Title: | Model-Based Clustering of Network Data |
---|---|
Description: | Clustering unilayer and multilayer network data by means of finite mixtures is the main utility of 'netClust'. |
Authors: | Shuchismita Sarkar [aut, cre], Volodymyr Melnykov [aut] |
Maintainer: | Shuchismita Sarkar <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.0.1 |
Built: | 2024-12-23 06:28:56 UTC |
Source: | CRAN |
Clustering unilayer and multilayer network data by means of finite mixtures is the main utility of 'netClust'.
The DESCRIPTION file:
Package: | netClust |
Type: | Package |
Title: | Model-Based Clustering of Network Data |
Version: | 1.0.1 |
Date: | 2020-06-09 |
Author: | Shuchismita Sarkar [aut, cre], Volodymyr Melnykov [aut] |
Maintainer: | Shuchismita Sarkar <[email protected]> |
Description: | Clustering unilayer and multilayer network data by means of finite mixtures is the main utility of 'netClust'. |
License: | GPL (>= 2) |
Imports: | Rcpp (>= 1.0.2) |
LinkingTo: | Rcpp, RcppArmadillo |
RoxygenNote: | 7.1.1 |
Encoding: | UTF-8 |
NeedsCompilation: | yes |
Packaged: | 2020-07-06 23:52:50 UTC; shuch |
Depends: | R (>= 3.5.0) |
Repository: | CRAN |
Date/Publication: | 2020-07-07 09:30:02 UTC |
Index of help topics:
netClust-package Model-Based Clustering of Network Data netData Dataset: netData netDataID Dataset: netDataID netEM_multilayer Returns the EM object for multilayer network netEM_unilayer Returns the EM object for unilayer network
Clustering unilayer and multilayer network data by means of finite mixtures is the main utility of 'netClust'.
Shuchismita Sarkar [aut, cre], Volodymyr Melnykov [aut]
Maintainer: Shuchismita Sarkar <[email protected]>
Sarkar, S. (2019) On the use of transformations for modeling multidimensional heterogeneous data, The University of Alabama Libraries Digital Collections
data(netData) ## Read network data data(netDataID) ## Read original ID for network data n <- dim(netData)[1] ## number of nodes of the network p <- dim(netData)[4] ## number of layers of the network K <- 2 ## number of clusters y <- netData eps=0.0001 RndStrtUni= 3 RndStrtMult= 5 SmEMUni= 2 SmEMMult= 3 ItrSmEM=5 burn = 10*n ItrMCMC= 50*n sSigma = 1 sPsi = 1 a=0 ########################################## ### Run unilayer network EM on layer 1 ### ########################################## x <- array(0, dim = c(n,n,2)) for (i in 1:n){ for (j in 1:n){ x[i,j,] <- y[i,j,,1] } } E <- netEM_unilayer(x, K, eps, RndStrtUni, SmEMUni, ItrSmEM, burn, ItrMCMC, sSigma,a) cat("Unilayer network", "Original ID", netDataID, "\n") cat("Unilayer network", "Assigned ID", E$id, "\n") ################################## ### Run multilayer network EM ### ################################## E <- netEM_multilayer(y,K,p, eps, RndStrtMult, SmEMMult, ItrSmEM, burn, ItrMCMC, sSigma, sPsi, n, a) cat("Multilayer network", "Original ID", netDataID, "\n") cat("Multilayer network", "Assigned ID", E$id, "\n")
data(netData) ## Read network data data(netDataID) ## Read original ID for network data n <- dim(netData)[1] ## number of nodes of the network p <- dim(netData)[4] ## number of layers of the network K <- 2 ## number of clusters y <- netData eps=0.0001 RndStrtUni= 3 RndStrtMult= 5 SmEMUni= 2 SmEMMult= 3 ItrSmEM=5 burn = 10*n ItrMCMC= 50*n sSigma = 1 sPsi = 1 a=0 ########################################## ### Run unilayer network EM on layer 1 ### ########################################## x <- array(0, dim = c(n,n,2)) for (i in 1:n){ for (j in 1:n){ x[i,j,] <- y[i,j,,1] } } E <- netEM_unilayer(x, K, eps, RndStrtUni, SmEMUni, ItrSmEM, burn, ItrMCMC, sSigma,a) cat("Unilayer network", "Original ID", netDataID, "\n") cat("Unilayer network", "Assigned ID", E$id, "\n") ################################## ### Run multilayer network EM ### ################################## E <- netEM_multilayer(y,K,p, eps, RndStrtMult, SmEMMult, ItrSmEM, burn, ItrMCMC, sSigma, sPsi, n, a) cat("Multilayer network", "Original ID", netDataID, "\n") cat("Multilayer network", "Assigned ID", E$id, "\n")
Network data with 10 nodes and 2 layers
data("netData")
data("netData")
The format is: num [1:10, 1:10, 1:2, 1:2] 0 0 0 0 0 0 0 0 0 0 ...
Dataset demonstrating multilayer network
Sarkar, S. (2020)
Sarkar, S. (2019) On the use of transformations for modeling multidimensional heterogeneous data, The University of Alabama Libraries Digital Collections
data(netData) ## maybe str(netData) ; plot(netData) ...
data(netData) ## maybe str(netData) ; plot(netData) ...
ID for netData dataset
data("netDataID")
data("netDataID")
A data frame with 10 observations on the following 1 variable.
netDataID
a numeric vector
ID for the dataset demonstrating multilayer network
Sarkar, S. (2020)
Sarkar, S. (2019) On the use of transformations for modeling multidimensional heterogeneous data, The University of Alabama Libraries Digital Collections
data(netDataID) ## maybe str(netDataID) ; plot(netDataID) ...
data(netDataID) ## maybe str(netDataID) ; plot(netDataID) ...
Returns the EM object for multilayer network
netEM_multilayer( y, K, p, eps, num_rand_start, num_run_smallEM, max_itr_smallEM, burn, MCMC_itr, sigma_mult, psi_mult, n, alpha )
netEM_multilayer( y, K, p, eps, num_rand_start, num_run_smallEM, max_itr_smallEM, burn, MCMC_itr, sigma_mult, psi_mult, n, alpha )
y |
multiple network |
K |
number of clusters |
p |
number of layers |
eps |
epsilon for convergence |
num_rand_start |
number of random starts |
num_run_smallEM |
number of runs for small EM |
max_itr_smallEM |
maximum number of runs for small EM |
burn |
number of runs for burn for Metropolis Hastings |
MCMC_itr |
number of runs for Metropolis Hastings iterations |
sigma_mult |
scaling multiplier for Sigma matrix |
psi_mult |
scaling multiplier for Psi matrix |
n |
number of nodes of the network |
alpha |
seed provided by the user |
EM object
Returns the EM object for unilayer network
netEM_unilayer( x, K, eps, num_rand_start, num_run_smallEM, max_itr_smallEM, burn, MCMC_itr, sigma_mult, alpha )
netEM_unilayer( x, K, eps, num_rand_start, num_run_smallEM, max_itr_smallEM, burn, MCMC_itr, sigma_mult, alpha )
x |
multiple network |
K |
number of clusters |
eps |
epsilon for convergence |
num_rand_start |
number of random starts |
num_run_smallEM |
number of runs for small EM |
max_itr_smallEM |
maximum number of runs for small EM |
burn |
number of runs for burn for Metropolis Hastings |
MCMC_itr |
number of runs for Metropolis Hastings iterations |
sigma_mult |
scaling multiplier for Sigma matrix |
alpha |
seed provided by the user |
EM object