Package 'nlsmsn'

Title: Fitting Nonlinear Models with Scale Mixture of Skew-Normal Distributions
Description: Fit univariate non-linear scale mixture of skew-normal(NL-SMSN) regression, details in Garay, Lachos and Abanto-Valle (2011) <doi:10.1016/j.jkss.2010.08.003> and Lachos, Bandyopadhyay and Garay (2011) <doi:10.1016/j.spl.2011.03.019>.
Authors: Marcos Prates [aut, cre, trl], Victor Lachos [aut], Aldo Garay [aut]
Maintainer: Marcos Prates <[email protected]>
License: GPL (>= 3.0)
Version: 0.0-6
Built: 2024-10-29 06:42:30 UTC
Source: CRAN

Help Index


Oil palm yield

Description

Growth and yield of palm oil

Usage

data(Oil)

Format

A data frame with 19 observations of oil characteristics

Author(s)

Aldo Garay [email protected], Marcos Prates [email protected] and Victor Lachos [email protected]

Source

Aldo M. Garay, Victor H. Lachos, Carlos A. Abanto-Valle (2011). "Nonlinear regression models based on scale mixture of skew-normal distributions". Journal of the Korean Stastical Society, 40, 115-124.

Examples

## Not run: 
##Load the data
data(Oil)

##Define non linear function
nlf<-function(x,betas){
resp<- betas[1]/(1 +betas[2]*exp(-betas[3]*x))
return(resp)
}

##Set the response y and covariate x
y <- Oil$y
x <- Oil$x

##Set initial values
betas <- c(37,4.81,0.78)
sigma2 <- 2.95
shape <- -2
nu <- 3

## Skew.normal regression
analysis.sn <- smsn.nl(y=y, x=x, betas=betas, sigma2=sigma2, 
                       shape = shape, nlf = nlf, criteria = TRUE, 
                       family = "Skew.normal", iter.max = 200)

## Skew.t regression
analysis.st <- smsn.nl(y=y, x=x, betas=betas, sigma2=sigma2, shape = shape, 
                       nu = nu, nlf = nlf, criteria = TRUE, 
                       family = "Skew.t", iter.max = 200)

## End(Not run)

Fit univariate NL-SMSN regression

Description

Return EM algorithm output for NL-SMSN regression for both "Homoscedastic" and "Heteroscedastic" (univaritate case, p=1).

Usage

smsn.nl(y, x = NULL, z = NULL, betas = NULL, sigma2 = NULL, 
shape = NULL, rho = NULL, 
nu = NULL, nlf = NULL, rho.func = 1, 
reg.type = "Homoscedastic", criteria = FALSE, 
family = "Skew.t", error = 1e-05, iter.max = 100)

Arguments

y

the response vector

x

the independent covariates

z

the independent covariates for sigma2. "Heteroscedastic" model ONLY!

betas

regression coefficient(s) vector

sigma2

initial value for the scale parameter

shape

initial value for the skewness parameter

rho

initial value for "Heteroscedastic" coefficient rho. "Heteroscedastic" model ONLY!

nu

the parameter of the scale variable (vector or scalar) of the SMSN family (kurtosis parameter). For the "Skew.cn" must be a vector of length 2 and values in (0,1)

nlf

non linear function for the regression

rho.func

Choose the type of heteroscedasticity for sigma2. If rho.func == 1 ( f(z,rho) = exp(z*rho) ) and rho.func == 2 ( f(z,rho) = z^rho ).

reg.type

the type of possible regression: "Homoscedastic" or "Ho"; "Heteroscedastic" or "He".

criteria

if TRUE, loglik, AIC, BIC will be calculated

family

distribution famility to be used in fitting ("t", "Skew.t", "Skew.cn", "Skew.slash", "Skew.normal", "Normal")

error

the covergence maximum error

iter.max

maximum iterations of the EM algorithm

Value

Estimated values of the location, scale, skewness, regression coefficients and "Heteroscedastic" coefficient (when reg.type = "He").

Author(s)

Aldo Garay [email protected], Marcos Prates [email protected] and Victor Lachos [email protected]

References

Aldo M. Garay, Victor H. Lachos, Carlos A. Abanto-Valle (2011). "Nonlinear regression models based on scale mixture of skew-normal distributions". Journal of the Korean Stastical Society, 40, 115-124.\

Victor H. Lachos, Dipankar Bandyopadhyay and Aldo M. Garay (2011). "Heteroscedastic nonlinear regression models based on scale mixture of skew-normal distributions". Statistics -and Probability Letters, 81, 1208-1217.

Examples

##see examples in \code{\link{Oil}} and \code{\link{Ultrasonic}}

Ultrasonic Calibration

Description

The data is a result of a ultrasonic calibration study perfomed by National Institute of Standard and Technology.

Usage

data(Ultrasonic)

Format

A data frame with 214 observations with y as the ultrasonic measuraments and x the metal distance

Author(s)

Aldo Garay [email protected], Marcos Prates [email protected] and Victor Lachos [email protected]

Source

Victor H. Lachos, Dipankar Bandyopadhyay and Aldo M. Garay (2011). "Heteroscedastic nonlinear regression models based on scale mixture of skew-normal distributions". Statistics -and Probability Letters, 81, 1208-1217.

Examples

## Not run: 
##Load the data
data(Ultrasonic)

##Define non linear function
nlf<-function(x,betas){
resp<- exp(-betas[1]*x)/(betas[2] + betas[3]*x)
return(resp)
}

##Set the response y and covariate x
y <- Ultrasonic$y
x <- Ultrasonic$x

##Set initial values
z <- x
betas <- c(0.1913, 0.0061, 0.0110)
rho <- -0.1
sigma2 <- 3.2726
shape <- 0.1698
nu <- 4

## Skew.normal regression
analysis.sn <- smsn.nl(y = y, x = x, z = z, betas = betas, sigma2 = sigma2, shape = shape, 
                       rho = rho, nlf = nlf, rho.func = 2, reg.type = "Heteroscedastic", 
                       criteria = TRUE, family = "Skew.normal", iter.max = 200)

## Skew.t regression
analysis.st <- smsn.nl(y = y, x = x, z = z, betas = betas, sigma2 = sigma2, shape = shape, nu = nu, 
                       rho = rho, nlf = nlf, rho.func = 1, reg.type = "He", 
                       criteria = TRUE, family = "Skew.t", iter.max = 200)

## End(Not run)