
Package: multilink (via r-universe)
October 24, 2024

Title Multifile Record Linkage and Duplicate Detection

Version 0.1.1

Description Implementation of the methodology of Aleshin-Guendel &
Sadinle (2022) <doi:10.1080/01621459.2021.2013242>. It handles
the general problem of multifile record linkage and duplicate
detection, where any number of files are to be linked, and any
of the files may have duplicates.

Depends R (>= 3.5.0)

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

URL https://github.com/aleshing/multilink

BugReports https://github.com/aleshing/multilink/issues

Imports igraph, RecordLinkage, Rcpp, utils, mcclust, geosphere,
stringr

LinkingTo Rcpp, RcppArmadillo

NeedsCompilation yes

Author Serge Aleshin-Guendel [aut, cre]

Maintainer Serge Aleshin-Guendel <saleshinguendel@gmail.com>

Repository CRAN

Date/Publication 2023-06-09 14:20:07 UTC

Contents
create_comparison_data . 2
dup_data . 5
dup_data_small . 6
find_bayes_estimate . 7
gibbs_sampler . 9

1

https://doi.org/10.1080/01621459.2021.2013242
https://github.com/aleshing/multilink
https://github.com/aleshing/multilink/issues

2 create_comparison_data

initialize_partition . 12
multilink . 14
no_dup_data . 18
no_dup_data_small . 19
reduce_comparison_data . 20
relabel_bayes_estimate . 22
specify_prior . 24

Index 29

create_comparison_data

Create Comparison Data

Description

Create comparison data for all pairs of records, except for those records in files which are assumed
to have no duplicates.

Usage

create_comparison_data(
records,
types,
breaks,
file_sizes,
duplicates,
verbose = TRUE

)

Arguments

records A data.frame containing the records to be linked, where each column of records
is a field to be compared. If there are multiple files, records should be obtained
by stacking the files on top of each other so that records[1:file_sizes[1],]
contains the records for file 1, records[(file_sizes[1] + 1):(file_sizes[1]
+ file_sizes[2]),] contains the records for file 2, and so on. Missing values
should be coded as NA.

types A character vector, indicating the comparison to be used for each field (i.e.
each column of records). The options are: "bi" for binary comparisons,
"nu" for numeric comparisons (absolute difference), "lv" for string compar-
isons (normalized Levenshtein distance), "lv_sep" for string comparisons (nor-
malized Levenshtein distance) where each string may contain multiple spellings
separated by the "|" character. We assume that fields using options "bi", "lv",
and "lv_sep" are of class character, and fields using the "nu" option are of
class numeric. For fields using the "lv_sep" option, for each record pair the
normalized Levenshtein distance is computed between each possible spelling,
and the minimum normalized Levenshtein distance between spellings is then
used as the comparison for that record pair.

create_comparison_data 3

breaks A list, the same length as types, indicating the break points used to compute
disagreement levels for each fields’ comparisons. If types[f]="bi", breaks[[f]]
is ignored (and thus can be set to NA). See Details for more information on spec-
ifying this argument.

file_sizes A numeric vector indicating the size of each file.

duplicates A numeric vector indicating which files are assumed to have duplicates. duplicates[k]
should be 1 if file k has duplicates, and duplicates[k] should be 0 if file k has
no duplicates. If any files do not have duplicates, we strongly recommend that
the largest such file is organized to be the first file.

verbose A logical indicator of whether progress messages should be print (default
TRUE).

Details

The purpose of this function is to construct comparison vectors for each pair of records. In order to
construct these vectors, one needs to specify the types and breaks arguments. The types argument
specifies how each field should be compared, and the breaks argument specifies how to discretize
these comparisons.

Currently, the types argument supports three types of field comparisons: binary, absolute differ-
ence, and the normalized Levenshtein distance. Please contact the package maintainer if you need
a new type of comparison to be supported.

The breaks argument should be a list, with with one element for each field. If a field is being com-
pared with a binary comparison, i.e. types[f]="bi", then the corresponding element of breaks
should be NA, i.e. breaks[[f]]=NA. If a field is being compared with a numeric or string compar-
ison, then the corresponding element of breaks should be a vector of cut points used to discretize
the comparisons. To give more detail, suppose you pass in cut points breaks[[f]]=c(cut_1,
...,cut_L). These cut points discretize the range of the comparisons into L+1 intervals: I0 =
(−∞, cut1], I1 = (cut1, cut2], ..., IL = (cutL,∞]. The raw comparisons, which lie in [0,∞) for
numeric comparisons and [0, 1] for string comparisons, are then replaced with indicators of which
interval the comparisons lie in. The interval I0 corresponds to the lowest level of disagreement for a
comparison, while the interval IL corresponds to the highest level of disagreement for a comparison.

Value

a list containing:

record_pairs A data.frame, where each row contains the pair of records being compared in
the corresponding row of comparisons. The rows are sorted in ascending order according
to the first column, with ties broken according to the second column in ascending order. For
any given row, the first column is less than the second column, i.e. record_pairs[i, 1] <
record_pairs[i, 2] for each row i.

comparisons A logical matrix, where each row contains the comparisons for the record pair in
the corresponding row of record_pairs. Comparisons are in the same order as the columns
of records, and are represented by L + 1 columns of TRUE/FALSE indicators, where L + 1 is
the number of disagreement levels for the field based on breaks.

K The number of files, assumed to be of class numeric.

file_sizes A numeric vector of length K, indicating the size of each file.

4 create_comparison_data

duplicates A numeric vector of length K, indicating which files are assumed to have duplicates.
duplicates[k] should be 1 if file k has duplicates, and duplicates[k] should be 0 if file k
has no duplicates. If any files do not have duplicates, we strongly recommend that the largest
such file is organized to be the first file.

field_levels A numeric vector indicating the number of disagreement levels for each field.

file_labels An integer vector of length sum(file_sizes), where file_labels[i] indicates
which file record i is in.

fp_matrix An integer matrix, where fp_matrix[k1, k2] is a label for the file pair (k1, k2).
Note that fp_matrix[k1, k2] = fp_matrix[k2, k1].

rp_to_fp A logical matrix that indicates which record pairs belong to which file pairs. rp_to_fp[fp,
rp] is TRUE if the records record_pairs[rp,] belong to the file pair fp, and is FALSE oth-
erwise. Note that fp is given by the labeling in fp_matrix.

ab An integer vector, of length ncol(comparisons) * K * (K + 1) / 2 that indicates how many
record pairs there are with a given disagreement level for a given field, for each file pair.

file_sizes_not_included A numeric vector of 0s. This element is non-zero when reduce_comparison_data
is used.

ab_not_included A numeric vector of 0s. This element is non-zero when reduce_comparison_data
is used.

labels NA. This element is not NA when reduce_comparison_data is used.

pairs_to_keep NA. This element is not NA when reduce_comparison_data is used.

cc 0. This element is non-zero when reduce_comparison_data is used.

References

Serge Aleshin-Guendel & Mauricio Sadinle (2022). Multifile Partitioning for Record Linkage and
Duplicate Detection. Journal of the American Statistical Association. [doi: 10.1080/01621459.2021.2013242][arXiv]

Examples

Example with small no duplicate dataset
data(no_dup_data_small)

Create the comparison data
comparison_list <- create_comparison_data(no_dup_data_small$records,
types = c("bi", "lv", "lv", "lv", "lv", "bi", "bi"),
breaks = list(NA, c(0, 0.25, 0.5), c(0, 0.25, 0.5),

c(0, 0.25, 0.5), c(0, 0.25, 0.5), NA, NA),
file_sizes = no_dup_data_small$file_sizes,
duplicates = c(0, 0, 0))

Example with small duplicate dataset
data(dup_data_small)

Create the comparison data
comparison_list <- create_comparison_data(dup_data_small$records,
types = c("bi", "lv", "lv", "lv", "lv", "bi", "bi"),
breaks = list(NA, c(0, 0.25, 0.5), c(0, 0.25, 0.5),

https://doi.org/10.1080/01621459.2021.2013242
https://arxiv.org/abs/2110.03839

dup_data 5

c(0, 0.25, 0.5), c(0, 0.25, 0.5), NA, NA),
file_sizes = dup_data_small$file_sizes,
duplicates = c(1, 1, 1))

dup_data Duplicate Dataset

Description

A dataset containing 867 simulated records from 3 files with no duplicate records in each file.

Usage

dup_data

Format

A list with three elements:

records A data.frame with the records, containing 7 fields, from all three files, in the format used
for input to create_comparison_data.

file_sizes The size of each file.

IDs The true partition of the records, represented as an integer vector of arbitrary labels of length
sum(file_sizes).

Source

Extracted from the datasets used in the simulation study of the paper. The datasets were generated
using code from Peter Christen’s group https://dmm.anu.edu.au/geco/index.php.

References

Serge Aleshin-Guendel & Mauricio Sadinle (2022). Multifile Partitioning for Record Linkage and
Duplicate Detection. Journal of the American Statistical Association. [doi: 10.1080/01621459.2021.2013242][arXiv]

Examples

data(dup_data)

There are 500 entities represented in the records
length(unique(dup_data$IDs))

https://dmm.anu.edu.au/geco/index.php
https://doi.org/10.1080/01621459.2021.2013242
https://arxiv.org/abs/2110.03839

6 dup_data_small

dup_data_small Small Duplicate Dataset

Description

A dataset containing 96 simulated records from 3 files with no duplicate records in each file, subset
from dup_data.

Usage

dup_data_small

Format

A list with three elements:

records A data.frame with the records, containing 7 fields, from all three files, in the format used
for input to create_comparison_data.

file_sizes The size of each file.

IDs The true partition of the records, represented as an integer vector of arbitrary labels of length
sum(file_sizes).

Source

Extracted from the datasets used in the simulation study of the paper. The datasets were generated
using code from Peter Christen’s group https://dmm.anu.edu.au/geco/index.php.

References

Serge Aleshin-Guendel & Mauricio Sadinle (2022). Multifile Partitioning for Record Linkage and
Duplicate Detection. Journal of the American Statistical Association. [doi: 10.1080/01621459.2021.2013242][arXiv]

Examples

data(dup_data_small)

There are 96 entities represented in the records
length(unique(dup_data_small$IDs))

https://dmm.anu.edu.au/geco/index.php
https://doi.org/10.1080/01621459.2021.2013242
https://arxiv.org/abs/2110.03839

find_bayes_estimate 7

find_bayes_estimate Find the Bayes Estimate of a Partition

Description

Find the (approximate) Bayes estimate of a partition based on MCMC samples of the partition and
a specified loss function.

Usage

find_bayes_estimate(
partitions,
burn_in,
L_FNM = 1,
L_FM1 = 1,
L_FM2 = 2,
L_A = Inf,
max_cc_size = nrow(partitions),
verbose = TRUE

)

Arguments

partitions Posterior samples of the partition, where each column is one sample and the
partition is represented as an integer vector of arbitrary labels, as produced by
the output of a call to gibbs_sampler.

burn_in The number of samples to discard for burn in.

L_FNM Positive loss for a false non-match. Default is 1.

L_FM1 Positive loss for a type 1 false match. Default is 1.

L_FM2 Positive loss for a type 2 false match. Default is 2.

L_A Positive loss for abstaining from making a decision for a record. Default is Inf,
i.e. decisions are made for all records.

max_cc_size The maximum allowable connected component size over which the posterior ex-
pected loss is minimized. Default is nrow(partitions), i.e. no approximation
is used. When is.infinite(L_A), we recommend setting this argument to 50,
then increasing based on a computational budget. When !is.infinite(L_A),
we recommend setting this argument to 10-12, then increasing based on a com-
putational budget (although an increase of 1 in this argument can in the worst
case lead to a doubling in computation time).

verbose A logical indicator of whether progress messages should be print (default
TRUE).

8 find_bayes_estimate

Value

A vector, the same length of a column of partitions containing the (approximate) Bayes estimate
of the partition. If !is.infinite(L_A) the output may be a partial estimate. A positive number l
in index i indicates that record i is in the same cluster as every other record j with l in index j. A
value of -1 in index i indicates that the Bayes estimate abstained from making a decision for record
i.

References

Serge Aleshin-Guendel & Mauricio Sadinle (2022). Multifile Partitioning for Record Linkage and
Duplicate Detection. Journal of the American Statistical Association. [doi: 10.1080/01621459.2021.2013242][arXiv]

Examples

Example with small no duplicate dataset
data(no_dup_data_small)

Create the comparison data
comparison_list <- create_comparison_data(no_dup_data_small$records,
types = c("bi", "lv", "lv", "lv", "lv", "bi", "bi"),
breaks = list(NA, c(0, 0.25, 0.5), c(0, 0.25, 0.5),

c(0, 0.25, 0.5), c(0, 0.25, 0.5), NA, NA),
file_sizes = no_dup_data_small$file_sizes,
duplicates = c(0, 0, 0))

Specify the prior
prior_list <- specify_prior(comparison_list, mus = NA, nus = NA, flat = 0,
alphas = rep(1, 7), dup_upper_bound = c(1, 1, 1),
dup_count_prior_family = NA, dup_count_prior_pars = NA,
n_prior_family = "uniform", n_prior_pars = NA)

Find initialization for the matching (this step is optional)
The following line corresponds to only keeping pairs of records as
potential matches in the initialization for which neither gname nor fname
disagree at the highest level
pairs_to_keep <- (comparison_list$comparisons[, "gname_DL_3"] != TRUE) &
(comparison_list$comparisons[, "fname_DL_3"] != TRUE)

Z_init <- initialize_partition(comparison_list, pairs_to_keep, seed = 42)

Run the Gibbs sampler
results <- gibbs_sampler(comparison_list, prior_list, n_iter = 1000,
Z_init = Z_init, seed = 42)

Find the full Bayes estimate

full_estimate <- find_bayes_estimate(results$partitions, burn_in = 100,
L_FNM = 1, L_FM1 = 1, L_FM2 = 2, L_A = Inf, max_cc_size = 50)

Find the partial Bayes estimate
partial_estimate <- find_bayes_estimate(results$partitions, burn_in = 100,
L_FNM = 1, L_FM1 = 1, L_FM2 = 2, L_A = 0.1, max_cc_size = 12)

https://doi.org/10.1080/01621459.2021.2013242
https://arxiv.org/abs/2110.03839

gibbs_sampler 9

Example with small duplicate dataset
data(dup_data_small)

Create the comparison data
comparison_list <- create_comparison_data(dup_data_small$records,
types = c("bi", "lv", "lv", "lv", "lv", "bi", "bi"),
breaks = list(NA, c(0, 0.25, 0.5), c(0, 0.25, 0.5),

c(0, 0.25, 0.5), c(0, 0.25, 0.5), NA, NA),
file_sizes = dup_data_small$file_sizes,
duplicates = c(1, 1, 1))

Reduce the comparison data
The following line corresponds to only keeping pairs of records for which
neither gname nor fname disagree at the highest level
pairs_to_keep <- (comparison_list$comparisons[, "gname_DL_3"] != TRUE) &
(comparison_list$comparisons[, "fname_DL_3"] != TRUE)

reduced_comparison_list <- reduce_comparison_data(comparison_list,
pairs_to_keep, cc = 1)

Specify the prior
prior_list <- specify_prior(reduced_comparison_list, mus = NA, nus = NA,
flat = 0, alphas = rep(1, 7), dup_upper_bound = c(10, 10, 10),
dup_count_prior_family = c("Poisson", "Poisson", "Poisson"),
dup_count_prior_pars = list(c(1), c(1), c(1)), n_prior_family = "uniform",
n_prior_pars = NA)

Run the Gibbs sampler
results <- gibbs_sampler(reduced_comparison_list, prior_list, n_iter = 1000,
seed = 42)

Find the full Bayes estimate

full_estimate <- find_bayes_estimate(results$partitions, burn_in = 100,
L_FNM = 1, L_FM1 = 1, L_FM2 = 2, L_A = Inf, max_cc_size = 50)

Find the partial Bayes estimate
partial_estimate <- find_bayes_estimate(results$partitions, burn_in = 100,
L_FNM = 1, L_FM1 = 1, L_FM2 = 2, L_A = 0.1, max_cc_size = 12)

gibbs_sampler Gibbs Sampler for Posterior Inference

Description

Run a Gibbs sampler to explore the posterior distribution of partitions of records.

10 gibbs_sampler

Usage

gibbs_sampler(
comparison_list,
prior_list,
n_iter = 2000,
Z_init = 1:sum(comparison_list$file_sizes),
seed = 70,
single_likelihood = FALSE,
chaperones_info = NA,
verbose = TRUE

)

Arguments

comparison_list

The output from a call to create_comparison_data or reduce_comparison_data.

prior_list The output from a call to specify_prior.

n_iter The number of iterations of the Gibbs sampler to run.

Z_init Initialization of the partition of records, represented as an integer vector of
arbitrary labels of length sum(comparison_list$file_sizes). The default
initialization places each record in its own cluster. See initialize_partition
for an alternative initialization when there are no duplicates in each file.

seed The seed to use while running the Gibbs sampler.
single_likelihood

A logical indicator of whether to use a single likelihood for comparisons for
all file pairs, or whether to use a separate likelihood for comparisons for each
file pair. When single_likelihood=TRUE, a single likelihood is used, and the
prior hyperparameters for m and u from the first file pair are used. We do not
recommend using a single likelihood in general.

chaperones_info

If chaperones_info is set to NA, then Gibbs updates to the partition are used
during the Gibbs sampler, as described in Aleshin-Guendel & Sadinle (2022).
Else, Chaperones updates, as described in Miller et al. (2015) and Betancourt
et al. (2016), are used and chaperones_info should be a list with five ele-
ments controlling Chaperones updates to the partition during the Gibbs sampler:
chap_type, num_chap_iter, nonuniform_chap_type, extra_gibbs, num_restrict.
chap_type is 0 if using a uniform Chaperones distribution, and 1 if using a
nonuniform Chaperones distribution. num_chap_iter is the number of Chap-
erones updates to the partition that are made during each iteration of the Gibbs
sampler. When using a nonuniform Chaperones distribution, nonuniform_chap_type
is 0 if using the exact version, or 1 if using the partial version. extra_gibbs is
a logical indicator of whether a Gibbs update to the partition should be done af-
ter the Chaperones updates, at each iteration of the Gibbs sampler. num_restrict
is the number of restricted Gibbs steps to take during each Chaperones update
to the partition.

verbose A logical indicator of whether progress messages should be print (default
TRUE).

gibbs_sampler 11

Details

Given the prior specified using specify_prior, this function runs a Gibbs sampler to explore the
posterior distribution of partitions of records, conditional on the comparison data created using
create_comparison_data or reduce_comparison_data.

Value

a list containing:

m Posterior samples of the m parameters. Each column is one sample.

u Posterior samples of the u parameters. Each column is one sample.

partitions Posterior samples of the partition. Each column is one sample. Note that the partition
is represented as an integer vector of arbitrary labels of length sum(comparison_list$file_sizes).

contingency_tables Posterior samples of the overlap table. Each column is one sample. This
incorporates counts of records determined not to be candidate matches to any other records
using reduce_comparison_data.

cluster_sizes Posterior samples of the size of each cluster (associated with an arbitrary label
from 1 to sum(comparison_list$file_sizes)). Each column is one sample.

sampling_time The time in seconds it took to run the sampler.

References

Serge Aleshin-Guendel & Mauricio Sadinle (2022). Multifile Partitioning for Record Linkage and
Duplicate Detection. Journal of the American Statistical Association. [doi: 10.1080/01621459.2021.2013242][arXiv]

Jeffrey Miller, Brenda Betancourt, Abbas Zaidi, Hanna Wallach, & Rebecca C. Steorts (2015).
Microclustering: When the cluster sizes grow sublinearly with the size of the data set. NeurIPS
Bayesian Nonparametrics: The Next Generation Workshop Series. [arXiv]

Brenda Betancourt, Giacomo Zanella, Jeffrey Miller, Hanna Wallach, Abbas Zaidi, & Rebecca C.
Steorts (2016). Flexible Models for Microclustering with Application to Entity Resolution. Ad-
vances in neural information processing systems. [Published] [arXiv]

Examples

Example with small no duplicate dataset
data(no_dup_data_small)

Create the comparison data
comparison_list <- create_comparison_data(no_dup_data_small$records,
types = c("bi", "lv", "lv", "lv", "lv", "bi", "bi"),
breaks = list(NA, c(0, 0.25, 0.5), c(0, 0.25, 0.5),

c(0, 0.25, 0.5), c(0, 0.25, 0.5), NA, NA),
file_sizes = no_dup_data_small$file_sizes,
duplicates = c(0, 0, 0))

Specify the prior
prior_list <- specify_prior(comparison_list, mus = NA, nus = NA, flat = 0,
alphas = rep(1, 7), dup_upper_bound = c(1, 1, 1),
dup_count_prior_family = NA, dup_count_prior_pars = NA,

https://doi.org/10.1080/01621459.2021.2013242
https://arxiv.org/abs/2110.03839
https://arxiv.org/abs/1512.00792
https://proceedings.neurips.cc/paper/2016/hash/670e8a43b246801ca1eaca97b3e19189-Abstract.html
https://arxiv.org/abs/1610.09780

12 initialize_partition

n_prior_family = "uniform", n_prior_pars = NA)

Find initialization for the matching (this step is optional)
The following line corresponds to only keeping pairs of records as
potential matches in the initialization for which neither gname nor fname
disagree at the highest level
pairs_to_keep <- (comparison_list$comparisons[, "gname_DL_3"] != TRUE) &
(comparison_list$comparisons[, "fname_DL_3"] != TRUE)

Z_init <- initialize_partition(comparison_list, pairs_to_keep, seed = 42)

Run the Gibbs sampler
{
results <- gibbs_sampler(comparison_list, prior_list, n_iter = 1000,
Z_init = Z_init, seed = 42)

}

Example with small duplicate dataset
data(dup_data_small)

Create the comparison data
comparison_list <- create_comparison_data(dup_data_small$records,
types = c("bi", "lv", "lv", "lv", "lv", "bi", "bi"),
breaks = list(NA, c(0, 0.25, 0.5), c(0, 0.25, 0.5),

c(0, 0.25, 0.5), c(0, 0.25, 0.5), NA, NA),
file_sizes = dup_data_small$file_sizes,
duplicates = c(1, 1, 1))

Reduce the comparison data
The following line corresponds to only keeping pairs of records for which
neither gname nor fname disagree at the highest level
pairs_to_keep <- (comparison_list$comparisons[, "gname_DL_3"] != TRUE) &
(comparison_list$comparisons[, "fname_DL_3"] != TRUE)

reduced_comparison_list <- reduce_comparison_data(comparison_list,
pairs_to_keep, cc = 1)

Specify the prior
prior_list <- specify_prior(reduced_comparison_list, mus = NA, nus = NA,
flat = 0, alphas = rep(1, 7), dup_upper_bound = c(10, 10, 10),
dup_count_prior_family = c("Poisson", "Poisson", "Poisson"),
dup_count_prior_pars = list(c(1), c(1), c(1)), n_prior_family = "uniform",
n_prior_pars = NA)

Run the Gibbs sampler
{
results <- gibbs_sampler(reduced_comparison_list, prior_list, n_iter = 1000,
seed = 42)

}

initialize_partition Initialize the Partition

initialize_partition 13

Description

Generate an initialization for the partition in the case when it is assumed there are no duplicates in
all files (so that the partition is a matching).

Usage

initialize_partition(comparison_list, pairs_to_keep, seed = NA)

Arguments

comparison_list

the output from a call to create_comparison_data or reduce_comparison_data.
Note that in order to correctly specify the initialization, if reduce_comparison_data
is used to the reduce the number of record pairs that are candidate matches,
then the output of reduce_comparison_data (not create_comparison_data)
should be used for this argument.

pairs_to_keep A logical vector, the same length as comparison_list$record_pairs, indi-
cating which record pairs are potential matches in the initialization.

seed The seed to use to generate the initialization.

Details

When it is assumed that there are no duplicates in all files, and reduce_comparison_data is not
used to reduce the number of potential matches, the Gibbs sampler used for posterior inference may
experience slow mixing when using an initialization for the partition where each record is in its
own cluster (the default option for the Gibbs sampler). The purpose of this function is to provide an
alternative initialization scheme.

To use this initialization scheme, the user passes in a logical vector that indicates which record
pairs are potential matches according to an indexing method (as in reduce_comparison_data).
Note that this indexing is only used to generate the initialization, it is not used for inference. The
initialization scheme first finds the transitive closure of the potential matches, which partitions the
records into blocks. Within each block of records, the scheme randomly selects a record from each
file, and these selected records are then placed in the same cluster for the partition initialization. All
other records are placed in their own clusters.

Value

an integer vector of arbitrary labels of length sum(comparison_list$file_sizes), giving an
initialization for the partition.

References

Serge Aleshin-Guendel & Mauricio Sadinle (2022). Multifile Partitioning for Record Linkage and
Duplicate Detection. Journal of the American Statistical Association. [doi: 10.1080/01621459.2021.2013242][arXiv]

https://doi.org/10.1080/01621459.2021.2013242
https://arxiv.org/abs/2110.03839

14 multilink

Examples

Example with small no duplicate dataset
data(no_dup_data_small)

Create the comparison data
comparison_list <- create_comparison_data(no_dup_data_small$records,
types = c("bi", "lv", "lv", "lv", "lv", "bi", "bi"),
breaks = list(NA, c(0, 0.25, 0.5), c(0, 0.25, 0.5),

c(0, 0.25, 0.5), c(0, 0.25, 0.5), NA, NA),
file_sizes = no_dup_data_small$file_sizes,
duplicates = c(0, 0, 0))

Find initialization for the matching
The following line corresponds to only keeping pairs of records as
potential matches in the initialization for which neither gname nor fname
disagree at the highest level
pairs_to_keep <- (comparison_list$comparisons[, "gname_DL_3"] != TRUE) &
(comparison_list$comparisons[, "fname_DL_3"] != TRUE)

Z_init <- initialize_partition(comparison_list, pairs_to_keep, seed = 42)

multilink Multifile Record Linkage and Duplicate Detection

Description

The multilink package implements the methodology of Aleshin-Guendel & Sadinle (2022). It han-
dles the general problem of multifile record linkage and duplicate detection, where any number of
files are to be linked, and any of the files may have duplicates.

References

Serge Aleshin-Guendel & Mauricio Sadinle (2022). Multifile Partitioning for Record Linkage and
Duplicate Detection. Journal of the American Statistical Association. [doi: 10.1080/01621459.2021.2013242]
[arXiv]

Examples

Here we demonstrate an example workflow with the small no duplicate dataset
data(no_dup_data_small)

Create the comparison data
comparison_list <- create_comparison_data(no_dup_data_small$records,
types = c("bi", "lv", "lv", "lv", "lv", "bi", "bi"),
breaks = list(NA, c(0, 0.25, 0.5), c(0, 0.25, 0.5),

c(0, 0.25, 0.5), c(0, 0.25, 0.5), NA, NA),
file_sizes = no_dup_data_small$file_sizes,
duplicates = c(0, 0, 0))

Specify the prior

https://doi.org/10.1080/01621459.2021.2013242
https://arxiv.org/abs/2110.03839

multilink 15

prior_list <- specify_prior(comparison_list, mus = NA, nus = NA, flat = 0,
alphas = rep(1, 7), dup_upper_bound = c(1, 1, 1),
dup_count_prior_family = NA, dup_count_prior_pars = NA,
n_prior_family = "uniform", n_prior_pars = NA)

Find initialization for the matching (this step is optional)
The following line corresponds to only keeping pairs of records as
potential matches in the initialization for which neither gname nor fname
disagree at the highest level
pairs_to_keep <- (comparison_list$comparisons[, "gname_DL_3"] != TRUE) &
(comparison_list$comparisons[, "fname_DL_3"] != TRUE)

Z_init <- initialize_partition(comparison_list, pairs_to_keep, seed = 42)

Run the Gibbs sampler
results <- gibbs_sampler(comparison_list, prior_list, n_iter = 1000,
Z_init = Z_init, seed = 42)

Find the full Bayes estimate

full_estimate <- find_bayes_estimate(results$partitions, burn_in = 100,
L_FNM = 1, L_FM1 = 1, L_FM2 = 2, L_A = Inf, max_cc_size = 50)

The number of clusters in the full estimate
length(unique(full_estimate))
The number of entities represented in the records
length(unique(no_dup_data_small$IDs))

Find which record pairs are truly coreferent based on IDs
true_links <- no_dup_data_small$IDs[comparison_list$record_pairs[, 1]] ==
no_dup_data_small$IDs[comparison_list$record_pairs[, 2]]

Find which record pairs are in the same clusters in the full estimate
full_estimate_links <- full_estimate[comparison_list$record_pairs[, 1]] ==
full_estimate[comparison_list$record_pairs[, 2]]

Find the number of true matches in the full estimate
true_matches <- sum(full_estimate_links & true_links)

Precision of the full estimate
true_matches / sum(full_estimate_links)

Recall of the full estimate
true_matches / sum(true_links)

Find the partial Bayes estimate
partial_estimate <- find_bayes_estimate(results$partitions, burn_in = 100,
L_FNM = 1, L_FM1 = 1, L_FM2 = 2, L_A = 0.1, max_cc_size = 12)

The partial estimate abstains from making decisions for how many records?
sum(partial_estimate == -1)

For the records which decisions were made for in the partial estimate,
there are how many clusters?

16 multilink

length(unique(partial_estimate))

Abstain rate of partial_estimate
sum(partial_estimate == -1) / length(partial_estimate)

Relabel records where we abstained
partial_estimate[which(partial_estimate == -1)] <- length(partial_estimate) +
which(partial_estimate == -1)

Find which record pairs are in the same clusters in the full estimate
partial_estimate_links <-
partial_estimate[comparison_list$record_pairs[, 1]] ==
partial_estimate[comparison_list$record_pairs[, 2]]

Find the number of true matches in the partial estimate
true_matches_A <- sum(partial_estimate_links & true_links)

Precision of the partial estimate
true_matches_A / sum(partial_estimate_links)

Here we demonstrate an example workflow with the small duplicate dataset
data(dup_data_small)

Create the comparison data
comparison_list <- create_comparison_data(dup_data_small$records,
types = c("bi", "lv", "lv", "lv", "lv", "bi", "bi"),
breaks = list(NA, c(0, 0.25, 0.5), c(0, 0.25, 0.5),

c(0, 0.25, 0.5), c(0, 0.25, 0.5), NA, NA),
file_sizes = dup_data_small$file_sizes,
duplicates = c(1, 1, 1))

Reduce the comparison data
The following line corresponds to only keeping pairs of records for which
neither gname nor fname disagree at the highest level
pairs_to_keep <- (comparison_list$comparisons[, "gname_DL_3"] != TRUE) &
(comparison_list$comparisons[, "fname_DL_3"] != TRUE)

reduced_comparison_list <- reduce_comparison_data(comparison_list,
pairs_to_keep, cc = 1)

Specify the prior
prior_list <- specify_prior(reduced_comparison_list, mus = NA, nus = NA,
flat = 0, alphas = rep(1, 7), dup_upper_bound = c(10, 10, 10),
dup_count_prior_family = c("Poisson", "Poisson", "Poisson"),
dup_count_prior_pars = list(c(1), c(1), c(1)), n_prior_family = "uniform",
n_prior_pars = NA)

Run the Gibbs sampler
results <- gibbs_sampler(reduced_comparison_list, prior_list, n_iter = 1000,
seed = 42)

Find the full Bayes estimate

multilink 17

full_estimate <- find_bayes_estimate(results$partitions, burn_in = 100,
L_FNM = 1, L_FM1 = 1, L_FM2 = 2, L_A = Inf, max_cc_size = 50)

The number of clusters in the full estimate (including records records
determined not to be candidate matches to any other records using
reduce_comparison_data)
length(unique(full_estimate)) +
sum(reduced_comparison_list$file_sizes_not_included)
The number of entities represented in the records
length(unique(dup_data_small$IDs))

Find which record pairs are truly coreferent based on IDs
true_links <- dup_data_small$IDs[comparison_list$record_pairs[, 1]] ==
dup_data_small$IDs[comparison_list$record_pairs[, 2]]

Focus on the record pairs that were candidate matches
true_links_reduced <- true_links[reduced_comparison_list$pairs_to_keep]

Calculate the number of prior false non-matches based on the indexing
scheme used
prior_fnm <-
nrow(comparison_list$record_pairs[true_links &
(!reduced_comparison_list$pairs_to_keep),])

Find which record pairs are in the same clusters in the full estimate
full_estimate_links <-
full_estimate[reduced_comparison_list$record_pairs[, 1]] ==
full_estimate[reduced_comparison_list$record_pairs[, 2]]

Find the number of true matches in the full estimate
true_matches <- sum(full_estimate_links & true_links_reduced)

Precision of the full estimate
true_matches / sum(full_estimate_links)

Recall of the full estimate
true_matches / (sum(true_links_reduced) + prior_fnm)

Find the partial Bayes estimate
partial_estimate <- find_bayes_estimate(results$partitions, burn_in = 100,
L_FNM = 1, L_FM1 = 1, L_FM2 = 2, L_A = 0.1, max_cc_size = 12)

The partial estimate abstains from making decisions for how many records?
sum(partial_estimate == -1)

For the records which decisions were made for in the partial estimate,
there are how many clusters? (including records determined not to be
candidate matches to any other records using reduce_comparison_data)
length(unique(partial_estimate)) +
sum(reduced_comparison_list$file_sizes_not_included)

Abstain rate of partial_estimat (excluding records determined not
to be candidate matches to any other records using reduce_comparison_data)

18 no_dup_data

sum(partial_estimate == -1) / length(partial_estimate)

Relabel records where we abstained
partial_estimate[which(partial_estimate == -1)] <- length(partial_estimate) +
which(partial_estimate == -1)

Find which record pairs are in the same clusters in the full estimate
partial_estimate_links <-
partial_estimate[reduced_comparison_list$record_pairs[, 1]] ==
partial_estimate[reduced_comparison_list$record_pairs[, 2]]

Find the number of true matches in the partial estimate
true_matches_A <- sum(partial_estimate_links & true_links_reduced)

Precision of the partial estimate
true_matches_A / sum(partial_estimate_links)

Relabel the full and partial Bayes estimates
full_estimate_relabel <- relabel_bayes_estimate(reduced_comparison_list,
full_estimate)

partial_estimate_relabel <- relabel_bayes_estimate(reduced_comparison_list,
partial_estimate)

Add columns to the records corresponding to their full and partial
Bayes estimates
dup_data_small$records <- cbind(dup_data_small$records,
full_estimate_id = full_estimate_relabel$link_id,
partial_estimate_id = partial_estimate_relabel$link_id)

no_dup_data No Duplicate Dataset

Description

A dataset containing 730 simulated records from 3 files with no duplicate records in each file.

Usage

no_dup_data

Format

A list with three elements:

records A data.frame with the records, containing 7 fields, from all three files, in the format used
for input to create_comparison_data.

no_dup_data_small 19

file_sizes The size of each file.

IDs The true partition of the records, represented as an integer vector of arbitrary labels of length
sum(file_sizes).

Source

Extracted from the datasets used in the simulation study of the paper. The datasets were generated
using code from Peter Christen’s group https://dmm.anu.edu.au/geco/index.php.

References

Serge Aleshin-Guendel & Mauricio Sadinle (2022). Multifile Partitioning for Record Linkage and
Duplicate Detection. Journal of the American Statistical Association. [doi: 10.1080/01621459.2021.2013242]
[arXiv]

Examples

data(no_dup_data)

There are 500 entities represented in the records
length(unique(no_dup_data$IDs))

no_dup_data_small Small No Duplicate Dataset

Description

A dataset containing 71 simulated records from 3 files with no duplicate records in each file, subset
from no_dup_data.

Usage

no_dup_data_small

Format

A list with three elements:

records A data.frame with the records, containing 7 fields, from all three files, in the format used
for input to create_comparison_data.

file_sizes The size of each file.

IDs The true partition of the records, represented as an integer vector of arbitrary labels of length
sum(file_sizes).

Source

Extracted from the datasets used in the simulation study of the paper. The datasets were generated
using code from Peter Christen’s group https://dmm.anu.edu.au/geco/index.php.

https://dmm.anu.edu.au/geco/index.php
https://doi.org/10.1080/01621459.2021.2013242
https://arxiv.org/abs/2110.03839
https://dmm.anu.edu.au/geco/index.php

20 reduce_comparison_data

References

Serge Aleshin-Guendel & Mauricio Sadinle (2022). Multifile Partitioning for Record Linkage and
Duplicate Detection. Journal of the American Statistical Association. [doi: 10.1080/01621459.2021.2013242]
[arXiv]

Examples

data(no_dup_data_small)

There are 71 entities represented in the records
length(unique(no_dup_data_small$IDs))

reduce_comparison_data

Reduce Comparison Data Size

Description

Use indexing to reduce the number of record pairs that are potential matches.

Usage

reduce_comparison_data(comparison_list, pairs_to_keep, cc = 1)

Arguments

comparison_list

The output of a call to create_comparison_data.

pairs_to_keep A logical vector, the same length as comparison_list$record_pairs, indi-
cating which record pairs should be kept as potential matches. These potential
matches do not have to be transitive (see the argument cc).

cc A numeric indicator of whether to find the transitive closure of pairs_to_keep,
and use these potential matches instead of just those from pairs_to_keep. cc
should be 1 if the transitive closure is being used, and cc should be 0 if the
transitive closure is not being used. We recommend setting cc to 1.

Details

When using comparison-based record linkage methods, scalability is a concern, as the number of
record pairs is quadratic in the number of records. In order to address these concerns, it’s common to
declare certain record pairs to not be potential matches a priori, using indexing methods. The user is
free to index using any method they like, as long as they can produce a logical vector that indicates
which record pairs are potential matches according to their indexing method. We recommend, if
the user chosen indexing method does not output potential matches that are transitive, to set the cc
argument to 1. By transitive we mean, for any three records i, j, and k, if i and j are potential
matches, and j and k are potential matches, then i and k are potential matches. Non-transitive

https://doi.org/10.1080/01621459.2021.2013242
https://arxiv.org/abs/2110.03839

reduce_comparison_data 21

indexing schemes can lead to poor mixing of the Gibbs sampler used for posterior inference, and
suggests that the indexing method used may have been too stringent.

If indexing is used, it may be the case that some records are declared to not be potential matches to
any other records. In this case, the indexing method has made the decision that these records have
no matches, and thus we can remove them from the data set and relabel the remaining records; see
the documentation for labels for information on how to go between the original labeling and the
new labeling.

If indexing is used, comparisons for record pairs that aren’t potential matches are still used during
inference, where they’re used to inform the distribution of comparisons for non-matches.

Value

a list containing:

record_pairs A data.frame, where each row contains the pair of records being compared in
the corresponding row of comparisons. The rows are sorted in ascending order according
to the first column, with ties broken according to the second column in ascending order. For
any given row, the first column is less than the second column, i.e. record_pairs[i, 1]
< record_pairs[i, 2] for each row i. If according to pairs_to_keep there are records
which are not potential matches to any other records, the remaining records are relabeled (see
labels).

comparisons A logical matrix, where each row contains the comparisons between the record
pair in the corresponding row of record_pairs. Comparisons are in the same order as the
columns of records, and are represented by L + 1 columns of TRUE/FALSE indicators, where
L + 1 is the number of disagreement levels for the field based on breaks.

K The number of files, assumed to be of class numeric.
file_sizes A numeric vector of length K, indicating the size of each file. If according to pairs_to_keep

there are records which are not potential matches to any other records, the remaining records
are relabeled (see labels), and file_sizes now represents the sizes of each file after remov-
ing such records.

duplicates A numeric vector of length K, indicating which files are assumed to have duplicates.
duplicates[k] should be 1 if file k has duplicates, and duplicates[k] should be 0 if file k
has no duplicates.

field_levels A numeric vector indicating the number of disagreement levels for each field.
file_labels An integer vector of length sum(file_sizes), where file_labels[i] indicated

which file record i is in.
fp_matrix An integer matrix, where fp_matrix[k1, k2] is a label for the file pair (k1, k2).

Note that fp_matrix[k1, k2] = fp_matrix[k2, k1].
rp_to_fp A logical matrix that indicates which record pairs belong to which file pairs. rp_to_fp[fp,

rp] is TRUE if the records record_pairs[rp,] belong to the file pair fp, and is FALSE oth-
erwise. Note that fp is given by the labeling in fp_matrix.

ab An integer vector, of length ncol(comparisons) * K * (K + 1) / 2 that indicates how many
record pairs there are with a given disagreement level for a given field, for each file pair.

file_sizes_not_included If according to pairs_to_keep there are records which are not po-
tential matches to any other records, the remaining records are relabeled (see labels), and
file_sizes_not_included indicates, for each file, the number of such records that were
removed.

22 relabel_bayes_estimate

ab_not_included For record pairs not included according to pairs_to_keep, this is an integer
vector, of length ncol(comparisons) * K * (K + 1) / 2 that indicates how many record pairs
there are with a given disagreement level for a given field, for each file pair.

labels If according to pairs_to_keep there are records which are not potential matches to any
other records, the remaining records are relabeled. labels provides a dictionary that indicates,
for each of the new labels, which record in the original labeling the new label corresponds to.
In particular, the first column indicates the record in the original labeling, and the second
column indicates the new labeling.

pairs_to_keep A logical vector, the same length as comparison_list$record_pairs, indicat-
ing which record pairs were kept as potential matches. This may not be the same as the input
pairs_to_keep if cc was set to 1.

cc A numeric indicator of whether the connected components of the potential matches are closed
under transitivity.

References

Serge Aleshin-Guendel & Mauricio Sadinle (2022). Multifile Partitioning for Record Linkage and
Duplicate Detection. Journal of the American Statistical Association. [doi: 10.1080/01621459.2021.2013242][arXiv]

Examples

Example with small duplicate dataset
data(dup_data_small)

Create the comparison data
comparison_list <- create_comparison_data(dup_data_small$records,
types = c("bi", "lv", "lv", "lv", "lv", "bi", "bi"),
breaks = list(NA, c(0, 0.25, 0.5), c(0, 0.25, 0.5),

c(0, 0.25, 0.5), c(0, 0.25, 0.5), NA, NA),
file_sizes = dup_data_small$file_sizes,
duplicates = c(1, 1, 1))

Reduce the comparison data
The following line corresponds to only keeping pairs of records for which
neither gname nor fname disagree at the highest level
pairs_to_keep <- (comparison_list$comparisons[, "gname_DL_3"] != TRUE) &
(comparison_list$comparisons[, "fname_DL_3"] != TRUE)

reduced_comparison_list <- reduce_comparison_data(comparison_list,
pairs_to_keep, cc = 1)

relabel_bayes_estimate

Relabel the Bayes Estimate of a Partition

Description

Relabel the Bayes estimate of a partition, for use after using indexing to reduce the number of record
pairs that are potential matches.

https://doi.org/10.1080/01621459.2021.2013242
https://arxiv.org/abs/2110.03839

relabel_bayes_estimate 23

Usage

relabel_bayes_estimate(reduced_comparison_list, bayes_estimate)

Arguments

reduced_comparison_list

The output from a call to reduce_comparison_data.

bayes_estimate The output from a call to find_bayes_estimate.

Details

When the function reduce_comparison_data is used to reduce the number of record pairs that are
potential matches, it may be the case that some records are declared to not be potential matches to
any other records. In this case, the indexing method has made the decision that these records have
no matches, and thus we can remove them from the data set and relabel the remaining records; see
the documentation for labels in reduce_comparison_data for information on how to go between
the original labeling and the new labeling. The purpose of this function is to relabel the output
of find_bayes_estimate when the function reduce_comparison_data is used, so that the user
doesn’t have to do this relabeling themselves.

Value

A data.frame, with as many rows as sum(reduced_comparison_list$file_sizes + reduced_comparison_list$file_sizes_not_included),
i.e. the number of records originally input to create_comparison_data, before indexing occurred.
This data.frame has two columns, "original_labels" and "link_id". Given row i of records
originally input to create_comparison_data, the linkage id according to bayes_estimate is
given by the ith row of the link_id column. See the documentation for find_bayes_estimate
for information on how to interpret this linkage id.

References

Serge Aleshin-Guendel & Mauricio Sadinle (2022). Multifile Partitioning for Record Linkage and
Duplicate Detection. Journal of the American Statistical Association. [doi: 10.1080/01621459.2021.2013242][arXiv]

Examples

Example with small duplicate dataset
data(dup_data_small)

Create the comparison data
comparison_list <- create_comparison_data(dup_data_small$records,
types = c("bi", "lv", "lv", "lv", "lv", "bi", "bi"),
breaks = list(NA, c(0, 0.25, 0.5), c(0, 0.25, 0.5),

c(0, 0.25, 0.5), c(0, 0.25, 0.5), NA, NA),
file_sizes = dup_data_small$file_sizes,
duplicates = c(1, 1, 1))

Reduce the comparison data
The following line corresponds to only keeping pairs of records for which
neither gname nor fname disagree at the highest level

https://doi.org/10.1080/01621459.2021.2013242
https://arxiv.org/abs/2110.03839

24 specify_prior

pairs_to_keep <- (comparison_list$comparisons[, "gname_DL_3"] != TRUE) &
(comparison_list$comparisons[, "fname_DL_3"] != TRUE)

reduced_comparison_list <- reduce_comparison_data(comparison_list,
pairs_to_keep, cc = 1)

Specify the prior
prior_list <- specify_prior(reduced_comparison_list, mus = NA, nus = NA,
flat = 0, alphas = rep(1, 7), dup_upper_bound = c(10, 10, 10),
dup_count_prior_family = c("Poisson", "Poisson", "Poisson"),
dup_count_prior_pars = list(c(1), c(1), c(1)), n_prior_family = "uniform",
n_prior_pars = NA)

Run the Gibbs sampler
{
results <- gibbs_sampler(reduced_comparison_list, prior_list, n_iter = 1000,
seed = 42)

Find the full Bayes estimate
full_estimate <- find_bayes_estimate(results$partitions, burn_in = 100,
L_FNM = 1, L_FM1 = 1, L_FM2 = 2, L_A = Inf, max_cc_size = 50)

Find the partial Bayes estimate
partial_estimate <- find_bayes_estimate(results$partitions, burn_in = 100,
L_FNM = 1, L_FM1 = 1, L_FM2 = 2, L_A = 0.1, max_cc_size = 12)

Relabel the full and partial Bayes estimates
full_estimate_relabel <- relabel_bayes_estimate(reduced_comparison_list,
full_estimate)

partial_estimate_relabel <- relabel_bayes_estimate(reduced_comparison_list,
partial_estimate)

Add columns to the records corresponding to their full and partial
Bayes estimates
dup_data_small$records <- cbind(dup_data_small$records,
full_estimate_id = full_estimate_relabel$link_id,
partial_estimate_id = partial_estimate_relabel$link_id)

}

specify_prior Specify the Prior Distributions

Description

Specify the prior distributions for the m and u parameters of the models for comparison data among
matches and non-matches, and the partition.

Usage

specify_prior(

specify_prior 25

comparison_list,
mus = NA,
nus = NA,
flat = 0,
alphas = NA,
dup_upper_bound = NA,
dup_count_prior_family = NA,
dup_count_prior_pars = NA,
n_prior_family = NA,
n_prior_pars = NA

)

Arguments

comparison_list

the output from a call to create_comparison_data or reduce_comparison_data.
Note that in order to correctly specify the prior, if reduce_comparison_data is
used to the reduce the number of record pairs that are potential matches, then the
output of reduce_comparison_data (not create_comparison_data) should
be used for this argument.

mus, nus The hyperparameters of the Dirichlet priors for the m and u parameters for the
comparisons among matches and non-matches, respectively. These are pos-
itive numeric vectors which have length equal to the number of columns of
comparison_list$comparisons times the number of file pairs (comparison_list$K
* (comparison_list$K + 1) / 2). If set to NA, flat priors are used. We recom-
mend using flat priors for m and u.

flat A numeric indicator of whether a flat prior for partitions should be used. flat
should be 1 if a flat prior is used, and flat should be 0 if a structured prior
is used. If a flat prior is used, the remaining arguments should be set to NA.
Otherwise, the remaining arguments should be specified. We do not recommend
using a flat prior for partitions in general.

alphas The hyperparameters for the Dirichlet-multinomial overlap table prior, a positive
numeric vector of length 2 ^ comparison_list$K - 1. The indexing of these
hyperparameters is based on the the comparison_list$K-bit binary represen-
tation of the inclusion patterns of the overlap table. To give a few examples,
suppose comparison_list$K is 3. 1 in 3-bit binary is 001, so alphas[1] is the
hyperparameter for the 001 cell of the overlap table, representing clusters con-
taining only records from the third file. 2 in 3-bit binary is 010, so alphas[2]
is the hyperparameter for the 010 cell of the overlap table, representing clus-
ters containing only records from the second file. 3 in 3-bit binary is 011, so
alphas[3] is the hyperparameter for the 011 cell of the overlap table, repre-
senting clusters containing only records from the second and third files. If set to
NA, the hyperparameters will all be set to 1.

dup_upper_bound

A numeric vector indicating the maximum number of duplicates, from each
file, allowed in each cluster. For a given file k, dup_upper_bound[k] should be
between 1 and comparison_list$file_sizes[k], i.e. even if you don’t want
to impose an upper bound, you have to implicitly place an upper bound: the

26 specify_prior

number of records in a file. If set to NA, the upper bound for file k will be set to 1
if no duplicates are allowed for that file, or comparison_list$file_sizes[k]
if duplicates are allowed for that file.

dup_count_prior_family

A character vector indicating the prior distribution family used for the num-
ber of duplicates in each cluster, for each file. Currently the only option is
"Poisson" for a Poisson prior, truncated to lie between 1 and dup_upper_bound[k].
The mean parameter of the Poisson distribution is specified using the dup_count_prior_pars
argument. If set to NA, a Poisson prior with mean 1 will be used.

dup_count_prior_pars

A list containing the parameters for the prior distribution for the number of du-
plicates in each cluster, for each file. For file k, when dup_count_prior_family[k]="Poisson",
dup_count_prior_pars[[k]] is a positive constant representing the mean of
the Poisson prior.

n_prior_family A character indicating the prior distribution family used for n, the number of
clusters represented in the records. Note that this includes records determined
not to be potential matches to any other records using reduce_comparison_data.
Currently the there are two options: "uniform" for a uniform prior for n, i.e.
p(n) ∝ 1, and "scale" for a scale prior for n, i.e. p(n) ∝ 1/n. If set to NA, a
uniform prior will be used.

n_prior_pars Currently set to NA. When more prior distribution families for n are imple-
mented, this will be a vector of parameters for those priors.

Details

The purpose of this function is to specify prior distributions for all parameters of the model. Please
note that if reduce_comparison_data is used to the reduce the number of record pairs that are
potential matches, then the output of reduce_comparison_data (not create_comparison_data)
should be used as input.

For the hyperparameters of the Dirichlet priors for the m and u parameters for the comparisons
among matches and non-matches, respectively, we recommend using a flat prior. This is accom-
plished by setting mus=NA and nus=NA. Informative prior specifications are possible, but in practice
they will be overwhelmed by the large number of comparisons.

For the prior for partitions, we do not recommend using a flat prior. Instead we recommend using
our structure prior for partitions. By setting flat=0 and the remaining arguments to NA, one obtains
the default specification for the structured prior that we have found to perform well in simulation
studies. The structured prior for partitions is specified as follows:

• Specify a prior for n, the number of clusters represented in the records. Note that this includes
records determined not to be potential matches to any other records using reduce_comparison_data.
Currently, a uniform prior and a scale prior for n are supported. Our default specification uses
a uniform prior.

• Specify a prior for the overlap table (see the documentation for alphas for more informa-
tion). Currently a Dirichlet-multinomial prior is supported. Our default specification sets all
hyperparameters of the Dirichlet-multinomial prior to 1.

• For each file, specify a prior for the number of duplicates in each cluster. As a part of
this prior, we specify the maximum number of records in a cluster for each file, through

specify_prior 27

dup_upper_bound. When there are assumed to be no duplicates in a file, the maximum num-
ber of records in a cluster for that file is set to 1. When there are assumed to be duplicates in
a file, we recommend setting the maximum number of records in a cluster for that file to be
less than the file size, if prior knowledge allows. Currently, a Poisson prior for the the number
of duplicates in each cluster is supported. Our default specification uses a Poisson prior with
mean 1.

Please contact the package maintainer if you need new prior families for n or the number of dupli-
cates in each cluster to be supported.

Value

a list containing:

mus The hyperparameters of the Dirichlet priors for the m parameters for the comparisons among
matches.

nus The hyperparameters of the Dirichlet priors for the u parameters for the comparisons among
non-matches. Includes data from comparisons of record pairs that were declared to not be
potential matches using reduce_comparison_data.

flat A numeric indicator of whether a flat prior for partitions should be used. flat is 1 if a flat
prior is used, and flat is 0 if a structured prior is used.

no_dups A numeric indicator of whether no duplicates are allowed in all of the files.

alphas The hyperparameters for the Dirichlet-multinomial overlap table prior, a positive numeric
vector of length 2 ^ comparison_list$K, where the first element is 0.

alpha_0 The sum of alphas.

dup_upper_bound A numeric vector indicating the maximum number of duplicates, from each
file, allowed in each cluster. For a given file k, dup_upper_bound[k] should be between
1 and comparison_list$file_sizes[k], i.e. even if you don’t want to impose an upper
bound, you have to implicitly place an upper bound: the number of records in a file.

log_dup_count_prior A list containing the log density of the prior distribution for the number
of duplicates in each cluster, for each file.

log_n_prior A numeric vector containing the log density of the prior distribution for the number
of clusters represented in the records.

nus_specified The nus before data from comparisons of record pairs that were declared to not
be potential matches using reduce_comparison_data are added. Used for input checking.

References

Serge Aleshin-Guendel & Mauricio Sadinle (2022). Multifile Partitioning for Record Linkage and
Duplicate Detection. Journal of the American Statistical Association. [doi: 10.1080/01621459.2021.2013242]
[arXiv]

Examples

Example with small no duplicate dataset
data(no_dup_data_small)

https://doi.org/10.1080/01621459.2021.2013242
https://arxiv.org/abs/2110.03839

28 specify_prior

Create the comparison data
comparison_list <- create_comparison_data(no_dup_data_small$records,
types = c("bi", "lv", "lv", "lv", "lv", "bi", "bi"),
breaks = list(NA, c(0, 0.25, 0.5), c(0, 0.25, 0.5),

c(0, 0.25, 0.5), c(0, 0.25, 0.5), NA, NA),
file_sizes = no_dup_data_small$file_sizes,
duplicates = c(0, 0, 0))

Specify the prior
prior_list <- specify_prior(comparison_list, mus = NA, nus = NA, flat = 0,
alphas = rep(1, 7), dup_upper_bound = c(1, 1, 1),
dup_count_prior_family = NA, dup_count_prior_pars = NA,
n_prior_family = "uniform", n_prior_pars = NA)

Example with small duplicate dataset
data(dup_data_small)

Create the comparison data
comparison_list <- create_comparison_data(dup_data_small$records,
types = c("bi", "lv", "lv", "lv", "lv", "bi", "bi"),
breaks = list(NA, c(0, 0.25, 0.5), c(0, 0.25, 0.5),

c(0, 0.25, 0.5), c(0, 0.25, 0.5), NA, NA),
file_sizes = dup_data_small$file_sizes,
duplicates = c(1, 1, 1))

Reduce the comparison data
The following line corresponds to only keeping pairs of records for which
neither gname nor fname disagree at the highest level
pairs_to_keep <- (comparison_list$comparisons[, "gname_DL_3"] != TRUE) &
(comparison_list$comparisons[, "fname_DL_3"] != TRUE)

reduced_comparison_list <- reduce_comparison_data(comparison_list,
pairs_to_keep, cc = 1)

Specify the prior
prior_list <- specify_prior(reduced_comparison_list, mus = NA, nus = NA,
flat = 0, alphas = rep(1, 7), dup_upper_bound = c(10, 10, 10),
dup_count_prior_family = c("Poisson", "Poisson", "Poisson"),
dup_count_prior_pars = list(c(1), c(1), c(1)), n_prior_family = "uniform",
n_prior_pars = NA)

Index

∗ datasets
dup_data, 5
dup_data_small, 6
no_dup_data, 18
no_dup_data_small, 19

create_comparison_data, 2, 5, 6, 10, 11, 13,
18–20, 23, 25, 26

dup_data, 5, 6
dup_data_small, 6

find_bayes_estimate, 7, 23

gibbs_sampler, 7, 9

initialize_partition, 10, 12

multilink, 14

no_dup_data, 18, 19
no_dup_data_small, 19

reduce_comparison_data, 4, 10, 11, 13, 20,
23, 25–27

relabel_bayes_estimate, 22

specify_prior, 10, 11, 24

29

	create_comparison_data
	dup_data
	dup_data_small
	find_bayes_estimate
	gibbs_sampler
	initialize_partition
	multilink
	no_dup_data
	no_dup_data_small
	reduce_comparison_data
	relabel_bayes_estimate
	specify_prior
	Index

