.out=1001)
# We compute and represent the DEA, FDH and LFDH estimates
lines(x, dea_est(green$COST, green$OUTPUT, x, type="dea"),</pre>
```

```
lty=4, lwd=4, col="cyan")
lines(x, dea_est(green$COST, green$OUTPUT, x, type="fdh"),
lty=1, lwd=4, col="green")
lines(x, dea_est(green$COST, green$OUTPUT, x, type="lfdh"),
lty=2, lwd=4, col="magenta")
legend("topleft",legend=c("dea","fdh","lfdh"),
col=c("cyan","green","magenta"), lty=c(4,1,2), lwd=4)
```

dfs_momt

Moment frontier estimator

Description

This function is an implementation of the moment-type estimator developed by Daouia, Florens and Simar (2010).

Usage

dfs_momt(xtab, ytab, x, rho, k, ci=TRUE)

Arguments

xtab	a numeric vector containing the observed inputs x_1, \ldots, x_n .
ytab	a numeric vector of the same length as xtab containing the observed outputs
	$y_1,\ldots,y_n.$
х	a numeric vector of evaluation points in which the estimator is to be computed.
rho	a numeric vector of the same length as x or a scalar, which determines the values of rho.
k	a numeric vector of the same length as x or a scalar, which determines the thresholds at which the moment estimator will be computed.
ci	a boolean, TRUE for computing the confidence interval.

Details

Combining ideas from Dekkers, Einmahl and de Haan (1989) with the dimensionless transformation $\{z_i^x := y_i \mathbf{1}_{\{x_i \le x\}}, i = 1, \dots, n\}$ of the observed sample $\{(x_i, y_i), i = 1, \dots, n\}$, the authors estimate the conditional endpoint $\varphi(x)$ by

$$\tilde{\varphi}_{momt}(x) = z_{(n-k)}^x + z_{(n-k)}^x M_n^{(1)} \{1 + \rho_x\}$$

where $M_n^{(1)} = (1/k) \sum_{i=0}^{k-1} \left(\log z_{(n-i)}^x - \log z_{(n-k)}^x \right)$, $z_{(1)}^x \leq \cdots \leq z_{(n)}^x$ are the ascending order statistics corresponding to the transformed sample $\{z_i^x, i = 1, \cdots, n\}$ and $\rho_x > 0$ is referred to as the extreme-value index and has the following interpretation: when $\rho_x > 2$, the joint density of data decays smoothly to zero at a speed of power $\rho_x - 2$ of the distance from the frontier; when $\rho_x = 2$, the density has sudden jumps at the frontier; when $\rho_x < 2$, the density increases toward infinity at a speed of power $\rho_x - 2$ of the distance from the contributions to econometric

12

dfs_momt

literature on frontier analysis assume that the joint density is strictly positive at its support boundary, or equivalently, $\rho_x = 2$ for all x. When ρ_x is unknown, Daouia et al. (2010) suggest to use the following two-step estimator: First, estimate ρ_x by the moment estimator $\tilde{\rho}_x$ implemented in the function rho_momt_pick by utilizing the option method="moment", or by the Pickands estimator $\hat{\rho}_x$ by using the option method="moment", or by the Pickands estimator $\hat{\rho}_x$ by using the option method="pickands". Second, use the estimator $\tilde{\varphi}_{momt}(x)$, as if ρ_x were known, by substituting the estimated value $\tilde{\rho}_x$ or $\hat{\rho}_x$ in place of ρ_x . The 95% confidence interval of $\varphi(x)$ derived from the asymptotic normality of $\tilde{\varphi}_{momt}(x)$ is given by

$$[\tilde{\varphi}_{momt}(x) \pm 1.96\sqrt{V(\rho_x)/k} z^x_{(n-k)} M_n^{(1)} (1+1/\rho_x)]$$

where $V(\rho_x) = \rho_x^2 (1 + 2/\rho_x)^{-1}$. The sample fraction $k = k_n(x)$ plays here the role of the smoothing parameter and varies between 1 and $N_x - 1$, with $N_x = \sum_{i=1}^n \mathbf{1}_{\{x_i \leq x\}}$ being the number of observations (x_i, y_i) with $x_i \leq x$. See kopt_momt_pick for an automatic data-driven rule for selecting k.

Value

Returns a numeric vector with the same length as x.

Note

As it is common in extreme-value theory, good results require a large sample size N_x at each evaluation point x. See also the note in kopt_momt_pick.

Author(s)

Abdelaati Daouia and Thibault Laurent (converted from Leopold Simar's Matlab code).

References

Daouia, A., Florens, J.P. and Simar, L. (2010). Frontier Estimation and Extreme Value Theory, *Bernoulli*, 16, 1039-1063.

Dekkers, A.L.M., Einmahl, J.H.J. and L. de Haan (1989), A moment estimator for the index of an extreme-value distribution, *nnals of Statistics*, 17, 1833-1855.

See Also

dfs_pick, kopt_momt_pick.

Examples

```
data("post")
x.post <- seq(post$xinput[100], max(post$xinput),
  length.out = 100)
# 1. When rho[x] is known and equal to 2, we set:
rho <- 2
# To determine the sample fraction k=k[n](x)
# in tilde(varphi[momt])(x).
best_kn.1 <- kopt_momt_pick(post$xinput, post$yprod,
  x.post, rho = rho)</pre>
```

```
# To compute the frontier estimates and confidence intervals:
res.momt.1 <- dfs_momt(post$xinput, post$yprod, x.post,</pre>
rho = rho, k = best_kn.1)
# Representation
plot(yprod~xinput, data = post, xlab = "Quantity of labor",
ylab = "Volume of delivered mail")
lines(x.post, res.momt.1[,1], lty = 1, col = "cyan")
lines(x.post, res.momt.1[,2], lty = 3, col = "magenta")
lines(x.post, res.momt.1[,3], lty = 3, col = "magenta")
## Not run:
# 2. rho[x] is unknown and estimated by
# the Pickands estimator tilde(rho[x])
rho_momt <- rho_momt_pick(post$xinput, post$yprod,</pre>
x.post)
best_kn.2 <- kopt_momt_pick(post$xinput, post$yprod,</pre>
 x.post, rho = rho_momt)
res.momt.2 <- dfs_momt(post$xinput, post$yprod, x.post,</pre>
rho = rho_momt, k = best_kn.2)
# 3. rho[x] is unknown independent of x and estimated
# by the (trimmed) mean of tilde(rho[x])
rho_trimmean <- mean(rho_momt, trim=0.00)</pre>
best_kn.3 <- kopt_momt_pick(post$xinput, post$yprod,</pre>
 x.post, rho = rho_trimmean)
res.momt.3 <- dfs_momt(post$xinput, post$yprod, x.post,</pre>
rho = rho_trimmean, k = best_kn.3)
# Representation
plot(yprod~xinput, data = post, col = "grey",
xlab = "Quantity of labor", ylab = "Volume of delivered mail")
lines(x.post, res.momt.2[,1], lty = 1, lwd = 2, col = "cyan")
lines(x.post, res.momt.2[,2], lty = 3, lwd = 4, col = "magenta")
lines(x.post, res.momt.2[,3], lty = 3, lwd = 4, col = "magenta")
plot(yprod~xinput, data = post, col = "grey",
xlab = "Quantity of labor", ylab = "Volume of delivered mail")
lines(x.post, res.momt.3[,1], lty = 1, lwd = 2, col = "cyan")
lines(x.post, res.momt.3[,2], lty = 3, lwd = 4, col = "magenta")
lines(x.post, res.momt.3[,3], lty = 3, lwd = 4, col = "magenta")
```

End(Not run)

dfs_pick

Pickands frontier estimator

Description

This function is an implementation of the Pickands type estimator developed by Daouia, Florens and Simar (2010).

dfs_pick

Usage

dfs_pick(xtab, ytab, x, k, rho, ci=TRUE)

Arguments

xtab	a numeric vector containing the observed inputs x_1, \ldots, x_n .
ytab	a numeric vector of the same length as xtab containing the observed outputs
	$y_1,\ldots,y_n.$
х	a numeric vector of evaluation points in which the estimator is to be computed.
k	a numeric vector of the same length as x or a scalar, which determines the thresh- olds at which the Pickands estimator will be computed.
rho	a numeric vector of the same length as x or a scalar, which determines the values of rho.
ci	a boolean, TRUE for computing the confidence interval.

Details

Built on the ideas of Dekkers and de Haan (1989), Daouia et al. (2010) propose to estimate the frontier point $\varphi(x)$ by

$$\hat{\varphi}_{pick}(x) = \frac{z_{(n-k+1)}^x - z_{(n-2k+1)}^x}{2^{1/\rho_x} - 1} + z_{(n-k+1)}^x$$

from the transformed data $\{z_i^x, i = 1, \dots, n\}$ described in dfs_momt, where $\rho_x > 0$ is the same tail-index as in dfs_momt. If ρ_x is known (typically equal to 2 if the joint density of data is believed to have sudden jumps at the frontier), then one can use the estimator $\hat{\varphi}_{pick}(x)$ in conjunction with the function kopt_momt_pick which implements an automatic data-driven method for selecting the threshold k. In contrast, if ρ_x is unknown, one could consider using the following two-step estimator: First, estimate ρ_x by the Pickands estimator $\hat{\rho}_x$ implemented in the function rho_momt_pick by using the option method="pickands", or by the moment estimator $\tilde{\rho}_x$ by utilizing the option method="pickands", or by the moment estimator $\tilde{\rho}_x$ by utilizing the option method="pickands". The pointwise 95% confidence interval of the frontier function obtained from the asymptotic normality of $\hat{\varphi}_{pick}(x)$ is given by

$$\left[\hat{\varphi}_{pick}(x) \pm 1.96\sqrt{v(\rho_x)/(2k)(z_{(n-k+1)}^x - z_{(n-2k+1)}^x)}\right]$$

where $v(\rho_x) = \rho_x^{-2} 2^{-2/\rho_x} / (2^{-1/\rho_x} - 1)^4$. Finally, to select the threshold $k = k_n(x)$, one could use the automatic data-driven method of Daouia et al. (2010) implemented in the function kopt_momt_pick (option method="pickands").

Value

Returns a numeric vector with the same length as x.

Note

As it is common in extreme-value theory, good results require a large sample size N_x at each evaluation point x. See also the note in kopt_momt_pick.

Author(s)

Abdelaati Daouia and Thibault Laurent (converted from Leopold Simar's Matlab code).

References

Daouia, A., Florens, J.P. and Simar, L. (2010). Frontier Estimation and Extreme Value Theory, *Bernoulli*, 16, 1039-1063.

Dekkers, A.L.M., Einmahl, J.H.J. and L. de Haan (1989), A moment estimator for the index of an extreme-value distribution, *Annals of Statistics*, 17, 1833-1855.

See Also

dfs_momt, kopt_momt_pick.

Examples

```
data("post")
x.post<- seq(post$xinput[100],max(post$xinput),</pre>
length.out=100)
# 1. When rho[x] is known and equal to 2, we set:
rho<-2
# To determine the sample fraction k=k[n](x)
# in hat(varphi[pick])(x).
best_kn.1<-kopt_momt_pick(post$xinput, post$yprod,</pre>
x.post, method="pickands", rho=rho)
# To compute the frontier estimates and confidence intervals:
res.pick.1<-dfs_pick(post$xinput, post$yprod, x.post,</pre>
 rho=rho, k=best_kn.1)
# Representation
plot(yprod~xinput, data=post, xlab="Quantity of labor",
 ylab="Volume of delivered mail")
lines(x.post, res.pick.1[,1], lty=1, col="cyan")
lines(x.post, res.pick.1[,2], lty=3, col="magenta")
lines(x.post, res.pick.1[,3], lty=3, col="magenta")
## Not run:
# 2. rho[x] is unknown and estimated by
# the Pickands estimator hat(rho[x])
rho_pick<-rho_momt_pick(post$xinput, post$yprod,</pre>
x.post, method="pickands")
best_kn.2<-kopt_momt_pick(post$xinput, post$yprod,</pre>
  x.post, method="pickands", rho=rho_pick)
res.pick.2<-dfs_pick(post$xinput, post$yprod, x.post,</pre>
 rho=rho_pick, k=best_kn.2)
# 3. rho[x] is unknown independent of x and estimated
# by the (trimmed) mean of hat(rho[x])
rho_trimmean<-mean(rho_pick, trim=0.00)</pre>
best_kn.3<-kopt_momt_pick(post$xinput, post$yprod,</pre>
  x.post, rho=rho_trimmean, method="pickands")
res.pick.3<-dfs_pick(post$xinput, post$yprod, x.post,</pre>
 rho=rho_trimmean, k=best_kn.3)
```

dfs_pwm

```
# Representation
plot(yprod~xinput, data=post, col="grey", xlab="Quantity of labor",
ylab="Volume of delivered mail")
lines(x.post, res.pick.2[,1], lty=1, lwd=2, col="cyan")
lines(x.post, res.pick.2[,2], lty=3, lwd=4, col="magenta")
plot(yprod~xinput, data=post, col="grey", xlab="Quantity of labor",
ylab="Volume of delivered mail")
lines(x.post, res.pick.3[,1], lty=1, lwd=2, col="cyan")
lines(x.post, res.pick.3[,2], lty=3, lwd=4, col="magenta")
lines(x.post, res.pick.3[,3], lty=3, lwd=4, col="magenta")
```

End(Not run)

dfs_pwm

Probability-weighted moment frontier estimator

Description

This function is an implementation of the probability-weighted moment frontier estimator developed by Daouia, Florens and Simar (2012).

Usage

```
dfs_pwm(xtab, ytab, x, coefm, a=2, rho, ci=TRUE)
```

Arguments

xtab	a numeric vector containing the observed inputs x_1, \ldots, x_n .
ytab	a numeric vector of the same length as xtab containing the observed outputs
	$y_1,\ldots,y_n.$
x	a numeric vector of evaluation points in which the estimator is to be computed.
coefm	a tuning parameter (integer) larger than or equal to 1.
а	a smoothing parameter (integer) larger than or equal to 2.
rho	a numeric vector of the same length as x or a scalar, which determines the values of rho.
ci	a boolean, TRUE for computing the confidence interval.

Details

The regularized frontier estimator introduced by Daouia et al. (2012) is based on the unregularized probability-weighted moment estimator

$$\hat{\varphi}_m(x) = \varphi_{fdh}(x) - \int_0^{\varphi_{fdh}(x)} \hat{F}^m(y|x) dy$$

where the trimming order $m \ge 1$ is an integer such that $m = m_n \to \infty$ as $n \to \infty$, and $\hat{F}(y|x) = \sum_{i=1}^n 1_{(x_i \le x, y_i \le y)} / \sum_{i=1}^n 1_{(x_i \le x)}$. The implemented estimator of $\varphi(x)$ is then defined as

$$\tilde{\varphi}_m(x) = \hat{\varphi}_m(x) + \Gamma \left(1 + 1/\bar{\rho}_x\right) \left(1/m\,\hat{\ell}_x\right)^{1/\bar{\rho}_x}$$

where

$$\bar{\rho}_x = \log(a) \left\{ \log \left(\frac{\hat{\varphi}_m(x) - \hat{\varphi}_{am}(x)}{\hat{\varphi}_{am}(x) - \hat{\varphi}_{a^2m}(x)} \right) \right\}^{-1}, \quad \hat{\ell}_x = \frac{1}{m} \left[\frac{\Gamma(1 + 1/\bar{\rho}_x) \left(1 - a^{-1/\bar{\rho}_x} \right)}{\hat{\varphi}_m(x) - \hat{\varphi}_{am}(x)} \right]^{\rho_x},$$

with $a \ge 2$ being a fixed integer. If the true tail-index $\rho_x = \beta_x + 2$ is known, we set $\bar{\rho}_x = \rho_x$ in the expressions above. The two smoothing parameters m and a have to be fixed by the user in the 4th and 5th arguments of the function.

The pointwise 95% confidence interval of $\varphi(x)$ derived from the asymptotic normality of $\tilde{\varphi}_m(x)$ is given by $[\tilde{\varphi}_m(x) \pm 1.96 \hat{\sigma}(m, x)/\sqrt{n}]$ where

$$\hat{\sigma}^2(m,x) = \frac{2m^2}{\hat{F}_X(x)} \int_0^{\varphi_{fdh}(x)} \int_0^{\varphi_{fdh}(x)} \hat{F}^m(y|x) \hat{F}^{m-1}(u|x) (1 - \hat{F}(u|x)) \mathbf{1}_{(y \le u)} \, dy \, du$$

with $\hat{F}_X(x) = (1/n) \sum_{i=1}^n 1_{(x_i \leq x)}$. Note that the standard deviation $\sigma(m, x)/\sqrt{n}$ of the biascorrected estimator $\tilde{\varphi}_m(x)$ is adjusted by a bootstrap estimator in the numerical illustrations of Daouia et al. (2012), whereas the exact estimate $\hat{\sigma}(m, x)/\sqrt{n}$ is utilized in the implemented function. A practical choice of m that Daouia et al. (2012) have employed is the simple rule of thumb $m = coefm \times N_x^{1/3}$, where $N_x = \sum_{i=1}^n 1_{\{x_i \leq x\}}$, and the integer coefm as well as the second smoothing parameter a are to be tuned by the user to avoid numerical instabilities in the pointwise estimates of the tail-index ρ_x and the frontier function $\varphi(x)$. The user may start with the values coefm=5 and a=2 [respectively, coefm=10 and a=20] for computing the estimator $\tilde{\varphi}_m(x)$ [respectively, $\bar{\rho}_x$]. Note that tail-index estimation and frontier estimation are conducted separately.

Value

Returns a numeric vector with the same length as x.

Note

The computational burden here is demanding, so be forewarned.

Author(s)

Abdelaati Daouia and Thibault Laurent (converted from Abdelaati Daouia's Matlab code).

References

Daouia, A., Florens, J.-P. and Simar, L. (2012). Regularization of Nonparametric Frontier Estimators. *Journal of Econometrics*, 168, 285-299.

See Also

rho_pwm, mopt_pwm.

green

Examples

```
data("post")
x.post<- seq(post$xinput[100],max(post$xinput),</pre>
length.out=100)
## Not run:
# 1. When rho[x] is known and equal to 2, we set:
rho<-2
res.pwm.1<- dfs_pwm(post$xinput, post$yprod, x.post, coefm=5,</pre>
a=2, rho, ci=TRUE)
# 2. When rho[x] is unknown and dependent of x.
# its estimate hat(rho[x]) is obtained via:
rho_pwm <- rho_pwm(post$xinput, post$yprod, x.post, coefm=10, a=20)</pre>
# and the corresponding frontier estimator via:
res.pwm.2<- dfs_pwm(post$xinput, post$yprod, x.post, coefm=5,</pre>
a=2, rho_pwm, ci=TRUE)
# 3. When rho[x] is unknown but independent of x,
# a robust estimation strategy is by using the (trimmed) mean
# over the estimates hat(rho[x]):
rho_trimmean<-mean(rho_pwm, trim=0.00)</pre>
res.pwm.3<- dfs_pwm(post$xinput, post$yprod, x.post, coefm=5,</pre>
a=2, rho_trimmean, ci=TRUE)
```

End(Not run)

green

American electric utility companies

Description

The dataset consists of 123 American electric utility companies. As in the set-up of Gijbels *et al.* (1999), we used the measurements of the variables $y_i = \log(q_i)$ and $x_i = \log(c_i)$, where q_i is the production output of the company *i* and c_i is the total cost involved in the production. For a detailed description and analysis of these data see, *e.g.*, Christensen and Greene (1976) and Greene (1990).

Usage

data(green)

Format

A data frame with 123 observations on the following 2 variables.

COST a numeric vector.

OUTPUT a numeric vector.

Source

Gijbels et al. (1999).

References

Christensen, L.R. and Greene, W.H. (1976). Economies of Scale in U.S. Electric Power Generation, *Journal of Political Economy*, University of Chicago Press, 84, 655-76.

Gijbels, I., Mammen, E., Park, B.U. and Simar, L. (1999). On estimation of monotone and concave frontier functions. *Journal of American Statistical Association*, 94, 220-228.

Greene, W.H. (1990). A Gamma-distributed stochastic frontier model, *Journal of Econometrics*, 46, 141-163.

Examples

data("green")

kern_smooth

Frontier estimation via kernel smoothing

Description

The function kern_smooth implements two frontier estimators based on kernel smoothing techniques. One is from Noh (2014) and the other is from Parmeter and Racine (2013).

Usage

```
kern_smooth(xtab, ytab, x, h, method="u", technique="noh",
    control = list("tm_limit" = 700))
```

Arguments

xtab	a numeric vector containing the observed inputs x_1, \ldots, x_n .
ytab	a numeric vector of the same length as xtab containing the observed outputs y_1, \ldots, y_n .
x	a numeric vector of evaluation points in which the estimator is to be computed.
h	determines the bandwidth at which the smoothed kernel estimate will be computed.
method	a character equal to "u" (unconstrained estimator), "m" (under the monotonic- ity constraint) or "mc" (under simultaneous monotonicity and concavity con- straints).
technique	which estimation method to use. "Noh"" specifies the use of the method in Noh (2014) and "pr" is for the method in Parameter and Racine (2013).
control	a list of parameters to the GLPK solver. See *Details* of help(Rglpk_solve_LP).

20

Details

To estimate the frontier function, Parameter and Racine (2013) considered the following generalization of linear regression smoothers

$$\hat{\varphi}(x|p) = \sum_{i=1}^{n} p_i A_i(x) y_i,$$

where $A_i(x)$ is the kernel weight function of x for the *i*th data depending on x_i 's and the sort of linear smoothers. For example, the Nadaraya-Watson kernel weights are $A_i(x) = K_i(x)/(\sum_{j=1}^n K_j(x))$, where $K_i(x) = h^{-1}K\{(x - x_i)/h\}$, with the kernel function K being a bounded and symmetric probability density, and h is a bandwidth. Then, the weight vector $p = (p_1, \ldots, p_n)^T$ is chosen to minimize the distance $D(p) = (p - p_u)^T (p - p_u)$ subject to the envelopment constraints and the choice of the shape constraints, where p_u is an *n*-dimensional vector with all elements being one. The envelopment and shape constraints are

$$\begin{array}{lll} \hat{\varphi}(x_i|p) - y_i &=& \sum_{i=1}^n p_i A_i(x_i) y_i - y_i \geq 0, \ i = 1, \dots, n; \quad (\text{envelopment constraints}) \\ \hat{\varphi}^{(1)}(x|p) &=& \sum_{i=1}^n p_i A_i^{(1)}(x) y_i \geq 0, \ x \in \mathcal{M}; \quad (\text{monotonocity constraints}) \\ \hat{\varphi}^{(2)}(x|p) &=& \sum_{i=1}^n p_i A_i^{(2)}(x) y_i \leq 0, \ x \in \mathcal{C}, \quad (\text{concavity constraints}) \end{array}$$

where $\hat{\varphi}^{(s)}(x|p) = \sum_{i=1}^{n} p_i A_i^{(s)}(x) y_i$ is the *s*th derivative of $\hat{\varphi}(x|p)$, with \mathcal{M} and \mathcal{C} being the collections of points where monotonicity and concavity are imposed, respectively. In our implementation of the estimator, we simply take the entire dataset $\{(x_i, y_i), i = 1, ..., n\}$ to be \mathcal{M} and \mathcal{C} and, in case of small samples, we augment the sample points by an equispaced grid of length 201 over the observed support $[\min_i x_i, \max_i x_i]$ of X. For the weight $A_i(x)$, we use the Nadaraya-Watson weights.

Noh (2014) considered the same generalization of linear smoothers $\hat{\varphi}(x|p)$ for frontier estimation, but with a difference choice of the weight p. Using the same envelopment and shape constraints as Parmeter and Racine (2013), the weight vector p is chosen to minimize the area under the fitted curve $\hat{\varphi}(x|p)$, that is $A(p) = \int_a^b \hat{\varphi}(x|p) dx = \sum_{i=1}^n p_i y_i \left(\int_a^b A_i(x) dx\right)$, where [a, b] is the true support of X. In practice, we integrate over the observed support $[\min_i x_i, \max_i x_i]$ since the theoretic one is unknown. In what concerns the kernel weights $A_i(x)$, we use the Priestley-Chao weights

$$A_i(x) = \begin{cases} 0 & , i = 1 \\ (x_i - x_{i-1})K_i(x) & , i \neq 1 \end{cases}$$

where it is assumed that the pairs (x_i, y_i) have been ordered so that $x_1 \leq \cdots \leq x_n$. The choice of such weights is motivated by their convenience for the evaluation of the integral $\int A_i(x) dx$.

Value

Returns a numeric vector with the same length as x. Returns a vector of NA if no solution has been found by the solver (GLPK).

Author(s)

Hohsuk Noh

References

Noh, H. (2014). Frontier estimation using kernel smoothing estimators with data transformation. *Journal of the Korean Statistical Society*, 43, 503-512.

Parmeter, C.F. and Racine, J.S. (2013). Smooth constrained frontier analysis in *Recent Advances* and *Future Directions in Causality, Prediction, and Specification Analysis*, Springer-Verlag, New York, 463-488.

See Also

kern_smooth_bw.

Examples

```
## Not run:
data("green")
x.green <- seq(min(log(green$COST)), max(log(green$COST)),</pre>
length.out = 101)
options(np.tree=TRUE, crs.messages=FALSE, np.messages=FALSE)
# 1. Unconstrained
(h.bic.green.u <- kern_smooth_bw(log(green$COST),</pre>
log(green$OUTPUT), method = "u", technique = "noh",
bw_method = "bic"))
y.ks.green.u <- kern_smooth(log(green$COST),</pre>
log(green$OUTPUT), x.green, h = h.bic.green.u,
method = "u", technique = "noh")
# 2. Monotonicity constraint
(h.bic.green.m <- kern_smooth_bw(log(green$COST),</pre>
log(green$OUTPUT), method = "m", technique = "noh",
bw_method = "bic"))
y.ks.green.m <- kern_smooth(log(green$COST),</pre>
 log(green$OUTPUT), x.green, h = h.bic.green.m,
 method = "m", technique = "noh")
# 3. Monotonicity and Concavity constraints
(h.bic.green.mc<-kern_smooth_bw(log(green$COST), log(green$OUTPUT),</pre>
method="mc", technique="noh", bw_method="bic"))
y.ks.green.mc<-kern_smooth(log(green$COST),</pre>
log(green$OUTPUT), x.green, h=h.bic.green.mc, method="mc",
 technique="noh")
# Representation
plot(log(OUTPUT)~log(COST), data=green, xlab="log(COST)",
ylab="log(OUTPUT)")
lines(x.green, y.ks.green.u, lty=1, lwd=4, col="green")
lines(x.green, y.ks.green.m, lty=2, lwd=4, col="cyan")
lines(x.green, y.ks.green.mc, lty=3, lwd=4, col="magenta")
legend("topleft", col=c("green","cyan","magenta"),
lty=c(1,2,3), legend=c("unconstrained", "monotone",
 "monotone + concave"), lwd=4, cex=0.8)
```

End(Not run)

kern_smooth_bw

Description

The function kern_smooth_bw provides two bandwidth selection methods. One is the least squares cross-validation developed by Parmeter and Racine (2013). The other is the BIC developed in Noh (2014).

Usage

```
kern_smooth_bw(xtab, ytab, method="u", technique="noh", bw_method="bic",
  control = list("tm_limit" = 700))
```

Arguments

xtab	a numeric vector containing the observed inputs x_1, \ldots, x_n .
ytab	a numeric vector of the same length as xtab containing the observed outputs
	$y_1,\ldots,y_n.$
method	a character equal to "u" (unconstrained estimator), "m" (under the monotonic-
	ity constraint) or "mc" (under simultaneous monotonicity and concavity con- straints).
technique	which estimation technique to use: "Noh" specifies the use of the method in Noh (2014), while "pr" is for the method in Parameter and Racine (2013).
bw_method	which bandwidth selection method to use: "cv" returns the bandwidth that min-
	imizes the least squares cross-validation criterion, and "bic" returns the band-
	width minimizing the BIC.
control	a list of parameters to the GLPK solver. See *Details* of help(Rglpk_solve_LP).

Details

As with any smoothed techniques, the bandwidth selection is critical to the quality of the frontier estimator. Parmeter and Racine (2013)'s recommendation is to use the least squares cross-validation method implemented with $bw_method="cv"$ in the function kern $_smooth_bw$. Instead, Noh (2014) proposed to select the bandwidth which minimizes the following criterion:

$$BIC(h) = \log\left(\sum_{i=1}^{n} (\hat{\varphi}(x_i|\hat{p}(h)) - y_i)\right) + \frac{\log n \cdot tr(S(h))}{2n},$$

where $\hat{p}(h)$ is the chosen weight vector associated to the bandwidth h, and tr(S(h)) is the trace of the smoothing matrix

$$S(h) = \begin{pmatrix} A_1(x_1) & \cdots & A_n(x_1) \\ \vdots & \ddots & \vdots \\ A_1(x_n) & \cdots & A_n(x_n) \end{pmatrix}.$$

The function kern_smooth_bw computes the optimal bandwidth from this criterion with option bw_method="bic".

24

Value

Returns an optimal bandwidth depending on the specified selection method.

Author(s)

Hohsuk Noh

References

Noh, H. (2014). Frontier estimation using kernel smoothing estimators with data transformation. *Journal of the Korean Statistical Society*, 43, 503-512.

Parmeter, C.F. and Racine, J.S. (2013). Smooth constrained frontier analysis in *Recent Advances* and *Future Directions in Causality, Prediction, and Specification Analysis*, Springer-Verlag, New York, 463-488.

See Also

kern_smooth.

Examples

```
## Not run:
data("green")
x.green <- seq(min(log(green$COST)), max(log(green$COST)),length.out=101)</pre>
options(np.tree=TRUE,crs.messages=FALSE,np.messages=FALSE)
h.pr.green.m<-kern_smooth_bw(log(green$COST),log(green$OUTPUT), method="m",
technique="pr", bw_method="cv")
h.noh.green.m<-kern_smooth_bw(log(green$COST),log(green$OUTPUT), method="m",
technique="noh", bw_method="bic")
y.pr.green.m<-kern_smooth(log(green$COST),log(green$OUTPUT), x.green,</pre>
h=h.pr.green.m, method="m", technique="pr")
y.noh.green.m<-kern_smooth(log(green$COST),log(green$OUTPUT), x.green,</pre>
h=h.noh.green.m, method="m", technique="noh")
plot(log(OUTPUT)~log(COST), data=green, xlab="log(COST)",ylab="log(OUTPUT)")
lines(x.green, y.pr.green.m, lwd=4, lty=3, col="red")
lines(x.green, y.noh.green.m, lwd=4, lty=3, col="blue")
legend("topleft", col=c("blue","red"),lty=3, legend=c("noh","pr"),
1wd=4, cex=0.8)
## End(Not run)
```

kopt_momt_pick Optimal k in moment and Pickands frontier estimators

Description

This function gives the optimal sample fraction k in the moment and Pickands type of estimators introduced by Daouia, Florens and Simar (2010).

Usage

kopt_momt_pick(xtab, ytab, x, rho, method="moment", wind.coef=0.1)

Arguments

xtab	a numeric vector containing the observed inputs x_1, \ldots, x_n .
ytab	a numeric vector of the same length as xtab containing the observed outputs
	$y_1,\ldots,y_n.$
х	a numeric vector of evaluation points in which the estimator is to be computed.
rho	a numeric vector of the same length as x or a scalar, which determines the values of rho.
method	a character equal to "moment" or "pickands".
wind.coef	a scalar coefficient to be selected in the interval $(0,1]$.

Details

This function is an implementation of an experimental method by Daouia et al. (2010) for the automated threshold selection (choice of $k = k_n(x)$) for the moment frontier estimator $\tilde{\varphi}_{momt}(x)$ [see dfs_momt] in case method="moment" and for the Pickands frontier estimator $\hat{\varphi}_{pick}(x)$ [see dfs_pick] in case method="pickands". The idea is to select first (for each x) a grid of values for the sample fraction $k_n(x)$ given by $k = 1, \cdots, [\sqrt{N_x}]$, where $[\sqrt{N_x}]$ stands for the integer part of $\sqrt{N_x}$ with $N_x = \sum_{i=1}^n 1_{\{x_i \leq x\}}$, and then select the k where the variation of the results is the smallest. To achieve this here, Daouia et al. (2010) compute the standard deviations of $\tilde{\varphi}_{momt}(x)$ [option method="moment"] or $\hat{\varphi}_{pick}(x)$ [option method="pickands"] over a "window" of size max(3, $[wind.coef \times \sqrt{N_x}/2]$), where the coefficient wind. coef should be selected in the interval (0, 1] in such a way to avoid numerical instabilities. The default option wind.coef=0.1 corresponds to having a window large enough to cover around 10% of the possible values of k in the selected range of values for $k_n(x)$.

Value

Returns a numeric vector with the same length as x.

Note

In order to choose a raisonable estimate $\tilde{\varphi}_{momt}(x) = \tilde{\varphi}_{momt}(x, k)$ [see dfs_momt] and $\hat{\varphi}_{pick}(x) = \hat{\varphi}_{pick}(x, k)$ [see dfs_pick] of the frontier function $\varphi(x)$, for each fixed x, one can construct the plot of the estimator of interest, consisting of the points $\{(k, \tilde{\varphi}_{momt}(x, k))\}_k$ or $\{(k, \hat{\varphi}_{pick}(x, k))\}_k$, and select a value of the estimate at which the obtained graph looks stable. This is this kind of idea which guides the proposed automatic data-driven rule for a chosen grid of values of x. The main difficulty with such a method is that the plots of $\tilde{\varphi}_{momt}(x, k)$ or $\hat{\varphi}_{pick}(x, k)$ as functions of k, for each x, may be so unstable that reasonable values of k [which would correspond to the true value of $\varphi(x)$] may be hidden in the graphs. In result, the obtained frontier estimator may exhibit considerable volatility as a function of x. One way to avoid such instabilities is by tuning the choice of the parameter wind. coef in the interval (0,1]. Note that the default value is wind.coef=0.1. The user can also improve appreciably the estimation of $\varphi(x)$ by refining the estimation of the extreme-value index ρ_x (see rho_momt_pick for details).

Author(s)

Abdelaati Daouia and Thibault Laurent (converted from Leopold Simar's Matlab code).

References

Daouia, A., Florens, J.P. and Simar, L. (2010). Frontier Estimation and Extreme Value Theory, *Bernoulli*, 16, 1039-1063.

Dekkers, A.L.M., Einmahl, J.H.J. and L. de Haan (1989), A moment estimator for the index of an extreme-value distribution, *Annals of Statistics*, 17, 1833-1855.

See Also

dfs_momt, dfs_pick.

Examples

```
data("post")
x.post<- seq(post$xinput[100],max(post$xinput),
  length.out=100)
# When rho[x] is known and equal to 2, we set:
rho<-2
# a. Optimal k in Pickands frontier estimators
best_kn.pick<-kopt_momt_pick(post$xinput, post$yprod,
  x.post, method="pickands", rho=rho)
# b. Optimal k in moment frontier estimators
## Not run:
best_kn.momt<-kopt_momt_pick(post$xinput, post$yprod,
  x.post, rho=rho)</pre>
```

End(Not run)

loc_est

Local linear frontier estimator

Description

Computes the local linear smoothing frontier estimator of Hall, Park and Stern (1998) and Hall and Park (2004).

Usage

```
loc_est(xtab, ytab, x, h, method="u", control = list("tm_limit" = 700))
```

loc_est

Arguments

xtab	a numeric vector containing the observed inputs x_1, \ldots, x_n .
ytab	a numeric vector of the same length as xtab containing the observed outputs y_1, \ldots, y_n .
x	a numeric vector of evaluation points in which the estimator is to be computed.
h	determines the bandwidth at which the local linear estimate will be computed.
method	a character equal to "u" (unconstrained estimator) or "m" (improved version of the unconstrained estimator).
control	a list of parameters to the GLPK solver. See *Details* of help(Rglpk_solve_LP).

Details

In the unconstrained case (option method="u"), the implemented estimator of $\varphi(x)$ is defined by

$$\hat{\varphi}_{n,LL}(x) = \min\left\{z : \text{there exists } \theta \text{ such that } y_i \leq z + \theta(x_i - x)\right\}$$

for all *i* such that $x_i \in (x - h, x + h)$,

where the bandwidth h has to be fixed by the user in the 4th argument of the function. This estimator may lack of smoothness in case of small samples and has no guarantee of being monotone even if the true frontier is so. Following the curvature of the monotone frontier φ , the unconstrained estimator $\hat{\varphi}_{n,LL}$ is likely to exhibit substantial bias, especially at the sample boundaries (see Daouia et al (2016) for numerical illustrations). A simple way to remedy to this drawback is by imposing the extra condition $\theta \ge 0$ in the definition of $\hat{\varphi}_{n,LL}(x)$ to get

$$\tilde{\varphi}_{n,LL}(x) = \min \left\{ z : \text{there exists } \theta \ge 0 \text{ such that } y_i \le z + \theta(x_i - x) \right\}$$
for all *i* such that $x_i \in (x - h, x + h)$.

As shown in Daouia et al (2016), this version only reduces the vexing bias and border defects of the original estimator when the true frontier is monotone. The option method="m" indicates that the improved fit $\tilde{\varphi}_{n,LL}(x)$ should be utilized in place of $\hat{\varphi}_{n,LL}(x)$. Hall and Park (2004) proposed a bootstrap procedure for selecting the optimal bandwidth h in $\hat{\varphi}_{n,LL}(x)$ and $\tilde{\varphi}_{n,LL}(x)$ (see the function loc_est_bw).

Value

Returns a numeric vector with the same length as x. Returns a vector of NA if no solution has been found by the solver (GLPK).

Author(s)

Hohsuk Noh.

References

Daouia, A., Noh, H. and Park, B.U. (2016). Data Envelope fitting with constrained polynomial splines. *Journal of the Royal Statistical Society: Series B*, **78**(1), 3-30. doi:10.1111/rssb.12098.

Hall, P. and Park, B.U. (2004). Bandwidth choice for local polynomial estimation of smooth boundaries. *Journal of Multivariate Analysis*, 91, 240-261.

Hall, P., Park, B.U. and Stern, S.E. (1998). On polynomial estimators of frontiers and boundaries. *Journal of Multivariate Analysis*, 66, 71-98.

See Also

loc_est_bw.

Examples

```
data("nuclear")
x.nucl <- seq(min(nuclear$xtab), max(nuclear$xtab),</pre>
length.out=101)
# 1. Unconstrained estimator
# Optimal bandwidths over 100 bootstrap replications
## Not run:
h.nucl.u <- loc_est_bw(nuclear$xtab, nuclear$ytab,</pre>
x.nucl, h=40, B=100, method="u")
## End(Not run)
(h.nucl.u<-79.11877)
y.nucl.u<-loc_est(nuclear$xtab, nuclear$ytab, x.nucl,</pre>
h=h.nucl.u, method="u")
# 2. improved version of the estimator
# Optimal bandwidths over 100 bootstrap replications
## Not run:
h.nucl.m <- loc_est_bw(nuclear$xtab, nuclear$ytab,</pre>
x.nucl, h=40, B=100, method="m")
## End(Not run)
(h.nucl.m<-79.12)
y.nucl.m<-loc_est(nuclear$xtab, nuclear$ytab, x.nucl,</pre>
h=h.nucl.m, method="m")
# 3. Representation
plot(x.nucl, y.nucl.u, lty=1, lwd=4, col="magenta", type="l")
lines(x.nucl, y.nucl.m, lty=2, lwd=4, col="cyan")
points(ytab~xtab, data=nuclear)
legend("topleft",legend=c("unconstrained", "improved"),
```

```
col=c("magenta","cyan"), lwd=4, lty=c(1,2))
```

loc_est_bw

Description

Computes the optimal bootstrap bandwidth proposed by Hall and Park (2004) for the local linear frontier estimator.

Usage

```
loc_est_bw(xtab, ytab, x, hini, B = 5, method = "u",
fix.seed = FALSE, control = list("tm_limit" = 700))
```

Arguments

xtab	a numeric vector containing the observed inputs x_1, \ldots, x_n .
ytab	a numeric vector of the same length as xtab containing the observed outputs
	$y_1,\ldots,y_n.$
х	a numeric vector of evaluation points in which the estimator is to be computed.
hini	the initial bandwidth at which the local linear estimate will be computed.
В	number of bootstrap replications.
method	a character equal to "u" (unconstrained estimator) or "m" (improved version of the unconstrained estimator).
fix.seed	a boolean equal to TRUE for fixing the seed (bootstrap sampling).
control	a list of parameters to the GLPK solver. See *Details* of help(Rglpk_solve_LP).

Details

For a detailed description of the bootstrap procedure, see Hall and Park (2004).

Value

Returns the optimal bootstrap bandwidth.

Note

The computational burden here is very demanding, so be forewarned.

Author(s)

Hohsuk Noh.

References

Hall, P. and Park, B.U. (2004). Bandwidth choice for local polynomial estimation of smooth boundaries. *Journal of Multivariate Analysis*, 91, 240-261.

See Also

loc_est.

Examples

```
## Not run:
data("nuclear")
x.nucl <- seq(min(nuclear$xtab), max(nuclear$xtab),</pre>
length.out = 101)
# 1. Unconstrained case
# Optimal bandwidths over 100 bootstrap replications
system.time(
h.nucl.u <- loc_est_bw(nuclear$xtab, nuclear$ytab,</pre>
x.nucl, hini = 40, B = 1, method = "u")
)
# result is 79.11877
# 2. Monotonicity constraint
# Optimal bandwidths over 100 bootstrap replications
h.nucl.m <- loc_est_bw(nuclear$xtab, nuclear$ytab,</pre>
x.nucl, hini = 40, B = 100, method = "m")
# result is 79.12
```

End(Not run)

loc_max

Local maximum frontier estimators

Description

Computes the local constant and local DEA boundary estimates proposed by Gijbels and Peng (2000).

Usage

```
loc_max(xtab, ytab, x, h, type="one-stage")
```

Arguments

xtab	a numeric vector containing the observed inputs x_1, \ldots, x_n .
ytab	a numeric vector of the same length as xtab containing the observed outputs
	$y_1,\ldots,y_n.$
x	a numeric vector of evaluation points in which the estimator is to be computed.
h	determines the bandwidth at which the estimate will be computed.
type	a character equal to "one-stage" or "two-stage".

30

loc_max

Details

When estimating $\varphi(x)$, for a given point $x \in \mathbb{R}$, the methodology of Gijbels and Peng consists of considering a strip around x of width 2h, where $h = h_n \to 0$ with $nh_n \to \infty$ as $n \to \infty$, and focusing then on the y_i observations falling into this strip. More precisely, they consider the transformend variables $z_i^{xh} = y_i \mathbf{1}_{(|x_i-x| \le h)}, i = 1, ..., n$, and the corresponding order statistics $z_{(1)}^{xh} \le \cdots \le z_{(n)}^{xh}$.

The simple maximum $z_{(n)}^{xh} = \max_{i=1,...,n} z_i^{xh}$ defines then the local constant estimator of the frontier point $\varphi(x)$ [option type="one-stage"]. This opens a way to a two-stage estimation procedure as follows. In a first stage, Gijbels and Peng calculate the maximum $z_{(n)}^{xh}$. Then, they suggest to replace each observation y_i in the strip of width 2h around x by this maximum, leaving all observations outside the strip unchanged. More precisely, they define $\tilde{y}_i = y_i$ if $|x_i - x| > h$ and $\tilde{y}_i = z_{(n)}^{xh}$ if $|x_i - x| \leq h$ either. Then, they apply the DEA estimator (see the function dea_est) to these transformed data (x_i, \tilde{y}_i) , giving the local DEA estimator (option type="two-stage"). An *ad hoc* way of selecting h is by using for instance the function npcdistbw from the **np** package (see Daouia et al. (2016) for details).

Value

Returns a numeric vector with the same length as x.

Author(s)

Abdelaati Daouia and Thibault Laurent.

References

Daouia, A., Laurent, T. and Noh, H. (2017). npbr: A Package for Nonparametric Boundary Regression in R. *Journal of Statistical Software*, **79**(9), 1-43. doi:10.18637/jss.v079.i09.

Gijbels, I. and Peng, L. (2000). Estimation of a support curve via order statistics, *Extremes*, 3, 251–277.

See Also

dea_est

Examples

```
data("green")
x.green <- seq(min(log(green$COST)), max(log(green$COST)),
  length.out=101)
# Local maximum frontier estimates
# a. Local constant estimator
loc_max_1stage<-loc_max(log(green$COST), log(green$OUTPUT),
  x.green, h=0.5, type="one-stage")
# b. Local DEA estimator
loc_max_2stage<-loc_max(log(green$COST), log(green$OUTPUT),
  x.green, h=0.5, type="two-stage")
# Representation
plot(log(OUTPUT)~log(COST), data=green)</pre>
```

```
lines(x.green, loc_max_1stage, lty=1, col="magenta")
lines(x.green, loc_max_2stage, lty=2, col="cyan")
legend("topleft",legend=c("one-stage", "two-stage"),
    col=c("magenta","cyan"), lty=c(1,2))
```

```
mopt_pwm
```

Threshold selection for the PWM frontier estimator

Description

This function implements the optimal smoothing parameter coefm involved in the probabilityweighted moment frontier estimator of Daouia, Florens and Simar (2012).

Usage

mopt_pwm(xtab, ytab, x, a=2, rho, wind.coef=0.1)

Arguments

xtab	a numeric vector containing the observed inputs x_1, \ldots, x_n .
ytab	a numeric vector of the same length as xtab containing the observed outputs y_1, \ldots, y_n .
х	a numeric vector of evaluation points in which the estimator is to be computed.
а	a smoothing parameter (integer) larger than or equal to 2 (2 by default).
rho	a numeric vector of the same length as x or a scalar, which determines the values of rho.
wind.coef	a scalar coefficient to be selected in the interval (0,1].

Details

This is an implementation of an automated selection of the parameter coefm involved in the probabilityweighted moment (PWM) estimator $\tilde{\varphi}_{pwm}(x)$ [see dfs_pwm]. It is an adaptation of the experimental method kopt_momt_pick by Daouia et al. (2010). The idea is to select first (for each x) a grid of values for the parameter coefm given by $c = 1, \dots, \min(10, [\sqrt{N_x}])$, where $N_x = \sum_{i=1}^n 1_{\{x_i \leq x\}}$, and then select the c where the variation of the results is the smallest. To achieve this, we compute the standard deviations of $\tilde{\varphi}_{pwm}(x)$ over a "window" of size wind.coef $\times \min(10, [\sqrt{N_x}])$, where the coefficient wind.coef should be selected in the interval (0, 1] in such a way to avoid numerical instabilities. The default option wind.coef=0.1 corresponds to having a window large enough to cover around 10% of the possible values of c in the selected range of values for coefm. The value of c where the standard deviation is minimal defines the desired coefm.

Value

Returns a numeric vector with the same length as x.

32

nuclear

Author(s)

Abdelaati Daouia and Thibault Laurent.

References

Daouia, A., Florens, J.-P. and Simar, L. (2010). Frontier estimation and extreme value theory. *Bernoulli*, 16, 1039-1063.

See Also

dfs_pwm, kopt_momt_pick.

Examples

```
data("post")
x.post<- seq(post$xinput[100],max(post$xinput),
  length.out=100)
## Not run:
# When rho[x] is known and equal to 2:
best_cm.1<- mopt_pwm(post$xinput, post$yprod,
  x.post, a=2, rho=2)</pre>
```

End(Not run)

nuclear

Reliability programs of nuclear reactors

Description

The dataset from the US Electric Power Research Institute (EPRI) consists of 254 toughness results obtained from non-irradiated representative steels. For each steel i, fracture toughness y_i and temperature x_i were measured.

Usage

data(nuclear)

Format

A data frame with 254 observations on the following 2 variables.

xtab Temperature.

ytab Fracture toughness of each material.

Source

US Electric Power Research Institute (EPRI).

References

Daouia, A., Girard, S. and Guillou, A. (2014). A Gamma-moment approach to monotonic boundary estimation. *Journal of Econometrics*, 78, 727-740.

Examples

data("nuclear")

pick_est

Local Pickands' frontier estimator

Description

Computes the Pickands type of estimator introduced by Gijbels and Peng (2000).

Usage

pick_est(xtab, ytab, x, h, k, type="one-stage")

Arguments

xtab	a numeric vector containing the observed inputs x_1, \ldots, x_n .
ytab	a numeric vector of the same length as xtab containing the observed outputs
	$y_1,\ldots,y_n.$
х	a numeric vector of evaluation points in which the estimator is to be computed.
h	determines the bandwidth at which the estimate will be computed.
k	a numeric vector of the same length as x, which determines the thresholds at which the Pickands' estimator will be computed.
type	a character equal to "one-stage" or "two-stage".

Details

The local Pickands' frontier estimator (option type="one-stage"), obtained by applying the wellknown approach of Dekkers and de Haan (1989) in conjunction with the transformed sample of z_i^{xh} 's described in the function loc_max, is defined as

$$z_{(n-k)}^{xh} + \left(z_{(n-k)}^{xh} - z_{(n-2k)}^{xh}\right) \left\{2^{-\log\frac{z_{(n-k)}^{xh} - z_{(n-2k)}^{xh}}{z_{(n-2k)}^{xh} - z_{(n-4k)}^{xh}} / \log 2} - 1\right\}^{-1}.$$

It is based on three upper order statistics $z_{(n-k)}^{xh}$, $z_{(n-2k)}^{xh}$, $z_{(n-4k)}^{xh}$, and depends on h (see loc_max) as well as an intermediate sequence $k = k(x, n) \to \infty$ with $k/n \to 0$ as $n \to \infty$. The two smoothing parameters h and k have to be fixed in the 4th and 5th arguments of the function.

Also, the user can replace each observation y_i in the strip of width 2h around x by the resulting local Pickands', leaving all observations outside the strip unchanged. Then, one may apply the DEA estimator (see the function dea_est) to the obtained transformed data, giving the local DEA estimator (option type="two-stage").

poly_degree

Value

Returns a numeric vector with the same length as x.

Author(s)

Abdelaati Daouia and Thibault Laurent.

References

Dekkers, A.L.M. and L. de Haan (1989). On the estimation of extreme-value index and large quantiles estimation, *Annals of Statistics*, 17, 1795-1832.

Gijbels, I. and Peng, L. (2000). Estimation of a support curve via order statistics, *Extremes*, 3, 251-277.

See Also

dea_est

Examples

```
## Not run:
data("green")
plot(log(OUTPUT)~log(COST), data=green)
x <- seq(min(log(green$COST)), max(log(green$COST)), length.out=101)
h=0.5
nx<-unlist(lapply(x,function(y) length(which(abs(log(green$COST)-y)<=h))))
k<-trunc(nx^0.1)
lines(x, pick_est(log(green$COST), log(green$OUTPUT), x, h=h, k=k), lty=1, col="red")
```

End(Not run)

poly_degree

AIC and BIC criteria for choosing the optimal degree of the polynomial frontier estimator

Description

Computes the optimal degree of the unconstrained polynomial frontier estimator proposed by Hall, Park and Stern (1998).

Usage

```
poly_degree(xtab, ytab, prange=0:20, type="AIC",
    control = list("tm_limit" = 700))
```

Arguments

xtab	a numeric vector containing the observed inputs x_1, \ldots, x_n .
ytab	a numeric vector of the same length as xtab containing the observed outputs
	$y_1,\ldots,y_n.$
prange	a vector of integers specifying the range in which the optimal degree of the polynomial frontier estimator is to be selected.
type	a character equal to "AIC" or "BIC".
control	a list of parameters to the GLPK solver. See *Details* of help(Rglpk_solve_LP).

Details

As the degree p of the polynomial estimator $\hat{\varphi}_{n,p}$ (see poly_est) determines the dimensionality of the approximating function, we may view the problem of choosing p as model selection. By analogy to the information criteria proposed by Daouia et al. (2016) in the boundary regression context, we obtain the optimal polynomial degree by minimizing

$$AIC(p) = \log\left(\sum_{i=1}^{n} (\hat{\varphi}_{n,p}(x_i) - y_i)\right) + (p+1)/n,$$
$$BIC(p) = \log\left(\sum_{i=1}^{n} (\hat{\varphi}_{n,p}(x_i) - y_i)\right) + \log n(p+1)/(2n)$$

The first one (option type = "AIC") is similar to the famous Akaike information criterion Akaike (1973) and the second one (option type = "BIC") to the Bayesian information criterion Schwartz (1978).

Value

Returns an integer.

Author(s)

Hohsuk Noh.

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle, in *Second International Symposium of Information Theory*, eds. B. N. Petrov and F. Csaki, Budapest: Akademia Kiado, 267–281.

Daouia, A., Noh, H. and Park, B.U. (2016). Data Envelope fitting with constrained polynomial splines. *Journal of the Royal Statistical Society: Series B*, **78**(1), 3-30. doi:10.1111/rssb.12098.

Hall, P., Park, B.U. and Stern, S.E. (1998). On polynomial estimators of frontiers and boundaries. *Journal of Multivariate Analysis*, 66, 71-98.

Schwartz, G. (1978). Estimating the dimension of a model, Annals of Statistics, 6, 461–464.

See Also

poly_est

poly_est

Examples

```
data("air")
x.air <- seq(min(air$xtab), max(air$xtab),
  length.out = 101)
# Optimal polynomial degrees via the AIC criterion
(p.aic.air <- poly_degree(air$xtab, air$ytab,
  type = "AIC"))
# Optimal polynomial degrees via the BIC criterion
(p.bic.air <- poly_degree(air$xtab, air$ytab,
  type = "BIC"))</pre>
```

Description

Computes the polynomial-type estimators of frontiers and boundaries proposed by Hall, Park and Stern (1998).

Usage

poly_est(xtab, ytab, x, deg, control = list("tm_limit" = 700))

Arguments

xtab	a numeric vector containing the observed inputs x_1, \ldots, x_n .
ytab	a numeric vector of the same length as xtab containing the observed outputs
	$y_1,\ldots,y_n.$
х	a numeric vector of evaluation points in which the estimator is to be computed.
deg	an integer (polynomial degree).
control	a list of parameters to the GLPK solver. See *Details* of help(Rglpk_solve_LP).

Details

The data edge is modeled by a single polynomial $\varphi_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_p x^p$ of known degree p that envelopes the full data and minimizes the area under its graph for $x \in [a, b]$, with a and b being respectively the lower and upper endpoints of the design points x_1, \dots, x_n . The implemented function is the estimate $\hat{\varphi}_{n,p}(x) = \hat{\theta}_0 + \hat{\theta}_1 x + \dots + \hat{\theta}_p x^p$ of $\varphi(x)$, where $\hat{\theta} = (\hat{\theta}_0, \hat{\theta}_1, \dots, \hat{\theta}_p)^T$ minimizes $\int_a^b \varphi_{\theta}(x) dx$ over $\theta \in \mathbb{R}^{p+1}$ subject to the envelopment constraints $\varphi_{\theta}(x_i) \geq y_i$, $i = 1, \dots, n$.

Value

Returns a numeric vector with the same length as x. Returns a vector of NA if no solution has been found by the solver (GLPK).

Author(s)

Hohsuk Noh.

References

Hall, P., Park, B.U. and Stern, S.E. (1998). On polynomial estimators of frontiers and boundaries. *Journal of Multivariate Analysis*, 66, 71-98.

See Also

loc_est

Examples

```
data("air")
x.air <- seq(min(air$xtab), max(air$xtab),
  length.out = 101)
# Optimal polynomial degrees via the AIC criterion
(p.aic.air <- poly_degree(air$xtab, air$ytab,
  type = "AIC"))
# Polynomial boundaries estimate
y.poly.air<-poly_est(air$xtab, air$ytab, x.air,
  deg = p.aic.air)
# Representation
plot(x.air, y.poly.air, lty = 1, lwd = 4,
  col = "magenta", type = "1")
points(ytab~xtab, data = air)
legend("topleft",legend = paste("degree =", p.aic.air),
  col = "magenta", lwd = 4, lty = 1)</pre>
```

post

European postal services

Description

The dataset post about the cost of the delivery activity of the postal services in Europe was first analyzed by Cazals, Florens and Simar (2002). There are 4,000 post offices observed in 1994. For each post office i, the input x_i is the labor cost measured by the quantity of labor, which represents more than 80% of the total cost of the delivery activity. The output y_i is defined as the volume of delivered mail (in number of objects). It should be noted that noise has been added to the original data.

Usage

data(post)

quad_spline_est

Format

A data frame with 4000 observations on the following 2 variables.

xinput a numeric vector.

yprod a numeric vector.

References

Cazals, C., Florens, J.-P., Simar, L. (2002), Nonparametric frontier estimation: a robust approach, *Journal of Econometrics*, 106, 1-25.

Examples

data("post")

quad_spline_est Quadratic spline frontiers

Description

This function is an implementation of the (un)constrained quadratic spline smoother proposed by Daouia, Noh and Park (2016).

Usage

```
quad_spline_est(xtab, ytab, x, kn = ceiling((length(xtab))^(1/4)), method= "u",
all.dea = FALSE, control = list("tm_limit" = 700))
```

Arguments

xtab	a numeric vector containing the observed inputs x_1, \ldots, x_n .
ytab	a numeric vector of the same length as xtab containing the observed outputs y_1, \ldots, y_n .
x	a numeric vector of evaluation points in which the estimator is to be computed.
kn	an integer specifying the number of inter-knot segments used in the computation of the spline estimate.
method	a character equal to "u" (unconstrained estimator), "m" (under the monotonic- ity constraint) or "mc" (under simultaneous monotonicity and concavity con- straints).
all.dea	a boolean.
control	a list of parameters to the GLPK solver. See *Details* of help(Rglpk_solve_LP).

Details

Let a and b be, respectively, the minimum and maximum of the design points x_1, \ldots, x_n . Denote a partition of [a, b] by $a = t_0 < t_1 < \cdots < t_{k_n} = b$ (see below the selection process). Let $N = k_n + 1$ and $\pi(x) = (\pi_1(x), \ldots, \pi_N(x))^T$ be the vector of normalized B-splines of order 3 based on the knot mesh $\{t_j\}$ (see, *e.g.*, Schumaker (2007)). When the true frontier $\varphi(x)$ is known or required to be monotone nondecreasing (option cv=0), its constrained quadratic spline estimate is defined by $\hat{\varphi}_n(x) = \pi(x)^T \hat{\alpha}$, where $\hat{\alpha}$ minimizes

$$\int_{0}^{1} \pi(x)^{T} \alpha \, dx = \sum_{j=1}^{N} \alpha_{j} \int_{0}^{1} \pi_{j}(x) \, dx$$

over $\alpha \in \mathbb{R}^N$ subject to the envelopment and monotonicity constraints $\pi(x_i)^T \alpha \ge y_i, i = 1, ..., n$, and $\pi'(t_j)^T \alpha \ge 0, j = 0, 1, ..., k_n$, with π' being the derivative of π .

Considering the special connection of the spline smoother $\hat{\varphi}_n$ with the traditional FDH frontier φ_n (see the function dea_est), Daouia et al. (2015) propose an easy way of choosing the knot mesh. Let $(\mathcal{X}_1, \mathcal{Y}_1), \ldots, (\mathcal{X}_N, \mathcal{Y}_N)$ be the observations (x_i, y_i) lying on the FDH boundary (*i.e.* $y_i = \varphi_n(x_i)$). The basic idea is to pick out a set of knots equally spaced in percentile ranks among the N FDH points $(\mathcal{X}_\ell, \mathcal{Y}_\ell)$ by taking $t_j = \mathcal{X}_{[jN/k_n]}$, the j/k_n th quantile of the values of \mathcal{X}_ℓ for $j = 1, \ldots, k_n - 1$. The choice of the number of internal knots is then viewed as model selection through the minimization of the AIC and BIC information criteria (see the function quad_spline_kn).

When the monotone boundary $\varphi(x)$ is also believed to be concave (option cv=1), its constrained fit is defined as $\hat{\varphi}_n^{\star}(x) = \pi(x)^T \hat{\alpha}^{\star}$, where $\hat{\alpha}^{\star} \in \mathbb{R}^N$ minimizes the same objective function as $\hat{\alpha}$ subject to the same envelopment and monotonicity constraints and the additional concavity constraints $\pi''(t_j^*)^T \alpha \leq 0, j = 1, \dots, k_n$, where π'' is the constant second derivative of π on each inter-knot interval and t_j^* is the midpoint of $(t_{j-1}, t_j]$.

Regarding the choice of knots, the same scheme as for $\hat{\varphi}_n$ can be applied by replacing the FDH points $(\mathcal{X}_1, \mathcal{Y}_1), \ldots, (\mathcal{X}_{\mathcal{N}}, \mathcal{Y}_{\mathcal{N}})$ with the DEA points $(\mathcal{X}_1^*, \mathcal{Y}_1^*), \ldots, (\mathcal{X}_{\mathcal{M}}^*, \mathcal{Y}_{\mathcal{M}}^*)$, that is, the observations (x_i, y_i) lying on the piecewise linear DEA frontier (see the function dea_est). Alternatively, the strategy of just using all the DEA points as knots is also working quite well for datasets of modest size as shown in Daouia et al. (2016). In this case, the user has to choose the option all.dea=TRUE.

Value

Returns a numeric vector with the same length as x. Returns a vector of NA if no solution has been found by the solver (GLPK).

Author(s)

Hohsuk Noh.

References

Daouia, A., Noh, H. and Park, B.U. (2016). Data Envelope fitting with constrained polynomial splines. *Journal of the Royal Statistical Society: Series B*, **78**(1), 3-30. doi:10.1111/rssb.12098. Schumaker, L.L. (2007). *Spline Functions: Basic Theory*, 3rd edition, Cambridge University Press.

See Also

quad_spline_kn

Examples

```
## Not run:
data("green")
x.green <- seq(min(log(green$COST)), max(log(green$COST)), length.out=101)</pre>
# 1. Unconstrained guadratic spline fits
# Optimal number of inter-knot segments via the BIC criterion
(kn.bic.green.u<-quad_spline_kn(log(green$COST),</pre>
log(green$OUTPUT), method="u", type="BIC"))
# Unconstrained spline estimate
y.quad.green.u<-quad_spline_est(log(green$COST),</pre>
log(green$OUTPUT), x.green, kn=kn.bic.green.u, method="u")
# 2. Monotonicity constraint
# Optimal number of inter-knot segments via the BIC criterion
(kn.bic.green.m<-quad_spline_kn(log(green$COST),</pre>
log(green$OUTPUT), method="m", type="BIC"))
# Monotonic splines estimate
y.quad.green.m<-quad_spline_est(log(green$COST),</pre>
log(green$OUTPUT), x.green, kn=kn.bic.green.m, method="m")
# 3. Monotonicity and Concavity constraints
# Optimal number of inter-knot segments via the BIC criterion
(kn.bic.green.mc<-quad_spline_kn(log(green$COST),</pre>
log(green$OUTPUT), method="mc", type="BIC"))
# Monotonic/Concave splines estimate
y.quad.green.mc<-quad_spline_est(log(green$COST),</pre>
log(green$OUTPUT), x.green, kn=kn.bic.green.mc,
method="mc", all.dea=TRUE)
# Representation
plot(x.green, y.quad.green.u, lty=1, lwd=4, col="green",
type="1", xlab="log(COST)", ylab="log(OUTPUT)")
lines(x.green, y.quad.green.m, lty=2, lwd=4, col="cyan")
lines(x.green, y.quad.green.mc, lwd=4, lty=3, col="magenta")
points(log(OUTPUT)~log(COST), data=green)
legend("topleft", col=c("green","cyan","magenta"),
lty=c(1,2,3), legend=c("unconstrained", "monotone",
 "monotone + concave"), lwd=4, cex=0.8)
## End(Not run)
```

quad_spline_kn

AIC and BIC criteria for choosing the optimal number of inter-knot segments in quadratic spline fits

Description

Computes the optimal number k_n of inter-knot segments in the quadratic spline fits proposed by Daouia, Noh and Park (2016).

Usage

```
quad_spline_kn(xtab, ytab, method, krange = 1:20, type = "AIC",
  control = list("tm_limit" = 700))
```

Arguments

xtab	a numeric vector containing the observed inputs x_1, \ldots, x_n .
ytab	a numeric vector of the same length as xtab containing the observed outputs
	$y_1,\ldots,y_n.$
method	a character equal to "u" (unconstrained estimator), "m" (under the monotonic- ity constraint) or "mc" (under simultaneous monotonicity and concavity con- straints).
krange	a vector of integers specifying the range in which the optimal number of inter- knot segments is to be selected.
type	a character equal to "AIC" or "BIC".
control	a list of parameters to the GLPK solver. See *Details* of help(Rglpk_solve_LP).

Details

For the implementation of the unconstrained quadratic spline smoother $\tilde{\varphi}_n$ (see quad_spline_est), based on the knot mesh $\{t_j = x_{[jn/k_n]} : j = 1, \dots, k_n - 1\}$, the user has to employ the option method="u". Since the number k_n determines the complexity of the spline approximation, its choice may be viewed as model selection via the minimization of the following Akaike (option type="AIC") or Bayesian (option type="BIC") information criteria:

$$\tilde{AIC}(k) = \log\left(\sum_{i=1}^{n} (\tilde{\varphi}_n(x_i) - y_i)\right) + (k+2)/n,$$
$$\tilde{BIC}(k) = \log\left(\sum_{i=1}^{n} (\tilde{\varphi}_n(x_i) - y_i)\right) + \log n \cdot (k+2)/2n$$

For the implementation of the monotone (option method="m") quadratic spline smoother $\hat{\varphi}_n$ (see quad_spline_est), the authors first suggest using the set of knots $\{t_j = \mathcal{X}_{[j\mathcal{N}/k_n]}, j = 1, \ldots, k_n - 1\}$ among the FDH points $(\mathcal{X}_{\ell}, \mathcal{Y}_{\ell}), \ell = 1, \ldots, \mathcal{N}$ (function quad_spline_est). Then, they propose to choose k_n by minimizing the following AIC (option type="AIC") or BIC (option type="BIC") information criteria:

$$A\hat{I}C(k) = \log\left(\sum_{i=1}^{n} (\hat{\varphi}_n(x_i) - y_i)\right) + (k+2)/n,$$
$$B\hat{I}C(k) = \log\left(\sum_{i=1}^{n} (\hat{\varphi}_n(x_i) - y_i)\right) + \log n \cdot (k+2)/2n$$

quad_spline_kn

A small number of knots is typically needed as elucidated by the asymptotic theory.

For the implementation of the monotone and concave (option method="mc") spline estimator $\hat{\varphi}_n^{\star}$, just apply the same scheme as above by replacing the FDH points $(\mathcal{X}_{\ell}, \mathcal{Y}_{\ell})$ with the DEA points $(\mathcal{X}_{\ell}^{\star}, \mathcal{Y}_{\ell}^{\star})$ (see dea_est).

Value

Returns an integer.

Author(s)

Hohsuk Noh.

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle, in *Second International Symposium of Information Theory*, eds. B. N. Petrov and F. Csaki, Budapest: Akademia Kiado, 267–281.

Daouia, A., Noh, H. and Park, B.U. (2016). Data Envelope fitting with constrained polynomial splines. *Journal of the Royal Statistical Society: Series B*, **78**(1), 3-30. doi:10.1111/rssb.12098.

Schwartz, G. (1978). Estimating the dimension of a model, Annals of Statistics, 6, 461–464.

See Also

quad_spline_est

Examples

```
data("green")
## Not run:
# BIC criteria for choosing the optimal number of
# inter-knot segments in:
# a. Unconstrained quadratic spline fits
(kn.bic.green.u <- quad_spline_kn(log(green$COST),
log(green$OUTPUT), method = "u", type = "BIC"))
# b. Monotone quadratic spline_kn(log(green$COST),
log(green$OUTPUT), method = "m", type = "BIC"))
# c. Monotone and concave quadratic spline smoother
(kn.bic.green.mc<-quad_spline_kn(log(green$COST),
log(green$OUTPUT), method = "mc", type = "BIC"))</pre>
```

End(Not run)

records

Description

The dataset records is concerned with the yearly best men's outdoor 1500m times starting from 1966. Following Jirak, Meister and Reiss (2014), the lower boundary can be interpreted as the best possible time for a given year. This boundary is not believed to be shape constrained and can be estimated by any unconstrained shape nonparametric method.

Usage

data(records)

Format

A data frame with 46 observations on the following 2 variables.

year year.

result 1500m record in seconds.

References

Jirak, M., Meister, A. and M. Reiss (2014), Optimal adaptive estimation in nonparametric regression with one-sided errors. *Annals of Statistics*, 42, 1970–2002.

Examples

data("records")

rho_momt_pick Optimal rho for moment and Pickands frontier estimator

Description

This function gives the optimal rho involved in the moment and Pickands estimators of Daouia, Florens and Simar (2010).

Usage

rho_momt_pick(xtab, ytab, x, method="moment", lrho=1, urho=Inf)

rho_momt_pick

Arguments

xtab	a numeric vector containing the observed inputs x_1, \ldots, x_n .
ytab	a numeric vector of the same length as xtab containing the observed outputs
	$y_1,\ldots,y_n.$
х	a numeric vector of evaluation points in which the estimator is to be computed.
method	a character equal to "moment" or "pickands".
lrho	a scalar, minimum rho threshold value.
urho	a scalar, maximum rho threshold value.

Details

This function computes the moment and Pickands estimates of the extreme-value index ρ_x involved in the frontier estimators $\tilde{\varphi}_{momt}(x)$ [see dfs_momt] and $\hat{\varphi}_{pick}(x)$ [see dfs_pick]. In case method="moment", the estimator of ρ_x defined as

$$\tilde{\rho}_x = -\left(M_n^{(1)} + 1 - \frac{1}{2}\left[1 - (M_n^{(1)})^2 / M_n^{(2)}\right]^{-1}\right)^{-1}$$

is based on the moments $M_n^{(j)} = (1/k) \sum_{i=0}^{k-1} \left(\log z_{(n-i)}^x - \log z_{(n-k)}^x \right)^j$ for j = 1, 2, with $z_{(1)}^x \le \cdots \le z_{(n)}^x$ are the ascending order statistics corresponding to the transformed sample $\{z_i^x := y_i \mathbf{1}_{\{x_i \le x\}}, i = 1, \cdots, n\}$ In case method="pickands", the estimator of ρ_x is given by

$$\hat{\rho}_x = -\log 2 / \log\{(z_{(n-k+1)}^x - z_{(n-2k+1)}^x) / (z_{(n-2k+1)}^x - z_{(n-4k+1)}^x)\}$$

To select the threshold $k = k_n(x)$ in $\tilde{\rho}_x$ and $\hat{\rho}_x$, Daouia et al. (2010) have suggested to use the following data driven method for each x: They first select a grid of values for $k = k_n(x)$. For the Pickands estimator $\hat{\rho}_x$, they choose $k_n(x) = [N_x/4] - k + 1$, where k is an integer varying between 1 and the integer part $[N_x/4]$ of $N_x/4$, with $N_x = \sum_{i=1}^n 1_{\{x_i \le x\}}$. For the moment estimator $\tilde{\rho}_x$, they choose $k_n(x) = N_x - k$, where k is an integer varying between 1 and $N_x - 1$. Then, they evaluate the estimator $\hat{\rho}_x(k)$ (respectively, $\tilde{\rho}_x(k)$) and select the k where the variation of the results is the smallest. They achieve this by computing the standard deviation of $\hat{\rho}_x(k)$ (respectively, $\tilde{\rho}_x(k)$) over a "window" of max($[\sqrt{N_x/4}]$, 3) (respectively, max($[\sqrt{N_x} - 1]$, 3)) successive values of k. The value of k where this standard deviation is minimal defines the value of $k_n(x)$. The user can also appreciably improve the estimation of ρ_x and $\varphi(x)$ itself by tuning the choice of the lower limit (default option 1rho=1) and upper limit (default option urho=Inf).

Value

Returns a numeric vector with the same length as x.

Note

In order to choose a raisonable estimate $\tilde{\rho}_x = \tilde{\rho}_x(k)$ and $\hat{\rho}_x = \hat{\rho}_x(k)$ of the extreme-value index ρ_x , for each fixed x, one can construct the plot of the estimator of interest, consisting of the points $\{(k, \tilde{\rho}_x(k))\}_k$ or $\{(k, \hat{\rho}_x(k))\}_k$, and select a value of the estimate at which the obtained graph looks stable. This is this kind of idea which guides the propoed automatic data-driven rule for a chosen grid of values of x. The main difficulty with such a method is that the plots of $\tilde{\rho}_x(k)$ or $\hat{\rho}_x(k)$ as

functions of k, for each x, may be so unstable that reasonable values of k [which would correspond to the true value of ρ_x] may be hidden in the graphs. In results, the obtained extreme-value index estimator and the frontier estimator itself may exhibits considerable volatility as functions of x. The user can appreciably improve the estimation of ρ_x and $\varphi(x)$ by tuning the choice of the lower limit (default option lrho=1) and upper limit (default option urho=Inf).

Author(s)

Abdelaati Daouia and Thibault Laurent (codes converted from Matlab's Leopold Simar code).

References

Daouia, A., Florens, J.P. and Simar, L. (2010). Frontier Estimation and Extreme Value Theory, *Bernoulli*, 16, 1039-1063.

Dekkers, A.L.M., Einmahl, J.H.J. and L. de Haan (1989), A moment estimator for the index of an extreme-value distribution, *The Annals of Statistics*, 17(4), 1833-1855.

See Also

dfs_momt, dfs_pick

Examples

```
data("post")
x.post<- seq(post$xinput[100],max(post$xinput),
  length.out=100)
## Not run:
# a. Optimal rho for Pickands frontier estimator
rho_pick<-rho_momt_pick(post$xinput, post$yprod,
  x.post, method="pickands")
# b. Optimal rho for moment frontier estimator
rho_momt<-rho_momt_pick(post$xinput, post$yprod,
  x.post, method="moment")</pre>
```

End(Not run)

rho_pwm

Probability-weighted moment frontier estimator

Description

This function is an implementation of the Probability-weighted moment frontier estimator developed by Daouia, Florens and Simar (2012).

Usage

rho_pwm(xtab, ytab, x, a=2, lrho=1, urho=Inf)

rho_pwm

Arguments

xtab	a numeric vector containing the observed inputs x_1, \ldots, x_n .
ytab	a numeric vector of the same length as xtab containing the observed outputs
	$y_1,\ldots,y_n.$
х	a numeric vector of evaluation points in which the estimator is to be computed.
а	a smoothing parameter (integer) larger than or equal to 2.
lrho	a scalar, minimum rho threshold value.
urho	a scalar, maximum rho threshold value.

Details

The function computes the probability-weighted moment (PWM) estimator $\bar{\rho}_x$ utilized in the frontier estimate $\tilde{\varphi}_{pwm}(x)$ [see dfs_pwm]. This estimator depends on the smoothing parameters a and m. A simple selection rule of thumb that Daouia et al. (2012) have employed is a = 2 [default option in the 4th argument of the function] and $m = coefm \times N_x^{1/3}$, where $N_x = \sum_{i=1}^n 1_{\{x_i \le x\}}$ and the integer coefm is to be tuned by the user. To choose this parameter in an optimal way for each x, we adapt the automated threshold selection method of Daouia et al. (2010) as follows: We first evaluate the estimator $\bar{\rho}_x$ over a grid of values of coefm given by $c = 1, \dots, 150$. Then, we select the c where the variation of the results is the smallest. This is achieved by computing the standard deviation of the estimates $\bar{\rho}_x$ over a "window" of max([$\sqrt{150}$], 3) successive values of c. The value of c where this standard deviation is minimal defines the value of coefm. The user can also appreciably improve the estimation of the extreme-value index ρ_x and the frontier function φ_x itself by tuning the choice of the lower limit (default option 1 rho=1) and upper limit (default option urho=Inf).

Value

Returns a numeric vector with the same length as x.

Note

The computational burden here is demanding, so be forewarned.

Author(s)

Abdelaati Daouia and Thibault Laurent.

References

Daouia, A., Florens, J.-P. and Simar, L. (2010). Frontier estimation and extreme value theory. *Bernoulli*, 16, 1039-1063.

Daouia, A., Florens, J.-P. and Simar, L. (2012). Regularization of Nonparametric Frontier Estimators. *Journal of Econometrics*, 168, 285-299.

See Also

dfs_pwm, mopt_pwm.

Examples

```
data("post")
x.post<- seq(post$xinput[100],max(post$xinput),
    length.out=100)
## Not run:
# When rho[x] is unknown and dependent of x,
# its estimate hat(rho[x]) is obtained via:
rho_pwm <- rho_pwm(post$xinput, post$yprod, x.post, a=20)</pre>
```

End(Not run)

48

Index

* datasets air, 5 green, 19 nuclear, 33 post, 38 records. 44 * nonparametric cub_spline_est, 6 cub_spline_kn, 8 dea_est, 10 dfs_momt, 12 dfs_pick, 14 dfs_pwm, 17 kopt_momt_pick, 24 $loc_max, 30$ mopt_pwm, 32 npbr-package, 2 pick_est, 34 poly_degree, 35 quad_spline_est, 39 quad_spline_kn, 41 rho_momt_pick, 44 rho_pwm, 46 * optimize cub_spline_est, 6 cub_spline_kn, 8 dea_est, 10 kern_smooth, 20 kern_smooth_bw, 23 loc_est, 26 loc_est_bw, 29 npbr-package, 2 poly_degree, 35 poly_est, 37 quad_spline_est, 39 quad_spline_kn, 41

cub_spline_kn, 4, 7, 8, 8 dea_est, 3, 10, 31, 34, 35, 40, 43 dfs_momt, 4, 12, 15, 16, 25, 26, 45, 46 dfs_pick, 4, 13, 14, 25, 26, 45, 46 dfs_pwm, 4, 17, 32, 33, 47 green, 19 kern_smooth, 4, 20, 24 kern_smooth_bw, 4, 22, 23 kopt_momt_pick, 4, 13, 15, 16, 24, 32, 33 loc_est, 4, 26, 30, 38 loc_est_bw, 4, 27, 28, 29 loc_max, 4, 30, 34 mopt_pwm, 18, 32, 47 npbr (npbr-package), 2 npbr-package, 2 nuclear, 33 pick_est, 4, 34 poly_degree, 4, 35 poly_est, 4, 36, 37 post, 38 quad_spline_est, 4, 11, 39, 42, 43 quad_spline_kn, 4, 40, 41, 41 records, 44 rho_momt_pick, 4, 13, 15, 25, 44 rho_pwm, 18, 46

air,<mark>5</mark>

cub_spline_est, 4, 6, 9–11