Package: multiplex (via r-universe)

June 27, 2024

Type Package

Version 3.3-2
Depends R ($>=4.2 .0$)
Imports methods
Suggests multigraph, Rgraphviz, knitr
Title Algebraic Tools for the Analysis of Multiple Social Networks
Description Algebraic procedures for analyses of multiple social networks are delivered with this package as described in Ostoic (2020) DOI:10.18637/jss.v092.i11. 'multiplex' makes possible, among other things, to create and manipulate multiplex, multimode, and multilevel network data with different formats. Effective ways are available to treat multiple networks with routines that combine algebraic systems like the partially ordered semigroup with decomposition procedures or semiring structures with the relational bundles occurring in different types of multivariate networks. 'multiplex' provides also an algebraic approach for affiliation networks through Galois derivations between families of the pairs of subsets in the two domains of the network with visualization options.

Date 2024-06-26
Author Antonio Rivero Ostoic [aut, cre]
Maintainer Antonio Rivero Ostoic multiplex@post.com
URL https://github.com/mplex/multiplex/
BugReports https://github.com/mplex/multiplex/issues/
Repository CRAN
License GPL-3
VignetteBuilder knitr
NeedsCompilation no
Date/Publication 2024-06-26 12:30:02 UTC

Contents

multiplex-package 3
as.semigroup 5
as.signed 6
as.strings 7
bundle.census 8
bundles 9
cngr 11
comps 12
cph 13
decomp 15
diagram 16
diagram.levels 18
dichot 19
edgel 20
edgeT 22
expos 23
fact 24
fltr 26
galois 27
green.rel 28
hasse 30
hierar 32
incubs 33
mlvl 34
mnplx 35
neighb 36
pacnet 38
partial.order 39
perm 40
pfvn 41
pi.rels 42
prev 43
rbox 45
read.dl 46
read.gml 47
reduc 48
rel.sys 49
rm.isol 51
semigroup 52
semiring 54
signed 56
strings 57
summaryBundles 58
transf 60
wordT 61
write.dat 62
write.dl 63
write.edgel 64
write.gml 65
zbind 66
Index 68
multiplex-package Algebraic Tools for the Analysis of Multiple Social Networks

Description

One of the aims of the "multiplex" package is to meet the necessity to count with an analytic tool specially designed for social networks with relations at different levels. In this sense, "multiplex" counts with functions that models the local role algebras of the network based on the simple and compound relations existing in the system. "multiplex" has also a procedure for the construction and analysis of signed networks through the semiring structure. With "multiplex", the different relational patterns at the dyadic level in the network can be obtained as well, which can serve for a further analysis with different types of structural theories.
It is also possible to take the attributes of the actors in the analysis of multiple networks with different forms to incorporate this kind of information to the existing relational structures. For instance, the network exposure of the actors can be taken in the context of multiple networks in this case, or else the attributes can be embedded in the resulted algebraic structures.

Details

Package:	multiplex
Type:	Package
Version:	$3.3-2$
Date:	26 June 2024
License:	GPL-3
LazyLoad:	yes

One way to work with this package is typically by starting with a specific algebraic structure like a semigroup that is a closed system made of a set of elements and an associative operation on it. This algebraic structure is constructed by the semigroup function, and it takes an array of (usually but not necessarily) multiple binary relations, which constitute the generator relations. The Word Table and the Edge Table serve to describe completely the semigroup, and they are constructed with the functions wordT and edgeT respectively. Unique relations of the complete semigroup are given by the strings function together with the set of equations with strings of length k. The partial.order function specifies the ordering of the string elements in the semigroup, and the function hasse (or function diagram with this type) produces the lattice of inclusions of a structure having ordered relations.
Semigroups can be analysed further by the green. rel function, and their found equivalence classes can be visualized as "egg-box" type with the diagram function. Semigroups can be reduced as
well with a decomposition process, which can be based on congruence or π-relations of the unique strings. In this case pi.rels, cngr, and decomp will make this job for you either for an abstract or a partially ordered structure.
In addition, it is possible to analyse structural balance in signed networks, which are built by signed, through the algebraic structure of the semiring. A semiring is an algebraic structure that combines an abstract semigroup with identity under multiplication and a commutative monoid under addition. The semiring function is capable to perform both balance and cluster semiring either with cycles or semicycles.
There are other capabilities in the package that are not strictly algebraic. For instance, the dichot serves to dichotomize the input data with a specified cut-off value, rm. isol removes isolated nodes, and the perm function performs an automorphism of the elements in the representative array. All these functions are built for multiple networks represented by high dimensional structures that can be constructed by function zbind to produce three-dimensional arrays.
Furthermore, "multiplex" creates a Relation-Box with the rbox function, and it implements the Compositional Equivalence expressed in the cumulated person hierarchy of the network computed with the cph function.
Relational bundles are identified through the bundles function, which provides lists of pair relations. The transf function serves to transform pairwise list data into a matrix form and viceversa. The enumeration of the different bundle classes is given by bundle. census, while summaryBundles prints the bundle class patterns results. An advantage of counting with the bundle patterns is that the different types of bundles serve to establish a system inside the network, in which it is possible to measure the network exposure in multivariate relational systems. Such features can be realized via the rel.sys and expos functions, respectively. Several attributes can be derived by galois, which provides an algebraic approach for the analysis of two-mode networks.
Finally, multivariate network data can be created using a send receive ties edge list format that can be loaded and transformed to arrays through the edgel function. Other formats for multiple network data like UCINET dl or Visone gml can be imported and exported as well with the "multiplex" package.

Author(s)

J. Antonio Rivero Ostoic

Maintainer: Antonio Rivero Ostoic <multiplex @ post.com>

References

Pattison, P.E. Algebraic Models for Social Networks. Structural Analysis in the Social Sciences. Cambridge University Press. 1993.
Boyd, J.P. Social Semigroups. A unified theory of scaling and blockmodelling as applied to social networks. George Mason University Press. 1991.

Lorrain, F. and H.C. White, "Structural Equivalence of Individuals in Social Networks." Journal of Mathematical Sociology, 1, 49-80. 1971.

Boorman, S.A. and H.C. White, "Social Structure from Multiple Networks. II. Role Structures." American Journal of Sociology, 81 (6), 1384-1446. 1976.
Ostoic, J.A.R. Algebraic Analysis of Social Networks. Wiley Series in Computational and Quantitative Social Sciences. Wiley. 2021.

See Also

multigraph, bmgraph, ccgraph.

Examples

```
## Create the data: two binary relations among three elements
arr <- round( replace( array(runif(18), c(3,3,2)), array(runif(18),
            c(3,3,2))>.5, 3 ) )
## Dichotomize it with customized cutoff value
dichot(arr, c = 3)
## preview
prev(arr)
## create the semigroup and look at Green's relations
semigroup(arr) |> green.rel()
## and look at the strings
strings(arr)
```

```
as.semigroup Coerce to a Semigroup Object
```


Description

A generic function for coercing an R object to a semigroup class.

Usage

as.semigroup (x, gens = NA, lbs, numerical, edgeT)

Arguments

x
gens array or vector representing the semigroup generators
lbs
numerical (optional and logical) should the semigroup have numerical format?
edgeT (optional, logical, and experimental) is ' x ' an edge table?

Details

Since many of the functions in the multiplex package require an object of the 'Semigroup' class, this function produces this class object from an array representing the semigroup structure.

Value

An object of the 'Semigroup' class
ord a number with the dimension of the semigroup
st the strings, i.e. a vector of the unique relations
gens the semigroup generators
S the multiplication table of the semigroup

Author(s)

Antonio Rivero Ostoic

See Also

semigroup, green.rel

Examples

```
## create labeled multiplication table data
s <- matrix(data=c(1, 1, 1, 3, 3, 3, 3, 3, 3), nrow=3, ncol=3, byrow=TRUE)
attr(s, "dimnames") <- list(1:3,1:3)
## make a semigroup object
as.semigroup(s)
```

as.signed Coerce to a Signed Object

Description

A generic function for coercing an object to a Signed class.

Usage

as.signed(x, lbs)

Arguments

x
a matrix representing the signed network
lbs
(optional) labels for the signed matrix

Details

Since the semiring function requires an object with a 'Signed' class, this function produces this class object from an array representing the signed network

Value

The array as a Signed class

See Also

signed, semiring

Examples

```
## Load the data
data("incubA")
## Coerce parts of the signed matrix with two types of relations
as.signed(signed(incubA$IM)$s[1:2,1:2])
```


Description

A generic function for coercing an R object to a Rel. Strings class.

Usage

as.strings(x, lbs = NULL)

Arguments

X
an array; usually with three dimensions of stacked matrices where the multiple relations are placed.
lbs
(optional) the labels of the strings

Details

This function is useful to proceed with the establishment of the partial order in the strings of relations where the object should be of a 'Strings' class.

Value

An object of 'Strings' class
wt the word tables
ord the number of unique relations in the semigroup

Author(s)

Antonio Rivero Ostoic

See Also

```
strings, partial.order, zbind
```


Examples

```
## Create the data: two sets with a pair of binary relations among
## three elements
arr1 <- round( replace( array(runif(18), c(3,3,2)), array(runif(18),
    c(3,3,2))>.5, 3 ) )
arr2 <- round( replace( array(runif(18), c(3,3,2)), array(runif(18),
    c(3,3,2))>.5, 3 ) )
## bind the data sets
arrs <- zbind(arr1, arr2)
## make the data a strings object
as.strings(arrs)
```

bundle.census
Bundle Census

Description

A function to perform the Bundle Census in multiple networks.

Usage

bundle.census(x, loops = FALSE)

Arguments

$x \quad$ an array; usually with three dimensions of stacked matrices where the multiple relations are placed.
loops (logical) whether or not the loops should be considered

Details

This function calculates the number of occurrences for each bundle class pattern in multiple networks. A bundle is a particular type of pattern made of relations at different levels that is binding a pair of nodes or actors. Depending on the direction and occurrence of each possible tie, then it is possible to count with seven dyadic configuration classes in the census.

Value

A table with the occurrences in the distinct bundle class patterns. The first column in the output gives the number of bundles in the network, excluding the null pattern, and then the totals for each bundle class pattern are specified in the following columns. The last column of the table hosts loops in case these are activated in the input.

Functions bundles and summaryBundles provide bundle class occurrences in the network with a more detailed information.

Author(s)

Antonio Rivero Ostoic

References

Ostoic, J. A. R. ‘Dyadic Patterns in Multiple Networks’’Advances in Social Networks Analysis and Mining, International Conference on, 475-481. 2011.

See Also

bundles, summaryBundles

Examples

```
## Create the data: two binary relations among three elements
arr <- round( replace( array(runif(18), c(3,3,2)), array(runif(18),
        c(3,3,2))>.8, 3 ) )
## Calculate the Bundle Census
bundle.census(arr)
```

 bundles Bundle Class Patterns

Description

Classify the Bundle class patterns in a system of multiple relations

Usage

$$
\begin{aligned}
\text { bundles }(x, \text { loops } & =\text { FALSE, smpl }=\text { FALSE, lb2lb }=\text { TRUE, } \\
\text { collapse } & =\text { FALSE, sep })
\end{aligned}
$$

Arguments

x
loops (logical) whether or not the loops should be considered as a particular bundle
smpl (logical) simplify the strings of relations? Default no.
lb2lb (logical) should the labels of the nodes be included in the output? (default yes).
collapse (logical) collapse the distinct levels of relations in the network? (default no).
sep
an array; usually with three dimensions of stacked matrices where the multiple relations are placed.
(optional) the pair separator for the pairwise relations

Details

A bundle is a particular type of pattern made of relations at different levels that is binding a pair of nodes or actors in a network of relationships. A bundle class is a dyadic configuration resulting from the mixture of the direction and the types of ties between the nodes or actors. There are in total seven dyadic configuration classes, which are null, asymmetric, reciprocal, tie entrainment, tie exchange, mixed, and the full bundle pattern. This function provides detailed information about the bundle class patterns in multiple networks as lists of pair relations among the nodes or actors, except for the 'null' pattern.

In case that the nodes are not labeled, then an identification number will be assigned according to the nodes' location in the array representation and as well when the lb2lb option is set to FALSE. This function assumes that the network is directed, and self ties can also be considered in the output. Long string labels can be simplified with smpl, whereas the collapse option blurs the levels in the strings.

Value

An object of 'Rel. Bundles' class with the distinct bundle class patterns.

asym	asymmetric ties
recp	reciprocal ties
tent	tie entrainment
txch	tie exchange
mixed	mixed
full	full
loops	loops (if chosen)

Note
The input array for this function is always dichotomized, and it is possible to obtain the total number of occurrences in each bundle class pattern with the bundle. census function.

Author(s)

Antonio Rivero Ostoic

References

Ostoic, J. A. R. ‘Dyadic Patterns in Multiple Networks,' Advances in Social Networks Analysis and Mining, International Conference on, 475-481. 2011.

See Also

bundle.census, summaryBundles, transf.

Examples

```
## Create the data: two binary relations among three elements
arr <- round( replace( array(runif(18), c(3,3,2)), array(runif(18),
        c(3,3,2))>.8, 3 ) )
## Establish the different bundles
bundles(arr)
```

cngr Congruence Relations

Description

Find the congruence relations of a given abstract or a partially ordered semigroup.

Usage

$\operatorname{cngr}(S, P O=N U L L$, uniq)

Arguments

S
PO (optional) the partial order table
uniq (optional and logical) whether or not return the unique congruence relations

Details

Congruencies are equivalence relations that preserve the operation between the correspondent classes in the algebraic structure. In this case, the different congruence classes are based on the substitution property of the semigroup object.

Value

An object of 'Congruence' class. The items included are:
S semigroup of relations
PO partial order table (if specified)
clu congruence classes

Note
If the partial order is supplied in the input, then the computation of the congruence classes is slightly faster than for an abstract semigroup.

Author(s)

Antonio Rivero Ostoic

References

Hartmanis, J. and R.E. Stearns Algebraic Structure Theory of Sequential Machines. Prentice-Hall. 1966.

See Also

decomp, fact, pacnet

Examples

```
## Create an abstract semigroup object
arr <- round( replace( array(runif(18), c(3,3,2)), array(runif(18),
    c(3,3,2))>.5, 1 ) )
#
S <- semigroup(arr)
## look at the congruences in S
cngr(S, PO=NULL)
```

comps Find Components in Multiple Networks

Description

Function to find different components in the multiple network including isolates

Usage

comps(x, bonds = c("entire", "strong", "weak"))

Arguments

$x \quad$ array representing the network
bonds the type of bonds to be used in the creation of the relational system for the different components

Details

The network's different components are obtained through the transitive closure of the bundle ties. By default, the "entire" system is chosen, but the option bonds allow discriminating different types of relational bundles for the components.

Value

A list with two possible "components"

com	a component
isol	the isolates

Author(s)

Antonio Rivero Ostoic

See Also

bundles, rel.sys

Examples

```
## Create the data: two binary relations among three elements
arr <- round( replace( array( runif(18), c(3 , 3, 2) ), array( runif(18),
    c(3, 3, 2) ) > .9, 3 ) )
## Find components ans isolates
comps(arr)
```

 cph Cumulated Person Hierarchy

Description

A function to calculate the Cumulated Person Hierarchy in networks of multiple relations

Usage

$\mathrm{cph}(W, \mathrm{lbs})$

Arguments

W
lbs
an object of the 'Rel. Box' class.
(optional) the labels of the relational system

Details

The cumulated person hierarchy is used to determine the partial structural equivalence among the actors in a multiple network. Two nodes are considered as partial structural equivalent iff they have identical role sets.

The outcome of this function depends on the characteristics of the Relation-Box.

Value
An object of 'Partial. Order' class with an array representing the cumulated person hierarchy.

Note

If the length of the labels differs from the order of the relational system, then labels will be ignored.

Author(s)

Antonio Rivero Ostoic

References

Breiger, R.L. and P.E. Pattison, 'Cumulated social roles: The duality of persons and their algebras,' Social Networks, 8, 215-256. 1986.

Mandel, M.J. 'Roles and networks: A local approach'. B.A. Honours thesis, Harvard University. 1978.

See Also

rbox, semigroup, diagram

Examples

```
## load the data
data("incubA")
## Make the Relation Box of the image matrices
rb <- rbox(incubA$IM)
## Calculate the cumulated person hierarchy
cph(rb)
```

```
decomp Decomposition of a Semigroup Structure
```


Description

A function to perform the decomposition of a semigroup structure

Usage

decomp(S, pr, type = c("mca", "pi", "at", "cc"), reduc, fac, force)

Arguments

Details

The decomp function is a reduction form of an algebraic structure like the semigroup that verifies which of the class members in the system are congruent to each other. The decomposed object then is made of congruent elements, which form part of the lattice of congruence classes in the algebraic structure. In case that the input data comes from the Pacnet program, then such elements are in form of π-relations or the meet-complements of the atoms; otherwise these are simply equivalent elements satisfying the substitution property.
Sometimes a 'Semigroup' class object contains not available data in the multiplication table, typically when it is an image from the fact function. In such case, it is possible to perform a reduction of the semigroup structure with the force option, which performs additional equations to the string relations in order to get rid of NAs in the semigroup data.

Value
An object of 'Decomp' class having:

clu	vector with the class membership
eq	the equations in the decomposition

IM	(optional) the image matrices
PO	(optional) the partial order table
ord	(optional) a vector with the order of the image matrices

Note

Reduction of the partial order table should be made by the reduc function.

Author(s)

Antonio Rivero Ostoic

References

Pattison, Philippa E. Algebraic Models for Social Networks. Cambridge University Press. 1993.
Hartmanis, J. and R.E. Stearns Algebraic Structure Theory of Sequential Machines. Prentice-Hall. 1966.

See Also

fact, cngr, reduc, pi.rels, semigroup, partial.order, green.rel.
diagram Plot Diagrams of Ordered or Linked Relations

Description

A function to plot and manipulate Hasse and Concept diagrams of ordered relations, or the Egg-box of a semigroup structure.

Usage

diagram(x, type = c("hasse", "concept", "egg-box"), attrs = NULL, main = NULL, incmp, cex.main, bg, mar, shape, col, col0, fcol, ecol, lty, lbs, ffamily, fstyle, fsize, col.main, sep, ...)

Arguments

x
type
a matrix representing ordered relations
type of diagram:

- hasse Hasse diagram of partially ordered relations
- concept Concept lattice of a formal context
- egg-box the egg-box diagram of an abstract semigroup

For egg-box, the following arguments are ignored.
attrs (optional) attributes of the diagram

main	(optional) title of the diagram
incmp	(logical) whether or not incomparable elements should be included in the lattice diagram
cex.main	(optional) font size of diagram's title
bg	(optional) background color of diagram
mar	(optional) margins of plot
shape	(optional) shape of vertices
col	(optional) color of vertices
col0	(optional) color of vertices' contour
fcol	(optional) color of text's vertices
ecol	(optional) color of edges
lty	(optional) shape of edges
lbs	(optional) labels of elements in partially ordered set
ffamily	(optional) font family of vertex labels
fstyle	(optional) font style of vertex labels with options:
	- bold
	- italic
	- bolditalic
fsize	(optional) font size of vertex labels
col.main	(optional) font color of main title
sep	(optional) pair separator for pairwise relations inside intents and extents
	(optional) additional graphical items

Details

diagram is a wrapper function to plot and manipulate Hasse, Concept, and Egg-box types of diagrams.
The first two diagrams are for systems of ordered relations, and the plotted deviced is either a partial order or a linear order diagram. An example of ordered relations is found in the partial order table of relations product of the 'strings' option in the partial. order function, and which is plotted as a Hasse diagram. Another set of ordered relations comes from the table produced on Galois derivations within Formal Concept analysis where a Concept diagram represents the ordering relations among formal concepts made of intents and extents.
The Egg-box diagram is for equivalence classes in an abstract semigroup not associated to a partial order structure.

Value

Depending on the type, a Hasse diagram of partially ordered relations, a Concept diagram of formal concepts in a formal context, or an Egg-box of an abstract semigroup.

Warning

Requires Rgraphviz package installed.

Note

Roman numerals are given for elements when the partial order table is not labelled.

Author(s)

Antonio Rivero Ostoic

See Also

hasse, partial.order, strings, galois, green.rel, diagram.levels, as.strings, ccgraph.

Examples

```
## load a dataset
data("incubA")
## given e.g. a partial order table in the object 'po'
po <- as.strings(incubA$IM) |>
    partial.order(type="strings")
## plot the order relation as a Hasse diagram
## Not run: if(require(Rgraphviz)) {
plot(diagram(po, type="hasse"))
}
## End(Not run)
```

diagram. levels Levels in the Lattice Diagram

Description

This is a function that reads the different levels in the lattice diagram of the partial order structure among actors and ties in the network

Usage

diagram.levels(x, perm = FALSE)

Arguments

x
perm (optional) whether or not to return the permuted structure

Details

When it comes to reduce the structure of a multiple network, many times the partial order structure provides different classes of elements depending in the inclusions these elements have. In this sense, the illustration given by the diagram function provides us typically with different levels of the ordered relations, which are read by this routine.

Value

A named list with components of the "levels" in the concept diagram produced by diagram.
If the permutation is specified, a data frame with the elements of the partial order structure with the column names indicating the element class plus a vector with the levels and a matrix with the permuted structure are given as well.

Note

This function requires that the Rgraphviz package is available. Besides, since the pictex function from grDevices is inside this routine, which may imply in some cases running with administrator privileges.

Author(s)

Antonio Rivero Ostoic

See Also

partial.order, diagram, perm

Examples

```
## load the data
data("incubA")
## given e.g. a partial order table in the object 'po'
po <- partial.order(as.strings(incubA$IM))
## find the levels in the lattice diagram
## Not run: diagram.levels(po)
```


dichot Dichotomize Data with a Cutoff Value

Description

Function to dichotomize the input data for the semigroup construction with a cutoff value.

Usage

dichot(x, c = 1, diag)

Arguments

x	some data in a numeric form (usually arrays)
c	the cutoff value to perform the dichotomization (default 1)
diag	(optional and logical) whether or not the diagonals should be included (default TRUE)

Details

This is a convenient function (or wrapper if you like) of the replace function. In this case, the function is aimed to specify a cutoff value for the dichotomization of the data where the values equal or higher to the cutoff are converted to one, while the others are set to zero. The cutoff can be any real number.

Value

Binary values of the input data.

Note

The labels are preserved after the dichotomization.

Author(s)

Antonio Rivero Ostoic

See Also

replace, prev, semigroup.

Examples

```
## Create the data: 2 binary relations among 3 elements
arr <- round( replace( array(runif(18), c(3,3,2)), array(runif(18),
    c(3,3,2))>.5, 3 ) )
## dichotomize it with a cutoff value of 2
dichot(arr, c = 2)
```

edgel Read Edge List Files

Description

A function to read edge list files with send, receive, and t ies format for a multivariate network with the possibility to transform it into an three dimenasional array.

Usage

```
edgel(file, header = TRUE, sep = "\t", toarray = TRUE, dichot = FALSE,
    attr = FALSE, rownames = FALSE, add = NULL)
```


Arguments

file header sep	path to the file
(logical) does the file has a header?	
toarray	the separator among the columns (default is horizontal tab)
dichot	(logical) should the data frame be transformed to arrays?
attr	(logical) should the data be dichotomized?
rownames	(logical) whether or not the file corresponds to attribute-based data
add	(optional) isolates to be added to the network

Details

edgel is a function to read files with send, receive, and ties format, which is a data frame with at least 2 columns for the sender, receiver and for multiplex networks also the ties, one column for each type of relation. However, the attr option correspond to a actor and self-ties data frame file with the option to transform it into a diagonal matrix. When toarray is set to FALSE, options attr and rownames allow placing the first column of the data frame as the name of the table, which is the format of two-mode data, and compute for instance Galois transformations among the partite sets. If more than one isolate is added, then the data must be included as a vector.

It is also possible to treat the input data as data frame object and manipulate it via e.g. the subset function with the toarray option. Valued networks are now supported as well.

Value

By default an array; usually with three dimensions of stacked matrices where the multiple relations are placed. If toarray $=$ FALSE, then the data frame is given.

Note

For compatibility reasons, alias for edgel is read.srt.

Author(s)

Antonio Rivero Ostoic

See Also

write.edgel, read.gml, read.dl, galois

```
edgeT Edge Table Generator
```


Description

The Edge Table generator of multiple relations.

Usage

edgeT(x)

Arguments

x
an array; usually with three dimensions of stacked matrices where the multiple relations are placed.

Details

The Edge Table is the complete right multiplication table of the semigroup having its elements for each of its generators.

Value

An object of the 'EdgeTable' class
gens the generator relations
ET the Edge Table

Author(s)

Antonio Rivero Ostoic

References

Cannon, J.J. 'Computing the ideal structure of finite semigroup,' Numerische Mathematik, 18, 254266. 1971.

Pattison, P.E. Algebraic Models for Social Networks. Cambridge University Press. 1993.

See Also

wordT, semigroup.

Examples

```
## Create the data: 2 binary relations among 3 elements
arr <- round( replace( array(runif(18), c(3,3,2)), array(runif(18),
        c(3,3,2))>.5, 1 ) )
## get the edge table
edgeT(arr)
```

 expos Network Exposure for Multiple Networks

Description

Function to measure the network exposure of the nodes according to a chosen relational system representing the multiple network.

Usage

expos(rs, classes = FALSE, allClasses = FALSE, allNodes = TRUE)

Arguments

rs	an object of 'Rel. System', typically with node attributes.
classes	(optional) whether or not should be included in the output the categories of adopters
allClasses	(optional) whether or not to include empty classes within the categories of adopters. Ignored if classes is FALSE
allNodes	(optional) whether or not to include all actors in the network regardless they are in the chosen system. Ignored if classes is FALSE

Details

This is a generalization of the network exposure measure for multiple networks with the characteristics chosen for the representative relational system. Such a system can be the entire network or configuration with strong or weak bonds among the actors. It is possible to specify different behaviors of the nodes representing social actors, which are indicated in the form of a relational system. The network exposure measure is calculated according to the immediate neighbours to the reference actor.

Value

Classes if option classes is set to TRUE, the adoption membership for the type of relational system chosen, including isolated actors in the system.
Bonds the type of bonds of the relational system (cf. rel.sys)
Exposure the exposure to the attribute(s) for acquisition through immediate neighbour relations

Author(s)

Antonio Rivero Ostoic

References

Ostoic, J.A.R. 'Creating context for social influence processes in multiplex networks.' Network Science, 5(1), 1-29.
Valente, T. W. Social networks and health. Oxford University Press. 2010.
Rogers, E. The Diffusion of Innovations. 5th ed. (1st ed. 1964) The Free Press. 2003.

See Also

> rel.sys, neighb, bundles

Examples

```
## Create the data: two binary relations among three elements
arr <- round( replace( array( runif(18), c(3 , 3, 2) ), array( runif(18),
c(3, 3, 2) ) > .9, 3 ) )
## the first array is for attributes
rs <- rel.sys(arr, att = 1)
## Calculate the exposure measure for an attribute type with adopter categories
expos(rs, classes = TRUE)
```

fact Factorisation of Semigroup Structures

Description

A function to decompose partially ordered semigroups

Usage

fact (S, P, uniq = TRUE, fac, atoms, mca, atmc, patm, k)

Arguments

S
$P \quad$ partial order structure associated to S
uniq
fac 'factor' to be factorised, in case that input factorised partially ordered structures
atoms (logical) whether or not include in output atoms
mca (logical) whether or not include in output meet-complements of atoms

atmc	(logical) whether or not include in output atoms' meet-complements
patm	(logical) whether or not include in output potential atoms
k	(for patm) length of induced inclusion

Details

The factorisation is part of decomposition for partially ordered semigroups, and function fact allows to obtain elements generated in this process.

Value

An object of 'Ind.incl' class having:
po partial order table
iin list of induced inclusions pairwise listed
niin length of induced inclusions
patm (for patm) a vector with potential atoms
atm vector with atoms
atmc (for atmc) array with meet-complements of atoms
mc array of meet-complements of atoms
note (if needed) induced inclusions without substitution property

Note
Data objects imported with pacnet are compatible for further factorisation.

Author(s)

Antonio Rivero Ostoic (based on the algorithm described in Ardu, 1995)

References

Ardu, S. ASNET - Algebraic and Statistical Network Analysis. User Manual. University of Melbourne. 1995.

See Also

decomp, cngr, pacnet

Examples

```
## Create a partially ordered semigroup
arr <- round( replace( array(runif(18), c(3,3,2)), array(runif(18),
    c(3,3,2))>.5, 1 ) )
# semigroup
S <- semigroup(arr)
```

```
    # string relations and partial order
    P <- strings(arr) |>
        partial.order()
    # Perform the factorisation of PO S
    fact(S, P)
```

fltr
Principal Filters

Description

A function to find principal filters in a partial order

Usage

fltr(x, PO, ideal = FALSE, rclos)

Arguments

x	the reference element in the partial order (integer or character)
PO	the partial order
ideal	(logical) whether or not the "filter" is an ideal
rclos	(optional and logical) apply reflexive closure?

Details

This function helps to find principal filters or principal ideals for an element in a partial order structure. Such inputs are normally a concept or an object or attribute in the concept together with the associated partial ordering structure of the concepts, which results from Galois derivations. Typically, if the reference element refers to a concept, then it is given as a positive integer indicating the concept label. Another option is to refer to an object or an attribute by a character name, which should be part of the labels of the dimensions of the partial order table with reduced labelling. Principal filters with full labelling are not allowed if the reference element is an object or an attribute. Use an integer for the concept instead.

Value

A named list with the elements in the upset or downset of the principal filter or ideal corresponding to the reference element in the partial order.

Author(s)

Antonio Rivero Ostoic

References

Ganter, B. and R. Wille Formal Concept Analysis - Mathematical Foundations. Springer. 1996.

See Also

galois, partial.order, diagram.

Examples

```
## Create a data frame
dfr <- data.frame(x=1:3, y=5:7)
## Partial ordering of concepts
PO <- partial.order(galois(dfr),"galois")
## Filter for the first element
fltr(1, PO, rclos=TRUE)
```

galois Galois Derivations Between Subsets

Description

Function to perform Galois derivations between partially ordered subsets

Usage

galois(x, labeling = c("full", "reduced"), sep, valued, scl, sep2)

Arguments

x
labeling
sep (optional) the pair separator for the pairwise relations
valued (logical) whether the galois derivation is on a many-valued formal context
scl (optional, only for valued) the scale to be used in the galois derivation
sep2
a data frame with objects and attributes
whether the derivations should be

- full for full labeling
- reduced for reduced labeling

Details
Galois derivations (or connections) are mappings between families of partially ordered subsets of elements. Such derivations are useful to analyze the structure of both subsets, which in a social network are typically the actors and their corresponding affiliations or events. That is, two-mode networks, but also a group of objects with a list of different attributes as used in formal concept analysis.

Value

A labelled list with Galois derivations of objects and attributes

Note

Full labeling implies first objects and then attributes, whereas the reduced option is given the other way around.

Author(s)

Antonio Rivero Ostoic

References

Ganter, B. and R. Wille Formal Concept Analysis - Mathematical Foundations. Springer. 1996.

See Also

partial.order, diagram, fltr.

Examples

```
## Create a data frame
dfr <- data.frame(x=1:3, y=5:7)
## Find Galois derivations
galois(dfr)
```

green.rel Green's Relations of Abstract Semigroups

Description

A function to produce the Green's relations of a semigroup object.

Usage

green.rel(S)

Arguments

S an object of a 'Semigroup' class

Details

Function green. rel produces the egg-box diagram (Green, 1951) of an abstract semigroup S, which is the union of the left compatible R equivalence and the right compatible L equivalence classes that makes the D-class on S.

Value

A list with the abstract semigroup, clustering of equivalence classes, and egg-box diagram that are separated by \| and -.

S multiplication matrix of the input semigroup
ord dimension of the semigroup
st vector of the unique string relations
clu list of vectors with clustering information for R and L classes
$\mathrm{R} \quad R$ equivalence classes
$\mathrm{L} \quad L$ equivalence classes
D $\quad D$ equivalence classes

Note

Some systems have the D-class equal to S.

Author(s)

Antonio Rivero Ostoic

References

Green, J. "On the structure of semigroups", Annals of Mathematics 54(1), 163-172, 1951.
Ostoic, JAR "Relational systems of transport network and provinces in ancient Rome," in Mathematics for social sciences and arts - algebraic modeling. Springer Nature. 2023.

See Also

```
semigroup, diagram, as.semigroup, edgeT, wordT, fact, cngr, decomp
```


Examples

```
## Create the data: 2 binary relations among 3 elements
arr <- round( replace( array(runif(18), c(3,3,2)), array(runif(18),
    c(3,3,2))>.5, 1 ) )
## optional string labels
dimnames(arr)[[3]] <- list("n", "m")
## look at the semigroup and its Green's relations
semigroup(arr) |>
    green.rel()
```


Description

A function to plot the Hasse Diagram of partially ordered relations.

Usage

hasse(x, attrs = NULL, main = NULL, incmp, cex.main, bg, mar, shape, col, col0, fcol, ecol, lty, lbs, ffamily, fstyle, fsize, col.main, sep, ...)

Arguments

x
attrs
main
incmp (logical) whether or not incomparable elements should be included in the lattice diagram
cex.main (optional) font size of diagram's title
bg

mar

shape

col
col0
fcol (optional) color of text's vertices
ecol (optional) color of edges
lty (optional) shape of edges
lbs (optional) labels of elements in partially ordered set
ffamily (optional) font family of vertex labels
fstyle (optional) font style of vertex labels with options:

- bold
- italic
- bolditalic
fsize (optional) font size of vertex labels
col.main (optional) font color of main title
sep
(optional) pair separator for pairwise relations inside intents and extents
(optional) additional graphical items

Details

A Hasse diagram is a pictorical device to represent systems of partially ordered relations where the hasse function provides arguments for visual manipulation of the diagram. An example of a partially ordered system is the partial order table that is the outcome of the 'strings' option in the partial. order function.

Value

A plot of a Hasse diagram with specified settings for a partial or a linear order of relations.

Warning

Requires Rgraphviz package installed.

Note

Roman numerals are given for elements when the partial order table have NULL dimnames.

Author(s)

Antonio Rivero Ostoic

See Also

diagram, partial.order, strings, galois, green.rel, diagram.levels, as.strings.

Examples

```
## load a dataset
data("incubA")
## given e.g. a partial order table in the object 'po'
po <- as.strings(incubA$IM) |>
    partial.order(type="strings")
## plot the order relation as a Hasse diagram
## Not run: if(require(Rgraphviz)) {
plot(hasse(po))
}
## End(Not run)
```


Description

A function to establish either the Person or the Relation Hierarchy in a multiple network

Usage

hierar(W, x, type = c("person", "relation"))

Arguments

W
an object of 'Rel.Box'
$x \quad$ (integer or character) the actor of reference, either by its location in the adjacency matrix or by the label.
type whether the hierarchy with respect to network ' x ' is

- person for persons hierarchy
- relation for relations hierarchy

Details

The person hierarchy refers to the inclusion relations among the actors, whereas the relation hierarchy refers to the inclusion relations among the ties. Both are from the perspective of a chosen actor of reference in the given network.

Value

An array that represents the partial order structure of the respective hierarchy.

Note

The cumulative person hierarchy is obtained through the cph function.

Author(s)

Antonio Rivero Ostoic

References

Breiger, R.L. and P.E. Pattison, 'Cumulated social roles: The duality of persons and their algebras,' Social Networks, 8, 215-256. 1986.

See Also

```
rbox, cph, partial.order, diagram
```


Examples

```
## Create the data: 2 binary relations among 3 elements
arr <- round( replace( array( runif(18), c(3, 3, 2) ), array( runif(18),
c(3, 3, 2) ) > . 5, 3 ) )
## The relation box
rarr <- arr |> rbox(k=1)
## Calculated the person hierarchy of a random actor
hierar(rarr, ceiling(runif(1, min=0, max=dim(arr)[2])))
```

incubs Incubator Networks Datasets

Description

These are four data sets collected in the year 2010 (see 'source' for the details) of multiple relations between entrepreneurial firms working in business incubators in Denmark.
Each data set contains the adjacency matrices of the three social relations, coded as C, F, and K for working collaboration, informal friendship, and perceived competition among the firms. There are also a pair of actor attributes corresponding to the adoption of two Web innovations in the year 2010 by the firms where A stands for Linkedin and B for Facebook.
In addition, there is a blockmodel attached to each data set that is a product of Compositional Equivalence (cf. cph) with transposes for each type of social tie labelled with the following letter in the Latin alphabet; i.e. D for collaboration, G for friendship, and L for perceived competition.

Usage

```
data("incubs")
data("incubA")
data("incubB")
data("incubC")
data("incubD")
data("incA")
data("incB")
data("incC")
data("incD")
```


Format

Each data set is a list with a pair of three-dimensional arrays.
For incubA, the dimensions of net are $26 \times 26 \times 5$, and of IM are $4 \times 4 \times 7$. In this case, the two attributes led to the identity matrix.
For incubB, the dimensions of net are $18 \times 18 \times 5$, and of IM are $4 \times 4 \times 8$.
For incubC, the dimensions of net are $22 \times 22 \times 5$, and of IM are $3 \times 3 \times 8$.

For incubD, the dimensions of net are $15 \times 15 \times 5$, and of IM are $4 \times 4 \times 6$.
All four networks are together in incubs.
To plot automatically actor attributes in the graph with function multigraph, another version of these data sets are given in incA, incB, incC, and incD, which are "Data. Set" objects class having:

- net for the network data
- atnet a vector that indicates whether or not the arrays in 'net' is attribute data
- IM for the Image Matrices of the reduced network data
- atIM a vector that indicates whether or not the array in 'IM' is attribute data
- cite relational content of the ties

Source

Ostoic, J.A.R. 'Algebraic methods for the analysis of multiple social networks and actors attributes" PhD Thesis. University of Southern Denmark. 2013.

```
mlvl
```


Construct Multilevel Networks

Description

Function to construct multilevel networks from multimodal structures.

Usage

mlvl(x = NULL, y = NULL, type = c("bpn", "cn", "cn2", "list"), symCdm, diag, lbs)

Arguments

x
$y \quad$ codomain data
type type of multilevel system:

- bpn for binomial projection
- cn for common membership network
- cn2 for co-affiliation of network members
- list for the multimodal structures as a list
symCdm (optional and logical, only for bpn) whether or not symmetrize the codomain structure
diag (optional and logical) whether or not include the entries in the diagonal matrices
lbs
(optional, only for cn 2) tie labels

Details

The default multilevel system is a binomial projection bpn that requires data for the two domains, as with cn 2 as well. Option cn does not need the domain in x since returns the co-affiliation of network members from the codomain structure.
Since these are different components in the multilevel system for co-affiliation of network members, it is possible to specify the domain and codomain labels in lbs as a list object.

Making symmetric the codomain structure with symCdm is many times convenient for visualization purposes.

Value

An object of 'Multilevel' class of chosen type.

mlnet	the multilevel network
lbs	(list) domain and codomain labels
modes	a vector indicating the domain of the data in mlnet where 1M is for domain and 2 is for the codomain.

Author(s)

Antonio Rivero Ostoic

See Also

mlgraph, multigraph

Examples

\# array for the domain
$\operatorname{arr} 1<-\operatorname{round}(\operatorname{replace}(\operatorname{array}(r u n i f(18), c(3,3,2))$, array(runif(18), c(3,3,2))>.9, 3))
\# rectangle array for the co-domain
arr2 <- round (replace (array(runif(12), c(3,2,2)), array(runif(12), c(3,2,2))>.9, 3))
\# multilevel system with default type
mlvl(arr1, arr2)
mnplx
Make Multiple Networks as Monoplex Structures

Description

A function to transform multiple networks into a monoplex structure

Usage

mnplx(net, directed $=$ TRUE, dichot, diag, clu)

Arguments

net
directed
dichot
diag
clu a three-dimensional array to be transformed into a matrix (optional) whether to make the matrix symmetric or not (optional) should the output be dichotomized? (optional) should the diagonals be included? (optional) a vector with the cluster for the permutation

Details

With this function, it is possible to collapse multiple types of tie into a matrix representation with monoplex relations.

Value

A matrix of monoplex relations

Author(s)

Antonio Rivero Ostoic

See Also
zbind, dichot, reduc

Examples

```
## create the data: 2 binary relations among 3 elements
arr <- round( replace( array(runif(18), c(3,3,2)), array(runif(18),
    c(3,3,2))>.5, 1 ) )
## make array monoplex
mnplx(arr)
```

 neighb Neighborhood of Actor or Group of Actors

Description

A function to find the neighbourhood of an actor or group of actors with a customized distance.

Usage

neighb(x, rs, type = c("und", "inn", "out"), k = 1, inclx = FALSE, expand)

Arguments

X
rs the relational system of the network
type
whether the system is

- und for undirected (default)
- inn for incoming node's ties to the reference actor
- out for outgoing arcs from the reference actor
k
the "distance" of the neighbour nodes to the reference actor (where $k=1$ gives the adjacent nodes)
inclx (logical) should the reference actor be included in the output?
expand (optional and logical) should the output be given by k (it only makes sense when $k>1$)

Details

The relational system serves to represent either the entire multiple network, or else just the relational bundles having a mutual or an asymmetric character. In this sense, this function detects the adjacent nodes to x according to the specified relational system, but as well the neighbours of the adjacent nodes with a customized length. Eventually, when the longest path or chain is reached, adding more value to k obviously will not produce more nodes in the graph system. Type options inn and out are for directed networks.

Value

Depending on expand, the output is either a vector or a list with the neighbour nodes to the reference actor(s).

Note

The output does not differentiate in case the reference actors are in different components of the network.

Author(s)

Antonio Rivero Ostoic

See Also

```
expos,rel.sys, bundles
```


Examples

```
## Create the data: two binary relations among three elements
arr <- round( replace( array( runif(18), c(3 , 3, 2) ), array( runif(18),
        c(3, 3, 2) ) > .9, 3 ) )
## Determine the system of strong bonds
rs <- rel.sys(arr, bonds = "strong")
```

```
## the inmediate neighbourhood of the first node
neighb(1, rs)
```

 pacnet Import Output from Pacnet

Description

A function to read output files and import from the Pacnet program with full factorization option.

Usage

pacnet(file, toarray = FALSE, uniq = FALSE, transp $=$ FALSE, sep)

Arguments

file	character vector containing a file name or path
toarray	(logical) should the induced inclusions be transformed into arrays?
uniq	(logical) should only be considered the induced inclusions that are unique?
transp	(logical) should the partially ordered structures be transposed?
sep	(optional) the pair separator for the pairwise relations

Details

This function is used to read the output file from the Pacnet program, which typically has the . out extension. By default the result is given in a list format, but it is possible to transform the pair lists into arrays. Note that the options in the Pacnet program should include the full factorization in the output; otherwise the object will be NULL.

Value

An object of the 'Pacnet' class with items:

ii	induced inclusions
at	atoms
mc	meet complements

Note

Currently only partial order structures of order 36 and less are supported.

Author(s)

Antonio Rivero Ostoic

References

Pattison, P., S. Wasserman, G. Robins and A.M. Kanfer 'Statistical Evaluation of Algebraic Constraints for Social Networks,' Journal of Mathematical Psychology, 44, 536-568. 2000

See Also

```
    pi.rels, cngr, decomp, write.dat
```

```
partial.order
```

The Partial Order of String Relations or of Galois Derivations

Description

Construct the partial order table of unique relations of the semigroup, or else of the concepts produced by Galois derivations.

Usage

partial. order (x, type = c("strings", "galois", "pi.rels"), lbs, sel, po.incl, dichot)

Arguments

x
an object of a 'Strings' or a 'Galois' class
type whether the object corresponds to

- strings for string relations
- galois for Galois derivations
- pi.rels for π-relations
lbs (optional) the labels of the unique relations
sel (optional) selected elements in ' x ' for the partial order
po.incl (optional, works only with type "pi.rels") should the partial order in the π relations be included
dichot (optional) should the string relations in x be dichotomized?

Details

To get the partial order of an entire semigroup, both generators and compound relations must be considered. This information and the labels of the unique relations are given by the strings function. cf. semigroup to see how the x should be specified properly.
Galois derivations are now possible to be partially ordered as well, and this option is based on the output given by the galois function.

Value

An object of 'Partial. Order' class with the partial order table in a matrix form.

Author(s)

Antonio Rivero Ostoic

References

Pattison, P.E. Algebraic Models for Social Networks. Cambridge University Press. 1993.
Ganter, B. and R. Wille Formal Concept Analysis - Mathematical Foundations. Springer. 1996.

See Also

as.strings, strings, galois, perm, diagram, fltr.

Examples

```
## Load the data, and obtain the partial order
data("incubA")
## the strings in the structure
st <- strings(incubA$IM)
## Get the partial order
partial.order(st)
```

perm Array Permutation

Description

Function to permutate a given array of relation.

Usage

perm(x, clu, rev, lbs, sort)

Arguments

x
clu
rev (optional and logical) whether the order in clu sholud be reverted.
lbs (optional) the labels after the permutation
sort (optional and logical) sort array according to labels?

Details

This function serves to permutate an array representing relations according to a vector for the clustering membership.

Value

A permuted matrix or array

Author(s)

Antonio Rivero Ostoic

See Also

cph, partial.order

Examples

```
## scan the multiplication table data
s <- matrix(data=c(1, 1, 1, 3, 3, 3, 3, 3, 3), nrow=3, ncol=3, byrow=TRUE)
## the permutation as an endomorphism
perm(s, clu = c(1,2,3))
```

 pfvn
 Pathfinder Valued Networks and Triangle Inequality

Description

A function to establish the skeleton of a valued network with the pathfinder algorithm and triangle inequality

Usage

$\operatorname{pfvn}(x, r, q)$

Arguments

x
r
q
network data, typically valued
a distance function parameter parameter with the minimum distance between actors in the proximity matrix

Details

The Pathfinder structure is for undirected networks, whereas for directed network structures the triangle inequality principle is applied

Value

max	max value of the network with the Frobenius norm
r	parameter r
q	parameter q
Q	salient structure of x
Note	A note when triangle inequality is used

Author(s)

Antonio Rivero Ostoic

References

Schvaneveldt, R., Durso, F. and Dearholt, D., 'Network structures in proximity data,' in G. Bower, ed., The psychology of learning and motivation: Advances in research \& theory, Vol. 24, Academic Press, pp. 249-284. 1989.
Batagelj, V., Doreian, P., Ferligoj, A. and Kejzar, N., Understanding Large Temporal Networks and Spatial Networks: Exploration, Pattern Searching, Visualization and Network Evolution, John Wiley \& Sons. 2014.

See Also

multigraph,

Examples

```
# create valued network data
arr <- round( array(runif(18), c(3,3,2)), array(runif(18), c(3,3,2)) ) * 10L
# pathfinder valued network of 'arr'
pfvn(arr)
```

```
pi.rels \pi-Relations
```


Description

A function to establish the π-relations of a partially ordered structure comming from a 'Pacnet' class

Usage

pi.rels(x, po.incl, vc, po)

Arguments

x
po.incl
vc
po
an object of a 'Pacnet' class
(optional and logical) should the partial order be included in the outcome?
(optional) vector of the induced inclusions to be computed
(optional) the partial order structure

Details

This function process the outcome of the Pacnet report by adding induced inclusions to partial order, the minimal element of the lattice of congruence relations. Such type of structure serves for the decomposition of a partially ordered semigroup structure.

Value

An object of the 'Pi.rels' class
pi the π-relations, eventually with the partial order
mca the meet-complements of atoms

Author(s)

Antonio Rivero Ostoic

References

Pattison, Philippa E. Algebraic Models for Social Networks. Cambridge University Press. 1993.

See Also

pacnet, decomp, semigroup

```
prev Preview of the Semigroup Construction
```


Description

A function to preview the partial right multiplication table of the semigroup to assess the size of the complete semigroup.

Usage

$\operatorname{prev}(x)$

Arguments

x
an array; usually with three dimensions of stacked matrices where the multiple relations are placed.

Details

When the input data is large, i.e. having a dozen or more elements and/or more than five dimensions, it is recommended to perform this function before the semigroup construction to get the partial right multiplication table.

That is because the amount of undefined data in such a table gives an idea of how much time may take to get the complete semigroup. However, the performance depends mainly on whether the generator matrices are sparse and/or have a relatively large number of elements for a semigroup construction of the course.

Value

'2stpT,	a partial right multiplication table at two-step.
'PcU2stpT,	the proportion of undefined elements at two-step.
ordr	the dimension of the right multiplication table so far.
Note	a conditional warning message.

Note

The warning message is given only if the percentage of undefined elements and the dimension of the input data are relatively high; however, the semigroup construction can still take a long time without the message.

Author(s)

Antonio Rivero Ostoic

See Also

semigroup, edgeT.

Examples

```
## Create the data: 2 binary relations among 3 elements
arr <- round( replace( array(runif(18), c(3,3,2)), array(runif(18),
    c(3,3,2))>.5, 1 ) )
## preview it
prev(arr)
```

rbox
Construct the Relation-Box

Description

Function to construct the Relation-Box of a multiple network

Usage

rbox $(w$, transp $=$ FALSE, $s m p l=$ FALSE, $k=3$, tlbs $)$

Arguments

w
transp
smpl
$\mathrm{k} \quad$ length of the Relation-Box in z
tlbs (optional) a vector with the labels for the transpose relations.

Details

If transp = TRUE the labels of the transpose are toggle case of the labels of the original matrices, and in such case, it is advised to simplify the strings of relations. To prevent a transposed structure for a certain array of w, use NA in the vector the transpose labels $t l b s$ corresponding to the respective matrix.

Value

An object of the 'Rel.Box' class.
w the primitive relations in the Relation-Box
W the structure of the Relation-Box
lbs the labels in the relational system
Note (optional) Notes indicating the particularities in the input
Orels the original labels of the relations
Srels (optional) the simplified labels of the relations
Trels (optional) the labels of the transposed relations
$k \quad$ the maximal length of the word
z the length of the Relation-Box in the z dimension

Note

Values of k until 9 are supported. With many types of relations, and when the order of the multiplex network is high, turning k to more than three may take a long time of computation.

Author(s)

Antonio Rivero Ostoic

References

Winship, C. and M.J. Mandel 'Roles and positions: A critique and extension of the blockmodelling approach,' Sociological Methodology, 314-344. 1983.

See Also

cph , semigroup, hierar

Examples

```
## load the data
data("incubA")
## The relation box of the image matrices
## Not run:
rbox(incubA$IM)
## End(**Not run**)
```

read.dl
Read dl Files

Description

A function to read files with the Ucinet dl format.

Usage

read.dl(file)

Arguments

file character vector containing a file name or path of the data representing the network

Details

Files dl serve to represent multiple network structures, and it is one of the formats used in Netdraw, which is a component of the Ucinet program. Besides multiple networks, the function can read two-mode structures as well.

Value

a data frame for two-mode networks, or an array representing the multiple networks with one set of actors.

Note

The 'EDGELIST' option in DL is not yet supported for reading.

Author(s)

Antonio Rivero Ostoic

References

Borgatti, S.P., NetDraw Software for Network Visualization. Analytic Technologies. 2002.
Borgatti, S.P., Everett, M.G. and Freeman, L.C. Ucinet for Windows: Software for Social Network Analysis. Analytic Technologies. 2002.

See Also

write.dl, edgel, read.gml
read.gml Read gml Files

Description

A function to read files with the gml format.

Usage

read.gml(file, as = c("srt", "array"), directed = TRUE, coords = FALSE)

Arguments

\(\left.\left.$$
\begin{array}{ll}\text { file } & \text { character vector containing a file name or path } \\
\text { as } & \begin{array}{l}\text { should the data be given as }\end{array}
$$

- srt for edge list with send/receive/ties format\end{array}\right\} $$
\begin{array}{l}\text { - array for two- or three-dimensional array }\end{array}
$$\right\}\)| (logical) whether the graph is directed or undirected. |
| :--- |
| directed |
| coords |

Details

The gml format, an acronym for graph modelling language, provides capabilities to represent multiple networks and add arguments both to the nodes and the edges for visualization purposes.
For the multiplexity in the ties the gml file distinguishes "graphics" arguments inside "edge". Both "style" and "fill" are supported here and the former has priority over the latter in case the two are given; otherwise when these arguments are absent, the function separates up to a couple of relational levels when several pairwise ties are specified.

Value

Depending the option chosen, the output is either a data frame or an array representing the multigraph. If the coordenates are chosen then these are part of the obejct structure, but they are not visible.

Note

If the coordenates are chosen, node attributes can also be retrieved.

Author(s)

Antonio Rivero Ostoic

References

visone: Software for the analysis and visualization of social networks. http://visone.info

See Also
write.gml, edgel, read.dl
reduc Reduce Matrices or Arrays

Description

Function to reduce a matrix or an array with a given clustering vector.

Usage

reduc(x, clu, lbs $=$ NULL, slbs $=$ NULL, valued, row, col)

Arguments

X
clu
lbs

slbs

valued
row (optional) the reduction by rows
col (optional) the reduction by columns

Details

Given a partition, this function serves to reduce either a matrix representing e.g. a partial order structure. However, the reduction is also generalized to three-dimensional arrays representing multiple relations.

Value

The reduced matrix or a reduced three-dimensional array of the input data according to the clustering information.

Note

Use decomp for the reduction of a semigroup object.

Author(s)

Antonio Rivero Ostoic

See Also

```
cngr, rbox, decomp
```


Examples

```
## scan the multiplication table data
s <- matrix(data=c(1, 1, 1, 3, 3, 3, 3, 3, 3), nrow=3, ncol=3, byrow=TRUE)
## reduce the multiplication table
s |> reduc(clu=c(1,2,2))
```

rel.sys Relational System

Description

Create the Relation System of a multiplex network.

Usage

```
rel.sys(x, type = c("tolist", "toarray"), bonds = c("entire", "strong", "weak",
    "asym", "recp", "txch", "tent", "mixd", "full"), sel = NULL,
    loops = FALSE, att \(=\) NULL, sep)
```


Arguments

$x \quad$ an array; usually with three dimensions of stacked matrices where the multiple relations are placed.
type if the transformation is from

- tolist for (array of) matrices into lists of pairwise relations
- toarray for lists of pairwise relations into (array of) matrices
bonds the type of bonds to be used in the creation of the relational system
- entire for the 'entire' network (default, same as full)
- strong for strong bonds
- weak for weak bonds
- asym for asymmetric ties
- recp for reciprocal ties
- txch for tie exchange bundles
- tent for tie entrainment bundles
- mixd for mixed bundles
- full for the 'entire' network (same as entire)
sel (optional) the set of actors to be selected. For "toarray" att and noatt also supported (see details)
loops (logical) whether or not the loops should be considered in the relational system
att the arrays in x corresponding to attributes
sep (optional) the pair separator for the pairwise relations

Details

When the type of bonds chosen is entire then the nodes with ties are considered in the relational system without isolated nodes. strong bonds are relational bundles with a mutual character, whereas weak bonds are those patterns exclusively without mutual character.
When choosing from a list with actor attributes, it is also possible to select the network members having or not having the attribute that is specified in the Attrs output by using in argument sel for the two options att or noatt.

Value

An object of 'Rel. System' class for the type = "tolist" (default) option. The items are:

ord	order of the network relational system
nodes	the nodes in the relational system
sel	the selected set of actors
sys.ord	the order of the relational system with the chosen bond type
incl	the nodes included the relational system with the chosen bond type
excl	the nodes excluded the relational system with the chosen bond type
bond.type	the type of bonds used in the relational system creation
size	number of ties in the relational system
Note	(optional) note
sep	the pairwise separator of the relational system
Ties	the ties in the relational system
Attrs.ord	if att is not NULL, the number of nodes with the chosen attribute(s)
Attrs	if att is not NULL, the actors with the chosen attribute(s)

For type = "toarray" the output is a dichotomous 2D or 3D array recording the relations among the actors in the network.

Author(s)

Antonio Rivero Ostoic

References

Ostoic, J.A.R. "Creating context for social influence processes in multiplex networks." Network Science, 5(1), 1-29.

See Also

expos, bundles, neighb

Examples

```
## Create the data: two binary relations among three elements
arr <- round( replace( array( runif(18), c(3 , 3, 2) ), array( runif(18),
        c(3, 3, 2) ) > .9, 3 ) )
## Determine the system of strong bonds
rel.sys(arr, bonds = "strong")
## the first array is for attributes
rel.sys(arr, att = 1)
## select the first node
rel.sys(arr, sel = 1)
```

rm.isol Remove Isolates

Description

Function to remove isolate nodes in simple and multiple networks.

Usage

rm.isol(x, diag, diag.incl)

Arguments

x
diag
diag.incl (optional and logical) if arrays, should the diagonals be included in the output?

Details

Isolated nodes do not have any edges in the network, and in a multivariate system, there is no edges adjacent to these kinds of nodes at any level.

Value

The matrix or array representing a multiple network without the isolated actors.

Author(s)

Antonio Rivero Ostoic

See Also

```
edgel, zbind
```


Examples

```
## Create the data: two binary relations among three elements
arr <- round( replace( array( runif(18), c(3 ,3, 2) ), array( runif(18),
c(3, 3, 2) ) > .5, 3 ) )
## Remove isolates (if exist)
rm.isol(arr)
```

```
semigroup Constructing the Semigroup of Relations
```


Description

Function to create the complete semigroup of multiple relations, where the multiplication table can be specified with either a numerical or a symbolic form.

Usage

semigroup(x, type = c("numerical", "symbolic"), cmps, smpl, valued)

Arguments

X
type semigroup multiplication table to be returned

- numerical for a numerical format (default)
- symbolic for a symbolic format
cmps (optional and logical) whether the composite matrices should be also given in the output
smpl (optional and logical) whether to simplify or not the strings of relations
valued (logical) whether the semigroup should be with a valued format
an array; usually with three dimensions of stacked matrices where the multiple relations are placed

Details

A multiple relation can be defined by square matrices of 0 's and 1 's indicating the presence and absence of ties among a set of actors. If there is more than one relation type, the matrices must preserve the label ordering of its elements and stacked into an object array in order to be effectively applied to this function.
The semigroup, which is an algebraic structure having a set with an associative operation on it, is calculated considering binary matrices only. This means that if the provided matrices are valued, the function will dichotomise the input data automatically. Values higher or equal to a unit are converted to one; otherwise they are set to zero. If not happy, use function dichot to specify a cutoff value for the dichotomization.
Semigroup structures for valued relations apply the max min operation in the composition of generators and strings.

Value

An object of 'Semigroup' class. The items included are:
gens array with generator relations
cmps array with the unique compound relations
ord dimension of the semigroup
st vector of the unique string relations
S multiplication matrix with semigroup of relations (see below)
If the specified type is 'numerical', then a matrix of semigroup values is given, otherwise the values is returned as a data frame with the strings of the semigroup.

Warning

For medium size or bigger sets (having e.g. more the 4 relation types), the semigroup construction could take a long time.

Note

It is recommendable to perform the function prev before attempting to construct the semigroup, unless the input data has few dimensions.

Author(s)

Antonio Rivero Ostoic

References

Boorman, S.A. and H.C. White, 'Social Structure from Multiple Networks. II. Role Structures.' American Journal of Sociology, 81 (6), 1384-1446. 1976.
Boyd, J.P. Social Semigroups. A unified theory of scaling and blockmodelling as applied to social networks. George Mason University Press. 1991.
Pattison, P.E. Algebraic Models for Social Networks. Cambridge University Press. 1993.

See Also

green.rel, prev, strings, edgeT, wordT, cngr.

Examples

```
## create the data: 2 binary relations among 3 elements
arr <- round( replace( array(runif(18), c(3,3,2)), array(runif(18),
    c(3,3,2))>.5, 1 ) )
## optional: put labels
dimnames(arr)[[3]] <- list("n", "m")
## look at the semigroup with numerical format
semigroup(arr)
```

semiring Semiring Structures for Balance Theory

Description

A function to construct semiring structures for the analysis of structural balance theory.

Usage

semiring(x, type $=c(" b a l a n c e ", ~ " c l u s t e r "), ~ s y m c l o s ~=~ T R U E, ~$ transclos $=$ TRUE, $k=2$, lbs)

Arguments

x
type
an object of a 'Signed' class

- balance for a balance semiring (default)
- cluster for a cluster semiring
symclos (logical) apply symmetric closure?
transclos (logical) apply transitive closure?
k
lbs
length of the cycle or the semicycle
(optional) labels for the semiring output

Details

Semiring structures are based on signed networks, and this function provides the capabilities to handle either the balance semiring or the cluster semiring within the structural balance theory. A semiring combines two different kinds of operations with a single underlying set, and it can be seen as an abstract semigroup with identity under multiplication and a commutative monoid under addition. Semirings are useful to determine whether a given signed network is balanced or clusterable. The symmetric closure evaluates this by looking at semicycles in the system; otherwise, the evaluation is through closed paths.

Value

An object of 'Semiring' class. The items included are:

val	the valences in the semiring
s	the original semiring structure
Q	the resulted semiring structure
k	the number of cycles or semicycles

Note

Disabling transitive closure should be made with good substantial reasons.

Author(s)

Antonio Rivero Ostoic

References

Harary, F, Z. Norman, and D. Cartwright Structural Models: An Introduction to the Theory of Directed Graphs. New York: John Wiley \& Sons. 1965.

Doreian, P., V. Batagelj and A. Ferligoj Generalized Blockmodeling. Cambridge University Press. 2004.

Ostoic, J.A.R. 'Creating context for social influence processes in multiplex networks.' Network Science, 5(1), 1-29.

See Also

signed, as.signed

Examples

```
## create the data: two sets with a pair of binary relations
## among three elements
arr <- round( replace( array( runif(18), c(3 ,3, 2) ), array( runif(18),
    c(3, 3, 2) ) > . 5, 3 ) )
## make the signed matrix with two types of relations
## and establish the semiring structure
signed(arr) |>
    semiring()
```


signed Signed Network

Description

Construct the signed network of a system of contrasting relations

Usage

signed(P, N = NULL, lbs)

Arguments

P array with the positive ties and possible with negative ties (see Details)
$\mathrm{N} \quad$ (optional) array with the negative ties
lbs (optional) labels for the signed matrix

Details

This function coerces an array(s) to become a 'Signed' object. Positive ties are always in the first argument, and in case that this array has three dimensions, the second dimension is considered as the negative ties, provided that N is still NULL. If ambivalent ties are present in the structure then the signed matrix represent positive, negative, ambivalent, and null ties as $\mathrm{p}, \mathrm{n}, \mathrm{a}$, and o respectively; otherwise, the values are $1,-1$, and 0 .

Value

An object of 'Signed' class with items:
val the valences in the signed matrix
s
the signed matrix

Note
A warning message is shown when the N argument has more than two dimensions.

Author(s)

Antonio Rivero Ostoic

References

Doreian, P., V. Batagelj and A. Ferligoj Generalized Blockmodeling. Cambridge University Press. 2004.

See Also

```
semiring, as.signed
```


Examples

```
## Load the data
data("incubA")
## Make the signed matrix with two types of relations
signed(incubA$IM)
```

strings Strings of Relations

Description

Function to get the labels of the unique relations of the semigroup; that is the generators and compound relations that are the elements of the complete semigroup.

Usage

strings(x , equat $=$ FALSE, $\mathrm{k}=2$, smpl, valued)

Arguments

$x \quad$ an array; usually with three dimensions of stacked matrices where the multiple relations are placed.
equat (logical) should the equations be included in the output?
$k \quad$ length of the strings in the equations
smpl (optional and logical) whether to simplify or not the string relations
valued (logical) whether the strings are with a valued format

Details

The strings are the unique relations, which constitute the elements of the complete semigroup. These are both the generators and the compound relations after applying the Axiom of Quality, which means that even some generators can be disregarded.
This function is especially useful to construct the partial order of relations and to establish the set of equations in the relational structure.

Value

An object of 'Strings' class.

wt	the generators and compound relations
ord	the order of the structure
st	the labels of the unique relations
equat	the equations among strings of relations

Note

The maximum length of the strings in the equations is currently 4.

Author(s)

Antonio Rivero Ostoic

References

Boorman, S.A. and H.C. White, 'Social Structure from Multiple Networks. II. Role Structures.' American Journal of Sociology, 81 (6), 1384-1446. 1976.

See Also

partial.order, semigroup.

Examples

```
## Create the data: 2 binary relations among 3 elements
arr <- round( replace( array(runif(18), c(3,3,2)), array(runif(18),
    c(3,3,2))>.5, 1 ) )
## get the strings
strings(arr)
```

summaryBundles Summary of Bundle Classes

Description

Pretty printing of the bundle class patterns results.

Usage

summaryBundles(x, file $=$ NULL, latex $=$ FALSE, byties $)$

Arguments

x
file
latex
byties
an object of the 'Rel.Bundles' class
(optional) the path where the output file is to be placed (logical) whether the output should be in latex format or not (optional and logical) expand tie patterns and collapse tie labels?

Details

This function prints the bundle census patterns existing in the network with an option to export such information in a friendly format. The dyadic bundle patterns are provided by the function bundles; however, the outcome of this function provides a list of pair lists for each bundle with the involved types of relations and nodes in the network. This form for presentation, although is convenient for further computation, it is not always easy to read for the human eye. The pair separator used to print the bundle occurrences is taken from the output of the bundles function.

If latex is set to TRUE, then the path file is activated to obtain a tex file with the different bundle class patterns. Finally, the optional argument byties provide more precise information about the patterned ties disregarding the relational content.

Value

The distinct bundle class patterns with a user friendly format.

Note

If a file with the same name already exists in the pointed directory, then this file will be overwritten.

Author(s)

Antonio Rivero Ostoic

References

Ostoic, J. A. R. 'Dyadic Patterns in Multiple Networks,' Advances in Social Networks Analysis and Mining, International Conference on, 475-481. 2011.

See Also

bundles, bundle.census

Examples

```
## Create the data: 2 binary relations among 3 elements
arr <- round( replace( array( runif(18), c(3,3, 2) ), array( runif(18),
c(3, 3, 2) ) > . 8, 3 ) )
## Establish the different bundles
bd <- bundles(arr)
## Print the different relational bundles
summaryBundles(bd)
```


Description

Function to transform data from/to matrix/list formats or edge list representing a network.

Usage

transf(x, type = c("toarray", "tolist", "toarray2", "toedgel"), lbs = NULL, lb2lb, sep, ord, sort, sym, add, adc, na.rm)

Arguments

x
type
lbs (optional) the labels in the transformation
lb2lb (optional and logical) whether the transformation is label-to-label. Default TRUE for "toarray" and FALSE for "tolist"
sep (optional) the pair separator for the pairwise relations
ord (for "toarray", optional) the order of the resulted structure
sort (optional and logical) sort the arrays in the output?
sym (for "toarray", optional and logical) symmetrize the arrays?
add (optional) added elements in the array's 'domain'
adc (optional) added elements in the array's 'codomain'
na.rm
an array or a list of pair relations
type of transformation:

- toarray from a list of pair relations to an array format
- tolist from a matrix to a list of pair relations
- toarray 2 from a list of pair relations to a square array
- toedgel from arrays to edge list
(optional) remove missing data in NA?

Details

Option "tolist" is for transforming a matrix or an array to a list of pair elements. In case that the lb2lb is enabled in this type of transformation, then lbs must be provided, whereas the pair separator is optional. On the other hand "toarray" will produce a matrix from a list of pair elements, and in this case is advisable to specify the order of the structure. Three dimensional structures are supported in the transformations with all options.
Data frames are also accepted for the "tolist" option; however, in case that this information is given as a list of pair relations the output will be a square matrix.
When the transformation option is "edgel", the output is a data frame with the first two columns for the sending and receiving ties. For simple networks, these two columns are enough and for multiplex networks additional columns are for the types of tie, one for each (cf. function edgel).

Value

Depending on the input data, the result is either a list of pair relations or a matrix of relations.

Note

For high dimensional arrays, the rel.sys function privides additional information other than the list of pair relations of the entire structure.

Author(s)

Antonio Rivero Ostoic

See Also

edgel, bundles, reduc, rel.sys

Examples

```
## scan the multiplication table data
s <- matrix(data=c(1, 1, 1, 3, 3, 3, 3, 3, 3), nrow=3, ncol=3, byrow=TRUE)
## transform the matrix to a list format
s |> transf(lb2lb = TRUE, lbs = c('n','m','u'))
```

```
wordT
```

The Word Table of Relations

Description

The Word Table of multiple relations.

Usage

wordT(x)

Arguments

x
an array; usually with three dimensions of stacked matrices where the multiple relations are placed.

Details

The Word Table is a consequence of the Edge Table and the function gives a list of indexed elements in the complete semigroup.
In terms of the Cayley graph of the semigroup (cf. ccgraph, the collection of unique relations (both compound and generators) are represented by nodes. On the other hand, the generators are edges that record the result of post-multiplying the compound relations by the generators.
The labels for the elements can be retrieved by the strings function.

Value

An object of the 'WordTable' class
gens the generator relations
WT the Word Table where " n " stands for 'node' and " g " stands for 'generator'
The generators do not have values in neither the 'node' nor the 'generator' of the Word table since they are not a product of any other element in the semigroup (cf. details for the rest of the values).

Author(s)

Antonio Rivero Ostoic

References

Cannon, J.J. "Computing the ideal structure of finite semigroup," Numerische Mathematik, 18, 254266. 1971.

Pattison, P.E. Algebraic Models for Social Networks. Cambridge University Press. 1993.

See Also

edgeT, semigroup, strings.

Examples

```
## Create the data: 2 binary relations among 3 elements
arr <- round( replace( array(runif(18), c(3,3,2)), array(runif(18),
    c(3,3,2))>.5, 1 ) )
## get the word table
wordT(arr)
```

 write.dat Write dat Files

Description

A function to write dat files.

Usage

write.dat(x, path)

Arguments

$x \quad$ an object representing the multiple network structure
path the path file for the output

Details

'dat' files are the format used in the Pacnet program. In case that the input data represents a multiple network then a separate file will be produced, each one representing a single type of relationship in the system. The name of the output files depends on the object title.

Value

File(s) with adjacency matrices with a . dat format

Note

In case that the directory in the path for the output does not exist then it will be created automatically.

Author(s)

Antonio Rivero Ostoic

References

StOCNET An open software system for the advanced statistical analysis of social networks. http://www.gmw.rug.nl/~stocnet/

See Also

pacnet, write.gml, write.dl

```
write.dl
Write dl Files
```


Description

A function to write dl files representing multiple networks.

Usage

write.dl(x, file = NULL, type = c("nodelist", "fullmat"))

Arguments

$x \quad$ an object representing the multiple network
file path to the file
type write data with format type:

- nodelist for node-list format
- fullmat for fullmat format

Details

dl files serve to represent multiple networks, and it is one of the formats used in Netdraw, which is a component of the Ucinet program.

Value

A file with the data with a .dl format

Author(s)

Antonio Rivero Ostoic

References

Borgatti, S.P., NetDraw Software for Network Visualization. Analytic Technologies. 2002.
Borgatti, S.P., Everett, M.G. and Freeman, L.C. Ucinet for Windows: Software for Social Network Analysis. Analytic Technologies. 2002.

See Also

read.dl, write.gml, write.srt, write.dat

```
write.edgel Write Edge-List Files
```


Description

A function to write edge-list files having columns for sender, receiver, and the ties for multiplex networks.

Usage

write.edgel(x, file = NULL, sep = "\t", header = TRUE)

Arguments

x
file
sep
header
an object representing the multiple network
path to the file
the separator used between the columns
(logical) whether the header should be included in the file

Details

Write edge list files with a send, receive, and t ies, which is a data frame with at least two columns for the sender and receiver, and the different types of tie for multiplex networks, one column for each type of relation.

Value

A file with the edge list format

Author(s)

Antonio Rivero Ostoic

See Also

edgel, , write.dl

```
write.gml Write gml Files
```


Description

A function to write files with a gml format.

Usage

write.gml(x, file = NULL)

Arguments

$x \quad$ an object representing the multiple network
file path to the file

Details

The gml format, an acronym for graph modelling language, provides capabilities to represent multiple networks and add arguments to both the nodes and the edges for visualization purposes.

Value

A file with the data with a graph modelling language format.

Note

In case that the file already exists in the pointed directory, then the file will be overwritten.

Author(s)

Antonio Rivero Ostoic

References

visone Software for the analysis and visualization of social networks. http://visone.info

See Also

read.gml, write.dl, write.dat

Description

A function to combine or bind matrices and multidimensional arrays.

Usage

zbind(..., sort, force)

Arguments

\ldots.	One or more arrays having two or three dimensions
sort	(optional and logical) sort array according to labels?
force	(optional and logical) force binding arrays with different dimensions?

Details

Function zbind is for stacking for instance two-dimensional arrays into a single three-dimensional object to represent a multivariate system structure. Both square and rectangular arrays are supported provided that the dimensions in the input are equal, and data frames should be transformed into arrays for the binding. The dimnames in the array output correspond to the names of the first array in the input, and a warning message is given when the dimnames are NULL.

Value

Usually a three dimensional array

Warning

Arrays without dimnames are not supported.

Note

Argument force must be activated for matrices and arrays with different dimensions and a message is given.

Author(s)

Antonio Rivero Ostoic

See Also

mnplx, dichot, strings

Examples

```
## create the data: two sets with a pair of binary relations
## among three elements
arr1 <- round( replace( array( runif(18), c(3 , 3, 2) ), array( runif(18),
    c(3, 3, 2) ) > . 5, 3 ) )
arr2 <- round( replace( array( runif(18), c(3 , 3, 2) ), array( runif(18),
    c(3, 3, 2) ) > . 5, 3 ) )
## bind the data sets
zbind(arr1, arr2)
```


Index

```
* IO
    edgel,20
    multiplex-package, 3
    pacnet, 38
    read.dl,46
    read.gml,47
    summaryBundles,58
    write.dat,62
    write.dl,}6
    write.edgel,64
    write.gml, }6
* algebra
    as.semigroup, }
    as.strings,7
    cngr, 11
    cph, }1
    decomp, }1
    diagram.levels, 18
    edgeT,}2
    fact, 24
    fltr, 26
    galois, 27
    green.rel, 28
    hierar, }3
    partial.order, 39
    perm,40
    pi.rels,42
    prev,43
    rbox,45
    semigroup, 52
    semiring, 54
    strings,57
    wordT, 61
* array
    as.signed,6
    as.strings,7
    cph, }1
    decomp, 15
    mnplx, 35
```

perm, 40
rbox, 45
reduc, 48
rm.isol, 51
signed, 56
strings, 57
transf, 60
zbind, 66

* attribute
bundles, 9
expos, 23
multiplex-package, 3
rel.sys, 49
* cluster
cngr, 11
comps, 12
decomp, 15
perm, 40
reduc, 48
* datasets
incubs, 33
* data
bundle.census, 8
bundles, 9
edgel, 20
mlvl, 34
multiplex-package, 3
pacnet, 38
read.dl, 46
read.gml, 47
write.dat, 62
write.dl, 63
write.edgel, 64
write.gml, 65
* file
multiplex-package, 3
pacnet, 38
read.dl, 46
read.gml, 47
write.dat, 62
write.dl, 63
write.edgel, 64
write.gml, 65
* graphs
diagram, 16
hasse, 30
* list
bundles, 9

* manip

diagram.levels, 18
dichot, 19
edgel, 20
mnplx, 35
multiplex-package, 3
neighb, 36
perm, 40
pfvn, 41
reduc, 48
rm.isol, 51
transf, 60
zbind, 66

* math
as.semigroup, 5
bundles, 9
cngr, 11
cph, 13
decomp, 15
fact, 24
fltr, 26
galois, 27
green.rel, 28
hierar, 32
partial.order, 39
perm, 40
pi.rels, 42
prev, 43
semigroup, 52
semiring, 54
* models
as.signed, 6
comps, 12
expos, 23
mlvl, 34
multiplex-package, 3
neighb, 36
pfvn, 41
rel.sys, 49
semiring, 54
signed, 56
* print
summaryBundles, 58
as.semigroup, 5, 29
as.signed, $6,55,56$
as.strings, 7, 18, 31, 40
bmgraph, 5
bundle.census, $8,10,11,59$
bundles, 9, 9, 13, 24, 37, 51, 59, 61
ccgraph, 5, 18, 61
cngr, 11, 16, 25, 29, 39, 49, 54
comps, 12
cph, 13, 32, 33, 41, 46
decomp, $12,15,25,29,39,43,49$
diagram, 14, 16, 18, 19, 27-29, 31, 32, 40
diagram. levels, $18,18,31$
dichot, 19, 36, 53, 66
edgel, 20, 47, 48, 52, 60, 61, 65
edgeT, 22, 29, 44, 54, 62
expos, $23,37,51$
fact, $12,15,16,24,29$
fltr, 26, 28, 40
galois, 18, 21, 27, 27, 31, 39, 40
green.rel, 6, 16, 18, 28, 31, 54
hasse, 18,30
hierar, 32, 46
incA (incubs), 33
incB (incubs), 33
incC (incubs), 33
incD (incubs), 33
incubA (incubs), 33
incubB (incubs), 33
incubC (incubs), 33
incubD (incubs), 33
incubs, 33
mlgraph, 35
mlvl, 34
mnplx, 35, 66
multigraph, 5, 34, 35, 42
multiplex-package, 3

```
neighb, 24, 36, 51
pacnet, 12, 25, 38, 43, 63
partial.order, 8, 16-19, 27, 28, 31, 32, 39,
        41,58
perm, 19, 40, 40
pfvn,41
pi.rels, 16, 39,42
prev, 20, 43, 54
rbox, 14, 32, 45,49
read.dl, 21, 46, 48, 64
read.gml, 21, 47, 47,65
read.srt (edgel), 20
reduc, 16, 36, 48, 61
rel.sys, 13, 23, 24, 37, 49, 61
replace, 20
rm.isol, 51
semigroup, 5, 6, 14, 16, 20, 22, 29, 39, 43, 44,
    46,52,58,62
semiring, 7, 54,56
signed, 7, 55,56
strings, 8, 18, 31, 39, 40, 54, 57, 61, 62,66
subset, 21
summaryBundles, 9, 11,58
transf, 11,60
wordT, 22, 29, 54, }6
write.dat, 39, 62, 64, }6
write.dl, 47, 63, 63, 65
write.edgel, 21,64
write.gml, 48, 63, 64, }6
write.srt,64
write.srt(write.edgel), 64
```

zbind, $8,36,52,66$

