Title: | Negative Binomial Factor Regression Models ('nbfar') |
---|---|
Description: | We developed a negative binomial factor regression model to estimate structured (sparse) associations between a feature matrix X and overdispersed count data Y. With 'nbfar', microbiome count data Y can be used, for example, to associate host or environmental covariates with microbial abundances. Currently, two models are available: a) Negative Binomial reduced rank regression (NB-RRR), b) Negative Binomial co-sparse factor regression (NB-FAR). Please refer the manuscript 'Mishra, A. K., & Müller, C. L. (2021). Negative Binomial factor regression with application to microbiome data analysis. bioRxiv.' for more details. |
Authors: | Aditya Mishra [aut, cre], Christian Mueller [aut] |
Maintainer: | Aditya Mishra <[email protected]> |
License: | GPL (>= 3.0) |
Version: | 0.1 |
Built: | 2024-12-23 06:47:27 UTC |
Source: | CRAN |
To estimate a low-rank and sparse coefficient matrix in large/high dimensional setting, the approach extracts unit-rank components of required matrix in sequential order. The algorithm automatically stops after extracting sufficient unit rank components.
nbfar( Yt, X, maxrank = 3, nlambda = 40, cIndex = NULL, ofset = NULL, control = list(), nfold = 5, PATH = FALSE, nthread = 1, trace = FALSE, verbose = TRUE )
nbfar( Yt, X, maxrank = 3, nlambda = 40, cIndex = NULL, ofset = NULL, control = list(), nfold = 5, PATH = FALSE, nthread = 1, trace = FALSE, verbose = TRUE )
Yt |
response matrix |
X |
design matrix; when X = NULL, we set X as identity matrix and perform generalized sparse PCA. |
maxrank |
an integer specifying the maximum possible rank of the coefficient matrix or the number of factors |
nlambda |
number of lambda values to be used along each path |
cIndex |
specify index of control variables in the design matrix X |
ofset |
offset matrix or microbiome data analysis specific scaling: common sum scaling = CSS (default), total sum scaling = TSS, median-ratio scaling = MRS, centered-log-ratio scaling = CLR |
control |
a list of internal parameters controlling the model fitting |
nfold |
number of folds in k-fold crossvalidation |
PATH |
TRUE/FALSE for generating solution path of sequential estimate after cross-validation step |
nthread |
number of thread to be used for parallelizing the crossvalidation procedure |
trace |
TRUE/FALSE checking progress of cross validation error |
verbose |
TRUE/FALSE checking progress of estimation procedure |
C |
estimated coefficient matrix; based on GIC |
Z |
estimated control variable coefficient matrix |
Phi |
estimted dispersion parameters |
U |
estimated U matrix (generalize latent factor weights) |
D |
estimated singular values |
V |
estimated V matrix (factor loadings) |
Mishra, A., Müller, C. (2022) Negative binomial factor regression models with application to microbiome data analysis. https://doi.org/10.1101/2021.11.29.470304
## Model specification: SD <- 123 set.seed(SD) p <- 100; n <- 200 pz <- 0 nrank <- 3 # true rank rank.est <- 5 # estimated rank nlam <- 20 # number of tuning parameter s = 0.5 q <- 30 control <- nbfar_control() # control parameters # # ## Generate data D <- rep(0, nrank) V <- matrix(0, ncol = nrank, nrow = q) U <- matrix(0, ncol = nrank, nrow = p) # U[, 1] <- c(sample(c(1, -1), 8, replace = TRUE), rep(0, p - 8)) U[, 2] <- c(rep(0, 5), sample(c(1, -1), 9, replace = TRUE), rep(0, p - 14)) U[, 3] <- c(rep(0, 11), sample(c(1, -1), 9, replace = TRUE), rep(0, p - 20)) # # for similar type response type setting V[, 1] <- c(rep(0, 8), sample(c(1, -1), 8, replace = TRUE ) * runif(8, 0.3, 1), rep(0, q - 16)) V[, 2] <- c(rep(0, 20), sample(c(1, -1), 8, replace = TRUE ) * runif(8, 0.3, 1), rep(0, q - 28)) V[, 3] <- c( sample(c(1, -1), 5, replace = TRUE) * runif(5, 0.3, 1), rep(0, 23), sample(c(1, -1), 2, replace = TRUE) * runif(2, 0.3, 1), rep(0, q - 30) ) U[, 1:3] <- apply(U[, 1:3], 2, function(x) x / sqrt(sum(x^2))) V[, 1:3] <- apply(V[, 1:3], 2, function(x) x / sqrt(sum(x^2))) # D <- s * c(4, 6, 5) # signal strength varries as per the value of s or <- order(D, decreasing = TRUE) U <- U[, or] V <- V[, or] D <- D[or] C <- U %*% (D * t(V)) # simulated coefficient matrix intercept <- rep(0.5, q) # specifying intercept to the model: C0 <- rbind(intercept, C) # Xsigma <- 0.5^abs(outer(1:p, 1:p, FUN = "-")) # Simulated data sim.sample <- nbfar_sim(U, D, V, n, Xsigma, C0,disp = 3, depth = 10) # Simulated sample # Dispersion parameter X <- sim.sample$X[1:n, ] Y <- sim.sample$Y[1:n, ] X0 <- cbind(1, X) # 1st column accounting for intercept # Model with known offset set.seed(1234) offset <- log(10)*matrix(1,n,q) control_nbfar <- nbfar_control(initmaxit = 5000, gamma0 = 2, spU = 0.5, spV = 0.6, lamMinFac = 1e-10, epsilon = 1e-5) # nbfar_test <- nbfar(Y, X, maxrank = 5, nlambda = 20, cIndex = NULL, # ofset = offset, control = control_nbfar, nfold = 5, PATH = F)
## Model specification: SD <- 123 set.seed(SD) p <- 100; n <- 200 pz <- 0 nrank <- 3 # true rank rank.est <- 5 # estimated rank nlam <- 20 # number of tuning parameter s = 0.5 q <- 30 control <- nbfar_control() # control parameters # # ## Generate data D <- rep(0, nrank) V <- matrix(0, ncol = nrank, nrow = q) U <- matrix(0, ncol = nrank, nrow = p) # U[, 1] <- c(sample(c(1, -1), 8, replace = TRUE), rep(0, p - 8)) U[, 2] <- c(rep(0, 5), sample(c(1, -1), 9, replace = TRUE), rep(0, p - 14)) U[, 3] <- c(rep(0, 11), sample(c(1, -1), 9, replace = TRUE), rep(0, p - 20)) # # for similar type response type setting V[, 1] <- c(rep(0, 8), sample(c(1, -1), 8, replace = TRUE ) * runif(8, 0.3, 1), rep(0, q - 16)) V[, 2] <- c(rep(0, 20), sample(c(1, -1), 8, replace = TRUE ) * runif(8, 0.3, 1), rep(0, q - 28)) V[, 3] <- c( sample(c(1, -1), 5, replace = TRUE) * runif(5, 0.3, 1), rep(0, 23), sample(c(1, -1), 2, replace = TRUE) * runif(2, 0.3, 1), rep(0, q - 30) ) U[, 1:3] <- apply(U[, 1:3], 2, function(x) x / sqrt(sum(x^2))) V[, 1:3] <- apply(V[, 1:3], 2, function(x) x / sqrt(sum(x^2))) # D <- s * c(4, 6, 5) # signal strength varries as per the value of s or <- order(D, decreasing = TRUE) U <- U[, or] V <- V[, or] D <- D[or] C <- U %*% (D * t(V)) # simulated coefficient matrix intercept <- rep(0.5, q) # specifying intercept to the model: C0 <- rbind(intercept, C) # Xsigma <- 0.5^abs(outer(1:p, 1:p, FUN = "-")) # Simulated data sim.sample <- nbfar_sim(U, D, V, n, Xsigma, C0,disp = 3, depth = 10) # Simulated sample # Dispersion parameter X <- sim.sample$X[1:n, ] Y <- sim.sample$Y[1:n, ] X0 <- cbind(1, X) # 1st column accounting for intercept # Model with known offset set.seed(1234) offset <- log(10)*matrix(1,n,q) control_nbfar <- nbfar_control(initmaxit = 5000, gamma0 = 2, spU = 0.5, spV = 0.6, lamMinFac = 1e-10, epsilon = 1e-5) # nbfar_test <- nbfar(Y, X, maxrank = 5, nlambda = 20, cIndex = NULL, # ofset = offset, control = control_nbfar, nfold = 5, PATH = F)
Default value for a list of control parameters that are used to estimate the parameters of negative binomial co-sparse factor regression (NBFAR) and negative binomial reduced rank regression (NBRRR).
nbfar_control( maxit = 5000, epsilon = 1e-07, elnetAlpha = 0.95, gamma0 = 1, spU = 0.5, spV = 0.5, lamMaxFac = 1, lamMinFac = 1e-06, initmaxit = 10000, initepsilon = 1e-08, objI = 0 )
nbfar_control( maxit = 5000, epsilon = 1e-07, elnetAlpha = 0.95, gamma0 = 1, spU = 0.5, spV = 0.5, lamMaxFac = 1, lamMinFac = 1e-06, initmaxit = 10000, initepsilon = 1e-08, objI = 0 )
maxit |
maximum iteration for each sequential steps |
epsilon |
tolerance value required for convergence of inner loop in GCURE |
elnetAlpha |
elastic net penalty parameter |
gamma0 |
power parameter for generating the adaptive weights |
spU |
maximum proportion of nonzero elements in each column of U |
spV |
maximum proportion of nonzero elements in each column of V |
lamMaxFac |
a multiplier of the computed maximum value (lambda_max) of the tuning parameter |
lamMinFac |
a multiplier to determine lambda_min as a fraction of lambda_max |
initmaxit |
maximum iteration for minimizing the objective function while computing the initial estimates of the model parameter |
initepsilon |
tolerance value required for the convergence of the objective function while computing the initial estimates of the model parameter |
objI |
1 or 0 to indicate that the convergence will be on the basis of objective function or not |
a list of controlling parameter.
Mishra, A., Müller, C. (2022) Negative binomial factor regression models with application to microbiome data analysis. https://doi.org/10.1101/2021.11.29.470304
control <- nbfar_control()
control <- nbfar_control()
Simulate response and covariates for multivariate negative binomial regression with a low-rank and sparse coefficient matrix. Coefficient matrix is expressed in terms of U (left singular vector), D (singular values) and V (right singular vector).
nbfar_sim(U, D, V, n, Xsigma, C0, disp, depth)
nbfar_sim(U, D, V, n, Xsigma, C0, disp, depth)
U |
specified value of U |
D |
specified value of D |
V |
specified value of V |
n |
sample size |
Xsigma |
covariance matrix used to generate predictors in X |
C0 |
intercept value in the coefficient matrix |
disp |
dispersion parameter of the generative model |
depth |
log of the sequencing depth of the microbiome data (used as an offset in the simulated multivariate negative binomial regression model) |
Y |
Generated response matrix |
X |
Generated predictor matrix |
Mishra, A., Müller, C. (2022) Negative binomial factor regression models with application to microbiome data analysis. https://doi.org/10.1101/2021.11.29.470304
## Model specification: SD <- 123 set.seed(SD) p <- 100; n <- 200 pz <- 0 nrank <- 3 # true rank rank.est <- 5 # estimated rank nlam <- 20 # number of tuning parameter s = 0.5 q <- 30 control <- nbfar_control() # control parameters # # ## Generate data D <- rep(0, nrank) V <- matrix(0, ncol = nrank, nrow = q) U <- matrix(0, ncol = nrank, nrow = p) # U[, 1] <- c(sample(c(1, -1), 8, replace = TRUE), rep(0, p - 8)) U[, 2] <- c(rep(0, 5), sample(c(1, -1), 9, replace = TRUE), rep(0, p - 14)) U[, 3] <- c(rep(0, 11), sample(c(1, -1), 9, replace = TRUE), rep(0, p - 20)) # # for similar type response type setting V[, 1] <- c(rep(0, 8), sample(c(1, -1), 8, replace = TRUE ) * runif(8, 0.3, 1), rep(0, q - 16)) V[, 2] <- c(rep(0, 20), sample(c(1, -1), 8, replace = TRUE ) * runif(8, 0.3, 1), rep(0, q - 28)) V[, 3] <- c( sample(c(1, -1), 5, replace = TRUE) * runif(5, 0.3, 1), rep(0, 23), sample(c(1, -1), 2, replace = TRUE) * runif(2, 0.3, 1), rep(0, q - 30) ) U[, 1:3] <- apply(U[, 1:3], 2, function(x) x / sqrt(sum(x^2))) V[, 1:3] <- apply(V[, 1:3], 2, function(x) x / sqrt(sum(x^2))) # D <- s * c(4, 6, 5) # signal strength varries as per the value of s or <- order(D, decreasing = TRUE) U <- U[, or] V <- V[, or] D <- D[or] C <- U %*% (D * t(V)) # simulated coefficient matrix intercept <- rep(0.5, q) # specifying intercept to the model: C0 <- rbind(intercept, C) # Xsigma <- 0.5^abs(outer(1:p, 1:p, FUN = "-")) # Simulated data sim.sample <- nbfar_sim(U, D, V, n, Xsigma, C0,disp = 3, depth = 10) # Simulated sample # Dispersion parameter X <- sim.sample$X[1:n, ] Y <- sim.sample$Y[1:n, ]
## Model specification: SD <- 123 set.seed(SD) p <- 100; n <- 200 pz <- 0 nrank <- 3 # true rank rank.est <- 5 # estimated rank nlam <- 20 # number of tuning parameter s = 0.5 q <- 30 control <- nbfar_control() # control parameters # # ## Generate data D <- rep(0, nrank) V <- matrix(0, ncol = nrank, nrow = q) U <- matrix(0, ncol = nrank, nrow = p) # U[, 1] <- c(sample(c(1, -1), 8, replace = TRUE), rep(0, p - 8)) U[, 2] <- c(rep(0, 5), sample(c(1, -1), 9, replace = TRUE), rep(0, p - 14)) U[, 3] <- c(rep(0, 11), sample(c(1, -1), 9, replace = TRUE), rep(0, p - 20)) # # for similar type response type setting V[, 1] <- c(rep(0, 8), sample(c(1, -1), 8, replace = TRUE ) * runif(8, 0.3, 1), rep(0, q - 16)) V[, 2] <- c(rep(0, 20), sample(c(1, -1), 8, replace = TRUE ) * runif(8, 0.3, 1), rep(0, q - 28)) V[, 3] <- c( sample(c(1, -1), 5, replace = TRUE) * runif(5, 0.3, 1), rep(0, 23), sample(c(1, -1), 2, replace = TRUE) * runif(2, 0.3, 1), rep(0, q - 30) ) U[, 1:3] <- apply(U[, 1:3], 2, function(x) x / sqrt(sum(x^2))) V[, 1:3] <- apply(V[, 1:3], 2, function(x) x / sqrt(sum(x^2))) # D <- s * c(4, 6, 5) # signal strength varries as per the value of s or <- order(D, decreasing = TRUE) U <- U[, or] V <- V[, or] D <- D[or] C <- U %*% (D * t(V)) # simulated coefficient matrix intercept <- rep(0.5, q) # specifying intercept to the model: C0 <- rbind(intercept, C) # Xsigma <- 0.5^abs(outer(1:p, 1:p, FUN = "-")) # Simulated data sim.sample <- nbfar_sim(U, D, V, n, Xsigma, C0,disp = 3, depth = 10) # Simulated sample # Dispersion parameter X <- sim.sample$X[1:n, ] Y <- sim.sample$Y[1:n, ]
In the range of 1 to maxrank, the estimation procedure selects the rank r of the coefficient matrix using a cross-validation approach. For the selected rank, a rank r coefficient matrix is estimated that best fits the observations.
nbrrr( Yt, X, maxrank = 10, cIndex = NULL, ofset = NULL, control = list(), nfold = 5, trace = FALSE, verbose = TRUE )
nbrrr( Yt, X, maxrank = 10, cIndex = NULL, ofset = NULL, control = list(), nfold = 5, trace = FALSE, verbose = TRUE )
Yt |
response matrix |
X |
design matrix; when X = NULL, we set X as identity matrix and perform generalized PCA. |
maxrank |
an integer specifying the maximum possible rank of the coefficient matrix or the number of factors |
cIndex |
specify index of control variable in the design matrix X |
ofset |
offset matrix or microbiome data analysis specific scaling: common sum scaling = CSS (default), total sum scaling = TSS, median-ratio scaling = MRS, centered-log-ratio scaling = CLR |
control |
a list of internal parameters controlling the model fitting |
nfold |
number of folds in k-fold crossvalidation |
trace |
TRUE/FALSE checking progress of cross validation error |
verbose |
TRUE/FALSE checking progress of estimation procedure |
C |
estimated coefficient matrix |
Z |
estimated control variable coefficient matrix |
PHI |
estimted dispersion parameters |
U |
estimated U matrix (generalize latent factor weights) |
D |
estimated singular values |
V |
estimated V matrix (factor loadings) |
Mishra, A., Müller, C. (2022) Negative binomial factor regression models with application to microbiome data analysis. https://doi.org/10.1101/2021.11.29.470304
## Model specification: SD <- 123 set.seed(SD) p <- 50; n <- 200 pz <- 0 nrank <- 3 # true rank rank.est <- 5 # estimated rank nlam <- 20 # number of tuning parameter s = 0.5 q <- 30 control <- nbfar_control() # control parameters # # ## Generate data D <- rep(0, nrank) V <- matrix(0, ncol = nrank, nrow = q) U <- matrix(0, ncol = nrank, nrow = p) # U[, 1] <- c(sample(c(1, -1), 8, replace = TRUE), rep(0, p - 8)) U[, 2] <- c(rep(0, 5), sample(c(1, -1), 9, replace = TRUE), rep(0, p - 14)) U[, 3] <- c(rep(0, 11), sample(c(1, -1), 9, replace = TRUE), rep(0, p - 20)) # # for similar type response type setting V[, 1] <- c(rep(0, 8), sample(c(1, -1), 8, replace = TRUE ) * runif(8, 0.3, 1), rep(0, q - 16)) V[, 2] <- c(rep(0, 20), sample(c(1, -1), 8, replace = TRUE ) * runif(8, 0.3, 1), rep(0, q - 28)) V[, 3] <- c( sample(c(1, -1), 5, replace = TRUE) * runif(5, 0.3, 1), rep(0, 23), sample(c(1, -1), 2, replace = TRUE) * runif(2, 0.3, 1), rep(0, q - 30) ) U[, 1:3] <- apply(U[, 1:3], 2, function(x) x / sqrt(sum(x^2))) V[, 1:3] <- apply(V[, 1:3], 2, function(x) x / sqrt(sum(x^2))) # D <- s * c(4, 6, 5) # signal strength varries as per the value of s or <- order(D, decreasing = TRUE) U <- U[, or] V <- V[, or] D <- D[or] C <- U %*% (D * t(V)) # simulated coefficient matrix intercept <- rep(0.5, q) # specifying intercept to the model: C0 <- rbind(intercept, C) # Xsigma <- 0.5^abs(outer(1:p, 1:p, FUN = "-")) # Simulated data sim.sample <- nbfar_sim(U, D, V, n, Xsigma, C0,disp = 3, depth = 10) # Simulated sample # Dispersion parameter X <- sim.sample$X[1:n, ] Y <- sim.sample$Y[1:n, ] X0 <- cbind(1, X) # 1st column accounting for intercept # Model with known offset set.seed(1234) offset <- log(10)*matrix(1,n,q) control_nbrr <- nbfar_control(initmaxit = 5000, initepsilon = 1e-4) # nbrrr_test <- nbrrr(Y, X, maxrank = 5, cIndex = NULL, ofset = offset, # control = control_nbrr, nfold = 5)
## Model specification: SD <- 123 set.seed(SD) p <- 50; n <- 200 pz <- 0 nrank <- 3 # true rank rank.est <- 5 # estimated rank nlam <- 20 # number of tuning parameter s = 0.5 q <- 30 control <- nbfar_control() # control parameters # # ## Generate data D <- rep(0, nrank) V <- matrix(0, ncol = nrank, nrow = q) U <- matrix(0, ncol = nrank, nrow = p) # U[, 1] <- c(sample(c(1, -1), 8, replace = TRUE), rep(0, p - 8)) U[, 2] <- c(rep(0, 5), sample(c(1, -1), 9, replace = TRUE), rep(0, p - 14)) U[, 3] <- c(rep(0, 11), sample(c(1, -1), 9, replace = TRUE), rep(0, p - 20)) # # for similar type response type setting V[, 1] <- c(rep(0, 8), sample(c(1, -1), 8, replace = TRUE ) * runif(8, 0.3, 1), rep(0, q - 16)) V[, 2] <- c(rep(0, 20), sample(c(1, -1), 8, replace = TRUE ) * runif(8, 0.3, 1), rep(0, q - 28)) V[, 3] <- c( sample(c(1, -1), 5, replace = TRUE) * runif(5, 0.3, 1), rep(0, 23), sample(c(1, -1), 2, replace = TRUE) * runif(2, 0.3, 1), rep(0, q - 30) ) U[, 1:3] <- apply(U[, 1:3], 2, function(x) x / sqrt(sum(x^2))) V[, 1:3] <- apply(V[, 1:3], 2, function(x) x / sqrt(sum(x^2))) # D <- s * c(4, 6, 5) # signal strength varries as per the value of s or <- order(D, decreasing = TRUE) U <- U[, or] V <- V[, or] D <- D[or] C <- U %*% (D * t(V)) # simulated coefficient matrix intercept <- rep(0.5, q) # specifying intercept to the model: C0 <- rbind(intercept, C) # Xsigma <- 0.5^abs(outer(1:p, 1:p, FUN = "-")) # Simulated data sim.sample <- nbfar_sim(U, D, V, n, Xsigma, C0,disp = 3, depth = 10) # Simulated sample # Dispersion parameter X <- sim.sample$X[1:n, ] Y <- sim.sample$Y[1:n, ] X0 <- cbind(1, X) # 1st column accounting for intercept # Model with known offset set.seed(1234) offset <- log(10)*matrix(1,n,q) control_nbrr <- nbfar_control(initmaxit = 5000, initepsilon = 1e-4) # nbrrr_test <- nbrrr(Y, X, maxrank = 5, cIndex = NULL, ofset = offset, # control = control_nbrr, nfold = 5)