
Package: nilde (via r-universe)
August 24, 2024

Encoding UTF-8
Version 1.1-7
Author Natalya Pya Arnqvist[aut, cre], Vassilly Voinov [aut], Rashid

Makarov [aut], Yevgeniy Voinov [aut]
Maintainer Natalya Pya Arnqvist <nat.pya@gmail.com>
Title Nonnegative Integer Solutions of Linear Diophantine Equations

with Applications
Date 2022-08-16
Description Routines for enumerating all existing nonnegative integer

solutions of a linear Diophantine equation. The package
provides routines for solving 0-1, bounded and unbounded
knapsack problems; 0-1, bounded and unbounded subset sum
problems; additive partitioning of natural numbers; and
one-dimensional bin-packing problem.

Depends R (>= 2.15.0)
Imports methods, stats
Suggests parallel, lpSolve, TSP
License GPL (>= 2)
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2022-08-16 10:10:02 UTC

Contents
nilde-package . 2
bin.packing . 2
get.knapsack . 5
get.partitions . 6
get.subsetsum . 8
nlde . 9
print.partitions . 11
tsp_solver . 12

1

2 bin.packing

Index 16

nilde-package Nonnegative Integer Solutions of Linear Diophantine Equations with
Applications

Description

nilde provides functions for enumerating all existing nonnegative integer solutions of a linear Dio-
phantine equation. The package also includes functions for solving 0-1, bounded and unbounded
knapsack problems; 0-1, bounded and unbounded subset sum problems; and a problem of additive
partitioning of natural numbers. The algorithm is based on a generating function of Hardy and
Littlewood used by Voinov and Nikulin (1997).

Author(s)

Natalya Pya Arnqvist[aut, cre], Vassilly Voinov [aut], Rashid Makarov [aut], Yevgeniy Voinov [aut]

Maintainer: Natalya Pya Arnqvist <nat.pya@gmail.com>

References

Voinov, V. and Nikulin, M. (1995) Generating functions, problems of additive number theory, and
some statistical applications. Revue Roumaine de Mathématiques Pures et Appliquées, 40(2), 107-
147

Voinov, V. and Nikulin, M. (1997) On a subset sum algorithm and its probabilistic and other appli-
cations. In: Advances in combinatorial methods and applications to probability and statistics, Ed.
N. Balakrishnan, Birkhäuser, Boston, 153-163

Voinov, V. and Pya, N. (2006) A Remark on the Non-Uniqueness of a Non-Negative Integer Solution
of a System of Linear Diophantine Equations with Applications to Integer Programming, Genetics,
Reliability. Central Asian Journal of Management, Economics and Social Research (ISSN 1815-
3356) 5(1-2), 42-47.

Voinov, V. and Pya, N. (2017) R-software for additive partitioning of positive integers. Mathemati-
cal Journal (ISSN 1682-0525), 17(1), 69-76

bin.packing Enumeration of all existing solutions for one-dimensional bin-packing
problem

bin.packing 3

Description

The algorithm used for this function is a permutational modification of First Find (FF) algorithm de-
scribed in Martello and Toth (1990). However, there are significant differences. First, the algorithm
suggested by Martello and Toth does not set an objective to find all possible optimal solutions while
algorithm suggested here finds them all. Apparently, these changes result in a significant increase
of required computing time because we need to analyse and process all possible item permutations.
Noteworthy, the time of the optimized algorithm is still polynomial. Second, Martello and Toth
used an iterative embodiment of the algorithm while a recursive function is used here in order to
reduce computing time by advantageous employment of "lazy evaluation" feature of R program and
in order to optimize the code of the script.

According to its name, our algorithm is build around "generation of a bin". The objective is achieved
by finding the next set of items that fit into existing bin (FF choice). The combination of added
items is selected from the solutions provided by nilde function. This method allows to optimize
computing time since we process more than one item at a time when we call the function. Further
optimization is achieved by canceling any recursive calls when the addition of a new bin results in
the number of bins exceeding the currently found local optimum (minimal number of bins achieved
so far).

The algorithm segregates two types of calls from the parent function. Namely, scenarios when the
current bin is complete and incomplete are treated separately. If the remaining unused capacity of
the bin is zero, i.e. the bin is complete, then we check if creation of a new bin pushes the number of
bins above the current optimum. If the number is still optimal, then we start a new bin and generate
the list of item clusters that can fit and move on.

If the remaining unused capacity if not zero (bin is incomplete), then, first, we try to complete the
existing bin by adding items that can fit and, then, if it is not possible, we close existing bin (even if
its unused capacity is more than zero) and start processing item clusters that would not fit the closed
bin anyway. By doing so, solutions with smaller number of bins will be generated earlier. Thus, we
will be able to find globally optimal number of bins a.s.a.p.

Obviously, the algorithm stops recursive calls only in two cases: either we have distributed all
the items or we exceeded the optimal number of bins by adding next new bin. In both cases, we
proceed with processing the next possible combination of items, i.e. process the next leaf on our
decision-making tree.

As for robustness checks, we have tested several versions of our recursive algorithm. For example,
Martello and Toth demonstrate that on sample of any complexity First Find Decreasing (FFD)
algorithm leads to a significant decrease in computing time as compared to FF. Therefore, we tested
FFD modification of the algorithm. However, in our case, since we are looking for all optimal
solutions, implementation of FFD algorithm has yielded no results. Furthermore, we experimented
with the format and list of variables transferred recursively. Specifically, a version of the algorithm
that transfers only logical vector of scenarios to be processed resulted in increase of computing
time.

The function demonstrates the best computing time for all the sampled scenarios of item weights
and bin capacity. However, there are some limitations to be addressed. For example, if the initial
set includes multiple items with the same weight but different IDs, then the output of GenVagonE
will need to be filtered from seemingly different solutions. Yet, the filtering is not computationally
demanding and definitely polynomial in terms of time.

Note: majority of input variables are pre-computed in advance, separately, see example.

4 bin.packing

Usage

bin.packing(input.a, input.n, bin.globals)

Arguments

input.a a vector of items weights.
input.n capacity of a bin.
bin.globals an environment for global variables.

Value

min.bins minimum number of bins required.
solution solutions of the bin-packing problem. Each number is a position of an item in

the input string (Input string specifies item weights. Items are numbered 1, 2, 3,
etc.) Items included into one bin are separated by commas. Bins are separated
by space character. Different solutions are enclosed by double quotes.

bin.ineff bin "inefficiency", i.e. unused space of each bin respectively, for every solution.
total.ineff total "inefficiency", i.e. unused space of every solution (sum of bin "inefficien-

cies" per solution).

Author(s)

Rashid Makarov

References

Martello, S. and Toth, P. (1990) Knapsack Problems: Algorithms and Computer Implementations,
Wiley, Chichester, 1990.

Voinov, V., Makarov, R., Voinov, Y. (2019) An exact polynomial in time solution of the one-
dimensional bin-packing problem. In: Christos H Skiadas (ed.) Proceedings of the ASMDA 2019,
published by ISAST (Int. Society for the Advancement of Science and Technology), December
2019, pp. 787-798.

See Also

nilde-package, get.partitions, get.subsetsum, nlde

Examples

library(nilde)
input.a <- c(70, 60, 50, 40, 30, 20, 10) # weights of items
input.n <- 100 # capacity of a bin
bin.globals <- new.env() # a new environment for global variables
bin.globals$OptVag <- length(input.a) # initial min # of bins
bin.globals$TrainList <- vector("list",length(input.a)) # output with solutions
g <- bin.packing(input.a, input.n,bin.globals)
g$min.bins # minimum number of bins
g$solution # solutions

get.knapsack 5

get.knapsack Enumeration of all existing nonnegative integer solutions for un-
bounded, bounded and 0-1 knapsack and subset sum problems

Description

This function solves the unbounded, bounded and 0-1 knapsack problems.

The unbounded knapsack problem can be written as follows.

maximize c1s1 + c2s2 + ...+ clsl

subject to a1s1 + a2s2 + ...+ alsl <= n,

si >= 0, integers.

The bounded knapsack problem has additional constraints, 0 <= si <= bi, i = 1, ..., l, bi <=
[n/ai]. The 0-1 knapsack problem arises when si = 0 or 1, i = 1, ..., l.

The algorithm is based on a generating function of Hardy and Littlewood used by Voinov and
Nikulin (1997). Subset sum problems are particular cases of knapsack problems when vectors of
weights, (a1, ..., al), and objectives, (c1, ..., cl), are equal.

Usage

get.knapsack(objective,a,n,problem="uknap",bounds=NULL)

Arguments

objective A vector of coefficients (values of each item in the knapsack) of the objective
function to be maximized when solving knapsack problem.

a An l-vector of weights of each item in a knapsack, with l>= 2.

n a maximal possible capacity of the knapsack.

problem one of the following names of the problems to be solved: "uknap" (default) for
an unbounded knapsack problem, "knap01" for a 0-1 knapsack problem, and
"bknap" for a bounded knapsack problem.

bounds An l-vector of positive integers, bounds of si, i.e. 0 <= si <= bi.

Value

p.n total number of solutions obtained.

solutions a matrix with each column representing a solution of n.

Author(s)

Vassilly Voinov, Natalya Pya Arnqvist, Yevgeniy Voinov

6 get.partitions

References

Voinov, V. and Nikulin, M. (1997) On a subset sum algorithm and its probabilistic and other appli-
cations. In: Advances in combinatorial methods and applications to probability and statistics, Ed.
N. Balakrishnan, Birkhäuser, Boston, 153-163.

Hardy, G.H. and Littlewood, J.E. (1966) Collected Papers of G.H. Hardy, Including Joint Papers
with J.E. Littlewood and Others. Clarendon Press, Oxford.

See Also

nilde-package, get.partitions, get.subsetsum, nlde

Examples

some examples...
b1 <- get.knapsack(objective=c(200:206),a=c(100:106),n=999,problem="uknap")
b1

b2 <- get.knapsack(objective=c(41,34,21,20,8,7,7,4,3,3),a=c(41,34,21,20,8,7,7,4,3,3),
n=50, problem="bknap", bounds=rep(2,10))

b2
colSums(b2$solutions*c(41,34,21,20,8,7,7,4,3,3))

b3 <- get.knapsack(objective=c(4,3,3),a=c(3,2,2),n=4,problem="bknap",bounds=c(2,2,2))
b3
get maximum value of the objective function...
colSums(b3$solutions*c(4,3,3))
checking constraint...
colSums(b3$solutions*c(3,2,2))

b4 <- get.knapsack(objective=c(4,3,3),a=c(3,2,2),n=4,problem="knap01")
b4
get maximum value of the objective function...
colSums(b4$solutions*c(4,3,3))
checking constraint...
colSums(b4$solutions*c(3,2,2))

Not run:
b5 <- get.knapsack(a=c(100:106),n=2999,objective=c(200:206),problem="uknap")
b5$p.n ## total number of solutions
options(max.print=5E5)
print(b5)

End(Not run)

get.partitions Additive partitioning of natural numbers

get.partitions 7

Description

This function solves the problem of additive partitioning of positive integers. The approach for
additive partitioning is based on a generating function discussed in details in Voinov and Nikulin
(1995). The function enumerates all partitions of a positive integer n on at most (or exactly) M parts,
M <= n.

Usage

get.partitions(n, M, at.most=TRUE)

Arguments

n A positive integer to be partitioned.

M A positive integer, the number of parts of n, M <= n.

at.most If TRUE then partitioning of n into at most M parts, if FALSE then partitioning on
exactly M parts.

Value

p.n total number of partitions obtained.

partitions a matrix with each column presenting partitions of n.

Author(s)

Vassilly Voinov, Natalya Pya Arnqvist, Yevgeniy Voinov

References

Voinov, V. and Nikulin, M. (1995) Generating functions, problems of additive number theory, and
some statistical applications. Revue Roumaine de Mathématiques Pures et Appliquées, 40(2), 107-
147

Voinov, V.G. and Pya, N.E. (2017) R-software for additive partitioning of positive integers. Mathe-
matical Journal (ISSN 1682-0525) 17(1), 69-76.

See Also

nilde-package, get.knapsack, get.subsetsum, nlde

Examples

getting all partitions of n = 8 on at most 6 parts...
get.partitions(8,6,at.most=TRUE)

getting all partitions of n = 8 on exactly 6 parts...
b <- get.partitions(8,6,at.most=FALSE)
b
colSums(b$partitions)

8 get.subsetsum

get.subsetsum Enumeration of all existing 0-1 and bounded solutions of a subset sum
problem

Description

By default this function solves the following 0-1 subset sum problem. Given the set of positive
integers (a_1, a_2, ..., a_l) and a positive integer n, find all non-empty subsets that sum to n,
so that each of the integers a_i either appears in the subset or it does not, and the total number of
summands should not exceed M, M <= n.

The bounded subset sum problem has restrictions on the number of times (bounds) a_i can turn up
in the subset.

The algorithm is based on a generating function of Hardy and Littlewood used by Voinov and
Nikulin (1997).

Usage

get.subsetsum(a,n,M=NULL,problem="subsetsum01",bounds=NULL)

Arguments

a An l-vector of positive integers with l>= 2.

n A positive integer.

M A positive integer, the maximum number of summands, M <= n

problem one of the two problems to be solved: "subsetsum01" (default) for a 0-1 subset
sum problem, or "bsubsetsum" a bounded subset sum problem.

bounds An l-vector of positive integers, bounds for si, i.e. 0 <= si <= bi

Value

p.n total number of solutions obtained.

solutions a matrix with each column presenting a solution for n.

Author(s)

Vassilly Voinov, Natalya Pya Arnqvist, Yevgeniy Voinov

References

Voinov, V. and Nikulin, M. (1997) On a subset sum algorithm and its probabilistic and other appli-
cations. In: Advances in combinatorial methods and applications to probability and statistics, Ed.
N. Balakrishnan, Birkhäuser, Boston, 153-163.

Hardy, G.H. and Littlewood, J.E. (1966) Collected Papers of G.H. Hardy, Including Joint Papers
with J.E. Littlewood and Others. Clarendon Press, Oxford.

nlde 9

See Also

nilde-package, get.partitions, get.knapsack, nlde

Examples

some examples...
b1 <- get.subsetsum(a=c(41,34,21,20,8,7,7,4,3,3),M=10,n=50,problem="subsetsum01")
b1
colSums(b1$solutions*c(41,34,21,20,8,7,7,4,3,3))

b2 <- get.subsetsum(a=c(111:120),M=10,n=485,problem="subsetsum01") ## no solutions
b2

b3 <- get.subsetsum(a=c(30,29,32,31,33),M=5,n=91,problem="subsetsum01")
b3
colSums(b3$solutions*c(30,29,32,31,33))
get.subsetsum(a=c(30,29,32,31,33),M=5,n=91,problem="bsubsetsum",bounds=c(1,1,1,1,1))

b4 <- get.subsetsum(a=c(30,29,32,31,33),M=5,n=91,problem="bsubsetsum",
bounds=c(1,2,1,3,4))

b4
colSums(b4$solutions*c(30,29,32,31,33))

nlde Enumeration of all existing nonnegative integer solutions of a linear
Diophantine equation

Description

This function enumerates nonnegative integer solutions of a linear Diophantine equation (NLDE):

a1s1 + a2s2 + ...+ alsl = n,

where a1 <= a2 <= ... <= al, ai > 0, n > 0, si >= 0, i = 1, 2, ..., l, and all variables involved
are integers.

The algorithm is based on a generating function of Hardy and Littlewood used by Voinov and
Nikulin (1997).

Usage

nlde(a, n, M=NULL, at.most=TRUE, option=0)

Arguments

a An l-vector of positive integers (coefficients of the left-hand-side of NLDE)
with l>= 2.

n A positive integer which is to be partitioned.

10 nlde

M A positive integer, the number of parts of n, M <= n.

at.most If TRUE partitioning of n into at most M parts, if FALSE partitioning on exactly M
parts.

option When set to 1 (or any positive number) finds only 0-1 solutions of the linear
Diophantine equation. When set to 2 (or any positive number > 1) finds 0-1
solutions of the linear Diophantine inequality.

Value

p.n total number of partitions obtained.

solutions a matrix with each column forming a partition of n.

Author(s)

Vassilly Voinov, Natalya Pya Arnqvist, Yevgeniy Voinov

References

Voinov, V. and Nikulin, M. (1997) On a subset sum algorithm and its probabilistic and other appli-
cations. In: Advances in combinatorial methods and applications to probability and statistics, Ed.
N. Balakrishnan, Birkhäuser, Boston, 153-163.

Hardy, G.H. and Littlewood, J.E. (1966) Collected Papers of G.H. Hardy, Including Joint Papers
with J.E. Littlewood and Others. Clarendon Press, Oxford.

See Also

nilde-package, get.partitions, get.subsetsum, get.knapsack

Examples

some examples...
example 1...
nlde(a=c(3,2,5,16),n=18,at.most=TRUE)
b1 <- nlde(a=c(3,2,5,16),n=18,M=6,at.most=FALSE)
b1
checking M, the number of parts that n=18 has been partitioned into...
colSums(b1$solutions)
checking the value of n...
colSums(b1$solutions*c(3,2,5,16))

example 2: solving 0-1 nlde ...
b2 <- nlde(a=c(3,2,5,16),n=18,M=6,option=1)
b2
colSums(b2$solutions*c(3,2,5,16))

example 3...
b3 <- nlde(c(15,21),261)
b3
checking M, the number of parts that n has been partitioned into...
colSums(b3$solutions)

print.partitions 11

checking the value of n...
colSums(b3$solutions*c(15,21))

example 4...
nlde(c(5,6),19) ## no solutions

example 5: solving 0-1 inequality...
b4 <- nlde(a=c(70,60,50,33,33,33,11,7,3),n=100,at.most=TRUE,option=2)

print.partitions Print partitions object.

Description

The default print method for a partitions, nlde objects.

Usage

S3 method for class 'partitions'
print(x, ...)
S3 method for class 'nlde'
print(x, ...)
S3 method for class 'knapsack'
print(x, ...)
S3 method for class 'subsetsum'
print(x, ...)
S3 method for class 'tsp_solver'
print(x, ...)

Arguments

x, ... objects of class partitions, nlde, knapsack, subsetsum as produced by get.partitions(),
nlde(), get.knapsack(), get.subsetsum(), tsp_solver() correspondingly.

Details

Prints the number of partitions/solutions obtained and all resulted partitions/solutions themselves.

Author(s)

Natalya Pya Arnqvist <nat.pya@gmail.com>

12 tsp_solver

tsp_solver Travelling salesperson problem solver

Description

Interface to travelling salesperson problem solver.

Consider an integer linear programming (ILP) formulation of DFJ (Dantzig et al, 1954) used in this
research. Let G = (V,A) be a graph with a set V of n vertices and A be a set of arcs or edges. Let
C = (cij) be a distance (or cost) matrix associated with A. Elements of the distance matrix C, cij ,
are positive integers, i, j ∈ V, i ̸= j. The TSP focuses on finding a minimum distance circuit (a tour
or Hamiltonian circuit) that passes through each vertex once and only once. The DFJ formulation
is

minimize L =
∑
j ̸=i

cijδij (1)

subject to
n∑

j=1

δij = 1, i = 1, ..., n (2)

n∑
i=1

δij = 1, j = 1, ..., n (3)∑
i,j∈S

δij ≤ |S| − 1, S ⊂ V, 2 ≤ |S| ≤ n− 2 (4)

δij ∈ 0, 1, i, j = 1, ..., n, i ̸= j (5)

Constraints (2) and (3) are known as degree constraints indicating that every vertex should be en-
tered and left exactly once correspondingly. Constraints (4) are subtour elimination constraints that
prevent from forming subtours (several unconnected tours on subsets of less than n vertices), with
|S| denoting the number of vertices in S.

In the DFJ formulation there are n(n − 1) unknown binary variables, 2n degree constraints and
2n − 2n − 2 subtour elimination constraints. Since the number of subtour elimination constraints
increases exponentially, solving this problem directly using an integer linear programming code
is in general intractable. However, relaxed versions of the integer linear programming problem
where some constraints are initially removed, and later restored via an iterative process, have been
proposed and extensively used.

Here it is proposed to combine heuristics (to get an initial feasible solution) and a linear Diophantine
equation (nilde) relaxation to develop a new exact algorithm that constructs all existing optimal
solutions for the TSP in an efficient way.

Below is a brief summary of the proposed algorithm.

Step 1. (Initialization) Solve a corresponding assignment problem to obtain an initial lower bound
on the value of the optimal TSP solution. Apply heuristics to obtain an initial upper bound.

Step 2. (Subproblem solution) Given the initial lower bound construct all 0-1 solutions to a linear
Diophantine equation introduced by Voinov and Nikulin (1997).

Step 3. (Degree constraints check) Remove solutions that do not satisfy the degree constraints.

Step 4. (Subtour elimination) Remove solutions that contain subtours by applying a new simple
subtour elimination routine. If there is a solution(s) that contains no subtours, it forms the optimal

tsp_solver 13

solution(s): stop. Otherwise, increase the initial lower bound by one and go to step 2. Repeat until
the upper bound is reached.

The integer programming formulation of the assignment problem solved in Step 1 of the above
algorithm is obtained by relaxing constraints (4), i.e. given by (1) subject to constraints (2), (3) and
(5).

For implementing Step 2, solutions of the corresponding subset sum problem should be enumerated.
A subset sum problem formulation can be expressed as

a1s1 + a2s2 + . . .+ apsp = L, (6)

where si ∈ {0, 1}, i = 1, . . . , p, p = n(n − 1) is the number of unknown binary variables of the
original TSP. ai are positive integers matching the costs cij of the cost matrix C.

Voinon and Nikulin (1997) introduced an algorithm that enumerates all nonnegative integer solu-
tions of equation (6) by using the corresponding generating function and the binomial theorem. All
0− 1 solutions to the equation in (6) can be found by means of the following generating function:

ΨL(z) = (za1 + za2 + . . .+ zap)
L
=

k=L·maxi(ai)∑
k=L·mini(ai)

Rk(L, p),

where

Rk(L, p) =

min
(
1,
[

L
ap

])∑
sp=0

min
(
1,
[

L−apsp
ap−1

])∑
sp−1=0

. . .

min
(
1,
[

L−apsp−...−a3s3
a2

])∑
s2=0

L!

(L− s1 − . . .− sp)!s1! . . . sp!
,

(7)

s1 =
L−apsp−...−a2s2

a1
is necessarily either 0 or 1. Otherwise, the equation in (6) does not have any

solutions. The notation [x] denotes the greatest integer part of x. The right-hand side multiplier in
(7) presents the total number of compositions that satisfy the above condition. If the value of that
multiplier is set to 1, (7) gives the number of 0− 1 solutions for the equation (6). The solutions, if
exist, are written explicitly as {

as11 , as22 , . . . , aspp
}
, (8)

where {s2, . . . , sp} are sets of summation indices in (7), with s1 as specified above. The notation
(8) means that in a particular partition (a solution of the equation (6)) there are s1 terms equal to a1,
s2 terms of a2 and so on.

Usage

tsp_solver(data, labels=NULL,cluster=0,upper_bound=NULL,
lower_bound=NULL,method="cheapest_insertion",no_go=NULL)

Arguments

data An n x n matrix of costs/distances of the TSP (with 0’s or NAs on the main diag-
onal). Costs/distances of the unconnected edges must be supplied as NA.

labels An n vector of optional city labels. If not given, labels are taken from data.

14 tsp_solver

cluster Degree constraints can be checked in parallel using parLapply from the parallel
package. cluster is either 0 (default) for no parallel computing to be used; or
1 for one less than the number of cores; or user-supplied cluster on which to do
checking. a cluster here can be some cores of a single machine.

upper_bound A positive integer, an upper bound of the tour length (cost function), if not sup-
plied (default: NULL) heuristic solution is obtained using
TSP::solve_TSP(data,method).

lower_bound A positive integer, a lower possible value of the tour lenght (cost function); if
not supplied (default: NULL), obtained by solving a corresponding assignment
problem using lpSolve::lp.assign(data)

method Heuristic method used in TSP::solve_TSP()

(default: cheapest_insertion)

no_go A suitably large value used in the distance/cost matrix to make related edges
infeasible, if NULL (default) set to max(data)*10^5. It can be set to Inf for
TSP(). However, lpSolve() is very sensitive to too large values and can result
in high values of the lower_bound.

Value

tour optimal tour(s).

tour_length an optimal (minimal) length of the obtained tour(s).
coming_solutions

a list of coming feasible tours obtained within [lower_bound, upper_bound].
coming_tour_lengths

a vector of feasible tour length gone within [lower_bound, upper_bound].

iter a number of feasible tour length gone through

upper_bound an upper bound of the tour length

lower_bound a lower bound value of the tour lenght

Author(s)

Vassilly Voinov, Natalya Pya Arnqvist

References

Voinov, V. and Nikulin, M. (1997) On a subset sum algorithm and its probabilistic and other appli-
cations. In: Advances in combinatorial methods and applications to probability and statistics, Ed.
N. Balakrishnan, Birkhäuser, Boston, 153-163.

Dantzig, G., Fulkerson, R. and Johnson, S. (1954) Solution of a large-scale traveling-salesman
problem. Journal of the operations research society of America , 2(4):393-410.

See Also

nilde-package, get.partitions, get.knapsack, get.subsetsum

tsp_solver 15

Examples

Not run:
some examples...
library(nilde)
set.seed(3)
d <- matrix(sample(1:100,25,replace=TRUE),5,5)
diag(d) <-NA # although no need to specify as the code assumes NAs by default
g <- tsp_solver(d)
g

End(Not run)

Index

∗ optimize
bin.packing, 2
get.knapsack, 5
get.partitions, 6
get.subsetsum, 8
nlde, 9
tsp_solver, 12

∗ package
nilde-package, 2

bin.packing, 2

get.knapsack, 5, 7, 9, 10, 14
get.partitions, 4, 6, 6, 9, 10, 14
get.subsetsum, 4, 6, 7, 8, 10, 14

nilde (nilde-package), 2
nilde-package, 2
nlde, 4, 6, 7, 9, 9

print.knapsack (print.partitions), 11
print.nlde (print.partitions), 11
print.partitions, 11
print.subsetsum (print.partitions), 11
print.tsp_solver (print.partitions), 11

tsp_solver, 12

16

	nilde-package
	bin.packing
	get.knapsack
	get.partitions
	get.subsetsum
	nlde
	print.partitions
	tsp_solver
	Index

