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Abstract

The package npbr is the first free specialized software for data edge and frontier anal-
ysis in the statistical literature. It provides a variety of functions for the best known and
most innovative approaches to nonparametric boundary estimation. The selected meth-
ods are concerned with empirical, smoothed, unrestricted as well as constrained fits under
both single and multiple shape constraints. They also cover data envelopment techniques
as well as robust approaches to outliers. The routines included in npbr are user friendly
and afford a large degree of flexibility in the estimation specifications. They provide
smoothing parameter selection for the modern local linear and polynomial spline methods
as well as for some promising extreme value techniques. Also, they seamlessly allow for
Monte Carlo comparisons among the implemented estimation procedures. This package
will be very useful for statisticians and applied researchers interested in employing non-
parametric boundary regression models. Its use is illustrated with a number of empirical
applications and simulated examples.

Keywords: boundary curve, concavity, extreme-values, kernel smoothing, linear programming,
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1. Introduction
In the standard regression model

yi = φ(xi) + εi, i = 1, . . . , n,

where the data (xi, yi) are observed, a variety of programs specializing in nonparametric and
semi-parametric estimation have recently appeared. Prominent among these routines is the
popular np package (Hayfield and Racine 2008), which allows R (R Core Team 2017) users
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to conduct, for instance, nonparametric mean and quantile regression. In the non-standard
boundary regression model, in contrast to classical theory, the regression errors (εi) are not
assumed to be centred, but to have a one-sided support (−∞, 0], and the regression function φ
describes some boundary curve. The present npbr package (Daouia, Laurent, and Noh 2017)
is a collection of functions that perform a variety of nonparametric estimation techniques of
the frontier function φ in the statistical software environment R. Specifically, suppose that we
have n pairs of observations (xi, yi), i = 1, . . . , n, from a bivariate distribution with a density
f(x, y) in R2. The support Ψ of f is assumed to be of the form

Ψ = {(x, y)|y ≤ φ(x)} ⊇ {(x, y)|f(x, y) > 0},

{(x, y)|y > φ(x)} ⊆ {(x, y)|f(x, y) = 0},

where the graph of φ corresponds to the locus of the curve above which the density f is
zero. More specifically, this graph is the extremal regression quantile curve corresponding to
the probability level 1. We consider the estimation of the frontier function φ based on the
sample {(xi, yi), i = 1, . . . , n}. This problem has increasing usage in various fields such as
classification, cluster analysis, economics, education, finance, management, physics, public
policy, scatter-point image analysis, and other arenas. For example, in image reconstruction,
the frontier-or-edge is typically the interface of areas of different intensities or differing color
tones, perhaps black above the boundary (where no observations are recorded) and grey below
(see Park 2001, for a nice summary and an extensive bibliography).
In most applications, the frontier function φ is assumed to be monotone or concave (convex)
monotone. This naturally occurs when analyzing, for instance, the reliability of nuclear
reactors where xi represents the temperature of the reactor pressure vessel material i and yi

represents its fracture toughness. The main goal is to estimate the highest fracture toughness
φ as a function of the temperature. From a physical point of view, this master curve is known
to be increasing and is believed to be concave (see Daouia, Girard, and Guillou 2014; Daouia,
Noh, and Park 2016).
According to the micro-economic theory of the firm, the support boundary is interpreted as
the set of the most efficient businesses or industries that are optimally using inputs xi (labor,
energy, capital, etc.) to produce their outputs yi (produced goods or services). Econometrics
considerations often lead to the assumption that the cost/production function φ is mono-
tone nondecreasing with/without concavity. The concavity assumption is not always valid,
although it is widely used in economics. For example, the production set Ψ might admit
increasing returns to scale, that is, the outputs might increase faster than the inputs (see,
e.g., Daouia, Girard, and Guillou 2014). Another related field of application where monotone
boundaries and convex supports naturally appear is portfolio management. In the Capital
Assets Pricing Models, the upper support extremity gives a benchmark relative to which the
performance of an investment portfolio can be measured. Here, xi measures the risk (volatility
or variance) of a portfolio, yi its averaged return, and φ is required to be both monotone and
concave (see, e.g., Gijbels, Mammen, Park, and Simar 1999). Such examples are abundant
in economics and related fields.
Nonparametric boundary regression is clearly a problem involving extreme value theory. Al-
ready in the case of production econometrics, Hendricks and Koenker (1992) stated, “In the
econometric literature on the estimation of production technologies, there has been consid-
erable interest in estimating so called frontier production models that correspond closely to
models for extreme quantiles of a stochastic production surface". Chernozhukov (2005) and



Journal of Statistical Software 3

Daouia, Gardes, and Girard (2013) may be viewed as the first attempt to actually implement
theoretically the idea of Hendricks and Koenker, respectively, in a linear regression model and
in a general nonparametric model. However, their approaches aim to estimate an extreme
regression quantile curve instead of the true full frontier φ. Thereby the use of high regression
quantiles might be viewed as an exploratory tool, rather than as a method for final frontier
analysis. To this end, one may employ the R packages cobs (Ng and Maechler 2007), quantreg
(Koenker 2017) and splines (R Core Team 2017), to name a few.
There is a vast literature on nonparametric frontier estimation, including extreme-value meth-
ods (de Haan and Resnick 1994; Hall, Nussbaum, and Stern 1997; Gijbels and Peng 2000;
Girard and Jacob 2003, 2004; Daouia, Florens, and Simar 2010), projection techniques (Jacob
and Suquet 1995), piecewise polynomials (Korostelev and Tsybakov 1993; Härdle, Park, and
Tsybakov 1995), local polynomials (Hall and Park 2004; Hall, Park, and Stern 1998; Knight
2001). It is often assumed that the joint density of the data f(x, y) is an algebraic function
of the distance from the upper support extremity with a power βx > −1, i.e.,

f(x, y) = cx {φ(x) − y}βx + o({φ(x) − y}βx) as y ↑ φ(x),

with cx being a strictly positive function in x. The quantity βx ̸= 0 describes the rate at which
the density decays to zero smoothly (βx > 0) or rises up to infinity (βx < 0) as it approaches
the boundary. The power βx = 0 corresponds to a jump of the density at the boundary
φ(x). The cases βx > 0, βx = 0 and βx < 0 are referred to as “non-sharp boundary”, “sharp
boundary” and “default-type boundary”, respectively. For instance, the more realistic case of
non-sharp boundaries has been studied in Härdle et al. (1995), where piecewise polynomials
are utilized for estimating φ(x). The particular range βx > 1 has been considered in Hall
et al. (1997), where the estimation of φ(x) is based on an increasing number of large order
statistics generated by the yi values of observations falling into a strip around x. The case of
general βx has been handled by Gijbels and Peng (2000), where the maximum of all yi values
of observations falling into a strip around x and another extreme-value estimator based on
three upper order statistics of these yi’s are considered.
All of the elegant approaches mentioned above do not rely, however, on the inherent shape
constraints of monotonicity and concavity/convexity. There are two common empirical ap-
proaches for estimating monotone data edges: the free disposal hull (FDH) estimator (De-
prins, Simar, and Tulkens 1984) and the data envelopment analysis (DEA) estimator (Farrell
1957) which relies on the additional assumption of concavity/convexity of the boundary curve.
Despite the simple nature of these two estimators, their full asymptotic theory has been elu-
cidated only during the last decade (see, e.g., Simar and Wilson 2008).
An improved version of the FDH estimator, referred to as the linearized FDH (LFDH), has
been considered in Hall and Park (2002) and Jeong and Simar (2006). Although the FDH,
LFDH and DEA estimators provide the fitted values at the observed predictor with mono-
tonicity or monotone concavity, they undersmooth the data and underestimate the true fron-
tier. To reduce these defects, Daouia et al. (2016) suggested to combine spline smoothing
with constrained estimation under both separate and simultaneous shape constraints. Mod-
ern kernel smoothing fits have also been proposed by Parmeter and Racine (2013) to estimate
the smooth frontier function, based on recent advances in constrained kernel estimation by
Hall and Huang (2001). More recently, Noh (2014) improved the kernel smoothing device of
Parmeter and Racine (2013) by considering more adequate optimization criteria and band-
width selection strategy for the estimator.



4 npbr: Nonparametric Boundary Regression in R

Most of the available empirical and smooth estimation techniques are, however, based on
envelopment ideas, and hence are very non-robust to outliers and/or extremes. Efforts to
remedy such a deficiency have appeared in some nonparametric frontier models (see, e.g.,
Daouia and Simar 2005; Daouia and Ruiz-Gazen 2006; Daouia and Gijbels 2011; Daouia,
Florens, and Simar 2012). Prominent among these recent developments are the contributions
of Daouia et al. (2010, 2012). Instead of using only the top observations lying on the sample
boundary to estimate the true frontier, they show how other extreme observations could help
to build robust frontier estimators by using the ideas from Dekkers, Einmahl, and de Haan
(1989) and Dekkers and de Haan (1989). Moreover, they provide different useful asymptotic
confidence bands for the boundary function under the monotonicity constraint in the case of
general βx. However, such techniques are not without their disadvantages. As it is often the
case in extreme-value theory, they require a large sample size to ensure acceptable results.

The overall objective of the present package is to provide a large variety of functions for
the best known approaches to nonparametric boundary regression, including the vast class
of methods employed in both Monte Carlo comparisons of Daouia et al. (2016) and Noh
(2014) as well as other promising nonparametric devices, namely the extreme-value techniques
of Gijbels and Peng (2000), Daouia et al. (2010) and Daouia et al. (2012). The various
functions in the npbr package are summarized in Table 1. We are not aware of any other
existing set of statistical routines more adapted to data envelope fitting and robust frontier
estimation. Only the classical nonsmooth FDH and DEA methods can be found in some
available packages dedicated to the economic literature on measurements of the production
performance of enterprises, such as the R package Benchmarking (Bogetoft and Otto 2011).
Other contributions to the econometric literature on frontier analysis by Parmeter and Racine
(2013) can be found at http://socserv.mcmaster.ca/racinej/Gallery/Home.html. The
package npbr is actually the first free specialized software for the statistical literature on
nonparametric frontier analysis. The routines included in npbr are user friendly and highly
flexible in terms of estimation specifications. They allow the user to filter out noise in edge
data by making use of both empirical and smooth fits as well as (un)constrained estimates
under separate and simultaneous multiple shape constraints. They also provide smoothing
parameter selection for the innovative methods based on local linear techniques, polynomial
splines, extreme values and kernel smoothing, though the proposed selection procedures can
be computationally demanding. To solve the different involved optimization problems, we
mainly use the Rglpk package (Theussl and Hornik 2017, version >= 0.6-2) based on the C
library GLPK (Makhorin 2017), version 4.61.

In addition, the package will be very useful for researchers and practitioners interested in
employing nonparametric boundary regression methods. On one hand, such methods are
very appealing because they rely on very few assumptions and benefit from their modeling
flexibility, function approximation power and ability to detect the boundary structure of data
without recourse to any a priori parametric restrictions on the shape of the frontier and/or the
distribution of noise. On the other hand, the package offers R users and statisticians in this
active area of research simple functions to compute the empirical mean integrated squared
error, the empirical integrated squared bias and the empirical integrated variance of various
frontier estimators. This seamlessly allows the interested researcher to reproduce the Monte
Carlo estimates obtained in the original articles and, perhaps most importantly, to easily
compare the quality of any new proposal with the competitive existing methods. The package
npbr is available from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-

http://socserv.mcmaster.ca/racinej/Gallery/Home.html
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project.org/package=npbr.
Section 2 presents, briefly, five unrelated motivating data examples concerned with annual
sport records, the master curve prediction in the reliability programs of nuclear reactors and
with the optimal cost/production assessment in applied econometrics. Section 3 describes in
detail the implemented functions of the package and provides practical guidelines to effect
the necessary computations. In Section 4, we provide some computational tips that facil-
itate Monte-Carlo comparisons among frontier estimation methods in a similar way to the
simulation studies undertaken by Daouia et al. (2016) and Noh (2014).

Function Description Reference
dea_est DEA, FDH Farrell (1957),

Deprins et al. (1984),
and linearized FDH Hall and Park (2002),

Jeong and Simar (2006)
loc_est Local linear fitting Hall et al. (1998),

Hall and Park (2004)
loc_est_bw Bandwidth choice Hall and Park (2004)

for local linear fitting
poly_est Polynomial estimation Hall et al. (1998)
poly_degree Optimal polynomial Daouia et al. (2016)

degree selection
dfs_momt Moment type estimation Daouia et al. (2010),

Dekkers et al. (1989)
dfs_pick Pickands type estimation Daouia et al. (2010),

Dekkers and de Haan (1989)
rho_momt_pick Conditional tail Daouia et al. (2010),

index estimation Dekkers et al. (1989),
Dekkers and de Haan (1989)

kopt_momt_pick Threshold selection for Daouia et al. (2010)
moment/Pickands frontiers

dfs_pwm_regul Nonparametric frontier Daouia et al. (2012)
regularization

loc_max Local constant estimation Gijbels and Peng (2000)
pick_est Local extreme-value estimation Gijbels and Peng (2000)
quad_spline_est Quadratic spline fitting Daouia et al. (2016)
quad_spline_kn Knot selection for Daouia et al. (2016)

quadratic spline fitting
cub_spline_est Cubic spline fitting Daouia et al. (2016)
cub_spline_kn Knot selection for Daouia et al. (2016)

cubic spline fitting
kern_smooth Nonparametric kernel Parmeter and Racine (2013),

boundary regression Noh (2014)
kern_smooth_bw Bandwidth choice for Parmeter and Racine (2013),

kernel boundary regression Noh (2014)

Table 1: npbr functions.
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2. Empirical applications
In this section, we illustrate the use of the npbr package via five different empirical applications
taken from the recent literature. Each dataset is chosen to highlight the specifics of a class
of estimation methods:

• The dataset records is concerned with the yearly best men’s outdoor 1500-metre run
times starting from 1966. These annual records, depicted in Figure 1 (a), display some
interesting features. Following Jirak, Meister, and Reiss (2014), the lower boundary
can be interpreted as the best possible time for a given year. This boundary steadily
decreases from 1970 until around the year 2000, followed by a sudden increase. This
event leaves room for speculations given that, until the year 2000, it had been very
difficult to distinguish between the biological and synthetical EPO. Here, the boundary
is not believed to be shape constrained and can be estimated by the polynomial, local
linear, spline or kernel smoothing methods described in Sections 3.1 and 3.3.

• The dataset nuclear from the US Electric Power Research Institute (EPRI) consists of
254 toughness results obtained from non-irradiated representative steels. For each steel
i, fracture toughness yi and temperature xi were measured. The scatterplot is given in
Figure 1 (b). The objective is to estimate the lower and upper limits of fracture tough-
ness for the reactor pressure vessel materials as a function of the temperature. Given
that the nuclear reactors’ data are measured accurately, it is natural and more realistic
for practitioners to rely on data envelopment estimation techniques that we regroup in
Sections 3.1-3.3. Here, the lower support boundary is believed to be both increasing
and convex, while the upper extremity is only known to be monotone nondecreasing
(see Daouia et al. 2014, 2016).

• The dataset air is concerned with the assessment of the efficiency of 37 European Air
Controllers. The performance of each controller can be measured by its “distance” from
the upper support boundary, or equivalently, the set of the most efficient controllers.
This dataset is taken from Mouchart and Simar (2002). The scatterplot of the controllers
in the year 2000 is given in Figure 1 (c), where their activity is described by one input
(an aggregate factor of different kinds of labor) and one output (an aggregate factor of
the activity produced, based on the number of controlled air movements, the number of
controlled flight hours, etc.). Given the very small sample size and the sparsity in data,
only the class of polynomials, piecewise polynomials and spline approximations seems
to provide satisfactory fits in this applied setting. This class includes the families of
empirical and smooth estimation methods described in Section 3.1. Note also that the
efficient frontier here is monotone and can be assumed to be in addition concave (see
Daouia, Florens, and Simar 2008; Daouia et al. 2016).

• The dataset post about the cost of the delivery activity of the postal services in France
was first analyzed by Cazals, Florens, and Simar (2002) and then by Aragon, Daouia,
and Thomas-Agnan (2005) and Daouia, Florens, and Simar (2010) among others. There
are 4000 post offices observed in 1994. For each post office i, the input xi is the labor
cost measured by the quantity of labor, which accounts for more than 80% of the total
cost of the delivery activity. The output yi is defined as the volume of delivered mail
(in number of objects). As can be seen from the scatterplot in Figure 1 (d), some
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observations look so isolated in the output direction that they seem hardly related to
the other observations. As a matter of fact, this dataset is known to contain outliers
and it would then look awkward for practitioners to rely on estimation techniques based
on data envelopment ideas (see Daouia and Gijbels 2011). This motivated the quest for
robust frontier estimation methods in Section 3.4. It should be clear that only these
methods allow one to construct valid asymptotic confidence intervals for the unknown
support boundary.

• The dataset green consists of 123 American electric utility companies. As in the set-up
of Gijbels, Mammen, Park, and Simar (1999), we used the measurements of the variables
yi = log(qi) and xi = log(ci), where qi is the production output of the company i and
ci is the total cost involved in the production. A detailed description and analysis of
these data can be found in Christensen and Greene (1976). The scatterplot is given
in Figure 1 (e). Here, the assumption of both monotonicity and concavity constraints
is well accepted and any restricted data envelopment technique such as, for instance,
kernel smoothing in Section 3.3 can be applied. Also, in the absence of information on
whether these data are recorded accurately, one may favor robust frontier estimation.
We caution the user that the robust methods based on extreme-value ideas may require
a large sample size of the order of thousands to achieve acceptable fits and confidence
intervals.

To help users navigate the methods in the npbr package, we describe in Table 2 the type of
estimation and shape constraints allowed by each method.

Function Type of estimator Allowed constraints
dea_est envelope, piecewise linear monotonicity, concavity
loc_est envelope, local linear unconstrained
poly_est envelope, polynomial unconstrained
dfs_momt robust, extreme quantile monotonicity
dfs_pick robust, extreme quantile monotonicity
dfs_pwm_regul robust, probability- monotonicity

weighted moment
loc_max envelope, local constant, unconstrained

local DEA monotonicity, concavity
pick_est robust/envelope, unconstrained

extreme quantile
quad_spline_est envelope, quadratic spline unconstrained, monotonicity,

concavity
cub_spline_est envelope, cubic spline unconstrained, concavity
kern_smooth envelope, kernel smoother unconstrained, monotonicity,

concavity

Table 2: Characteristics of the estimation methods in npbr.

For our illustration purposes, each of the five datasets contains only two variables: one input
and one output.
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R> require("npbr")
R> data("records", "nuclear", "air", "post", "green")

The following code will generate Figure 1.

R> plot(result ~ year, data = records, xlab = "year", ylab = "1500m record")
R> plot(ytab ~ xtab, data = nuclear, xlab = "temp. of the reactor vessel",
+ ylab = "fracture toughness")
R> plot(ytab ~ xtab, data = air, xlab = "input", ylab = "output")
R> plot(yprod ~ xinput, data = post, xlab = "quantity of labor",
+ ylab = "volume of delivered mail")
R> plot(log(OUTPUT) ~ log(COST), data = green)
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Figure 1: From left to right and from top to bottom, the scatterplots of the yearly best men’s
outdoor 1500-metre run times in seconds, the 254 nuclear reactors’ data, the 37 European Air
Controllers, the 4000 European post offices and the 123 American electric utility companies.

3. Main functions
This section describes in detail the main functions of the npbr package. The two first ar-
guments of these functions correspond to the observed inputs x1, . . . , xn and the observed
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outputs y1, . . . , yn. The third argument is a numeric vector of evaluation points at which the
estimator is to be computed. Basically, the user can generate a regular sequence of size 100,
or any finer grid of points, from the minimum value of inputs xi to their maximum value.
The other arguments of the functions depend on the underlying statistical methods.

We do not presume that the user is familiar with nonparametric frontier modeling hence
briefly describe the underlying estimation methodology and tuning parameters selection for
each method. Section 3.1 is concerned with piecewise polynomial fitting, Section 3.2 with
local polynomial estimation, Section 3.3 with kernel smoothing techniques, and Section 3.4
with robust regularization approaches.

3.1. Piecewise polynomial fitting

We commence with the traditional empirical DEA, FDH and Linearized FDH estimators. We
then proceed to polynomial boundary estimators (Hall, Park, and Stern 1998), and finally to
constrained spline estimators (Daouia, Noh, and Park 2016).

DEA, FDH and LFDH frontiers

The function dea_est implements the empirical FDH, LFDH and DEA frontier estimators
programmed earlier in the Benchmarking package (Bogetoft and Otto 2011). There are two
popular methods for preserving monotonicity in the frontier setting: the free disposal hull
(FDH) introduced by Deprins et al. (1984) and the data envelopment analysis (DEA) proposed
by Farrell (1957). The FDH boundary is the lowest “stair-case” monotone curve covering all
the data points

φfdh(x) := max{yi, i : xi ≤ x}.

An improved version of this estimator, referred to as the linearized FDH (LFDH), is obtained
by drawing the polygonal line smoothing the staircase FDH curve. It has been considered in
Hall and Park (2002) and Jeong and Simar (2006). When the joint support of the data is
in addition convex, the DEA estimator is defined as the least concave majorant of the FDH
frontier. Formally, the DEA estimator of the joint support Ψ is defined by

Ψ̂ =
{

(x, y)|y ≤
n∑

i=1
γiyi; x ≥

n∑
i=1

γixi for some (γ1, . . . , γn),

such that
n∑

i=1
γi = 1; γi ≥ 0; i = 1, . . . , n

}
.

Then the DEA estimator of the frontier function φ at x is defined by

φdea(x) := sup{y|(x, y) ∈ Ψ̂}.

Note that the FDH, LFDH and DEA estimators are well defined whenever there exists an
xi such that xi ≤ x. To illustrate the difference between these three empirical frontiers, we
consider the air and green data. First, we generate a vector of evaluation points.

R> x.air <- seq(min(air$xtab), max(air$xtab), length.out = 101)
R> x.green <- seq(min(log(green$COST)), max(log(green$COST)),
+ length.out = 101)
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Then, we compute the DEA, FDH and LFDH estimates.

R> y.dea.green = dea_est(log(green$COST), log(green$OUTPUT), x.green,
+ type = "dea")
R> y.fdh.green = dea_est(log(green$COST), log(green$OUTPUT), x.green,
+ type = "fdh")
R> y.lfdh.green = dea_est(log(green$COST), log(green$OUTPUT), x.green,
+ type = "lfdh")
R> y.dea.air <- dea_est(air$xtab, air$ytab, x.air, type = "dea")
R> y.fdh.air <- dea_est(air$xtab, air$ytab, x.air, type = "fdh")
R> y.lfdh.air <- dea_est(air$xtab, air$ytab, x.air, type = "lfdh")

Figure 2 plots the resulting piecewise linear curves. The following code will generate Figure 2.

R> plot(y.dea.green ~ x.green, lty = 4, col = "cyan", type = "l",
+ xlab = "log(cost)", ylab = "log(output)")
R> lines(x.green, y.fdh.green, lty = 1, col = "green")
R> lines(x.green, y.lfdh.green, lty = 2, col = "magenta")
R> legend("topleft", legend = c("DEA", "FDH", "LFDH"), bty = "n",
+ col = c("cyan", "green", "magenta"), lty = c(4, 1, 2))
R> points(log(OUTPUT) ~ log(COST), data = green)
R> plot(x.air, y.dea.air, lty = 4, col = "cyan",
+ type = "l", xlab = "input", ylab = "output")
R> lines(x.air, y.fdh.air, lty = 1, col = "green")
R> lines(x.air, y.lfdh.air, lty = 2, col = "magenta")
R> legend("topleft", legend = c("DEA", "FDH", "LFDH"), bty = "n",
+ col = c("cyan", "green", "magenta"), lty = c(4, 1, 2))
R> points(ytab ~ xtab, data = air)

Polynomial estimators

The function poly_est is an implementation of the unconstrained polynomial-type estimators
of Hall, Park, and Stern (1998) for support frontiers and boundaries.

Here, the data edge is modeled by a single polynomial φθ(x) = θ0 + θ1x + . . . + θpxp of known
degree p that envelopes the full data and minimizes the area under its graph for x ∈ [a, b], with
a and b being respectively the lower and upper endpoints of the design points x1, . . . , xn. The
function is the estimate φ̂n,P (x) = θ̂0 + θ̂1x + . . . + θ̂pxp of φ(x), where θ̂ = (θ̂0, θ̂1, . . . , θ̂p)⊤

minimizes
∫ b

a φθ(x) dx over θ ∈ Rp+1 subject to the envelopment constraints φθ(xi) ≥ yi,
i = 1, . . . , n. The polynomial degree p has to be fixed by the user in the 4th argument of the
function.

Selection of the polynomial degree

As the degreee p determines the dimensionality of the approximating function, we may view
the problem of choosing p as model selection by calling the function poly_degree. By anal-
ogy to the information criteria proposed by Daouia et al. (2016) in the boundary regression
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Figure 2: DEA, FDH and LFDH estimates of the optimal frontier for the 37 European air
controllers (left) and the 123 American electric utility companies (right).

context, we obtain the optimal polynomial degree by minimizing

AIC(p) = log
(

n∑
i=1

(φ̂n(xi) − yi)
)

+ (p + 1)/n,

BIC(p) = log
(

n∑
i=1

(φ̂n(xi) − yi)
)

+ log n · (p + 1)/(2n).

The first one (option type = "AIC") is similar to the famous Akaike information criterion
(Akaike 1973) and the second one (option type = "BIC") to the Bayesian information cri-
terion (Schwartz 1978). They aim to balance the fidelity to data and the complexity of the
fit in the boundary regression context. There are several ways to motivate the use of the
total absolute residuals in these criteria instead of the standard residual sum of squares. For
instance, it can be derived directly assuming exponential errors as motivated by Daouia et al.
(2016) in Section 2.1.

Practical guidelines

By way of example, we consider the records, air and nuclear datasets. To determine the
optimal polynomial degrees via the AIC criterion, we employ the commands

R> (p.aic.records <- poly_degree(records$year, 1/records$result,
+ prange = 0:12, type = "AIC"))

[1] 11

R> (p.aic.air <- poly_degree(air$xtab, air$ytab, type = "AIC"))

[1] 3
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R> (p.aic.nuc <- poly_degree(nuclear$xtab, nuclear$ytab, type = "AIC"))

[1] 2

We find the same degrees by applying the BIC criterion. The R specifications for the corre-
sponding polynomial boundaries to be estimated are given by

R> x.records<-seq(min(records$year), max(records$year), length.out = 101)
R> y.poly.records <- poly_est(records$year, 1/records$result, x.records,
+ deg = p.aic.records)
R> y.poly.air <- poly_est(air$xtab, air$ytab, x.air, deg = p.aic.air)
R> x.nucl <- seq(min(nuclear$xtab), max(nuclear$xtab), length.out = 101)
R> y.poly.nuc <- poly_est(nuclear$xtab, nuclear$ytab, x.nucl,
+ deg = p.aic.nuc)

The following code can be used to construct the plots of the resulting estimators appearing
in Figure 3.

R> plot(x.records, 1/y.poly.records, type = "l", col = "green")
R> points(result ~ year, data = records)
R> legend("bottomleft", legend = paste("degree =", p.aic.records),
+ col = "green", lty = 1, bty = "n")
R> plot(x.air, y.poly.air, type = "l", col = "magenta")
R> points(ytab ~ xtab, data = air)
R> legend("topleft", legend = paste("degree =", p.aic.air),
+ col = "magenta", lty = 1, bty = "n")
R> plot(y.poly.nuc ~ x.nucl, type = "l", col = "cyan",
+ ylim = range(nuclear$ytab))
R> points(ytab ~ xtab, data = nuclear)
R> legend("topleft", legend = paste("degree =", p.aic.nuc),
+ col = "cyan", lty = 1, bty = "n")

Quadratic spline smoothers

The function quad_spline_est is an implementation of the (un)constrained quadratic spline
estimates proposed by Daouia et al. (2016).

Unconstrained quadratic fit

Let a and b be, respectively, the minimum and maximum of the design points x1, . . . , xn.
Denote a partition of [a, b] by a = t0 < t1 < . . . < tkn = b (see below the selection process of
kn and {tj}). Let N = kn+2 and π(x) = (π0(x), . . . , πN−1(x))⊤ be the vector of normalized B-
splines of order 3 based on the knot mesh {tj} (see, e.g., Schumaker 2007). The unconstrained
(option method = "u") quadratic spline estimate of the frontier function φ(x) is defined as
φ̃n(x) = π(x)⊤α̃, where α̃ minimizes

∫ 1
0 π(x)⊤α dx = ∑N−1

j=0 αj
∫ 1

0 πj(x) dx over α ∈ RN

subject to the envelopment constraints π(xi)⊤α ≥ yi, i = 1, . . . , n. A simple way of choosing
the knot mesh in this unconstrained setting is by considering the j/knth quantiles tj = x[jn/kn]
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Figure 3: Polynomial boundary estimators for the 46 annual sport records (left), the 37
European air controllers (middle) and the 254 nuclear reactors’ data (right).

of the distinct values of xi for j = 1, . . . , kn − 1. Then, the choice of the number of inter-knot
segments kn is viewed as model selection by making use of the function quad_spline_kn
(option method = "u") described in a separate paragraph below.

Monotonicity constraint

When the true frontier φ(x) is known or required to be monotone nondecreasing (option
method = "m"), its constrained quadratic spline estimate is defined by φ̂n(x) = π(x)⊤α̂, where
α̂ minimizes the same objective function as α̃ subject to the same envelopment constraints
and the additional monotonicity constraints π′(tj)⊤α ≥ 0, j = 0, 1, . . . , kn, with π′ being
the derivative of π. Considering the special connection of the spline smoother φ̂n with the
traditional FDH frontier φfdh (see the function dea_est), Daouia et al. (2016) propose a
refined way of choosing the knot mesh. Let (X1, Y1), . . . , (XN , YN ) be the observations (xi, yi)
lying on the FDH boundary (i.e., yi = φfdh(xi)). The basic idea is to pick out a set of knots
equally spaced in percentile ranks among the N FDH points (Xℓ, Yℓ) by taking tj = X[jN /kn],
the j/knth quantile of the values of Xℓ for j = 1, . . . , kn − 1. The optimal number kn is then
obtained by using the function quad_spline_kn (option method = "m").

Concavity constraint

When the monotone boundary φ(x) is also believed to be concave (option method = "mc"),
its constrained fit is defined as φ̂⋆

n(x) = π(x)⊤α̂⋆, where α̂⋆ ∈ RN minimizes the same ob-
jective function as α̂ subject to the same envelopment and monotonicity constraints and
the additional concavity constraints π′′(t∗

j )⊤α ≤ 0, j = 1, . . . , kn, where π′′ is the constant
second derivative of π on each inter-knot interval and t∗

j is the midpoint of (tj−1, tj ]. Re-
garding the choice of knots, the same scheme as for φ̂n is applied by replacing the FDH
points (X1, Y1), . . . , (XN , YN ) with the DEA points (X ∗

1 , Y∗
1 ), . . . , (X ∗

M, Y∗
M), that is, the ob-

servations (xi, yi = φdea(xi)) lying on the piecewise linear DEA frontier (see the function
dea_est). Alternatively, the strategy of just using all the DEA points as knots also works
quite well for datasets of modest size as shown in Daouia et al. (2016). In this case, the user



14 npbr: Nonparametric Boundary Regression in R

has to choose the option all.dea = TRUE.

Optimal number of inter-knot segments

The function quad_spline_kn computes the optimal number kn for the quadratic spline fits
proposed by Daouia et al. (2016). For the implementation of the unconstrained quadratic
spline smoother φ̃n, based on the knot mesh {tj = x[jn/kn] : j = 1, . . . , kn − 1}, the user has
to employ the option method = "u". Since the number kn determines the complexity of the
spline approximation, its choice may be viewed as model selection via the minimization of
the following Akaike (option type = "AIC") or Bayesian (option type = "BIC") information
criteria:

AĨC(k) = log
(

n∑
i=1

(φ̃n(xi) − yi)
)

+ (k + 2)/n,

BĨC(k) = log
(

n∑
i=1

(φ̃n(xi) − yi)
)

+ log n · (k + 2)/(2n).

For the implementation of the monotone (option method = "m") quadratic spline smoother
φ̂n, the authors first suggest using the set of knots {tj = X[jN /kn], j = 1, . . . , kn − 1} among
the FDH points (Xℓ, Yℓ), ℓ = 1, . . . , N , as described above. Then, they propose to choose
kn by minimizing the following AIC (option type = "AIC") or BIC (option type = "BIC")
information criteria:

AÎC(k) = log
(

n∑
i=1

(φ̂n(xi) − yi)
)

+ (k + 2)/n,

BÎC(k) = log
(

n∑
i=1

(φ̂n(xi) − yi)
)

+ log n · (k + 2)/(2n).

A small number of knots is typically needed as elucidated by the asymptotic theory.

For the implementation of the monotone and concave (option method = "mc") spline estima-
tor φ̂⋆

n, just apply the same scheme as above by replacing the FDH points (Xℓ, Yℓ) with the
DEA points (X ∗

ℓ , Y∗
ℓ ).

Practical guidelines

We describe here how to construct the necessary computations of the (un)constrained quadratic
spline fits under both separate and simultaneous shape constraints. By way of example we
consider the air and green data. To conduct the unconstrained estimation, we first determine
the optimal number of inter-knot segments via the BIC criterion.

R> (kn.bic.air.u <- quad_spline_kn(air$xtab, air$ytab,
+ method = "u", type = "BIC"))

[1] 12

R> (kn.bic.green.u <- quad_spline_kn(log(green$COST), log(green$OUTPUT),
+ method = "u", type = "BIC"))
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[1] 14

When applying the AIC criterion, we get the optimal values 12 and 20 of kn, respectively.
The R specification for the unconstrained spline estimate φ̃n to be calculated is given by

R> y.quad.air.u <- quad_spline_est(air$xtab, air$ytab, x.air,
+ kn = kn.bic.air.u, method = "u")
R> y.quad.green.u <- quad_spline_est(log(green$COST), log(green$OUTPUT),
+ x.green, kn = kn.bic.green.u, method = "u")

When only the monotonicity constraint is of interest, we calculate the optimal number kn via
the following specification:

R> (kn.bic.air.m <- quad_spline_kn(air$xtab, air$ytab,
+ method = "m", type = "BIC"))

[1] 6

R> (kn.bic.green.m <- quad_spline_kn(log(green$COST), log(green$OUTPUT),
+ method = "m", type = "BIC"))

[1] 10

Note that we find the values 6 and 19 of the optimal number kn when applying the AIC
criterion. The monotonic spline φ̂n can then be produced by employing the command

R> y.quad.air.m <- quad_spline_est(air$xtab, air$ytab, x.air,
+ kn = kn.bic.air.m, method = "m")
R> y.quad.green.m <- quad_spline_est(log(green$COST), log(green$OUTPUT),
+ x.green, kn = kn.bic.green.m, method = "m")

When the concavity constraint is also of interest, we obtain the optimal number kn via the
BIC criterion and the corresponding constrained spline φ̂⋆

n by proceeding as follows:

R> (kn.bic.air.mc <- quad_spline_kn(air$xtab, air$ytab,
+ method = "mc", type = "BIC"))

[1] 2

R> (kn.bic.green.mc <- quad_spline_kn(log(green$COST), log(green$OUTPUT),
+ method = "mc", type = "BIC"))

[1] 1

When applying the AIC criterion, we get the optimal values 2 and 7 of kn, respectively. To
compute the smoother φ̂⋆

n by utilizing all the DEA points as knots, we use the command
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R> y.quad.air.mc <- quad_spline_est(air$xtab, air$ytab, x.air,
+ kn = kn.bic.air.mc, method = "mc", all.dea = TRUE)
R> y.quad.green.mc <- quad_spline_est(log(green$COST), log(green$OUTPUT),
+ x.green, kn = kn.bic.green.mc, method = "mc", all.dea = TRUE)

The resulting unrestricted and two constrained estimates of the econometric frontiers (i.e.,
the sets of the most efficient companies and controllers) are graphed in Figure 4 for each
dataset. The following code will generate Figure 4.

R> plot(y.quad.air.u ~ x.air, lty = 1, col = "green", type = "l",
+ xlab = "input", ylab = "output")
R> lines(x.air, y.quad.air.m, lty = 2, col = "cyan")
R> lines(x.air, y.quad.air.mc, lty = 3, col = "magenta")
R> points(ytab ~ xtab, data = air)
R> legend("topleft", col = c("green", "cyan", "magenta"),
+ lty = c(1, 2, 3), bty = "n", lwd = 4,
+ legend = c("unconstrained", "monotone", "monotone + concave"))
R> plot(y.quad.green.u ~ x.green, lty = 1, col = "green", type = "l",
+ xlab = "log(COST)", ylab = "log(OUTPUT)")
R> lines(x.green, y.quad.green.m, lty = 2, col = "cyan")
R> lines(x.green, y.quad.green.mc, lty = 3, col = "magenta")
R> points(log(OUTPUT) ~ log(COST), data = green)
R> legend("topleft", col = c("green", "cyan", "magenta"),
+ bty = "n", lty = c(1, 2, 3),
+ legend = c("unconstrained", "monotone", "monotone + concave"))
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Figure 4: The quadratic spline frontiers φ̃n, φ̂n and φ̂⋆
n for the 37 European air controllers

(left) and the 123 American electric utility companies (right).
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Cubic spline frontiers

The function cub_spline_est is an implementation of the (un)constrained cubic spline esti-
mates proposed by Daouia et al. (2016).

As in the quadratic spline setting, let a and b be respectively the minimum and maximum of
the design points x1, . . . , xn, and denote a partition of [a, b] by a = t0 < t1 < . . . < tkn = b.
Here, N = kn + 3 and π(x) = (π0(x), . . . , πN−1(x))⊤ is the vector of normalized B-splines of
order 4 based on the knot mesh {tj}. The unconstrained (option method = "u") cubic spline
estimate of the frontier φ(x) is then defined in the same way as the envelopment quadratic
spline φ̃n(x) with the same knot selection process, that is, tj = x[jn/kn] is the j/knth quantile
of the distinct values of xi for j = 1, . . . , kn − 1. The number of inter-knot segments kn is
obtained by calling the function cub_spline_kn (option method = "u"), which consists in
minimizing the information criterion AĨC(k) (option type = "AIC") or BĨC(k) (option type
= "BIC").

Regarding the monotonicity constraint, it cannot be formulated into linear constraints at the
knots since, as opposed to quadratic splines, the first derivative of cubic splines is a quadratic
spline. Daouia et al. (2016) have been able to come up with an alternative formulation of
monotonicity in terms of standard second-order cone constraints, but in our R package for
computational convenience we use the following sufficient condition to ensure monotonicity:

α0 ≤ α1 ≤ . . . ≤ αN−1.

This condition was previously used in Lu, Zhang, and Huang (2007) and Pya and Wood
(2014). Note that since the condition corresponds to linear constraints on α, the estimator
satisfying the monotonicity constraint can be obtained via linear programming.

When the estimate is required to be both monotone and concave, we use the function
cub_spline_est with the option method = "mc". The estimate is obtained as the cubic
spline function which minimizes the same linear objective function as the unconstrained esti-
mate subject to the same linear envelopment constraints, the monotonicity constraint above
and the additional linear concavity constraints π′′(tj)⊤α ≤ 0, j = 0, 1, . . . , kn, where the
second derivative π′′ is a linear spline. Regarding the choice of knots, we just apply the same
scheme as for the unconstrained cubic spline estimate.

By way of example we consider again the air and green data. We first calculate the optimal
numbers kn via the BIC criterion:

R> (kn.bic.air.u <- cub_spline_kn(air$xtab, air$ytab, method = "u",
+ type = "BIC"))

[1] 1

R> (kn.bic.green.u <- cub_spline_kn(log(green$COST), log(green$OUTPUT),
+ method = "u", type = "BIC"))

[1] 8
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R> (kn.bic.air.m <- cub_spline_kn(air$xtab, air$ytab, method = "m",
+ type = "BIC"))

[1] 7

R> (kn.bic.green.m <- cub_spline_kn(log(green$COST), log(green$OUTPUT),
+ method = "m", type = "BIC"))

[1] 12

R> (kn.bic.air.mc <- cub_spline_kn(air$xtab, air$ytab,
+ method = "mc", type = "BIC"))

[1] 3

R> (kn.bic.green.mc <- cub_spline_kn(log(green$COST), log(green$OUTPUT),
+ method = "mc", type = "BIC"))

[1] 5

Note that we find the same values by applying the AIC criterion. To compute the correspond-
ing (un)constrained cubic spline frontiers, we employ the following commands

R> y.cub.air.u <- cub_spline_est(air$xtab, air$ytab, x.air,
+ kn = kn.bic.air.u, method = "u")
R> y.cub.green.u <- cub_spline_est(log(green$COST), log(green$OUTPUT),
+ x.green, kn = kn.bic.green.u, method = "u")
R> y.cub.air.m <- cub_spline_est(air$xtab, air$ytab, x.air,
+ kn = kn.bic.air.m, method = "m")
R> y.cub.green.m <- cub_spline_est(log(green$COST), log(green$OUTPUT),
+ x.green, kn = kn.bic.green.m, method = "m")
R> y.cub.air.mc <- cub_spline_est(air$xtab, air$ytab, x.air,
+ kn = kn.bic.air.mc, method = "mc")
R> y.cub.green.mc <- cub_spline_est(log(green$COST), log(green$OUTPUT),
+ x.green, kn = kn.bic.green.mc, method = "mc")

The resulting unconstrained and concave frontier estimates are graphed in Figure 5 for each
dataset. The following code will generate Figure 5.

R> plot(y.cub.air.u ~ x.air, type = "l", col = "green",
+ xlab = "input", ylab = "output")
R> lines(x.air, y.cub.air.m, lty = 2, col = "cyan")
R> lines(x.air, y.cub.air.mc, lty = 3, col = "magenta")
R> points(ytab ~ xtab, data = air)
R> legend("topleft", col = c("green", "cyan", "magenta"), lty = c(1, 2, 3),
+ bty = "n", legend=c("unconstrained", "monotone", "monotone+concave"))
R> plot(y.cub.green.u ~ x.green, type = "l", col = "green",



Journal of Statistical Software 19

+ xlab = "log(COST)", ylab = "log(OUTPUT)")
R> lines(x.green, y.cub.green.m, lty = 2, col = "cyan")
R> lines(x.green, y.cub.green.mc, lty = 3, col = "magenta")
R> points(log(OUTPUT) ~ log(COST), data = green)
R> legend("topleft", col = c("green", "cyan", "magenta"), lty = c(1, 2, 3),
+ bty = "n", legend = c("unconstrained", "monotone", "monotone+concave"))
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Figure 5: The unconstrained and concave cubic spline frontiers for the 37 European air
controllers (left) and the 123 American electric utility companies (right).

3.2. Localized boundary regression

This section is concerned with localizing the frontier estimation and considers local linear
fitting (Hall et al. 1998; Hall and Park 2004), local maximum and extreme-value smoothing
(Gijbels and Peng 2000).

Local linear fitting

The function loc_est computes the local linear smoothing frontier estimators of Hall, Park,
and Stern (1998) and Hall and Park (2004). In the unconstrained case (option method =
"u"), the implemented estimator of φ(x) is defined by

φ̂n,LL(x) = min
{

z : there exists θ such that yi ≤ z + θ(xi − x)

for all i such that xi ∈ (x − h, x + h)
}

,

where the bandwidth h has to be fixed by the user in the 4th argument of the function. This
estimator may lack of smoothness in case of small samples and has no guarantee of being
monotone even if the true frontier is so. Following the curvature of the monotone frontier φ,
the unconstrained estimator φ̂n,LL is likely to exhibit substantial bias, especially at the sample
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boundaries. A simple way to remedy to this drawback is by imposing the extra condition
θ ≥ 0 in the definition of φ̂n,LL(x) to get

φ̃n,LL(x) = min
{

z : there exists θ ≥ 0 such that yi ≤ z + θ1(xi − x)

for all i such that xi ∈ (x − h, x + h)
}

.

As shown in Daouia et al. (2016), this version only reduces the vexing bias and border defects
of the original estimator when the true frontier is monotone. The option method = "m"
indicates that the improved fit φ̃n,LL should be utilized in place of φ̂n,LL.

Optimal bandwidth choice

Hall and Park (2004) proposed a bootstrap procedure for selecting the optimal bandwidth h
in φ̂n,LL and φ̃n,LL. The function loc_est_bw computes this optimal bootstrap bandwidth.
To initiate Hall and Park’s bootstrap device, one needs to set a pilot bandwidth, which seems
to be quite critical to the quality of φ̂n,LL and φ̃n,LL.

Practical guidelines

To see how the local linear unconstrained estimate φ̂n,LL and its improved version φ̃n,LL

perform in the case of records, air and nuclear data. We first compute the optimal band-
widths over 100 bootstrap replications by using, for instance, the values 2, 2 and 40 as pilot
bandwidths.

R> h.records.u <- loc_est_bw(records$year, 1/records$result, x.records,
+ hini = 2, B = 100, method = "u")

[1] 22.5

R> h.air.u <- loc_est_bw(air$xtab, air$ytab, x.air,
+ hini = 2, B = 100, method = "u")

[1] 2.89278

R> h.air.m <- loc_est_bw(air$xtab, air$ytab, x.air,
+ hini = 2, B = 100, method = "m")

[1] 3.586696

R> h.nucl.u <- loc_est_bw(nuclear$xtab, nuclear$ytab, x.nucl,
+ hini = 40, B = 100, method = "u")

[1] 82.32759

R> h.nucl.m <- loc_est_bw(nuclear$xtab, nuclear$ytab, x.nucl,
+ hini = 40, B = 100, method = "m")
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[1] 82.32759

Note that the computational burden here is very demanding, so be forewarned. Now to
evaluate φ̂n,LL and/or φ̃n,LL, we employ the commands

R> y.records.u <- loc_est(records$year, 1/records$result, x.records,
+ h = h.records.u, method = "u")
R> y.air.u <- loc_est(air$xtab, air$ytab, x.air, h = h.air.u, method = "u")
R> y.air.m <- loc_est(air$xtab, air$ytab, x.air, h = h.air.m, method = "m")
R> y.nucl.u <- loc_est(nuclear$xtab, nuclear$ytab, x.nucl,
+ h = h.nucl.u, method = "u")
R> y.nucl.m <- loc_est(nuclear$xtab, nuclear$ytab, x.nucl,
+ h = h.nucl.m, method = "m")

Figure 6 superimposes the obtained estimates for each dataset. For the particular datasets
air and nuclear, the resulting unconstrained and improved estimates are very similar. The
following code will generate Figure 6.

R> plot(x.records, 1/y.records.u, type = "l", col = "magenta")
R> points(result ~ year, data = records)
R> legend("topright", legend = "unconstrained", bty = "n",
+ col = "magenta", lty = 1)
R> plot(y.air.u ~ x.air, type = "l", col = "magenta")
R> lines(x.air, y.air.m, lty = 2, col = "cyan")
R> points(ytab ~ xtab, data = air)
R> legend("topleft", legend = c("unconstrained", "improved"), bty = "n",
+ col = c("magenta", "cyan"), lty = c(1, 2))
R> plot(y.nucl.u ~ x.nucl, type = "l", col = "magenta")
R> lines(x.nucl, y.nucl.m, lty = 2, col = "cyan")
R> points(ytab ~ xtab, data = nuclear)
R> legend("topleft", legend = c("unconstrained", "improved"), bty = "n",
+ col = c("magenta", "cyan"), lty = c(1, 2))

Local maximum estimation

The function loc_max implements the local maximum estimates of φ(x) proposed by Gij-
bels and Peng (2000): a local constant estimator at first (option type = "one-stage") and
subsequently a local DEA estimator (option type = "two-stage").

The methodology of Gijbels and Peng consists of considering a strip around x of width 2h,
where h = hn → 0 with nhn → ∞ as n → ∞, and focusing then on the yi values of
observations falling into this strip. More precisely, they consider the transformend variables
zxh

i = yi1I{|xi−x|≤h}, i = 1, . . . , n, and the corresponding order statistics zxh
(1) ≤ . . . ≤ zxh

(n).
The simple maximum zxh

(n) = maxi=1,...,n zxh
i defines then the local constant estimator (option

type = "one-stage") of the frontier point φ(x). This opens a way to a two-stage estimation
procedure as follows. In a first stage, Gijbels and Peng calculate the maximum zxh

(n). Then,
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Figure 6: Local linear frontier estimates φ̂n,LL and φ̃n,LL for the 46 annual sport records
(left), the 37 European air controllers (middle) and the 254 nuclear reactors (right).

they suggest to replace each observation yi in the strip of width 2h around x by this maximum,
leaving all observations outside the strip unchanged. More specifically, they define

ỹi =
{

yi if |xi − x| > h
zxh

(n) if |xi − x| ≤ h.

Then, they apply the DEA estimator (see the function dea_est) to these transformed data
(xi, ỹi), giving the local DEA estimator (option type = "two-stage").

The bandwidth h has to be fixed by the user in the 4th argument of the function. By way
of example, in the case of the green data, the value h = 0.5 leads to reproduce in Figure 7
(left) the estimates obtained by Gijbels and Peng (2000).

R> loc_max_1stage <- loc_max(log(green$COST), log(green$OUTPUT), x.green,
+ h = 0.5, type = "one-stage")
R> loc_max_2stage <- loc_max(log(green$COST), log(green$OUTPUT), x.green,
+ h = 0.5, type = "two-stage")

A data-driven rule for selecting h

Note that the frontier point φ(x) is identical to the right-endpoint of the cumulative distri-
bution function F (·|x) of Y given X = x, and that the local constant estimate zxh

(n) coincides
with the right-endpoint of the kernel estimator

Fn(y|x) =
n∑

i=1
K(x − xi

h
)1I(yi≤y)/

n∑
i=1

K(x − xi

h
),

with K(·) being the uniform kernel. When the interest is in the estimation of the conditional
distribution function, one way to select the bandwidth h is by making use of the following
commands
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R> require("np")
R> bw <- npcdistbw(log(OUTPUT) ~ log(COST), data = green,
+ cykertype = "uniform", bwtype = "fixed")$xbw
R> (h.opt <- max(bw, max(diff(sort(log(green$COST))))/2))

[1] 0.4152283

The first command returns the bandwidth bw computed via the least squares cross-validation
method (see Li, Lin, and Racine 2013, for details). As the resulting bandwidth can be smaller
than half the maximum spacing due to sparsity in data, the second command selects the
maximum value. On may then use this value to compute the estimates of the conditional
endpoint φ(x) itself. This is an ad hoc choice, but it works quite well. It might be viewed
as an exploratory tool, rather than as a method for final analysis. The corresponding local
maximum frontier estimates are graphed in Figure 7 (right).

R> loc_max_1stage.opt <- loc_max(log(green$COST), log(green$OUTPUT), x.green,
+ h = h.opt, type = "one-stage")
R> loc_max_2stage.opt <- loc_max(log(green$COST), log(green$OUTPUT), x.green,
+ h = h.opt, type = "two-stage")

The following code will generate Figure 7.

R> plot(log(OUTPUT) ~ log(COST), data = green)
R> lines(x.green, loc_max_1stage, lty = 1, col = "magenta")
R> lines(x.green, loc_max_2stage, lty = 2, col = "cyan")
R> legend("topleft", legend = c("one-stage", "two-stage"), bty = "n",
+ col = c("magenta", "cyan"), lty = c(1, 2))
R> plot(log(OUTPUT) ~ log(COST), data = green)
R> lines(x.green, loc_max_1stage.opt, lty = 1, col = "magenta")
R> lines(x.green, loc_max_2stage.opt, lty = 2, col = "cyan")
R> legend("topleft",legend = c("one-stage", "two-stage"), bty = "n",
+ col = c("magenta", "cyan"), lty = c(1, 2))

Local extreme-value estimation

The function pick_est computes the local Pickands type of estimator introduced by Gijbels
and Peng (2000). The implemented estimator of φ(x), obtained by applying the well-known
extreme value approach of Dekkers et al. (1989) in conjunction with the transformed sample
(zxh

1 , . . . , zxh
n ) described above in Section 3.2.2, is defined as:

φ̃pick(x) := zxh
(n−k) +

(
zxh

(n−k) − zxh
(n−2k)

)2
− log

zxh
(n−k)−zxh

(n−2k)
zxh

(n−2k)−zxh
(n−4k)

/ log 2
− 1


−1

.

It is based on three upper order statistics zxh
(n−k), zxh

(n−2k), zxh
(n−4k), and depends on the band-

width h as well as an intermediate sequence k = k(n) → ∞ with k/n → 0 as n → ∞. The
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Figure 7: Local maximum frontier estimates for the 123 American electric utility companies
with h = 0.5 (left) and h.opt = 0.4152283 (right).

two smoothing parameters h and k have to be fixed by the user in the 4th and 5th arguments
of the function. Also, as for the two-stage local frontier estimator presented above, writing

ỹi =
{

yi if |xi − x| > h
φ̃pick(x) if |xi − x| ≤ h,

one can then apply the DEA estimator to these transformed data (xi, ỹi), giving thus the
local DEA estimator (option type = "two-stage").

Regarding the choice of the smoothing parameters, it should be clear that any automatic
data-driven method has to pick up h and k simultaneously, which is a daunting problem.
Doubtlessly, further work to define a concept of selecting appropriate values for h and k will
yield new refinements.

3.3. Kernel smoothing

Recently, kernel smoothing methods have been developed for estimating smooth frontier func-
tions. The function kern_smooth implements two up-to-date approaches in such direction.

Parmeter and Racine’s estimator

The function kern_smooth computes Parmeter and Racine (2013)’s estimator (option technique
= "pr") without constraints (option method = "u"), and with the monotonicity constraint
(option method = "m") as well as the monotone concavity constraint (option method = "mc").

Definition of the estimator

To estimate the frontier function, Parameter and Racine (2013) considered the following
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generalization of linear regression smoothers φ̂(x|p) = ∑n
i=1 piAi(x)yi, where Ai(x) is the

kernel weight function of x for the i-th data depending on xi’s and the sort of linear smoothers.
For example, the Nadaraya-Watson kernel weights are Ai(x) = Ki(x)/(∑n

j=1 Kj(x)), where
Ki(x) = h−1K{(x − xi)/h}, with the kernel function K being a bounded and symmetric
probability density, and h is a bandwidth. Then, the weight vector p = (p1, . . . , pn)⊤ is chosen
to minimize the distance D(p) = (p − pu)⊤(p − pu) subject to the envelopment constraints
and the choice of the shape constraints, where pu is an n-dimensional vector with all elements
being one. The envelopement and shape constraints are

φ̂(xi|p) − yi =
n∑

i=1
piAi(xi)yi − yi ≥ 0, i = 1, . . . , n; (envelopment constraints)

φ̂(1)(x|p) =
n∑

i=1
piA

(1)
i (x)yi ≥ 0, x ∈ M; (monotonocity constraints)

φ̂(2)(x|p) =
n∑

i=1
piA

(2)
i (x)yi ≤ 0, x ∈ C, (concavity constraints)

where φ̂(s)(x|p) = ∑n
i=1 piA

(s)
i (x)yi is the s-th derivative of φ̂(x|p), with M and C being

the collections of points where monotonicity and concavity are imposed, respectively. In our
implementation of the estimator, we simply take the entire dataset {(xi, yi), i = 1, . . . , n} to
be M and C and, in case of small samples, we augment the sample points by an equispaced
grid of length 201 over the observed support [mini xi, maxi xi] of X. For the weight Ai(x),
we use the Nadaraya-Watson weights.

Optimal bandwidth

Bandwidth selection is crucial to good performance of the frontier estimator as with other
kernel smoothing estimators. Parmeter and Racine (2013)’s recommendation is to adapt
the optimal bandwidth for mean regression curve estimation chosen by least squares cross-
validation to the boundary regression context. This is implemented with bw_method = "cv"
in the function kern_smooth_bw. We also refer to existing functions from the np (Hayfield
and Racine 2008) and quadprog (Turlach and Weingessel 2013) packages that can be found
at http://socserv.mcmaster.ca/racinej/Gallery/Home.html.

Noh’s estimator

Noh (2014) considered the same generalization of linear smoothers φ̂(x|p) for frontier esti-
mation, but with a different method for choosing the weight p. This is implemented in the
function kern_smooth with option technique = "noh".

Definition of the estimator

In contrast with Parmeter and Racine (2013), along with the same envelopment and shape
constraints, the weight vector p is chosen to minimize the area under the estimator φ̂(x|p),
that is A(p) =

∫ b
a φ̂(x|p)dx = ∑n

i=1 piyi

(∫ b
a Ai(x)dx

)
, where [a, b] is the true support of X.

In practice, we integrate over the observed support [mini xi, maxi xi] since the theoretic one

http://socserv.mcmaster.ca/racinej/Gallery/Home.html
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is unknown. In what concerns the kernel weights Ai(x), we use the Priestley-Chao weights

Ai(x) =
{

0 , i = 1
(xi − xi−1)Ki(x) , i ̸= 1 ,

where it is assumed that the pairs (xi, yi) have been ordered so that x1 ≤ . . . ≤ xn. The
choice of such weights is motivated by their convenience for the evaluation of the integral∫

Ai(x)dx.

Optimal bandwidth

Following Parmeter and Racine (2013)’s recommendation, we may use the resulting bandwidth
from cross-validation for Noh (2014)’s estimator. Another option proposed by Noh (2014) is to
select the bandwidth which minimizes a BIC-type criterion developed for frontier estimation.
The criterion is the following:

BIC(h) = log
(

n∑
i=1

(φ̂(xi|p̂(h)) − yi)
)

+ log n · tr(S(h))
2n

,

where p̂(h) is the chosen weight vector given the bandwidth h, and tr(S(h)) is the trace of
the smoothing matrix

S(h) =

 A1(x1) . . . An(x1)
... . . . ...

A1(xn) . . . An(xn)

 .

We refer to Noh (2014) for a thorough discussion of the rationale for this BIC-type criterion.
The function kern_smooth_bw computes the optimal bandwidth from this criterion with
option bw_method = "bic".

Comparison between the two estimators

To illustrate the use of kern_smooth and compare the two estimators, we consider the green
data and compute each estimator under the monotonicity constraint (option method = "m").
First, using the function kern_smooth_bw we compute the optimal bandwidth for each esti-
mator.

R> require("np")
R> (h.pr.green.m <- kern_smooth_bw(log(green$COST), log(green$OUTPUT),
+ method = "m", technique = "pr", bw_method = "cv"))

[1] 0.8304566

R> (h.noh.green.m <- kern_smooth_bw(log(green$COST), log(green$OUTPUT),
+ method = "m", technique = "noh", bw_method = "bic"))

[1] 2.695624

To compute the estimators for the chosen bandwidths obeying the constraint , we employ the
following commands:
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R> y.pr.green.m <- kern_smooth(log(green$COST), log(green$OUTPUT), x.green,
+ h = h.pr.green.m, method = "m", technique = "pr")
R> y.noh.green.m <- kern_smooth(log(green$COST), log(green$OUTPUT), x.green,
+ h = h.noh.green.m, method = "m", technique = "noh")

The resulting two constrained estimates are graphed in Figure 8 from the following com-
mands:

R> plot(log(OUTPUT) ~ log(COST), data = green, xlab = "log(COST)",
+ ylab = "log(OUTPUT)")
R> lines(x.green, y.pr.green.m, lty = 2, col = "blue")
R> lines(x.green, y.noh.green.m, lty = 3, col = "red")
R> legend("topleft", bty = "n", legend = c("noh", "pr"),
+ col = c("red", "blue"), lty = c(3,2))
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Figure 8: The two kernel smoothing frontier estimators for 123 American electric utility
companies.

3.4. Robust regularization approaches

In applied settings where outlying observations are omnipresent, as is the case for instance in
production data, it is prudent to seek a “robustification” strategy. To achieve this objective,
we propose in this section three regularization extreme-value based methods (Daouia, Florens,
and Simar 2010, 2012). All of these methods are based on the assumption that the frontier
function φ is monotone nondecreasing.

Moment frontier estimator

The function dfs_momt is an implementation of the moment-type estimator and the cor-
responding confidence interval developed by Daouia et al. (2010) under the monotonicity
constraint. Combining the ideas from Dekkers, Einmahl, and de Haan (1989) with the dimen-
sionless transformation {zx

i := yi1I{xi≤x}, i = 1, . . . , n} of the observed sample {(xi, yi), i =



28 npbr: Nonparametric Boundary Regression in R

1, . . . , n}, they estimate the conditional endpoint φ(x) by

φ̃momt(x) = zx
(n−k) + zx

(n−k)M
(1)
n {1 + ρx}

where M
(1)
n = (1/k)∑k−1

i=0

(
log zx

(n−i) − log zx
(n−k)

)
, zx

(1) ≤ . . . ≤ zx
(n) are the ascending order

statistics of the transformed sample {zx
i , i = 1, . . . , n}, and ρx > 0 is referred to as the

extreme-value index and has the following interpretation: When ρx > 2, the joint density of
data decays smoothly to zero at a speed of power ρx − 2 of the distance from the frontier;
when ρx = 2, the density has sudden jumps at the frontier; when ρx < 2, the density increases
toward infinity at a speed of power ρx − 2 of the distance from the frontier. As a matter of
fact, we have ρx = βx + 2, where βx is the shape parameter of the joint density introduced in
Section 1. Most of the contributions to the econometric literature on frontier analysis assume
that the joint density is strictly positive at its support boundary, or equivalently, ρx = 2 for
all x.

Estimation strategy when ρx is unknown

In this case, Daouia et al. (2010) suggest to use the following two-step estimator: First,
estimate ρx by the moment estimator ρ̃x implemented in the function rho_momt_pick by
utilizing the option method = "moment", or by the Pickands estimator ρ̂x by using the option
method = "pickands" (see the paragraph Moment and Pickands estimates of the tail-
index ρx below for a detailed description of the function rho_momt_pick). Second, use the
estimator φ̃momt(x), as if ρx were known, by substituting the estimated value ρ̃x or ρ̂x in
place of ρx.

Confidence interval

The 95% confidence interval of φ(x) derived from the asymptotic normality of φ̃momt(x) is
given by

[φ̃momt(x) ± 1.96
√

V (ρx)/kzx
(n−k)M

(1)
n (1 + 1/ρx)],

where V (ρx) = ρ2
x(1 + 2/ρx)−1.

Selection of the sequence k

The number k = kn(x) plays here the role of the smoothing parameter and varies between
1 and Nx − 1, with Nx = ∑n

i=1 1I{xi≤x} being the number of observations (xi, yi) such that
xi ≤ x. The question of selecting the optimal value of kn(x) is still an open issue and is not
addressed yet. Daouia et al. (2010) have only suggested an empirical rule implemented in
the function kopt_momt_pick (option method = "moment") that turns out to give reasonable
values of the sequence kn(x) for estimating the frontier φ(x) [see the paragraph Threshold
selection for moment and Pickands frontiers below for a detailed description of the
function kopt_momt_pick]. However, as it is common in extreme-value theory, good results
require a large sample size Nx of the order of several hundreds. If the resulting pointwise
frontier estimates and confidence intervals exhibit severe instabilities, the user should call
the function kopt_momt_pick by tuning the parameter wind.coef in the interval (0, 1] until
obtaining more stable curves (default option wind.coef = 0.1). See help(kopt_momt_pick)
for further details.



Journal of Statistical Software 29

Practical guidelines

For our illustration purposes using the large dataset post, we consider the following three
possible scenarios: either ρx is known (typically equal to 2 if the assumption of a jump at the
frontier is reasonable), or ρx is unknown and estimated by the moment estimator ρ̃x, or ρx is
unknown independent of x and estimated by the (trimmed) mean of ρ̃x. First, we select the
points at which we want to evaluate the frontier estimator.

R> x.post <- seq(post$xinput[100], max(post$xinput), length.out = 100)

In the case where the extreme-value index ρx is known and equal to 2, we set

R> rho <- 2

Then, we determine the sequence k = kn(x) in φ̃momt(x).

R> best_kn.1 <- kopt_momt_pick(post$xinput, post$yprod, x.post, rho = rho)

When ρx is unknown and dependent of x, its estimate ρ̃x is computed via the command

R> rho_momt <- rho_momt_pick(post$xinput, post$yprod, x.post,
+ method = "moment")

To determine the number k in the two-stage estimator φ̃momt(x), we use

R> best_kn.2 <- kopt_momt_pick(post$xinput, post$yprod, x.post,
+ rho = rho_momt)

Here, for the post data, we used the default value wind.coef = 0.1 in the function kopt_momt_pick
to avoid numerical instabilities. When employing another large dataset, the user should tune
this coefficient until the resulting pointwise frontier estimates and confidence intervals exhibit
stable curves (see the function kopt_momt_pick for details).
When ρx is unknown but independent of x, which is a more realistic setting in practice,
a robust estimation strategy is obtained by using the (trimmed) mean over the moment
estimates ρ̃x.

R> rho_trimmean <- mean(rho_momt, trim = 0.05)
R> best_kn.3 <- kopt_momt_pick(post$xinput, post$yprod, x.post,
+ rho = rho_trimmean)

Finally, we compute the frontier estimates and confidence intervals as follows:

R> res.momt.1 = dfs_momt(post$xinput, post$yprod, x.post,
+ rho = rho, k = best_kn.1)
R> res.momt.2 = dfs_momt(post$xinput, post$yprod, x.post,
+ rho = rho_momt, k = best_kn.2)
R> res.momt.3 = dfs_momt(post$xinput, post$yprod, x.post,
+ rho = rho_trimmean, k = best_kn.3)
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The following code can be used to construct the resulting moment frontier plots graphed in
Figure 9.

R> my_samp <- post[sample(1:nrow(post), 1000), ]
R> plot(yprod ~ xinput, data = my_samp,
+ xlab = "Quantity of labor",
+ ylab = "Volume of delivered mail")
R> lines(x.post, res.momt.1[,1], lty = 1, col = "cyan")
R> lines(x.post, res.momt.1[,2], lty = 3, col = "magenta")
R> lines(x.post, res.momt.1[,3], lty = 3, col = "magenta")
R> plot(yprod ~ xinput, data = my_samp, xlab = "Quantity of labor",
+ ylab = "Volume of delivered mail")
R> lines(x.post, res.momt.2[,1], lty = 1, col = "cyan")
R> lines(x.post, res.momt.2[,2], lty = 3, col = "magenta")
R> lines(x.post, res.momt.2[,3], lty = 3, col = "magenta")
R> plot(yprod ~ xinput, data = my_samp, xlab = "Quantity of labor",
+ ylab = "Volume of delivered mail")
R> lines(x.post, res.momt.3[,1], lty = 1, col = "cyan")
R> lines(x.post, res.momt.3[,2], lty = 3, col = "magenta")
R> lines(x.post, res.momt.3[,3], lty = 3, col = "magenta")
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Figure 9: Resulting moment estimator φ̃momt and 95% confidence bands of φ for the 4000
European post offices. From left to right, we have the case ρx = 2, plugging ρ̃x and plugging
the mean of ρ̃x.

Pickands frontier estimator
The function dfs_pick computes the Pickands type of estimator and its associated confidence
interval introduced by Daouia et al. (2010) under the monotonicity constraint.

Built on the ideas of Dekkers and de Haan (1989), Daouia et al. (2010) proposed to estimate
the frontier point φ(x) by

φ̂pick(x) =
zx

(n−k+1) − zx
(n−2k+1)

21/ρx − 1
+ zx

(n−k+1)
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from the transformed data {zx
i := yi1I{xi≤x}, i = 1, . . . , n}, where ρx > 0 is the same tail-index

as in dfs_momt.

If ρx is known (typically equal to 2 if the joint density of data is believed to have sudden
jumps at the frontier), then one can use the estimator φ̂pick(x) in conjunction with the data
driven method for selecting the threshold k as described below.

In contrast, if ρx is unknown, one could consider using the following two-step estimator:
First, estimate ρx by the Pickands estimator ρ̂x implemented in the function rho_momt_pick
by using the option method = "pickands", or by the moment estimator ρ̃x by utilizing the
option method = "moment" [a detailed description of the function rho_momt_pick is provided
below in a separate paragraph]. Second, use the estimator φ̂pick(x), as if ρx were known, by
substituting the estimated value ρ̂x or ρ̃x in place of ρx.

The pointwise 95% confidence interval of the frontier function obtained from the asymptotic
normality of φ̂pick(x) is given by

[φ̂pick(x) ± 1.96
√

v(ρx)/(2k)(zx
(n−k+1) − zx

(n−2k+1))]

where v(ρx) = ρ−2
x 2−2/ρx/(2−1/ρx − 1)4.

Finally, to select the threshold k = kn(x), one could use the automatic data-driven method
of Daouia et al. (2010) implemented in the function kopt_momt_pick (option method =
"pickands") as described below in the last paragraph.

Practical guidelines

For our illustration purposes, we used again the large dataset post and considered the fol-
lowing three scenarios: either ρx is known (typically equal to 2 if the joint density has sudden
jumps at the frontier), ρx is unknown and estimated by the Pickands estimator ρ̂x, or ρx is
unknown independent of x and estimated by the (trimmed) mean of ρ̂x. When ρx is known
and equal to 2, we set

R> rho <- 2

Then, we determine the sequence k = kn(x) in φ̂pick(x).

R> best_kn.1 <- kopt_momt_pick(post$xinput, post$yprod, x.post,
+ method = "pickands", rho = rho)

To estimate ρx by ρ̂x, we use the command

R> rho_pick <- rho_momt_pick(post$xinput, post$yprod, x.post,
+ method = "pickands")

Then, we compute the number k = kn(x) in the two-stage estimator φ̂pick(x) as follows:

R> best_kn.2 <- kopt_momt_pick(post$xinput, post$yprod, x.post,
+ method = "pickands", rho = rho_pick)
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When ρx is unknown but independent of x, a robust estimation strategy is by using the
(trimmed) mean over the Pickands estimates ρ̂x.

R> rho_trimmean <- mean(rho_pick, trim = 0.05)
R> best_kn.3 <- kopt_momt_pick(post$xinput, post$yprod, x.post,
+ rho = rho_trimmean, method = "pickands")

Finally, the specifications to calculate the frontier estimates and confidence intervals are given
by

R> res.pick.1 <- dfs_pick(post$xinput, post$yprod, x.post,
+ rho = rho, k = best_kn.1)
R> res.pick.2 <- dfs_pick(post$xinput, post$yprod, x.post,
+ rho = rho_pick, k = best_kn.2)
R> res.pick.3 <- dfs_pick(post$xinput, post$yprod, x.post,
+ rho = rho_trimmean, k = best_kn.3)

The obtained pickands frontiers are graphed in Figure 10. The following code will generate
Figure 10.

R> plot(yprod ~ xinput, data = my_samp, xlab = "Quantity of labor",
+ ylab = "Volume of delivered mail")
R> lines(x.post, res.pick.1[,1], lty = 1, col = "cyan")
R> lines(x.post, res.pick.1[,2], lty = 3, col = "magenta")
R> lines(x.post, res.pick.1[,3], lty = 3, col = "magenta")
R> plot(yprod ~ xinput, data = my_samp, xlab = "Quantity of labor",
+ ylab = "Volume of delivered mail")
R> lines(x.post, res.pick.2[,1], lty = 1, col = "cyan")
R> lines(x.post, res.pick.2[,2], lty = 3, col = "magenta")
R> lines(x.post, res.pick.2[,3], lty = 3, col = "magenta")
R> plot(yprod ~ xinput, data = my_samp, xlab = "Quantity of labor",
+ ylab = "Volume of delivered mail")
R> lines(x.post, res.pick.3[,1], lty = 1, col = "cyan")
R> lines(x.post, res.pick.3[,2], lty = 3, col = "magenta")
R> lines(x.post, res.pick.3[,3], lty = 3, col = "magenta")

Moment and Pickands estimates of the tail-index ρx

The function rho_momt_pick computes the moment and Pickands estimates of the extreme-
value index ρx involved in the frontier estimators φ̃momt(x) [see dfs_momt] and φ̂pick(x) [see
dfs_pick].

For the case where method = "moment", the estimator of ρx defined as

ρ̃x = −
(

M (1)
n + 1 − 1

2
[
1 − (M (1)

n )2/M (2)
n

]−1
)−1

is based on the moments M
(j)
n = (1/k)∑k−1

i=0

(
log zx

(n−i) − log zx
(n−k)

)j
for j = 1, 2, with

zx
(1) ≤ . . . ≤ zx

(n) being the ascending order statistics which correspond to the transformed



Journal of Statistical Software 33

1000 3000

0
40

00
80

00

Quantity of labor

V
ol

um
e 

of
 d

el
iv

er
ed

 m
ai

l

1000 3000
0

40
00

80
00

Quantity of labor
V

ol
um

e 
of

 d
el

iv
er

ed
 m

ai
l

1000 3000

0
40

00
80

00

Quantity of labor

V
ol

um
e 

of
 d

el
iv

er
ed

 m
ai

l

Figure 10: Resulting Pickands estimator φ̂pick and 95% confidence interval of φ for the 4000
European post offices. From left to right, we have the case ρx = 2, plugging ρ̂x, and plugging
the mean of ρ̂x.

sample {zx
i := yi1I{xi≤x}, i = 1, . . . , n}. See the note in help(rho_momt_pick) for further

details.

In the case where method = "pickands", the estimator of ρx is given by

ρ̂x = − log 2/ log{(zx
(n−k+1) − zx

(n−2k+1))/(zx
(n−2k+1) − zx

(n−4k+1))}.

To select the threshold k = kn(x) in ρ̃x and ρ̂x, Daouia et al. (2010) have suggested to use
the following data driven method for each x: They first select a grid of values for kn(x). For
the Pickands estimator ρ̂x, they choose kn(x) = [Nx/4] − k + 1, where k is an integer varying
between 1 and the integer part [Nx/4] of Nx/4, with Nx = ∑n

i=1 1I{xi≤x}. For the moment
estimator ρ̃x, they choose kn(x) = Nx − k, where k is an integer varying between 1 and
Nx − 1. Then, they evaluate the estimator ρ̂x(k) (respectively, ρ̃x(k)) and select the k where
the variation of the results is the smallest. They achieve this by computing the standard
deviation of ρ̂x(k) (respectively, ρ̃x(k)) over a “window” of max([

√
Nx/4], 3) (respectively,

max([
√

Nx − 1], 3)) successive values of k. The value of k where this standard deviation is
minimal defines the value of kn(x).

The user can also appreciably improve the estimation of ρx and φ(x) itself by tuning the
choice of the lower limit (default option lrho = 1) and upper limit (default option urho =
Inf).

Threshold selection for moment and Pickands frontiers

The function kopt_momt_pick is an implementation of an experimental method by Daouia
et al. (2010) for the automated threshold selection (choice of k = kn(x)) for the moment fron-
tier estimator φ̃momt(x) [see dfs_momt] in the case where method = "moment" and for the
Pickands frontier estimator φ̂pick(x) [see dfs_pick] in the case where method = "pickands".
The idea is to select first (for each x) a grid of values for the number kn(x) given by k =
1, . . . , [

√
Nx], where [

√
Nx] stands for the integer part of

√
Nx with Nx = ∑n

i=1 1I{xi≤x}, and
then select the k where the variation of the results is the smallest. To achieve this here, Daouia
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et al. (2010) compute the standard deviations of φ̃momt(x) [option method = "moment"]
or φ̂pick(x) [option method = "pickands"] over a “window” of size max(3, [wind.coef ×√

Nx/2]), where the coefficient wind.coef should be selected in the interval (0, 1] in such
a way to avoid numerical instabilities. The default option wind.coef = 0.1 corresponds to
having a window large enough to cover around 10% of the possible values of k in the selected
range of values for kn(x). The value of k where the standard deviation is minimal defines the
desired number kn(x). See the note in help(kopt_momt_pick) for further details.

Probability-weighted moment frontier estimator

The function dfs_pwm computes the regularized frontier estimator introduced by Daouia et al.
(2012). It is based on the unregularized probability-weighted moment (PWM) estimator

φ̂m(x) = φfdh(x) −
∫ φfdh(x)

0
F̂ m(y|x)dy

where the trimming order m ≥ 1 is an integer such that m = mn → ∞ as n → ∞, and
F̂ (y|x) = ∑n

i=1 1I(xi≤x,yi≤y)/
∑n

i=1 1I(xi≤x). The implemented estimator of φ(x) is then defined
as

φ̃pwm(x) = φ̂m(x) + Γ (1 + 1/ρ̄x)
(
1/m ℓ̂x

)1/ρ̄x

where

ρ̄x = log(a)
{

log
( φ̂m(x) − φ̂am(x)

φ̂am(x) − φ̂a2m(x)
)}−1

, ℓ̂x = 1
m

[
Γ(1 + 1/ρ̄x)

(
1 − a−1/ρ̄x

)
φ̂m(x) − φ̂am(x)

]ρ̄x

,

with a ≥ 2 being a fixed integer and ρ̄x estimates the same tail-index ρx = βx + 2 as in
dfs_momt and dfs_pick. If the true value of ρx is known, we set ρ̄x = ρx in the expressions
above. In contrast, if ρx is unknown, its estimate ρ̄x can be obtained separately in an optimal
way by calling the function rho_pwm described below in the last paragraph. In both cases, we
use the frontier estimator φ̃pwm(x) as if ρ̄x were known by plugging in its value. As pointed
out by Daouia et al. (2012), it is most efficient to conduct tail-index estimation and frontier
estimation separately. Then, knowing the value ρ̄x, it remains to fix the two smoothing
parameters a and m in order to calculate the frontier estimator φ̃pwm(x). A practical choice
of these parameters that Daouia et al. (2012) have employed is the simple rule of thumb
a = 2 [default option in the 5th argument of the function] and m = coefm × N

1/3
x , where

Nx = ∑n
i=1 1I{xi≤x} and the integer coefm is to be tuned by the user in the 4th argument

of the function. Daouia et al. (2012) have suggested in their numerical illustrations to use,
for instance, the value coefm = 1. An automatic data-driven rule for choosing the optimal
tuning parameter coefm is implemented in the function mopt_pwm described below.

Confidence interval

The pointwise 95% confidence interval of φ(x) derived from the asymptotic normality of
φ̃pwm(x) is given by [φ̃pwm(x) ± 1.96 σ̂(m, x)/

√
n] where

σ̂2(m, x) = 2m2

F̂X(x)

∫ φfdh(x)

0

∫ φfdh(x)

0
F̂ m(y|x)F̂ m−1(u|x)(1 − F̂ (u|x))1I(y≤u) dy du,
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with F̂X(x) = (1/n)∑n
i=1 1I(xi≤x). Note that the standard deviation σ(m, x)/

√
n of the bias-

corrected estimator φ̃pwm(x) is adjusted by a bootstrap estimator in the numerical illus-
trations of Daouia et al. (2012), whereas the exact estimate σ̂(m, x)/

√
n is utilized in our

implemented function.

Practical guidelines

By way of example, we used as before the large dataset post and considered the following
three possible scenarios: either ρx is known (typically equal to 2 if the assumption of a jump
at the frontier is valid), or ρx is unknown and estimated by the PWM estimator ρ̄x, or ρx is
unknown independent of x and estimated by the (trimmed) mean of ρ̄x. When ρx = 2,

R> rho <- 2

we get coefm in φ̃pwm(x) and the frontier estimate φ̃pwm(x) itself via the commands

R> best_cm.1 <- mopt_pwm(post$xinput, post$yprod, x.post,
+ a = 2, rho = rho, wind.coef = 0.1)
R> res.pwm.1 <- dfs_pwm(post$xinput, post$yprod, x.post,
+ coefm = best_cm.1, a = 2, rho = rho)

To obtain the estimate ρ̄x and its (trimmed) mean, we use the following specifications

R> rho_pwm <- rho_pwm(post$xinput, post$yprod, x.post, a = 2,
+ lrho = 1, urho = Inf)
R> rho_pwm_trim <- mean(rho_pwm, trim = 0.05)

The corresponding smoothing parameters coefm and frontier estimates are computed as fol-
lows:

R> best_cm.2 <- mopt_pwm(post$xinput, post$yprod, x.post,
+ a = 2, rho = rho_pwm)
R> best_cm.3 <- mopt_pwm(post$xinput, post$yprod, x.post,
+ a = 2, rho = rho_pwm_trim)
R> res.pwm.2 <- dfs_pwm(post$xinput, post$yprod, x.post,
+ coefm = best_cm.2, rho = rho_pwm)
R> res.pwm.3 <- dfs_pwm(post$xinput, post$yprod, x.post,
+ coefm = best_cm.3, rho = rho_pwm_trim)

The following code can be used to construct the resulting PWM frontier plots graphed in
Figure 11.

R> plot(yprod ~ xinput, data = my_samp, xlab = "Quantity of labor",
+ ylab = "Volume of delivered mail")
R> lines(x.post, res.pwm.1[,1], lty = 1, col = "cyan")
R> lines(x.post, res.pwm.1[,2], lty = 3, col = "magenta")
R> lines(x.post, res.pwm.1[,3], lty = 3, col = "magenta")
R> plot(yprod ~ xinput, data = my_samp, xlab = "Quantity of labor",
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+ ylab = "Volume of delivered mail")
R> lines(x.post, res.pwm.2[,1], lty = 1, col = "cyan")
R> lines(x.post, res.pwm.2[,2], lty = 3, col = "magenta")
R> lines(x.post, res.pwm.2[,3], lty = 3, col = "magenta")
R> plot(yprod ~ xinput, data = my_samp, xlab = "Quantity of labor",
+ ylab = "Volume of delivered mail")
R> lines(x.post, res.pwm.3[,1], lty = 1, col = "cyan")
R> lines(x.post, res.pwm.3[,2], lty = 3, col = "magenta")
R> lines(x.post, res.pwm.3[,3], lty = 3, col = "magenta")
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Figure 11: Resulting regularized PWM estimator φ̃pwm and 95% confidence interval of φ for
the 4000 European post offices. From left to right, we have the case ρx = 2, plugging ρ̄x and
plugging the mean of ρ̄x.

Threshold selection for the PWM frontier estimator

The function mopt_pwm implements an automated selection of the parameter coefm involved in
the probability-weighted moment (PWM) estimator φ̃pwm(x) [see dfs_pwm]. It is an adapta-
tion of the experimental method kopt_momt_pick by Daouia et al. (2010). The idea is to select
first (for each x) a grid of values for the parameter coefm given by c = 1, . . . , min(10, [

√
Nx]),

where Nx = ∑n
i=1 1I{xi≤x}, and then select the c where the variation of the results is the

smallest. To achieve this, we compute the standard deviations of φ̃pwm(x) over a “window”
of size wind.coef ×min(10, [

√
Nx]), where the coefficient wind.coef should be selected in the

interval (0, 1] in such a way to avoid numerical instabilities. The default option wind.coef =
0.1 corresponds to having a window large enough to cover around 10% of the possible values
of c in the selected range of values for coefm. The value of c where the standard deviation is
minimal defines the desired coefm.

PWM estimate of the tail-index ρx

The function rho_pwm computes the probability-weighted moment (PWM) estimator ρ̄x uti-
lized in the frontier estimate φ̃pwm(x) [see dfs_pwm]. This estimator depends on the smoothing
parameters a and m. A simple selection rule of thumb that Daouia et al. (2012) have em-
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ployed is a = 2 [default option in the 4th argument of the function] and m = coefm × N
1/3
x ,

where Nx = ∑n
i=1 1I{xi≤x} and the integer coefm is to be tuned by the user. To choose this

parameter in an optimal way for each x, we adapt the automated threshold selection method
of Daouia et al. (2010) as follows: We first evaluate the estimator ρ̄x over a grid of values
of coefm given by c = 1, . . . , 150. Then, we select the c where the variation of the results
is the smallest. This is achieved by computing the standard deviation of the estimates ρ̄x

over a “window” of max([
√

150], 3) successive values of c. The value of c where this standard
deviation is minimal defines the value of coefm.

The user can also appreciably improve the estimation of ρx and φ(x) itself by tuning the
choice of the lower limit (default option lrho = 1) and upper limit (default option urho =
Inf).

4. Numerical illustrations
Comparisons among most of the selected estimation methods described above have been
undertaken by Daouia et al. (2016) and more recently by Noh (2014) via simulation experi-
ments. To encourage others to explore these methods and easily compare the quality of any
new proposal with the competitive existing methods, we provide some guidelines that facili-
tate comparision based on Monte-Carlo simulations in a similar way to the devices of Daouia
et al. (2016) and Noh (2014).

4.1. Comparison criteria

After estimating the true frontier function φ(x) from N independent samples of size n, Daouia
et al. (2016) and Noh (2014) considered the empirical mean integrated squared error (MISE),
the empirical integrated squared bias (IBIAS2) and the empirical integrated variance (IVAR),
which are given by

MISE = 1
N

N∑
j=1

ISE(φ̂(j)) := 1
N

N∑
j=1

[
1
I

I∑
i=0

(
φ̂(j)(zi) − φ(zi)

)2
]

= 1
I

I∑
i=0

(
φ(zi) − ¯̂φ(zi)

)2
+ 1

I

I∑
i=0

 1
N

N∑
j=1

(φ̂(j)(zi) − ¯̂φ(zi))2


≡ IBIAS2 + IVAR,

where {zi, i = 0, . . . , I} is an equispaced grid having width 1/I over [a, b] (the true support
of the input variable), with I = 1000, φ̂(j)(·) is the estimated frontier function from the j-th
data sample and ¯̂φ(zi) = N−1∑N

j=1 φ̂(j)(zi). Although the definition of these comparison
criteria is quite straightforward, some caution should be taken when calculating them. The
reason is that the estimation of φ̂(j)(zi) is possible only when zi lies between the minimum
and maximum of the inputs of the jth sample x

(j)
1 , . . . , x

(j)
n . In our package, when storing

the estimates φ̂(j)(zi), i = 1, . . . , n, we let the value φ̂(j)(zi) assigned to zero for distinction
when the estimation is not possible. The function evaluation automatically computes the
comparison criteria using only nonzero estimates at every grid point zi. The first argument
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of this function is the matrix where the estimation results are stored, the second argument is
the evaluation grid vector, and the third argument is the vector of values of the true frontier
function at the grid points.

4.2. Some Monte Carlo evidence

By way of example, to evaluate finite-sample performance of the empirical LFDH and DEA
frontier estimators in comparison with the polynomial, spline and kernel smoothed estima-
tors, we have undertaken some simulation experiments following Daouia et al. (2016)’s study.
The experiments all employ the model yi = φ(xi) vi, where xi is uniform on [0, 1] and vi,
independent of xi, is Beta(β, β) with values of β = 0.5, 1 and 3 [corresponding, respectively,
to a joint density of the (xi, yi)’s increasing toward infinity, having a jump or decreasing to
zero as it approaches the support boundary]. Tables 3 and 4 report the obtained Monte Carlo
estimates when φ(x) = x1/2 and φ(x) = exp(−5 + 10x)/(1 + exp(−5 + 10x)), respectively.
All the experiments were performed over N = 5000 independent samples of size n = 25, 50,
100 and 200.

The code which generates the results in Tables 3 and 4 is given in the supplementary file.
Note that the computational burden here is demanding, so be forewarned. Note also that
only N = 200 replications were considered in Daouia et al. (2016).
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dea_est cub_spline_est quad_spline_est kern_smooth kern_smooth poly_est
(type="dea") (type="mc") (type="mc") (type="mc") (type="mc") ("BIC")

(all.dea=T) (all.dea=T) (technique="pr") (technique="noh")
β = 0.5 ("cv") ("bic")
n = 25 IBIAS2 0.002655 0.001525 0.001759 0.018617 0.001208 0.011507

IVAR 0.001942 0.001955 0.002045 0.007450 0.001935 0.031622
IMSE 0.004597 0.003480 0.003803 0.026067 0.003143 0.043130

n = 50 IBIAS2 0.000793 0.000412 0.000481 0.009313 0.000347 0.001429
IVAR 0.000615 0.000594 0.000621 0.003511 0.000584 0.007217
IMSE 0.001408 0.001006 0.001102 0.012824 0.000931 0.008646

n = 100 IBIAS2 0.000226 0.000105 0.000127 0.005078 0.000152 0.000350
IVAR 0.000183 0.000168 0.000174 0.001336 0.000168 0.001007
MISE 0.000409 0.000274 0.000300 0.006414 0.000320 0.001358

n = 200 IBIAS2 0.000061 0.000025 0.000032 0.003399 0.000105 0.000198
IVAR 0.000048 0.000044 0.000045 0.000539 0.000049 0.000167
MISE 0.000109 0.000069 0.000077 0.003938 0.000154 0.000365

β = 1 (N=4799)
n = 25 IBIAS2 0.008049 0.005598 0.006092 0.014150 0.005202 0.024311

IVAR 0.002856 0.003188 0.003282 0.006447 0.003160 0.027117
MISE 0.010905 0.008786 0.009374 0.020597 0.008362 0.051428

n = 50 IBIAS2 0.003401 0.002223 0.002447 0.007114 0.002065 0.007184
IVAR 0.001288 0.001390 0.001438 0.003040 0.001400 0.010049
MISE 0.004688 0.003613 0.003885 0.010154 0.003465 0.017233

n = 100 IBIAS2 0.001305 0.000784 0.000878 0.003904 0.000747 0.001928
IVAR 0.000497 0.000538 0.000537 0.001320 0.000539 0.003196
MISE 0.001802 0.001322 0.001415 0.005224 0.001286 0.005124

(N=4999)
n = 200 IBIAS2 0.000525 0.000298 0.000342 0.002540 0.000310 0.000589

IVAR 0.000201 0.000219 0.000212 0.000551 0.000216 0.001054
MISE 0.000727 0.000517 0.000555 0.003091 0.000526 0.001643

β = 3 (N=4773)
n = 25 IBIAS2 0.029439 0.024860 0.025751 0.021526 0.024553 0.050245

IVAR 0.002940 0.003485 0.003555 0.004882 0.003441 0.014190
MISE 0.032379 0.028345 0.029306 0.026407 0.027994 0.064435

n = 50 IBIAS2 0.018980 0.015737 0.016307 0.014489 0.015749 0.030942
IVAR 0.001857 0.002204 0.002258 0.002895 0.002196 0.007812
MISE 0.020837 0.017941 0.018565 0.017384 0.017944 0.038755

n = 100 IBIAS2 0.012697 0.010435 0.010824 0.010368 0.010586 0.019784
IVAR 0.001177 0.001411 0.001447 0.001708 0.001366 0.004460
MISE 0.013874 0.011846 0.012271 0.012076 0.011952 0.024244

(N=4995)
n = 200 IBIAS2 0.008182 0.006616 0.006885 0.007150 0.006820 0.012588

IVAR 0.000735 0.000901 0.000903 0.000976 0.000843 0.002722
MISE 0.008917 0.007518 0.007788 0.008126 0.007673 0.015310

(N=4682)

Table 3: Monte-Carlo comparison when the true frontier is monotone and concave (φ(x) =√
x), with N = 5000 replications. Colors code : 1st rank, 2nd rank. When N < 5000, this

means that solve.QP was unable to find a solution (Hayfield and Racine 2008, suggest then
to adjust constraints and restart).
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dea_est cub_spline_est quad_spline_est kern_smooth kern_smooth poly_est
(type="lfdh") (type="m") (type="m") (type="m") (type="m") ("BIC")

(all.dea=F) (all.dea=F) (technique="pr") (technique="noh")
β = 0.5 ("cv") ("bic")
n = 25 IBIAS2 0.007032 0.001601 0.001580 0.002627 0.002071 0.015539

IVAR 0.005284 0.004923 0.005130 0.006121 0.004485 0.030231
MISE 0.012316 0.006524 0.006710 0.008748 0.006557 0.045770

n = 50 IBIAS2 0.002492 0.000200 0.000294 0.000570 0.000554 0.003047
IVAR 0.002073 0.000988 0.001595 0.002283 0.001264 0.009148
MISE 0.004565 0.001188 0.001889 0.002854 0.001818 0.012195

n = 100 IBIAS2 0.000916 0.000023 0.000122 0.000099 0.000126 0.000489
IVAR 0.000829 0.000180 0.000549 0.000818 0.000431 0.002151
MISE 0.001745 0.000203 0.000672 0.000918 0.000557 0.002640

(N=4997)
n = 200 IBIAS2 0.000347 0.000009 0.000044 0.000014 0.000017 0.000080

IVAR 0.000335 0.000039 0.000171 0.000149 0.000102 0.000409
MISE 0.000682 0.000048 0.000215 0.000163 0.000119 0.000489

β = 1 (N=4769)
n = 25 IBIAS2 0.016099 0.006079 0.006077 0.005694 0.007217 0.025964

IVAR 0.005824 0.006517 0.006624 0.006149 0.005723 0.023157
MISE 0.021923 0.012597 0.012700 0.011843 0.012941 0.049121

n = 50 IBIAS2 0.007761 0.001880 0.001845 0.002213 0.003455 0.009294
IVAR 0.003058 0.002341 0.002930 0.002528 0.002561 0.010293
MISE 0.010819 0.004221 0.004775 0.004741 0.006016 0.019587

n = 100 IBIAS2 0.003700 0.000541 0.000525 0.000869 0.001590 0.002977
IVAR 0.001511 0.000767 0.001274 0.001098 0.001252 0.003713
MISE 0.005211 0.001308 0.001799 0.001967 0.002842 0.006690

(N=4998)
n = 200 IBIAS2 0.001757 0.000151 0.000176 0.000332 0.000708 0.000898

IVAR 0.000745 0.000246 0.000609 0.000400 0.000602 0.001303
MISE 0.002502 0.000397 0.000785 0.000732 0.001310 0.002202

β = 3 (N=4706)
n = 25 IBIAS2 0.038773 0.024179 0.024325 0.021889 0.025572 0.044459

IVAR 0.004420 0.005280 0.005490 0.004586 0.004817 0.011995
MISE 0.043193 0.029459 0.029815 0.026475 0.030389 0.056454

n = 50 IBIAS2 0.026249 0.014575 0.014621 0.015485 0.018127 0.027638
IVAR 0.002996 0.003205 0.003465 0.002635 0.002996 0.006719
MISE 0.029245 0.017779 0.018087 0.018121 0.021123 0.034357

n = 100 IBIAS2 0.018164 0.009415 0.009543 0.011111 0.013310 0.017469
IVAR 0.001981 0.001902 0.002250 0.001677 0.002002 0.003854
MISE 0.020144 0.011317 0.011794 0.012788 0.015312 0.021323

(N=4996)
n = 200 IBIAS2 0.012546 0.006264 0.006477 0.007611 0.009773 0.011220

IVAR 0.001328 0.001196 0.001488 0.001081 0.001351 0.002338
MISE 0.013874 0.007460 0.007966 0.008692 0.011123 0.013558

(N=4631)

Table 4: Monte-Carlo comparison when the true frontier is only monotone (φ(x) =
exp(−5+10×x)

(1+exp(−5+10×x))), with N = 5000 replications. Colors code : 1st rank, 2nd rank. When
N < 5000, this means that solve.QP was unable to find a solution (Hayfield and Racine
2008, suggest then to adjust constraints and restart).
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