Package 'mvnormtest'

Title: Normality Test for Multivariate Variables
Description: Generalization of Shapiro-Wilk test for multivariate variables.
Authors: Sławomir Jarek [aut, cre] , Grzegorz Jarek [ctb]
Maintainer: Sławomir Jarek <[email protected]>
License: GPL
Version: 0.1-9-3
Built: 2024-11-04 19:53:43 UTC
Source: CRAN

Help Index


Shapiro-Wilk Multivariate Normality Test

Description

Performs the Shapiro-Wilk test for multivariate normality.

Usage

mshapiro.test(U)

Arguments

U

a numeric matrix of data values, the number of which must be for each sample between 3 and 5000.

Value

A list with class "htest" containing the following components:

statistic

the value of the Shapiro-Wilk statistic.

p.value

the p-value for the test.

method

the character string "Shapiro-Wilk normality test".

data.name

a character string giving the name(s) of the data.

Author(s)

Slawomir Jarek ([email protected])

References

Czeslaw Domanski (1998) Wlasnosci testu wielowymiarowej normalnosci Shapiro-Wilka i jego zastosowanie. Cracow University of Economics Rector's Lectures, No. 37.

Patrick Royston (1982) An Extension of Shapiro and Wilk's WW Test for Normality to Large Samples. Applied Statistics, 31, 115–124.

Patrick Royston (1982) Algorithm AS 181: The WW Test for Normality. Applied Statistics, 31, 176–180.

Patrick Royston (1995) A Remark on Algorithm AS 181: The WW Test for Normality. Applied Statistics, 44, 547–551.

See Also

shapiro.test for univariate samples, qqnorm for producing a normal quantile-quantile plot.

Examples

library(mvnormtest)
data(EuStockMarkets)

C <- t(EuStockMarkets[15:29,1:4])
mshapiro.test(C)

C <- t(EuStockMarkets[14:29,1:4])
mshapiro.test(C)

R <- t(diff(t(log(C))))
mshapiro.test(R)

dR <- t(diff(t(R)))
mshapiro.test(dR)