
Package: mwcsr (via r-universe)
January 8, 2025

Title Solvers for Maximum Weight Connected Subgraph Problem and Its
Variants

Version 0.1.9

Description Algorithms for solving various Maximum Weight Connected
Subgraph Problems, including variants with budget constraints,
cardinality constraints, weighted edges and signals. The
package represents an R interface to high-efficient solvers
based on relax-and-cut approach (Álvarez-Miranda E., Sinnl M.
(2017) <doi:10.1016/j.cor.2017.05.015>) mixed-integer
programming (Loboda A., Artyomov M., and Sergushichev A. (2016)
<doi:10.1007/978-3-319-43681-4_17>) and simulated annealing.

Depends R (>= 3.5)

Imports methods, igraph, Rcpp

Suggests knitr, rmarkdown, mathjaxr, testthat, BioNet, roxygen2, DLBCL

SystemRequirements Java (>=8)

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

VignetteBuilder knitr

URL https://github.com/ctlab/mwcsr

BugReports https://github.com/ctlab/mwcsr/issues

LinkingTo Rcpp

NeedsCompilation yes

Author Alexander Loboda [aut, cre], Nikolay Poperechnyi [aut], Eduardo
Alvarez-Miranda [aut], Markus Sinnl [aut], Alexey Sergushichev
[aut], Paul Hosler Jr. [cph] (Bundled JOpt Simple package),
www.hamcrest.org [cph] (Bundled hamcrest package), Barak Naveh
and Contributors [cph] (Bundled JGraphT package), The Apache
Software Foundation [cph] (Bundled Apache Commons Math package)

1

https://doi.org/10.1016/j.cor.2017.05.015
https://doi.org/10.1007/978-3-319-43681-4_17
https://github.com/ctlab/mwcsr
https://github.com/ctlab/mwcsr/issues

2 annealing_solver

Maintainer Alexander Loboda <aleks.loboda@gmail.com>

Repository CRAN

Date/Publication 2024-09-09 11:30:10 UTC

Config/pak/sysreqs libglpk-dev default-jdk libxml2-dev

Contents

annealing_solver . 2
bionet_example . 4
gam_example . 4
gatom_example . 5
get_instance_type . 5
get_weight . 6
gmwcs_example . 6
gmwcs_small_instance . 7
mwcs_example . 7
mwcs_small_instance . 7
normalize_sgmwcs_instance . 8
parameters . 9
rmwcs_solver . 9
rnc_solver . 11
scipjack_solver . 12
set_parameters . 12
sgmwcs_example . 13
sgmwcs_small_instance . 13
solve_mwcsp . 14
timelimit<- . 15
virgo_solver . 16

Index 18

annealing_solver Construct an annealing solver

Description

Simulated annealing is a heuristic method of solving optimization problems. Typically, it allows to
find some good solution in a short time. This implementation doesn’t compute any upper bound on
solution, so there is no guarantee of optimality of solution provided.

annealing_solver 3

Usage

annealing_solver(
schedule = c("fast", "boltzmann"),
initial_temperature = 1,
final_temperature = 1e-06,
verbose = FALSE

)

Arguments

schedule boltzmann annealing or fast annealing

initial_temperature

initial value for the temperature

final_temperature

final value for the temperature

verbose whether be verbose or not

Details

Algorithm maintains connected subgraph staring with empty subgraph. Each iteration one random
action is considered. It may be a removal of a vertex or an edge which does not separate graph
or addition of an extra vertex or an edge neighboring existing graph. If the subgraph is empty all
vertices are considered as candidates to form a subgaph. After candidate is chosen two subgraph
scores are considered: for a new subgraph and for an old one. Simulated annealing operates with
a notion of temperature. The candidate action is accepted with probability: p(S’|S) = exp(-E / T),
where E is weight difference between subgraphs and T is current temperature.

Temperature is calculated in each iteration. in mwcsr there are two temperature schedules supported.
So called Boltmann annealing uses the formula: T(k) = T0 / (ln(1 + k)), while in case of fast
annealing this one is used: T(k) = T0 / k, where k is iteration number.

To tune the algorithm it is useful to realize how typical changes in the goal function for single actions
are distributed. Calculating the acceptance probabilities at initial temperature and final temperatures
may help to choose schedule and temperatures.

Value

An object of class mwcs_solver

See Also

rnc_solver will probably be a better choice with minimal tuning necessary

4 gam_example

bionet_example Example MWCS instance obtained from BioNet package tutorial

Description

Example MWCS instance obtained from BioNet package tutorial

Usage

bionet_example

Format

An object of class igraph of length 2559.

gam_example GAM instance for MWCS problem

Description

A dataset containing some real-world instances appeared in network enrichment analysis tool Shiny
GAM (doi:10.1093/nar/gkw266).

Usage

gam_example

Format

A vector of named vertex-weighted igraph instances

Source

http://dimacs11.zib.de/instances/MWCS-GAM.zip

https://doi.org/10.1093/nar/gkw266
http://dimacs11.zib.de/instances/MWCS-GAM.zip

gatom_example 5

gatom_example Example of graph from which an SGMWCS instance can be obtained

Description

The graph is based on gatom package

Usage

gatom_example

Format

An object of class igraph of length 194.

get_instance_type Check the type and the validity of an MWCS instance

Description

Check the type and the validity of an MWCS instance

Usage

get_instance_type(instance)

Arguments

instance igraph object, containing an instance to be checked

Value

A list with members type containing the type of the instance, valid – boolean flag indicating
whether the instance is valid or not, errors – a character vector containing the error messages

A list with two fields: the type of the instance with which it will be treated by solve_mwcsp function
and boolean showing validness of the instance.

Examples

data(mwcs_example)
get_instance_type(mwcs_example)

6 gmwcs_example

get_weight Calculate weight of the solution. MWCS, GMWCS and SGMWCS in-
stances are supported

Description

Calculate weight of the solution. MWCS, GMWCS and SGMWCS instances are supported

Usage

get_weight(solution)

Arguments

solution Either mwcsp_solution or ‘igraph“ object representing the solution

Value

Weight of the subgraph

gmwcs_example Example GMWCS instance

Description

Instance is based on gatom package.

Usage

gmwcs_example

Format

An object of class igraph of length 194.

gmwcs_small_instance 7

gmwcs_small_instance Small example of GMWCS instance for demonstration purposes.

Description

Small example of GMWCS instance for demonstration purposes.

Usage

gmwcs_small_instance

Format

An object of class igraph of length 5.

mwcs_example Example MWCS instance

Description

Instance is based on gatom package.

Usage

mwcs_example

Format

An object of class igraph of length 194.

mwcs_small_instance Small example of MWCS instance for demonstration purposes.

Description

Small example of MWCS instance for demonstration purposes.

Usage

mwcs_small_instance

Format

An object of class igraph of length 5.

8 normalize_sgmwcs_instance

normalize_sgmwcs_instance

Helper function to convert an igraph object into a proper SGMWCS
instance

Description

This function generates new igraph object with additional signals field added. The way the in-
stance is constructed is defined by the function parameters. Nodes and edges are grouped separately,
grouping columns are defined by nodes.group.by and edges.group.by arguments. group.only.positive
param specifies whether to group only positive-weighted (specified by nodes/edges.weight.column)
nodes and edges.

Usage

normalize_sgmwcs_instance(
g,
nodes.weight.column = "weight",
edges.weight.column = "weight",
nodes.group.by = "signal",
edges.group.by = "signal",
group.only.positive = TRUE

)

Arguments

g Graph to convert
nodes.weight.column

Nodes column name (e.g. weight, score, w) for scoring
edges.weight.column

Edges column name for scoring

nodes.group.by Nodes grouping column (e.g. signal, group, class)

edges.group.by Edges grouping column
group.only.positive

Whether to group only positive-scored nodes/edges#’

Value

An igraph object with proper attributes set.

Examples

data("gatom_example")
normalize_sgmwcs_instance(gatom_example)

parameters 9

parameters The method returns all parameters supported by specific solver

Description

The method returns all parameters supported by specific solver

Usage

parameters(solver)

Arguments

solver a solver object

Value

A table containing parameter names and possible values for each parameter.

rmwcs_solver Generate a rmwcs solver

Description

The method is based on relax-and-cut approach and allows to solve Maximum Weight Subgraph
Probleam and its budget and cardinality variants. By constructing lagrangian relaxation of MWCS
problem necessary graph connectivity constraints are introduced in the objective function giving
upper bound on the weight of the optimal solution. On the other side, primal heuristic uses individul
contribution of the variables to lagrangian relaxation to find possible solution of the initial problem.
The relaxation is then optimized by using iterative subgradient method.

Usage

rmwcs_solver(
timelimit = 1800L,
max_iterations = 1000L,
beta_iterations = 5L,
separation = "strong",
start_constraints = TRUE,
pegging = TRUE,
max_age = 10,
sep_iterations = 10L,
sep_iter_freeze = 50L,
heur_iterations = 10L,
subgradient = "classic",
beta = 2,
verbose = FALSE

)

10 rmwcs_solver

Arguments

timelimit Timelimit in seconds

max_iterations Maximum number of iterations
beta_iterations

Number of nonimproving iterations until beta is halved

separation Separation: "strong" or "fast"
start_constraints

Whether to add flow-conservation/degree constraints at start

pegging variable fixing

max_age number of iterations in aging procedure for non-violated cuts

sep_iterations Frequency of separating cuts (in iterations)
sep_iter_freeze

Number of iterations when a newly separated cut is anaffected by subgradient
algorithm.

heur_iterations

Frequency of calling heuristic method (in iterations)

subgradient Subgradient: "classic", "average", "cft"

beta Initial step size of subgradient algorithm

verbose Should the solving progress and stats be printed?

Details

One iteration of algorithm includes solving lagrangian relaxation and updating lagrange multipliers.
It may also contain cuts (or connectivity constraints) separation process, run of heuristic method,
variable fixing routine. The initial step size for subgradient method can be passed as beta argument.
If there is no improvement in upper bound in consequtive beta_iterations iterations the step size
is halved. There are three possible strategies for updating multipliers. See the references section for
the article where differences are discussed.

Some initial cuts are added at the start of the algorithm if start_constraints is set to TRUE. Other
constraints are separated on the fly and are unaffected in the next sep_iter_freeze iterations of
the subgradient mehod. Then the corresponding lagrange mutipliers are updated from iteration to
iteration. Aging procedure for cuts is incorporated in the algorithm meaning constraint multipliers
are updated for non-violated cuts for up to max_age iterations from the point where a cut was
violated last time. There are two separation methods implemented: fast and strong, where tha latter
is supposed to minimize number of variables used in generated constraint while in the former case
there is no need to explore whole graph to construct a constraint.

A variant of MST approximation of PCSTP is used as Primal Heuristic. See references for more
details.

The frequences of running separation process and heuristic are specified in sep_iterations and
heur_iterations.

Value

An object of class mwcs_solver.

rnc_solver 11

References

Álvarez-Miranda E., Sinnl M. (2017) "A Relax-and-Cut framework for large-scale maximum weight
connected subgraph problems" doi:10.1016/j.cor.2017.05.015

rnc_solver Construct relax-and-cut SGMWCS solver

Description

The solver is based on the same approach as rmwcs solver. Modifications to the original scheme are
introduced to tackle problems arising with introduction of edge weights and signals. It is recom-
mended to use rmwcs solver to solve MWCS problems, while due to differences in primal heuristic
it may be a good pratice to run both solvers on the same problem.

Usage

rnc_solver(
max_iterations = 1000L,
beta_iterations = 50L,
heur_iterations = 10L,
sep_iterations = 10L,
verbose = FALSE

)

Arguments

max_iterations Maximum number of iterations
beta_iterations

Number of nonimproving iterations until beta is halved
heur_iterations

Frequency of calling heuristic method (in iterations)

sep_iterations Frequency of separating cuts (in iterations)

verbose Should the solving progress and stats be printed?

Value

An object of class mwcs_solver

See Also

rmwcs_solver

https://doi.org/10.1016/j.cor.2017.05.015

12 set_parameters

scipjack_solver Construct a SCIP-jack solver

Description

This solver requires STP extension of SCIP-jack solver. To use this class you first need to download
and build SCIP-jack and SCIPSTP application.

Usage

scipjack_solver(scipstp_bin, config_file = NULL)

Arguments

scipstp_bin path to scipstp binary.

config_file scipstp-formatted file. Parameters list is accessible at Official SCIP website.

Details

You can access solver directly using run_scip function. See example.

References

Rehfeldt D., Koch T. (2019) "Combining NP-Hard Reduction Techniques and Strong Heuristics
in an Exact Algorithm for the Maximum-Weight Connected Subgraph Problem." doi:10.1137/
17M1145963

Examples

Not run:
data("bionet_example")
scip <- scipjack_solver(scipstp_bin='/path/to/scipoptsuite/build/bin/applications/scipstp')
sol <- solve_mwcsp(scip, bionet_example)

End(Not run)

set_parameters Sets values of specific parameters

Description

Sets values of specific parameters

Usage

set_parameters(solver, ...)

https://scipopt.org/#scipoptsuite
https://www.scipopt.org/doc-6.0.2/html/PARAMETERS.php
https://doi.org/10.1137/17M1145963
https://doi.org/10.1137/17M1145963

sgmwcs_example 13

Arguments

solver a solver

... listed parameter names and values assigned to them

Value

The solver with parameters changed.

sgmwcs_example Example SGMWCS instance

Description

Instance is based on gatom package.

Usage

sgmwcs_example

Format

An object of class igraph of length 194.

sgmwcs_small_instance Small example of SGMWCS instance for demonstration purposes.

Description

Small example of SGMWCS instance for demonstration purposes.

Usage

sgmwcs_small_instance

Format

An object of class igraph of length 6.

14 solve_mwcsp

solve_mwcsp Solves a MWCS instance.

Description

Generic function for solving MWCS instances using solvers collected in the package.

Usage

solve_mwcsp(solver, instance, ...)

S3 method for class 'virgo_solver'
solve_mwcsp(solver, instance, ...)

S3 method for class 'rmwcs_solver'
solve_mwcsp(solver, instance, max_cardinality = NULL, budget = NULL, ...)

S3 method for class 'rnc_solver'
solve_mwcsp(solver, instance, ...)

S3 method for class 'simulated_annealing_solver'
solve_mwcsp(solver, instance, warm_start, ...)

S3 method for class 'scipjack_solver'
solve_mwcsp(solver, instance, ...)

Arguments

solver a solver object returned by rmwcs_solver, annealing_solver, rnc_solver or virgo_solver.

instance an MWCS instance, an igraph object with problem-related vertex, edge and
graph attributes. See details.

... other arguments to be passed.
max_cardinality

integer maximum number of vertices in solution.

budget numeric maximum budget of solution.

warm_start warm start solution, an object of the class mwcsp_solution.

Details

MWCS instance here is represented as an undirected graph, an igraph object. The package sup-
ports four types of instances: Simple MWCS, Generalized MWCS, Budget MWCS, signal MWCS
problems. All the necessary weights and costs are passed by setting vertex and edge attributes. See
get_instance_type to check if the igraph object is a correct MWCS instance. For Simple MWCS
problem numeric vertex attribute weight must be set. For generalized version weights can be pro-
vided for edges. For budget version of the problem in addition to vertex weights it is required that
igraph object would have budget_cost vertex attribute with positive numeric values.

timelimit<- 15

Signal MWCS instance is quite different. There is no weight attribute for neither vertices nor edges.
Instead, vertex and edge attribute signal should be provided with signal names. A numeric vector
containing weights for the signals should be assigned to graph attribute signals.

See vignette for description of the supported problems. See igraph package documentation for
more details about getting/setting necesasry attributes.

Value

An object of class mwcsp_solution consisting of resulting subgraph, its weight and other informa-
tion about solution provided.

Examples

library(igraph)

for a MWCS instance

data(mwcs_example)
head(V(mwcs_example)$weight)

for a GMWCS instance
data(gmwcs_example)
head(E(gmwcs_example)$weight)

for a SGMWCS instance
data(sgmwcs_example)
head(V(sgmwcs_example)$signal)
head(E(sgmwcs_example)$signal)

head(sgmwcs_example$signals)

timelimit<- Sets time limitation for a solver

Description

Sets time limitation for a solver

Usage

timelimit(x) <- value

Arguments

x a variable name.

value a value to be assigned to x.

16 virgo_solver

Value

The solver with new timelimit set.

virgo_solver Construct a virgo solver

Description

This solver uses reformulation of MWCS problem in terms of mixed integer programming. The
later problem can be efficiently solved with commercial optimization software. Exact version of
solver uses CPLEX and requires it to be installed. CPLEX 12.7.1 or higher is required.

Usage

virgo_solver(
cplex_dir,
threads = parallel::detectCores(),
timelimit = NULL,
penalty = 0,
memory = "2G",
log = 0,
cplex_bin = NULL,
cplex_jar = NULL,
mst = FALSE,
dryrun = FALSE,
jvmargs = NULL

)

Arguments

cplex_dir a path to dir containing cplex_bin and cplex_jar, setting this to NULL sets
mst`` param to TRUE‘

threads number of threads for simultaneous computation

timelimit maximum number of seconds to solve the problem

penalty additional edge penalty for graph edges

memory maximum amount of memory(-Xmx flag)

log verbosity level

cplex_bin a path to cplex binary dir

cplex_jar a path to cplex jar file

mst whether to use approximate MST solver, no CPLEX files required with this
parameter is set to TRUE

dryrun if set to TRUE only prints the solver command, without actually running it

jvmargs character vector with additional arguments for Java Virtual Machine

virgo_solver 17

Details

The solver currently does not support repeated negative signals, i.e. every negative signal should be
present only once among all edges and vertices.

You can access solver directly using run_main function. See example.

Value

An object of class mwcs_solver.

References

Loboda A., Artyomov M., and Sergushichev A. (2016) "Solving generalized maximum-weight con-
nected subgraph problem for network enrichment analysis" doi:10.1007/9783319436814_17

Examples

data("sgmwcs_small_instance")
approx_vs <- virgo_solver(mst=TRUE, threads = 1)
approx_vs$run_main("-h")
sol <- solve_mwcsp(approx_vs, sgmwcs_small_instance)
Not run:
vs <- virgo_solver(cplex_dir='/path/to/cplex')
sol <- solve_mwcsp(approx_vs, sgmwcs_example)

End(Not run)

https://doi.org/10.1007/978-3-319-43681-4_17

Index

∗ datasets
bionet_example, 4
gam_example, 4
gatom_example, 5
gmwcs_example, 6
gmwcs_small_instance, 7
mwcs_example, 7
mwcs_small_instance, 7
sgmwcs_example, 13
sgmwcs_small_instance, 13

annealing_solver, 2

bionet_example, 4

gam_example, 4
gatom_example, 5
get_instance_type, 5, 14
get_weight, 6
gmwcs_example, 6
gmwcs_small_instance, 7

mwcs_example, 7
mwcs_small_instance, 7

normalize_sgmwcs_instance, 8

parameters, 9

rmwcs_solver, 9, 11
rnc_solver, 3, 11

scipjack_solver, 12
set_parameters, 12
sgmwcs_example, 13
sgmwcs_small_instance, 13
solve_mwcsp, 14

timelimit<-, 15

virgo_solver, 16

18

	annealing_solver
	bionet_example
	gam_example
	gatom_example
	get_instance_type
	get_weight
	gmwcs_example
	gmwcs_small_instance
	mwcs_example
	mwcs_small_instance
	normalize_sgmwcs_instance
	parameters
	rmwcs_solver
	rnc_solver
	scipjack_solver
	set_parameters
	sgmwcs_example
	sgmwcs_small_instance
	solve_mwcsp
	timelimit<-
	virgo_solver
	Index

