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ensemble_average Creates an Ensemble Model using Mean/Median Averaging

Description

Creates an Ensemble Model using Mean/Median Averaging

Usage

ensemble_average(object, type = c("mean", "median"))

Arguments

object A Modeltime Table

type Specify the type of average ("mean" or "median")

Details

The input to an ensemble_average() model is always a Modeltime Table, which contains the
models that you will ensemble.

Averaging Methods

The average method uses an un-weighted average using type of either:

• "mean": Performs averaging using mean(x, na.rm = TRUE) to aggregate each underlying
models forecast at each timestamp

• "median": Performs averaging using stats::median(x, na.rm = TRUE) to aggregate each
underlying models forecast at each timestamp

Value

A mdl_time_ensemble object.
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Examples

library(tidymodels)
library(modeltime)
library(modeltime.ensemble)
library(dplyr)
library(timetk)

# Make an ensemble from a Modeltime Table
ensemble_fit <- m750_models %>%

ensemble_average(type = "mean")

ensemble_fit

# Forecast with the Ensemble
modeltime_table(

ensemble_fit
) %>%

modeltime_forecast(
new_data = testing(m750_splits),
actual_data = m750

) %>%
plot_modeltime_forecast(

.interactive = FALSE,

.conf_interval_show = FALSE
)

ensemble_model_spec Creates a Stacked Ensemble Model from a Model Spec

Description

A 2-stage stacking regressor that follows:

1. Stage 1: Sub-Model’s are Trained & Predicted using modeltime.resample::modeltime_fit_resamples().

2. Stage 2: A Meta-learner (model_spec) is trained on Out-of-Sample Sub-Model Predictions
using ensemble_model_spec().

Usage

ensemble_model_spec(
object,
model_spec,
kfolds = 5,
param_info = NULL,
grid = 6,
control = control_grid()

)
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Arguments

object A Modeltime Table. Used for ensemble sub-models.

model_spec A model_spec object defining the meta-learner stacking model specification to
be used.
Can be either:

1. A non-tunable model_spec: Parameters are specified and are not opti-
mized via tuning.

2. A tunable model_spec: Contains parameters identified for tuning with
tune::tune()

kfolds K-Fold Cross Validation for tuning the Meta-Learner. Controls the number of
folds used in the meta-learner’s cross-validation. Gets passed to rsample::vfold_cv().

param_info A dials::parameters() object or NULL. If none is given, a parameters set
is derived from other arguments. Passing this argument can be useful when
parameter ranges need to be customized.

grid Grid specification or grid size for tuning the Meta Learner. Gets passed to
tune::tune_grid().

control An object used to modify the tuning process. Uses tune::control_grid() by
default. Use control_grid(verbose = TRUE) to follow the training process.

Details

Stacked Ensemble Process

• Start with a Modeltime Table to define your sub-models.

• Step 1: Use modeltime.resample::modeltime_fit_resamples() to perform the submodel
resampling procedure.

• Step 2: Use ensemble_model_spec() to define and train the meta-learner.

What goes on inside the Meta Learner?
The Meta-Learner Ensembling Process uses the following basic steps:

1. Make Cross-Validation Predictions. Cross validation predictions are made for each sub-
model with modeltime.resample::modeltime_fit_resamples(). The out-of-sample sub-
model predictions contained in .resample_results are used as the input to the meta-learner.

2. Train a Stacked Regressor (Meta-Learner). The sub-model out-of-sample cross validation
predictions are then modeled using a model_spec with options:

• Tuning: If the model_spec does include tuning parameters via tune::tune() then the
meta-learner will be hypeparameter tuned using K-Fold Cross Validation. The parameters
and grid can adjusted using kfolds, grid, and param_info.

• No-Tuning: If the model_spec does not include tuning parameters via tune::tune()
then the meta-learner will not be hypeparameter tuned and will have the model fitted to
the sub-model predictions.

3. Final Model Selection.
• If tuned, the final model is selected based on RMSE, then retrained on the full set of out

of sample predictions.
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• If not-tuned, the fitted model from Stage 2 is used.

Progress

The best way to follow the training process and watch progress is to use control = control_grid(verbose
= TRUE) to see progress.

Parallelize

Portions of the process can be parallelized. To parallelize, set up parallelization using tune via one
of the backends such as doFuture. Then set control = control_grid(allow_par = TRUE)

Value

A mdl_time_ensemble object.

Examples

library(tidymodels)
library(modeltime)
library(modeltime.ensemble)
library(dplyr)
library(timetk)
library(glmnet)

# Step 1: Make resample predictions for submodels
resamples_tscv <- training(m750_splits) %>%

time_series_cv(
assess = "2 years",
initial = "5 years",
skip = "2 years",
slice_limit = 1

)

submodel_predictions <- m750_models %>%
modeltime_fit_resamples(

resamples = resamples_tscv,
control = control_resamples(verbose = TRUE)

)

# Step 2: Metalearner ----

# * No Metalearner Tuning
ensemble_fit_lm <- submodel_predictions %>%

ensemble_model_spec(
model_spec = linear_reg() %>% set_engine("lm"),
control = control_grid(verbose = TRUE)

)

ensemble_fit_lm

# * With Metalearner Tuning ----
ensemble_fit_glmnet <- submodel_predictions %>%

ensemble_model_spec(
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model_spec = linear_reg(
penalty = tune(),
mixture = tune()

) %>%
set_engine("glmnet"),

grid = 2,
control = control_grid(verbose = TRUE)

)

ensemble_fit_glmnet

ensemble_nested_average

Nested Ensemble Average

Description

Creates an Ensemble Model using Mean/Median Averaging in the Modeltime Nested Forecasting
Workflow.

Usage

ensemble_nested_average(
object,
type = c("mean", "median"),
keep_submodels = TRUE,
model_ids = NULL,
control = control_nested_fit()

)

Arguments

object A nested modeltime object (inherits class nested_mdl_time)

type One of "mean" for mean averaging or "median" for median averaging

keep_submodels Whether or not to keep the submodels in the nested modeltime table results

model_ids A vector of id’s (.model_id) identifying which submodels to use in the ensem-
ble.

control Controls various aspects of the ensembling process. See modeltime::control_nested_fit().

Details

If we start with a nested modeltime table, we can add ensembles.
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nested_modeltime_tbl

# Nested Modeltime Table
Trained on: .splits | Model Errors: [0]
# A tibble: 2 x 5
id .actual_data .future_data .splits .modeltime_tables
<fct> <list> <list> <list> <list>

1 1_1 <tibble [104 x 2]> <tibble [52 x 2]> <split [52|52]> <mdl_time_tbl [2 x 5]>
2 1_3 <tibble [104 x 2]> <tibble [52 x 2]> <split [52|52]> <mdl_time_tbl [2 x 5]>

An ensemble can be added to a Nested modeltime table.

ensem <- nested_modeltime_tbl %>%
ensemble_nested_average(

type = "mean",
keep_submodels = TRUE,
control = control_nested_fit(allow_par = FALSE, verbose = TRUE)

)

We can then verify the model has been added.

ensem %>% extract_nested_modeltime_table()

This produces an ensemble .model_id 3, which is an ensemble of the first two models.

# A tibble: 4 x 6
id .model_id .model .model_desc .type .calibration_data
<fct> <dbl> <list> <chr> <chr> <list>

1 1_1 1 <workflow> PROPHET Test <tibble [52 x 4]>
2 1_1 2 <workflow> XGBOOST Test <tibble [52 x 4]>
3 1_1 3 <ensemble [2]> ENSEMBLE (MEAN): 2 MODELS Test <tibble [52 x 4]>

Additional ensembles can be added by simply adding onto the nested modeltime table. Notice that
we make use of model_ids to make sure it only uses model id’s 1 and 2.

ensem_2 <- ensem %>%
ensemble_nested_average(

type = "median",
keep_submodels = TRUE,
model_ids = c(1,2),
control = control_nested_fit(allow_par = FALSE, verbose = TRUE)

)

This returns a 4th model that is a median ensemble of the first two models.

ensem_2 %>% extract_nested_modeltime_table()
# A tibble: 4 x 6
id .model_id .model .model_desc .type .calibration_data
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<fct> <dbl> <list> <chr> <chr> <list>
1 1_1 1 <workflow> PROPHET Test <tibble [52 x 4]>
2 1_1 2 <workflow> XGBOOST Test <tibble [52 x 4]>
3 1_1 3 <ensemble [2]> ENSEMBLE (MEAN): 2 MODELS Test <tibble [52 x 4]>
4 1_1 4 <ensemble [2]> ENSEMBLE (MEDIAN): 2 MODELS Test <tibble [52 x 4]>

Value

The nested modeltime table with an ensemble model added.

ensemble_nested_weighted

Nested Ensemble Weighted

Description

Creates an Ensemble Model using Weighted Averaging in the Modeltime Nested Forecasting Work-
flow.

Usage

ensemble_nested_weighted(
object,
loadings,
scale_loadings = TRUE,
metric = "rmse",
keep_submodels = TRUE,
model_ids = NULL,
control = control_nested_fit()

)

Arguments

object A nested modeltime object (inherits class nested_mdl_time)

loadings A vector of weights corresponding to the loadings

scale_loadings If TRUE, divides by the sum of the loadings to proportionally weight the sub-
models.

metric The accuracy metric to rank models by the test accuracy table. Loadings are
then applied in the order from best to worst models. Default: "rmse".

keep_submodels Whether or not to keep the submodels in the nested modeltime table results

model_ids A vector of id’s (.model_id) identifying which submodels to use in the ensem-
ble.

control Controls various aspects of the ensembling process. See modeltime::control_nested_fit().
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Details

If we start with a nested modeltime table, we can add ensembles.

nested_modeltime_tbl

# Nested Modeltime Table
Trained on: .splits | Model Errors: [0]
# A tibble: 2 x 5
id .actual_data .future_data .splits .modeltime_tables
<fct> <list> <list> <list> <list>

1 1_1 <tibble [104 x 2]> <tibble [52 x 2]> <split [52|52]> <mdl_time_tbl [2 x 5]>
2 1_3 <tibble [104 x 2]> <tibble [52 x 2]> <split [52|52]> <mdl_time_tbl [2 x 5]>

An ensemble can be added to a Nested modeltime table.

ensem <- nested_modeltime_tbl %>%
ensemble_nested_weighted(

loadings = c(2,1),
control = control_nested_fit(allow_par = FALSE, verbose = TRUE)

)

We can then verify the model has been added.

ensem %>% extract_nested_modeltime_table()

This produces an ensemble .model_id 3, which is an ensemble of the first two models.

# A tibble: 4 x 6
id .model_id .model .model_desc .type .calibration_data
<fct> <dbl> <list> <chr> <chr> <list>

1 1_3 1 <workflow> PROPHET Test <tibble [52 x 4]>
2 1_3 2 <workflow> XGBOOST Test <tibble [52 x 4]>
3 1_3 3 <ensemble [2]> ENSEMBLE (WEIGHTED): 2 MODELS Test <tibble [52 x 4]>

We can verify the loadings have been applied correctly. Note that the loadings will be applied based
on the model with the lowest RMSE.

ensem %>%
extract_nested_modeltime_table(1) %>%
slice(3) %>%
pluck(".model", 1)

Note that the xgboost model gets the 66% loading and prophet gets 33% loading. This is because
xgboost has the lower RMSE in this case.
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-- Modeltime Ensemble -------------------------------------------
Ensemble of 2 Models (WEIGHTED)

# Modeltime Table
# A tibble: 2 x 6

.model_id .model .model_desc .type .calibration_data .loadings
<int> <list> <chr> <chr> <list> <dbl>

1 1 <workflow> PROPHET Test <tibble [52 x 4]> 0.333
2 2 <workflow> XGBOOST Test <tibble [52 x 4]> 0.667

Value

The nested modeltime table with an ensemble model added.

ensemble_weighted Creates a Weighted Ensemble Model

Description

Makes an ensemble by applying loadings to weight sub-model predictions

Usage

ensemble_weighted(object, loadings, scale_loadings = TRUE)

Arguments

object A Modeltime Table

loadings A vector of weights corresponding to the loadings

scale_loadings If TRUE, divides by the sum of the loadings to proportionally weight the sub-
models.

Details

The input to an ensemble_weighted() model is always a Modeltime Table, which contains the
models that you will ensemble.

Weighting Method

The weighted method uses uses loadings by applying a loading x model prediction for each sub-
model.

Value

A mdl_time_ensemble object.
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Examples

library(tidymodels)
library(modeltime)
library(modeltime.ensemble)
library(dplyr)
library(timetk)

# Make an ensemble from a Modeltime Table
ensemble_fit <- m750_models %>%

ensemble_weighted(
loadings = c(3, 3, 1),
scale_loadings = TRUE

)

ensemble_fit

# Forecast with the Ensemble
modeltime_table(

ensemble_fit
) %>%

modeltime_forecast(
new_data = testing(m750_splits),
actual_data = m750

) %>%
plot_modeltime_forecast(

.interactive = FALSE,

.conf_interval_show = FALSE
)
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