Title: | Multi-Way Standard Error Clustering |
---|---|
Description: | Exports two functions implementing multi-way clustering using the method suggested by Cameron, Gelbach, & Miller (2011) and cluster (or block) bootstrapping for estimating variance-covariance matrices. Normal one and two-way clustering matches the results of other common statistical packages. Missing values are handled transparently and rudimentary parallelization support is provided. |
Authors: | Nathaniel Graham and Mahmood Arai and Björn Hagströmer |
Maintainer: | Nathaniel Graham <[email protected]> |
License: | BSD_2_clause + file LICENSE |
Version: | 1.2.3 |
Built: | 2024-12-08 06:49:04 UTC |
Source: | CRAN |
Return a bootstrapped multi-way cluster-robust variance-covariance matrix
cluster.boot(model, cluster, parallel = FALSE, use_white = NULL, force_posdef = FALSE, R = 300, boot_type = "xy", wild_type = "rademacher", debug = FALSE)
cluster.boot(model, cluster, parallel = FALSE, use_white = NULL, force_posdef = FALSE, R = 300, boot_type = "xy", wild_type = "rademacher", debug = FALSE)
model |
The estimated model, usually an |
cluster |
A vector, |
parallel |
Scalar or list. If a list, use the list as a list
of connected processing cores/clusters. Scalar values of |
use_white |
Logical or |
force_posdef |
Logical. Force the eigenvalues of the variance-covariance matrix to be positive. |
R |
|
boot_type |
|
wild_type |
|
debug |
Logical. Print internal values useful for debugging to the console. |
This function implements cluster bootstrapping (also known as the block bootstrap)
for variance-covariance matrices, following Cameron, Gelbach, & Miller (CGM) (2008).
Usage is generally similar to the cluster.vcov
function in this package, but this
function does not support degrees of freedome corrections or leverage adjustments.
In the terminology that CGM (2008) use, this function implements pairs, residual, or wild cluster bootstrap-se.
A pairs (or xy) cluster bootstrap can be obtained by setting boot_type = "xy"
,
which resamples the entire regression data set (both X and y).
Setting boot_type = "residual"
will obtain a residual cluster
bootstrap, which resamples only the residuals (in this case, we resample the blocks/clusters
rather than the individual observations' residuals). To get a wild cluster bootstrap set
boot_type = "wild"
, which does not resample anything, but instead reforms the
dependent variable by multiplying the residual by a randomly drawn value and adding the
result to the fitted value. The default method is the pairs/xy bootstrap.
There are three built-in distributions to draw multipliers from for wild bootstraps:
the Rademacher (wild_type = "rademacher"
, the default), which draws from [-1, 1],
each with P = 0.5, Mammen's suggested distribution (wild_type = "mammen"
, see
Mammen, 1993), and the standard normal/Gaussian distribution (wild_type = "norm"
).
The default is the Rademacher distribution, following CGM (2008). Alternatively, you can
set the function to draw multipliers from by assigning
wild_type
to a function that takes no arguments and returns a single real value.
Multi-way clustering is handled as described by Petersen (2009) and generalized according to Cameron, Gelbach, & Miller (2011). This means that cluster.boot estimates a set of variance-covariance matrices for the variables separately and then sums them (subtracting some matrices and adding others). The method described by CGM (2011) estimates a set of variance-covariance matrices for the residuals (sometimes referred to as the meat of the sandwich estimator) and sums them appropriately. Whether you sum the meat matrices and then compute the model's variance-covariance matrix or you compute a series of model matrices and sum those is mathematically irrelevant, but may lead to (very) minor numerical differences.
Instead of passing in a vector, matrix, data.frame, etc, to specify the cluster variables,
you can use a formula to specify which variables from the
original data frame to use as cluster variables, e.g., ~ firmid + year
.
Ma (2014) suggests using the White (1980)
variance-covariance matrix as the final, subtracted matrix when the union
of the clustering dimensions U results in a single observation per group in U;
e.g., if clustering by firm and year, there is only one observation
per firm-year, we subtract the White (1980) HC0 variance-covariance
from the sum of the firm and year vcov matrices. This is detected
automatically (if use_white = NULL
), but you can force this one way
or the other by setting use_white = TRUE
or FALSE
.
Unlike the cluster.vcov
function, this function does not depend upon the
estfun
function from the sandwich package, although it does make use of the vcovHC
function for computing White (1980) variance-covariance matrices.
Parallelization (if used) is handled by the boot package. Be sure to set
options(boot.ncpus = N)
where N
is the number of CPU cores you want
the boot
function to use.
a variance-covariance matrix of type
matrix
Nathaniel Graham [email protected]
Cameron, A. C., Gelbach, J. B., & Miller, D. L. (2008). Bootstrap-based improvements for inference with clustered errors. The Review of Economics and Statistics, 90(3), 414-427. doi:10.1162/rest.90.3.414
Cameron, A. C., Gelbach, J. B., & Miller, D. L. (2011). Robust inference with multiway clustering. Journal of Business & Economic Statistics, 29(2). doi:10.1198/jbes.2010.07136
Mammen, E. (1993). Bootstrap and wild bootstrap for high dimensional linear models. The Annals of Statistics, 255-285. doi:10.1214/aos/1176349025
Petersen, M. A. (2009). Estimating standard errors in finance panel data sets: Comparing approaches. Review of Financial Studies, 22(1), 435-480. doi:10.1093/rfs/hhn053
White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica: Journal of the Econometric Society, 817–838. doi:10.2307/1912934
cluster.vcov
for clustering using asymptotics
## Not run: library(lmtest) data(petersen) m1 <- lm(y ~ x, data = petersen) # Cluster by firm boot_firm <- cluster.boot(m1, petersen$firmid) coeftest(m1, boot_firm) # Cluster by firm using a formula boot_firm <- cluster.boot(m1, ~ firmid) coeftest(m1, boot_firm) # Cluster by year boot_year <- cluster.boot(m1, petersen$year) coeftest(m1, boot_year) # Double cluster by firm and year boot_both <- cluster.boot(m1, cbind(petersen$firmid, petersen$year)) coeftest(m1, boot_both) # Cluster by firm with wild bootstrap and custom wild distribution boot_firm2 <- cluster.boot(m1, petersen$firmid, boot_type = "wild", wild_type = function() sample(c(-1, 1), 1)) coeftest(m1, boot_firm) # Go multicore using the parallel package require(parallel) cl <- makeCluster(4) options(boot.ncpus = 4) boot_both <- cluster.boot(m1, cbind(petersen$firmid, petersen$year), parallel = cl) stopCluster(cl) coeftest(m1, boot_both) # Go multicore using the parallel package, let boot handle the parallelization require(parallel) options(boot.ncpus = 8) boot_both <- cluster.boot(m1, cbind(petersen$firmid, petersen$year), parallel = TRUE) coeftest(m1, boot_both) ## End(Not run)
## Not run: library(lmtest) data(petersen) m1 <- lm(y ~ x, data = petersen) # Cluster by firm boot_firm <- cluster.boot(m1, petersen$firmid) coeftest(m1, boot_firm) # Cluster by firm using a formula boot_firm <- cluster.boot(m1, ~ firmid) coeftest(m1, boot_firm) # Cluster by year boot_year <- cluster.boot(m1, petersen$year) coeftest(m1, boot_year) # Double cluster by firm and year boot_both <- cluster.boot(m1, cbind(petersen$firmid, petersen$year)) coeftest(m1, boot_both) # Cluster by firm with wild bootstrap and custom wild distribution boot_firm2 <- cluster.boot(m1, petersen$firmid, boot_type = "wild", wild_type = function() sample(c(-1, 1), 1)) coeftest(m1, boot_firm) # Go multicore using the parallel package require(parallel) cl <- makeCluster(4) options(boot.ncpus = 4) boot_both <- cluster.boot(m1, cbind(petersen$firmid, petersen$year), parallel = cl) stopCluster(cl) coeftest(m1, boot_both) # Go multicore using the parallel package, let boot handle the parallelization require(parallel) options(boot.ncpus = 8) boot_both <- cluster.boot(m1, cbind(petersen$firmid, petersen$year), parallel = TRUE) coeftest(m1, boot_both) ## End(Not run)
Return a multi-way cluster-robust variance-covariance matrix
cluster.vcov(model, cluster, parallel = FALSE, use_white = NULL, df_correction = TRUE, leverage = FALSE, force_posdef = FALSE, stata_fe_model_rank = FALSE, debug = FALSE)
cluster.vcov(model, cluster, parallel = FALSE, use_white = NULL, df_correction = TRUE, leverage = FALSE, force_posdef = FALSE, stata_fe_model_rank = FALSE, debug = FALSE)
model |
The estimated model, usually an |
cluster |
A |
parallel |
Scalar or list. If a list, use the list as a list of connected processing cores/clusters. A scalar indicates no parallelization. See the parallel package. |
use_white |
Logical or |
df_correction |
Logical or |
leverage |
Integer. EXPERIMENTAL Uses Mackinnon-White HC3-style leverage
adjustments. Known to work in the non-clustering case,
e.g., it reproduces HC3 if |
force_posdef |
Logical. Force the eigenvalues of the variance-covariance matrix to be positive. |
stata_fe_model_rank |
Logical. If |
debug |
Logical. Print internal values useful for debugging to the console. |
This function implements multi-way clustering using the method
suggested by Cameron, Gelbach, & Miller (2011),
which involves clustering on dimensional combinations, e.g.,
if we're cluster on firm and year, then we compute for firm,
year, and firm-year. Variance-covariance matrices with an odd
number of cluster variables are added, and those with an even
number are subtracted.
The cluster variable(s) are specified by passing the entire variable(s)
to cluster (cbind()
'ed as necessary). The cluster variables should
be of the same number of rows as the original data set; observations
omitted or excluded in the model estimation will be handled accordingly.
Alternatively, you can use a formula to specify which variables from the
original data frame to use as cluster variables, e.g., ~ firmid + year
.
Ma (2014) suggests using the White (1980)
variance-covariance matrix as the final, subtracted matrix when the union
of the clustering dimensions U results in a single observation per group in U;
e.g., if clustering by firm and year, there is only one observation
per firm-year, we subtract the White (1980) HC0 variance-covariance
from the sum of the firm and year vcov matrices. This is detected
automatically (if use_white = NULL
), but you can force this one way
or the other by setting use_white = TRUE
or FALSE
.
Some authors suggest avoiding degrees of freedom corrections with
multi-way clustering. By default, the function uses corrections
identical to Petersen (2009) corrections. Passing a numerical
vector to df_correction
(of length ) will override
the default, and setting
df_correction = FALSE
will use no correction.
Cameron, Gelbach, & Miller (2011)
futher suggest a method for forcing
the variance-covariance matrix to be positive semidefinite by correcting
the eigenvalues of the matrix. To use this method, set force_posdef = TRUE
.
Do not use this method unless absolutely necessary! The eigen/spectral
decomposition used is not ideal numerically, and may introduce small
errors or deviations. If force_posdef = TRUE
, the correction is applied
regardless of whether it's necessary.
The defaults deliberately match the Stata default output for one-way and Mitchell Petersen's two-way Stata code results. To match the SAS default output (obtained using the class & repeated subject statements, see Arellano, 1987) simply turn off the degrees of freedom correction.
Parallelization is available via the parallel package by passing
the "cluster" list (usually called cl
) to the parallel argument.
a variance-covariance matrix of type 'matrix'
Nathaniel Graham [email protected]
Arellano, M. (1987). PRACTITIONERS' CORNER: Computing Robust Standard Errors for Within-groups Estimators. Oxford Bulletin of Economics and Statistics, 49(4), 431–434. doi:10.1111/j.1468-0084.1987.mp49004006.x
Cameron, A. C., Gelbach, J. B., & Miller, D. L. (2011). Robust inference with multiway clustering. Journal of Business & Economic Statistics, 29(2). doi:10.1198/jbes.2010.07136
Ma, Mark (Shuai), Are We Really Doing What We Think We Are Doing? A Note on Finite-Sample Estimates of Two-Way Cluster-Robust Standard Errors (April 9, 2014).
MacKinnon, J. G., & White, H. (1985). Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. Journal of Econometrics, 29(3), 305–325. doi:10.1016/0304-4076(85)90158-7
Petersen, M. A. (2009). Estimating standard errors in finance panel data sets: Comparing approaches. Review of Financial Studies, 22(1), 435–480. doi:10.1093/rfs/hhn053
White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica: Journal of the Econometric Society, 817–838. doi:10.2307/1912934
The coeftest
and waldtest
functions
from lmtest provide hypothesis testing, sandwich provides other
variance-covariance matrices such as vcovHC
and vcovHAC
,
and the felm
function from lfe also implements multi-way standard
error clustering. The cluster.boot
function provides clustering using the bootstrap.
library(lmtest) data(petersen) m1 <- lm(y ~ x, data = petersen) # Cluster by firm vcov_firm <- cluster.vcov(m1, petersen$firmid) coeftest(m1, vcov_firm) # Cluster by year vcov_year <- cluster.vcov(m1, petersen$year) coeftest(m1, vcov_year) # Cluster by year using a formula vcov_year_formula <- cluster.vcov(m1, ~ year) coeftest(m1, vcov_year_formula) # Double cluster by firm and year vcov_both <- cluster.vcov(m1, cbind(petersen$firmid, petersen$year)) coeftest(m1, vcov_both) # Double cluster by firm and year using a formula vcov_both_formula <- cluster.vcov(m1, ~ firmid + year) coeftest(m1, vcov_both_formula) # Replicate Mahmood Arai's double cluster by firm and year vcov_both <- cluster.vcov(m1, cbind(petersen$firmid, petersen$year), use_white = FALSE) coeftest(m1, vcov_both) # For comparison, produce White HC0 VCOV the hard way vcov_hc0 <- cluster.vcov(m1, 1:nrow(petersen), df_correction = FALSE) coeftest(m1, vcov_hc0) # Produce White HC1 VCOV the hard way vcov_hc1 <- cluster.vcov(m1, 1:nrow(petersen), df_correction = TRUE) coeftest(m1, vcov_hc1) # Produce White HC2 VCOV the hard way vcov_hc2 <- cluster.vcov(m1, 1:nrow(petersen), df_correction = FALSE, leverage = 2) coeftest(m1, vcov_hc2) # Produce White HC3 VCOV the hard way vcov_hc3 <- cluster.vcov(m1, 1:nrow(petersen), df_correction = FALSE, leverage = 3) coeftest(m1, vcov_hc3) # Go multicore using the parallel package ## Not run: library(parallel) cl <- makeCluster(4) vcov_both <- cluster.vcov(m1, cbind(petersen$firmid, petersen$year), parallel = cl) stopCluster(cl) coeftest(m1, vcov_both) ## End(Not run)
library(lmtest) data(petersen) m1 <- lm(y ~ x, data = petersen) # Cluster by firm vcov_firm <- cluster.vcov(m1, petersen$firmid) coeftest(m1, vcov_firm) # Cluster by year vcov_year <- cluster.vcov(m1, petersen$year) coeftest(m1, vcov_year) # Cluster by year using a formula vcov_year_formula <- cluster.vcov(m1, ~ year) coeftest(m1, vcov_year_formula) # Double cluster by firm and year vcov_both <- cluster.vcov(m1, cbind(petersen$firmid, petersen$year)) coeftest(m1, vcov_both) # Double cluster by firm and year using a formula vcov_both_formula <- cluster.vcov(m1, ~ firmid + year) coeftest(m1, vcov_both_formula) # Replicate Mahmood Arai's double cluster by firm and year vcov_both <- cluster.vcov(m1, cbind(petersen$firmid, petersen$year), use_white = FALSE) coeftest(m1, vcov_both) # For comparison, produce White HC0 VCOV the hard way vcov_hc0 <- cluster.vcov(m1, 1:nrow(petersen), df_correction = FALSE) coeftest(m1, vcov_hc0) # Produce White HC1 VCOV the hard way vcov_hc1 <- cluster.vcov(m1, 1:nrow(petersen), df_correction = TRUE) coeftest(m1, vcov_hc1) # Produce White HC2 VCOV the hard way vcov_hc2 <- cluster.vcov(m1, 1:nrow(petersen), df_correction = FALSE, leverage = 2) coeftest(m1, vcov_hc2) # Produce White HC3 VCOV the hard way vcov_hc3 <- cluster.vcov(m1, 1:nrow(petersen), df_correction = FALSE, leverage = 3) coeftest(m1, vcov_hc3) # Go multicore using the parallel package ## Not run: library(parallel) cl <- makeCluster(4) vcov_both <- cluster.vcov(m1, cbind(petersen$firmid, petersen$year), parallel = cl) stopCluster(cl) coeftest(m1, vcov_both) ## End(Not run)
A dataset containing the 500 simulated firms over 10 years. Originally created by Mitchell Petersen in conjunction with Petersen (2009) and made available at http://www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/test_data.txt. See the references for simulation process. The variables are as follows:
A data frame with 5000 rows and 4 variables
firmid. Firm identifier.
year. Year identifier.
x. Independent (right-hand side) variable.
y. Dependent (left-hand side) variable.
Petersen, M. A. (2009). Estimating standard errors in finance panel data sets: Comparing approaches. Review of financial studies, 22(1), 435-480.
Mitchell Petersen's description of the simulation process: http://www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/se_programming.htm