
Package: not (via r-universe)
October 24, 2024

Type Package

Title Narrowest-Over-Threshold Change-Point Detection

Version 1.6

Date 2024-09-23

Depends graphics, stats, splines

Description Provides efficient implementation of the
Narrowest-Over-Threshold methodology for detecting an unknown
number of change-points occurring at unknown locations in
one-dimensional data following 'deterministic signal + noise'
model. Currently implemented scenarios are: piecewise-constant
signal, piecewise-constant signal with a heavy-tailed noise,
piecewise-linear signal, piecewise-quadratic signal,
piecewise-constant signal and with piecewise-constant variance
of the noise. For details, see Baranowski, Chen and Fryzlewicz
(2019) <doi:10.1111/rssb.12322>.

License GPL-2

NeedsCompilation yes

Repository CRAN

Author Rafal Baranowski [aut], Yining Chen [aut, cre], Piotr
Fryzlewicz [aut]

Maintainer Yining Chen <y.chen101@lse.ac.uk>

Date/Publication 2024-09-23 13:40:28 UTC

Contents
not-package . 2
aic.penalty . 2
features . 3
logLik.not . 4
not . 5
plot.not . 8
predict.not . 9

1

https://doi.org/10.1111/rssb.12322

2 aic.penalty

random.intervals . 11
residuals.not . 12
sic.penalty . 13

Index 14

not-package Narrowest-Over-Threshold Change-Point Detection

Description

Implements the Narrowest-Over-Threshold approach for general multiple change-point detection in
one-dimensional data following ’deterministic signal + noise’ model. Scenarios that are currently
implemented are: piecewise-constant signal, piecewise-constant signal with a heavy tailed noise,
piecewise-linear signal, piecewise-quadratic signal, piecewise-constant signal and with piecewise-
constant standard deviation of the noise. The main routines of the package are not and features.

References

R. Baranowski, Y. Chen, and P. Fryzlewicz (2019). Narrowest-Over-Threshold Change-Point De-
tection. (http://stats.lse.ac.uk/fryzlewicz/not/not.pdf)

aic.penalty Akaike Information Criterion penalty

Description

The function evaluates the penalty term for Akaike Information Criterion. This routine is typically
not called directly by the user; its name can be passed as an argument to features.

Usage

aic.penalty(n, n.param, ...)

Arguments

n The number of observations.

n.param The number of parameters in the model for which the penalty is evaluated.

... Not in use.

Value

The penalty term 2× n.param.

http://stats.lse.ac.uk/fryzlewicz/not/not.pdf

features 3

References

R. Baranowski, Y. Chen, and P. Fryzlewicz (2019). Narrowest-Over-Threshold Change-Point De-
tection. (http://stats.lse.ac.uk/fryzlewicz/not/not.pdf)

Examples

#*** a simple example how to use the AIC penalty
x <- rnorm(300) + c(rep(1,50),rep(0,250))
w <- not(x)
w.cpt <- features(w, penalty="aic")
w.cpt$cpt[[1]]

features Extract locations of features from a ’not’ object

Description

The function applies user-specified stopping criteria to extract change-points from object gener-
ated by not.

Usage

features(object, ...)

Default S3 method:
features(object, method = c("ic", "threshold"),

penalty = c("sic", "aic", "user"), q.max = 25, penalty.fun, th, ...)

Arguments

object An object of ’not’ class returned by not.

... Further arguments that can be passed to the penalty function.

method A method of choosing the best solution in object$solution.path. If method="ic",
model minimising a chosen information criterion is selected. If method="threshold",
model is selected based on thresholding (see references for more details).

penalty Name of the penalty function to be used if method="ic". If penalty="user",
a user-defined penalty function has to be passed via penalty.fun.

q.max Maximum number of change-points allowed to be detected. Used only for
method="ic".

penalty.fun Used only if penalty="user". A function includes at least the following argu-
ments: sample size n, number of parameters used in a model n.param, and
For examples of such functions, see aic.penalty and sic.penalty.

th Used only if method="threshold". A positive real number.

http://stats.lse.ac.uk/fryzlewicz/not/not.pdf

4 logLik.not

Details

Denote by T1, . . . , TN the elements on the solution path object$solution.path, each represent-
ing a set of change-points. When (method="ic"), the returned set of change-points is the one that
minimises

−2log-likelihood(object, cpt = Tk) + penalty(object$n, n.param, ...),

over all k such that the number of change-points in Tk is smaller than or equal q.max. The log-
likelihood is computed using the logLik routine, while the penalty function is computed with
sic.penalty (penalty="sic"), aic.penalty (penalty="aic") or a user-defined penalty func-
tion (penalty="user").

Value

th Value of the threshold used (if method="threshold") or selected on the solution
path (if method="ic").

cpt Estimated locations of the change-points.

ic Values of the information criterion minimised in order to find an optimal solution
on the path (only if method="ic" was used).

References

R. Baranowski, Y. Chen, and P. Fryzlewicz (2019). Narrowest-Over-Threshold Change-Point De-
tection. (http://stats.lse.ac.uk/fryzlewicz/not/not.pdf)

Examples

**** Piecewisce-constant mean with Gaussian noise.
x <- c(rep(0, 100), rep(1,100)) + rnorm(100)
*** identify potential locations of the change-points
w <- not(x, contrast = "pcwsConstMean")
*** choose change-points using default settings
fo <- features(w)
*** get the change-points
fo$cpt
*** plot the SIC curve
plot(fo$ic)

logLik.not Extract likelihood from a ’not’ object

Description

Calculates the Gaussian log-likelihood for the signal estimated using predict.not with the change-
points at cpt. The type of the signal depends on on the value of contrast that has been passed to
not (see predict.not).

http://stats.lse.ac.uk/fryzlewicz/not/not.pdf

not 5

Usage

S3 method for class 'not'
logLik(object, cpt, ...)

Arguments

object An object of class ’not’, returned by not.

cpt An integer vector with locations of the change-points. If missing, the features
is called internally to extract the change-points from object.

... Further parameters that can be passed to predict.not and features.

Examples

#' # **** Piecewisce-constant mean with Gaussian noise.
x <- c(rep(0, 100), rep(1,100)) + rnorm(100)
*** identify potential locations of the change-points
w <- not(x, contrast = "pcwsConstMean")
*** log-likelihood for the model with the change-point estimated via 'not'
logLik(w)
*** log-likelihood for the model with the change-point at 100
logLik(w, cpt=100)

not Narrowest-Over-Threshold Change-Point Detection

Description

Identifies potential locations of the change-points in the data following ’deterministic signal + noise’
model (see details below) in a number of different scenarios. The object returned by this routine can
be further passed to the features function, which finds the final estimate of the change-points based
on a chosen stopping criterion. It can be also passed to plot, predict and residuals routines.

Usage

not(x, ...)

Default S3 method:
not(x, M = 10000, method = c("not", "max"),
contrast = c("pcwsConstMean", "pcwsConstMeanHT", "pcwsLinContMean",
"pcwsLinMean", "pcwsQuadMean", "pcwsConstMeanVar"),
rand.intervals = TRUE, parallel = FALSE, augmented = FALSE,
intervals, ...)

6 not

Arguments

x A numeric vector with data points.

... Not in use.

M A number of intervals drawn in the procedure.

method Choice of "not" (recommended) and "max". If method="not", the Narrowest-
Over-Threshold intervals are used in the algorithm. If method="max", the inter-
vals corresponding to the largest contrast function are used. For an explanation,
see the references.

contrast A type of the contrast function used in the NOT algorithm. Choice of "pcwsConstMean",
"pcwsConstMeanHT", "pcwsLinContMean", "pcwsLinMean", "pcwsQuadMean",
"pcwsConstMeanVar". For the explanation, see details below.

rand.intervals A logical variable. If rand.intervals=TRUE intervals used in the procedure are
drawn uniformly using the random.intervals routine. If rand.intervals=FALSE,
the intervals need to be passed using the intervals argument.

parallel A logical variable. If TRUE some of computations are run in parallel using
OpenMP framework. Currently this option is not supported on Windows.

augmented A logical variable. if TRUE, the entire data are considered when the NOT seg-
mentation tree is constructed (see the solution path algorithm in the references).

intervals A 2-column matrix with the intervals considered in the algorithm, with start-
and end- points of the intervals in, respectively, the first and the second column.
The intervals are used only if rand.intervals=FALSE.

Details

The data points provided in x are assumed to follow

Yt = ft + σtεt,

for t = 1, . . . , n, where n is the number of observations in x, the signal ft and the standard deviation
σt are non-stochastic with structural breaks at unknown locations in time t. Currently, thefollowing
scenarios for ft and σt are implemented:

• Piecewise-constant signal with a Gaussian noise and constant standard deviation.
Use contrast="pcwsConstMean" here.

• Piecewise-constant mean with a heavy-tailed noise and constant standard deviation.
Use contrast="pcwsConstMeanHT" here.

• Piecewise-linear continuous signal with Gaussian noise and constant standard deviation.
Use contrast="pcwsLinContMean" here.

• Piecewise-linear signal with Gaussian noise and constant standard deviation.
Use contrast="pcwsLinMean" here.

• Piecewise-quadratic signal with Gaussian noise and constant standard deviation.
Use contrast="pcwsQuadMean" here.

• Piecewise-constant signal and piecewise-constant standard deviation of the Gaussian noise.
Use contrast="pcwsConstMeanVar" here.

not 7

Value

An object of class "not", which contains the following fields:

x The input vector.

n The length of x.

contrast A scenario for the change-points.

contrasts A 5-column matrix with the values of the contrast function, where ’s’ and ’e’ de-
note start- end points of the intervals in which change-points candidates ’arg.max’
have been found; ’length’ shows the length of the intervals drawn, column
’max.contrast’ contains corresponding value of the contrast statistic.

solution.path A list with the solution path of the NOT algorithm (see the references) contain-
ing three fields of the same length: cpt - a list with consecutive solutions, i.e.
s the sets of change-point candidates, th - a vector of thresholds corresponding
to the solutions, n.cpt - a vector with the number of change-points for each
solution.

References

R. Baranowski, Y. Chen, and P. Fryzlewicz (2019). Narrowest-Over-Threshold Change-Point De-
tection. (http://stats.lse.ac.uk/fryzlewicz/not/not.pdf)

Examples

**** Piecewisce-constant mean with Gaussian noise.
*** signal
pcws.const.sig <- c(rep(0, 100), rep(1,100))
*** data vector
x <- pcws.const.sig + rnorm(100)
*** identify potential locations of the change-points
w <- not(x, contrast = "pcwsConstMean")
*** some examples of how the w object can be used
plot(w)
plot(residuals(w))
plot(predict(w))
*** this is how to extract the change-points
fo <- features(w)
fo$cpt

**** Piecewisce-constant mean with a heavy-tailed noise.
*** data vector, signal the same as in the previous example, but heavy tails
x <- pcws.const.sig + rt(100, 3)
*** identify potential locations of the change-points,
using a contrast taylored to heavy-tailed data
w <- not(x, contrast = "pcwsConstMeanHT")
plot(w)

**** Piecewisce-constant mean and piecewise-constant variance
*** signal's standard deviation
pcws.const.sd <- c(rep(2, 50), rep(1,150))
*** data vector with pcws-const mean and variance

http://stats.lse.ac.uk/fryzlewicz/not/not.pdf

8 plot.not

x <- pcws.const.sig + pcws.const.sd * rnorm(100)
*** identify potential locations of the change-points in this model
w <- not(x, contrast = "pcwsConstMeanVar")
*** extracting locations of the change-points
fo <- features(w)
fo$cpt

**** Piecewisce-linear coninuous mean
*** signal with a change in slope
pcws.lin.cont.sig <- cumsum(c(rep(-1/50, 100), rep(1/50,100)))
*** data vector
x <- pcws.lin.cont.sig + rnorm(100)
*** identify potential locations of the change-points in the slope coefficient
w <- not(x, contrast = "pcwsLinContMean")
*** ploting the results
plot(w)
*** location(s) of the change-points
fo <- features(w)
fo$cpt

**** Piecewisce-linear mean with jumps
*** signal with a change in slope and jumpe
pcws.lin.sig <- pcws.lin.cont.sig + pcws.const.sig
*** data vector
x <- pcws.lin.sig + rnorm(100)
*** identify potential locations of the change-points in the slope coefficient and the intercept
w <- not(x, contrast = "pcwsLinMean")
*** ploting the results
plot(w)
*** location(s) of the change-points
fo <- features(w)
fo$cpt

**** Piecewisce-quadratic mean with jumps
*** Piecewise-quadratic signal
pcws.quad.sig <- 2*c((1:50)^2 /1000, rep(2, 100), 1:50 / 50)
*** data vector
x <- pcws.quad.sig + rnorm(100)
*** identify potential locations of the change-points in the slope coefficient and the intercept
w <- not(x, contrast = "pcwsQuadMean")
*** ploting the results
plot(w)
*** location(s) of the change-points
fo <- features(w)
fo$cpt

plot.not Plot a ’not’ object

Description

Plots the input vector used to generate ’not’ object x with the signal fitted with predict.not.

predict.not 9

Usage

S3 method for class 'not'
plot(x, ...)

Arguments

x An object of class ’not’, returned by not.

... Further parameters which may be passed to predict.not and features.

See Also

predict.not not features

Examples

**** Piecewisce-constant mean with Gaussian noise.
x <- c(rep(0, 100), rep(1,100)) + rnorm(100)
*** identify potential locations of the change-points
w <- not(x, contrast = "pcwsConstMean")
*** when 'cpt' is omitted, 'features' function is used internally
to choose change-points locations
plot(w)
*** estimate and plot the signal specifying the location of the change-point
plot(w, cpt=100)

predict.not Estimate signal for a ’not’ object.

Description

Estimates signal in object$x with change-points at cpt. The type of the signal depends on on the
value of contrast that has been passed to not (see details below).

Usage

S3 method for class 'not'
predict(object, cpt, ...)

Arguments

object An object of class ’not’, returned by not.

cpt An integer vector with locations of the change-points. If missing, the features
is called internally to extract the change-points from object.

... Further parameters that can be passed to predict.not and features.

10 predict.not

Details

The data points provided in object$x are assumed to follow

Yt = ft + σtεt,

for t = 1, . . . , n, where n is the number of observations in object$x, the signal ft and the standard
deviation σt are non-stochastic with change-points at locations given in cpt and εt is a white-noise.
Denote by τ1, . . . , τq the elements in cpt and set τ0 = 0 and τq+1 = T . Depending on the value
of contrast that has been passed to not to construct object, the returned value is calculated as
follows.

• For contrast="pcwsConstantMean" and contrast="pcwsConstantMeanHT", in each seg-
ment (τj + 1, τj+1), ft for t ∈ (τj + 1, τj+1) is approximated by the mean of Yt calculated
over t ∈ (τj + 1, τj+1).

• For contrast="pcwsLinContMean", ft is approximated by the linear spline fit with knots at
τ1, . . . , τq minimising the l2 distance between the fit and the data.

• For contrast="pcwsLinMean" in each segment (τj + 1, τj+1), the signal ft for t ∈ (τj +
1, τj+1) is approximated by the line αj + βjt, where the regression coefficients are found
using the least squares method.

• For contrast="pcwsQuad", the signal ft for t ∈ (τj + 1, τj+1) is approximated by the curve
αj + βjt+ γjt

2, where the regression coefficients are found using the least squares method.

• For contrast="pcwsConstMeanVar", in each segment (τj +1, τj+1), ft and σt for t ∈ (τj +
1, τj+1) are approximated by, respectively, the mean and the standard deviation of Yt, both
calculated over t ∈ (τj + 1, τj+1).

Value

A vector wit the estimated signal or a two-column matrix with the estimated estimated signal and
standard deviation if contrast="pcwsConstMeanVar" was used to construct object.

See Also

not

Examples

**** Piecewisce-constant mean with Gaussian noise.
x <- c(rep(0, 100), rep(1,100)) + rnorm(100)
*** identify potential locations of the change-points
w <- not(x, contrast = "pcwsConstMean")
*** when 'cpt' is omitted, 'features' function is used internally
to choose change-points locations
signal.est <- predict(w)
*** estimate the signal specifying the location of the change-point
signal.est.known.cpt <- predict(w, cpt=100)
*** pass arguments of the 'features' function through 'predict'.
signal.est.aic <- predict(w, penalty.type="aic")

**** Piecewisce-constant mean and variance with Gaussian noise.

random.intervals 11

x <- c(rep(0, 100), rep(1,100)) + c(rep(2, 100), rep(1,100)) * rnorm(100)
*** identify potential locations of the change-points
w <- not(x, contrast = "pcwsConstMeanVar")
*** here signal is two-dimensional
signal.est <- predict(w)

random.intervals Generate random intervals

Description

The function generates M intervals of the length smaller or equal than max.length, whose endpoints
are are drawn uniformly without replacements from 1,2,..., n. This routine can be used inside not
function and is typically not called directly by the user.

Usage

random.intervals(n, M, min.length = 1, max.length = n, ...)

Arguments

n a number of endpoints to choose from

M a number of intervals to generate

min.length an integer specifying minimum interval length

max.length an integer specifying maximum interval length

... not in use

Value

a M by 2 matrix with start (first column) and end (second column) points of an interval in each row

See Also

not

Examples

#*** draw 100 intervals with the endpoints in 1,...,100
intervals <- random.intervals(50, 100)

12 residuals.not

residuals.not Extract residuals from a ’not’ object

Description

Returns a difference between x in object and the estimated signal with change-points at cpt. Type
of the signal depends on the value of contrast that has been passed to not in order to construct
object (see details of predict.not).

Usage

S3 method for class 'not'
residuals(object, cpt, type = c("raw", "standardised"),
...)

Arguments

object An object of class ’not’, returned by not.

cpt An integer vector with locations of the change-points. If missing, the features
is called internally to extract the change-points from object.

type Choice of "raw" and "standardised".

... Further parameters that can be passed to predict.not and features.

Value

If type="raw", the difference between the data and the estimated signal. If type="standardised",
the difference between the data and the estimated signal, divided by the estimated standard devia-
tion.

Examples

pcws.const.sig <- c(rep(0, 100), rep(1,100))
x <- pcws.const.sig + rnorm(100)
w <- not(x, contrast = "pcwsConstMean")
*** plot residuals obtained via fitting piecewise-constant function with estimated change-points
plot(residuals(w))
*** plot residuals with obtained via fitting piecewise-constant function with true change-point
plot(residuals(w, cpt=100))
*** plot standardised residuals
plot(residuals(w, type="standardised"))

sic.penalty 13

sic.penalty Schwarz Information Criterion penalty

Description

The function evaluates the penalty term for Schwarz Information Criterion. If alpha is greater
than 1, the strengthen SIC proposed proposed in Fryzlewicz (2014) is calculated. This routine is
typically not called directly by the user; its name can be passed as an argument to features.

Usage

sic.penalty(n, n.param, alpha = 1, ...)

Arguments

n The number of observations.

n.param The number of parameters in the model for which the penalty is evaluated.

alpha A scalar greater or equal than one.

... Not in use.

Value

the penalty term n.param× (log(n))alpha.

References

R. Baranowski, Y. Chen, and P. Fryzlewicz (2019). Narrowest-Over-Threshold Change-Point De-
tection. (http://stats.lse.ac.uk/fryzlewicz/not/not.pdf)

P. Fryzlewicz (2014). Wild Binary Segmentation for multiple change-point detection. Annals of
Statistics. (http://stats.lse.ac.uk/fryzlewicz/wbs/wbs.pdf)

Examples

#*** a simple example how to use the AIC penalty
x <- rnorm(300) + c(rep(1,50),rep(0,250))
w <- not(x)
w.cpt <- features(w, penalty="sic")
w.cpt$cpt[[1]]

http://stats.lse.ac.uk/fryzlewicz/not/not.pdf
http://stats.lse.ac.uk/fryzlewicz/wbs/wbs.pdf

Index

aic.penalty, 2, 3, 4

features, 2, 3, 5, 9, 12, 13

logLik, 4
logLik.not, 4

not, 2–5, 5, 9–12
not-package, 2

plot, 5
plot.not, 8
predict, 5
predict.not, 4, 5, 8, 9, 9, 12

random.intervals, 6, 11
residuals, 5
residuals.not, 12

sic.penalty, 3, 4, 13

14

	not-package
	aic.penalty
	features
	logLik.not
	not
	plot.not
	predict.not
	random.intervals
	residuals.not
	sic.penalty
	Index

