Package 'nmslibR'

Title: Non Metric Space (Approximate) Library
Description: A Non-Metric Space Library ('NMSLIB' <https://github.com/nmslib/nmslib>) wrapper, which according to the authors "is an efficient cross-platform similarity search library and a toolkit for evaluation of similarity search methods. The goal of the 'NMSLIB' <https://github.com/nmslib/nmslib> Library is to create an effective and comprehensive toolkit for searching in generic non-metric spaces. Being comprehensive is important, because no single method is likely to be sufficient in all cases. Also note that exact solutions are hardly efficient in high dimensions and/or non-metric spaces. Hence, the main focus is on approximate methods". The wrapper also includes Approximate Kernel k-Nearest-Neighbor functions based on the 'NMSLIB' <https://github.com/nmslib/nmslib> 'Python' Library.
Authors: Lampros Mouselimis [aut, cre] , B. Naidan [cph] (Author of the Non-Metric Space Library (NMSLIB)), L. Boytsov [cph] (Author of the Non-Metric Space Library (NMSLIB)), Yu. Malkov [cph] (Author of the Non-Metric Space Library (NMSLIB)), B. Frederickson [cph] (Author of the Non-Metric Space Library (NMSLIB)), D. Novak [cph] (Author of the Non-Metric Space Library (NMSLIB))
Maintainer: Lampros Mouselimis <[email protected]>
License: Apache License (>= 2.0)
Version: 1.0.7
Built: 2024-12-22 06:51:39 UTC
Source: CRAN

Help Index


Approximate Kernel k nearest neighbors using the nmslib library

Description

Approximate Kernel k nearest neighbors using the nmslib library

Usage

KernelKnn_nmslib(
  data,
  y,
  TEST_data = NULL,
  k = 5,
  h = 1,
  weights_function = NULL,
  Levels = NULL,
  Index_Params = NULL,
  Time_Params = NULL,
  space = "l1",
  space_params = NULL,
  method = "hnsw",
  data_type = "DENSE_VECTOR",
  dtype = "FLOAT",
  index_filepath = NULL,
  print_progress = FALSE,
  num_threads = 1
)

Arguments

data

either a matrix or a scipy sparse matrix

y

a numeric vector specifying the response variable (in classification the labels must be numeric from 1:Inf). The length of y must equal the rows of the data parameter

TEST_data

a test dataset (in case of a matrix the TEST_data should have equal number of columns with the data). It is assumed that the TEST_data is an unlabeled dataset

k

an integer. The number of neighbours to return

h

the bandwidth (applicable if the weights_function is not NULL, defaults to 1.0)

weights_function

there are various ways of specifying the kernel function. See the details section.

Levels

a numeric vector. In case of classification the unique levels of the response variable are necessary

Index_Params

a list of (optional) parameters to use in indexing (when creating the index)

Time_Params

a list of parameters to use in querying. Setting Time_Params to NULL will reset

space

a character string (optional). The metric space to create for this index. Page 31 of the manual (see references) explains all available inputs

space_params

a list of (optional) parameters for configuring the space. See the references manual for more details.

method

a character string specifying the index method to use

data_type

a character string. One of 'DENSE_UINT8_VECTOR', 'DENSE_VECTOR', 'OBJECT_AS_STRING' or 'SPARSE_VECTOR'

dtype

a character string. Either 'FLOAT' or 'INT'

index_filepath

a character string specifying the path to a file, where an existing index is saved

print_progress

a boolean (either TRUE or FALSE). Whether or not to display progress bar

num_threads

an integer. The number of threads to use

Details

There are three possible ways to specify the weights function, 1st option : if the weights_function is NULL then a simple k-nearest-neighbor is performed. 2nd option : the weights_function is one of 'uniform', 'triangular', 'epanechnikov', 'biweight', 'triweight', 'tricube', 'gaussian', 'cosine', 'logistic', 'gaussianSimple', 'silverman', 'inverse', 'exponential'. The 2nd option can be extended by combining kernels from the existing ones (adding or multiplying). For instance, I can multiply the tricube with the gaussian kernel by giving 'tricube_gaussian_MULT' or I can add the previously mentioned kernels by giving 'tricube_gaussian_ADD'. 3rd option : a user defined kernel function

Examples

try({
  if (reticulate::py_available(initialize = FALSE)) {
    if (reticulate::py_module_available("nmslib")) {

      library(nmslibR)

      x = matrix(runif(1000), nrow = 100, ncol = 10)

      y = runif(100)

      out = KernelKnn_nmslib(data = x, y = y, k = 5)
    }
  }
}, silent=TRUE)

Approximate Kernel k nearest neighbors (cross-validated) using the nmslib library

Description

Approximate Kernel k nearest neighbors (cross-validated) using the nmslib library

Usage

KernelKnnCV_nmslib(
  data,
  y,
  k = 5,
  folds = 5,
  h = 1,
  weights_function = NULL,
  Levels = NULL,
  Index_Params = NULL,
  Time_Params = NULL,
  space = "l1",
  space_params = NULL,
  method = "hnsw",
  data_type = "DENSE_VECTOR",
  dtype = "FLOAT",
  index_filepath = NULL,
  print_progress = FALSE,
  num_threads = 1,
  seed_num = 1
)

Arguments

data

a numeric matrix

y

a numeric vector specifying the response variable (in classification the labels must be numeric from 1:Inf). The length of y must equal the rows of the data parameter

k

an integer. The number of neighbours to return

folds

the number of cross validation folds (must be greater than 1)

h

the bandwidth (applicable if the weights_function is not NULL, defaults to 1.0)

weights_function

there are various ways of specifying the kernel function. See the details section.

Levels

a numeric vector. In case of classification the unique levels of the response variable are necessary

Index_Params

a list of (optional) parameters to use in indexing (when creating the index)

Time_Params

a list of parameters to use in querying. Setting Time_Params to NULL will reset

space

a character string (optional). The metric space to create for this index. Page 31 of the manual (see references) explains all available inputs

space_params

a list of (optional) parameters for configuring the space. See the references manual for more details.

method

a character string specifying the index method to use

data_type

a character string. One of 'DENSE_UINT8_VECTOR', 'DENSE_VECTOR', 'OBJECT_AS_STRING' or 'SPARSE_VECTOR'

dtype

a character string. Either 'FLOAT' or 'INT'

index_filepath

a character string specifying the path to a file, where an existing index is saved

print_progress

a boolean (either TRUE or FALSE). Whether or not to display progress bar

num_threads

an integer. The number of threads to use

seed_num

a numeric value specifying the seed of the random number generator

Details

There are three possible ways to specify the weights function, 1st option : if the weights_function is NULL then a simple k-nearest-neighbor is performed. 2nd option : the weights_function is one of 'uniform', 'triangular', 'epanechnikov', 'biweight', 'triweight', 'tricube', 'gaussian', 'cosine', 'logistic', 'gaussianSimple', 'silverman', 'inverse', 'exponential'. The 2nd option can be extended by combining kernels from the existing ones (adding or multiplying). For instance, I can multiply the tricube with the gaussian kernel by giving 'tricube_gaussian_MULT' or I can add the previously mentioned kernels by giving 'tricube_gaussian_ADD'. 3rd option : a user defined kernel function

Examples

## Not run: 

x = matrix(runif(1000), nrow = 100, ncol = 10)

y = runif(100)

out = KernelKnnCV_nmslib(x, y, k = 5, folds = 5)


## End(Not run)

conversion of an R matrix to a scipy sparse matrix

Description

conversion of an R matrix to a scipy sparse matrix

Usage

mat_2scipy_sparse(x, format = "sparse_row_matrix")

Arguments

x

a data matrix

format

a character string. Either "sparse_row_matrix" or "sparse_column_matrix"

Details

This function allows the user to convert an R matrix to a scipy sparse matrix. This is useful because the nmslibR package accepts only python sparse matrices as input.

References

https://docs.scipy.org/doc/scipy/reference/sparse.html

Examples

try({
  if (reticulate::py_available(initialize = FALSE)) {
    if (reticulate::py_module_available("scipy")) {

      library(nmslibR)

      set.seed(1)

      x = matrix(runif(1000), nrow = 100, ncol = 10)

      res = mat_2scipy_sparse(x)

      print(dim(x))

      print(res$shape)
    }
  }
}, silent=TRUE)

Non metric space library

Description

Non metric space library

Non metric space library

Usage

# init <- NMSlib$new(input_data, Index_Params = NULL, Time_Params = NULL,
#                           space='l1', space_params = NULL, method = 'hnsw',
#                           data_type = 'DENSE_VECTOR', dtype = 'FLOAT',
#                           index_filepath = NULL, load_data = FALSE,
#                           print_progress = FALSE)

Details

input_data parameter : In case of numeric data the input_data parameter should be either an R matrix object or a scipy sparse matrix. Additionally, the input_data parameter can be a list including more than one matrices / sparse-matrices having the same number of columns ( this is ideal for instance if the user wants to include both a train and a test dataset in the created index )

the Knn_Query function finds the approximate K nearest neighbours of a vector in the index

the knn_Query_Batch Performs multiple queries on the index, distributing the work over a thread pool

the save_Index function saves the index to disk

If the index_filepath parameter is not NULL then an existing index will be loaded

Incrementally updating an already saved (and loaded) index is not possible (see: https://github.com/nmslib/nmslib/issues/73)

Methods

NMSlib$new(input_data, Index_Params = NULL, Time_Params = NULL, space='l1', space_params = NULL, method = 'hnsw', data_type = 'DENSE_VECTOR', dtype = 'FLOAT', index_filepath = NULL, load_data = FALSE, print_progress = FALSE)
--------------
Knn_Query(query_data_row, k = 5)
--------------
knn_Query_Batch(query_data, k = 5, num_threads = 1)
--------------
save_Index(filename, save_data = FALSE)

Methods

Public methods


Method new()

Usage
NMSlib$new(
  input_data,
  Index_Params = NULL,
  Time_Params = NULL,
  space = "l1",
  space_params = NULL,
  method = "hnsw",
  data_type = "DENSE_VECTOR",
  dtype = "FLOAT",
  index_filepath = NULL,
  load_data = FALSE,
  print_progress = FALSE
)
Arguments
input_data

the input data. See details for more information

Index_Params

a list of (optional) parameters to use in indexing (when creating the index)

Time_Params

a list of parameters to use in querying. Setting Time_Params to NULL will reset

space

a character string (optional). The metric space to create for this index. Page 31 of the manual (see references) explains all available inputs

space_params

a list of (optional) parameters for configuring the space. See the references manual for more details.

method

a character string specifying the index method to use

data_type

a character string. One of 'DENSE_UINT8_VECTOR', 'DENSE_VECTOR', 'OBJECT_AS_STRING' or 'SPARSE_VECTOR'

dtype

a character string. Either 'FLOAT' or 'INT'

index_filepath

a character string specifying the path to a file, where an existing index is saved

load_data

a boolean. If TRUE then besides the index also the saved data will be loaded. This parameter is used when the index_filepath parameter is not NULL (see the web links in the references section for more details). The user might also have to specify the skip_optimized_index parameter of the Index_Params in the "init" method

print_progress

a boolean (either TRUE or FALSE). Whether or not to display progress bar


Method Knn_Query()

Usage
NMSlib$Knn_Query(query_data_row, k = 5, include_query_data_row_index = FALSE)
Arguments
query_data_row

a vector to query for

k

an integer. The number of neighbours to return

include_query_data_row_index

a boolean. If TRUE then the index of the query data row will be returned as well. It currently defaults to FALSE which means the first matched index is excluded from the results (this parameter will be removed in version 1.1.0 and the output behavior of the function will be changed too - see the deprecation warning)


Method knn_Query_Batch()

Usage
NMSlib$knn_Query_Batch(query_data, k = 5, num_threads = 1)
Arguments
query_data

the query_data parameter should be of the same type with the input_data parameter. Queries to query for

k

an integer. The number of neighbours to return

num_threads

an integer. The number of threads to use


Method save_Index()

Usage
NMSlib$save_Index(filename, save_data = FALSE)
Arguments
filename

a character string specifying the path. The filename to save ( in case of the save_Index method ) or the filename to load ( in case of the load_Index method )

save_data

a boolean. If TRUE then besides the index also the data will be saved (see the web links in the references section for more details)


Method clone()

The objects of this class are cloneable with this method.

Usage
NMSlib$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

References

https://github.com/nmslib/nmslib/blob/master/manual/latex/manual.pdf

https://github.com/nmslib/nmslib/blob/master/python_bindings/notebooks/search_vector_dense_optim.ipynb

https://github.com/nmslib/nmslib/blob/master/python_bindings/notebooks/search_vector_dense_nonoptim.ipynb

https://github.com/nmslib/nmslib/issues/356

https://github.com/nmslib/nmslib/blob/master/manual/methods.md

https://github.com/nmslib/nmslib/blob/master/manual/spaces.md

Examples

try({
  if (reticulate::py_available(initialize = FALSE)) {
    if (reticulate::py_module_available("nmslib")) {

      library(nmslibR)

      set.seed(1)
      x = matrix(runif(1000), nrow = 100, ncol = 10)

      init_nms = NMSlib$new(input_data = x)


      # returns a 1-dimensional vector (index, distance)
      #--------------------------------------------------

      init_nms$Knn_Query(query_data_row = x[1, ], k = 5)


      # returns knn's for all data
      #---------------------------

      all_dat = init_nms$knn_Query_Batch(x, k = 5, num_threads = 1)
    }
  }
}, silent=TRUE)

conversion of an R sparse matrix to a scipy sparse matrix

Description

conversion of an R sparse matrix to a scipy sparse matrix

Usage

TO_scipy_sparse(R_sparse_matrix)

Arguments

R_sparse_matrix

an R sparse matrix. Acceptable input objects are either a dgCMatrix or a dgRMatrix.

Details

This function allows the user to convert either an R dgCMatrix or a dgRMatrix to a scipy sparse matrix (scipy.sparse.csc_matrix or scipy.sparse.csr_matrix). This is useful because the nmslibR package accepts besides an R dense matrix also python sparse matrices as input.

The dgCMatrix class is a class of sparse numeric matrices in the compressed, sparse, column-oriented format. The dgRMatrix class is a class of sparse numeric matrices in the compressed, sparse, column-oriented format.

References

https://stat.ethz.ch/R-manual/R-devel/library/Matrix/html/dgCMatrix-class.html, https://stat.ethz.ch/R-manual/R-devel/library/Matrix/html/dgRMatrix-class.html, https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.html#scipy.sparse.csc_matrix

Examples

try({
  if (reticulate::py_available(initialize = FALSE)) {
    if (reticulate::py_module_available("scipy")) {

      if (Sys.info()["sysname"] != 'Darwin') {

        library(nmslibR)


        # 'dgCMatrix' sparse matrix
        #--------------------------

        data = c(1, 0, 2, 0, 0, 3, 4, 5, 6)

        dgcM = Matrix::Matrix(data = data, nrow = 3,

                              ncol = 3, byrow = TRUE,

                              sparse = TRUE)

        print(dim(dgcM))

        res = TO_scipy_sparse(dgcM)

        print(res$shape)


        # 'dgRMatrix' sparse matrix
        #--------------------------

        dgrM = as(dgcM, "RsparseMatrix")

        print(dim(dgrM))

        res_dgr = TO_scipy_sparse(dgrM)

        print(res_dgr$shape)
      }
    }
  }
}, silent=TRUE)