In order to enable users to work
with mvMAPIT without having to install all dependencies and libraries on
their local, we provide a docker build with all dependencies and an
installed R package mvMAPIT
. Learn how to build your own
version of the docker image.
Follow the official guide to learn how to Get Docker. This is required for being able to follow this tutorial.
The github repository of mvMAPIT already comes
with a Dockerfile
. To build the image, clone the github
repository and run the following commands.
This will produce an image named mvmapit
that contains
Rstudio
, mvMAPIT
, and all dependencies.
With a local copy of the docker image mvmapit
available,
run the following code.
This will start the docker container that serves an RStudio
application at localhost:8787
. In this container,
mvMAPIT
is already installed and can be imported and run in
the R console via the following code.
library(mvMAPIT)
mvmapit(t(simulated_data$genotype[1:100,1:10]),
t(simulated_data$trait[1:100,]),
cores = 2, logLevel = "DEBUG")
## 2024-12-23 06:50:06.688283 DEBUG:mvmapit:Running in normal test mode.
## 2024-12-23 06:50:06.694929 DEBUG:mvmapit:Genotype matrix: 10 x 100
## 2024-12-23 06:50:06.701005 DEBUG:mvmapit:Phenotype matrix: 2 x 100
## 2024-12-23 06:50:06.701669 DEBUG:mvmapit:Number of zero variance variants: 0
## 2024-12-23 06:50:06.702342 DEBUG:mvmapit:Genotype matrix after removing zero variance variants: 10 x 100
## 2024-12-23 06:50:06.702813 DEBUG:mvmapit:Scale X matrix appropriately.
## 2024-12-23 06:50:06.703681 INFO:mvmapit:Running normal C++ routine.
## 2024-12-23 06:50:06.711616 DEBUG:mvmapit:Calculated mean time of execution. Return list.
## $pvalues
## # A tibble: 30 × 3
## id trait p
## <chr> <chr> <dbl>
## 1 snp_00001 p_01*p_01 0.435
## 2 snp_00001 p_02*p_01 0.476
## 3 snp_00001 p_02*p_02 0.909
## 4 snp_00002 p_01*p_01 0.510
## 5 snp_00002 p_02*p_01 0.606
## 6 snp_00002 p_02*p_02 0.326
## 7 snp_00003 p_01*p_01 0.452
## 8 snp_00003 p_02*p_01 0.536
## 9 snp_00003 p_02*p_02 0.140
## 10 snp_00004 p_01*p_01 0.688
## # ℹ 20 more rows
##
## $pves
## # A tibble: 30 × 3
## id trait PVE
## <chr> <chr> <dbl>
## 1 snp_00001 p_01*p_01 0.0615
## 2 snp_00001 p_02*p_01 0.0663
## 3 snp_00001 p_02*p_02 -0.00451
## 4 snp_00002 p_01*p_01 -0.0215
## 5 snp_00002 p_02*p_01 -0.0239
## 6 snp_00002 p_02*p_02 -0.0287
## 7 snp_00003 p_01*p_01 0.0579
## 8 snp_00003 p_02*p_01 0.0493
## 9 snp_00003 p_02*p_02 -0.0400
## 10 snp_00004 p_01*p_01 -0.0146
## # ℹ 20 more rows
##
## $duration
## process duration_ms
## 1 cov 1
## 2 projections 1
## 3 vectorize 1
## 4 q 1
## 5 S 1
## 6 vc 1