
Package: mlr3tuning (via r-universe)
June 30, 2024

Title Hyperparameter Optimization for 'mlr3'

Version 1.0.0

Description Hyperparameter optimization package of the 'mlr3'
ecosystem. It features highly configurable search spaces via
the 'paradox' package and finds optimal hyperparameter
configurations for any 'mlr3' learner. 'mlr3tuning' works with
several optimization algorithms e.g. Random Search, Iterated
Racing, Bayesian Optimization (in 'mlr3mbo') and Hyperband (in
'mlr3hyperband'). Moreover, it can automatically optimize
learners and estimate the performance of optimized models with
nested resampling.

License LGPL-3

URL https://mlr3tuning.mlr-org.com,

https://github.com/mlr-org/mlr3tuning

BugReports https://github.com/mlr-org/mlr3tuning/issues

Depends mlr3 (>= 0.20.0), paradox (>= 1.0.0), R (>= 3.1.0)

Imports bbotk (>= 1.0.0), checkmate (>= 2.0.0), data.table, lgr,
mlr3misc (>= 0.15.1), R6

Suggests adagio, future, GenSA, irace, knitr, mlflow, mlr3learners (>=
0.7.0), mlr3pipelines (>= 0.5.2), nloptr, rush, rmarkdown,
rpart, testthat (>= 3.0.0), xgboost

VignetteBuilder knitr

Config/testthat/edition 3

Config/testthat/parallel false

Encoding UTF-8

NeedsCompilation no

RoxygenNote 7.3.1

Collate 'ArchiveAsyncTuning.R' 'ArchiveBatchTuning.R' 'AutoTuner.R'
'CallbackAsyncTuning.R' 'CallbackBatchTuning.R'
'ContextAsyncTuning.R' 'ContextBatchTuning.R'

1

https://mlr3tuning.mlr-org.com
https://github.com/mlr-org/mlr3tuning
https://github.com/mlr-org/mlr3tuning/issues

2 Contents

'ObjectiveTuning.R' 'ObjectiveTuningAsync.R'
'ObjectiveTuningBatch.R' 'mlr_tuners.R' 'Tuner.R'
'TunerAsync.R' 'TunerAsyncDesignPoints.R'
'TunerAsyncFromOptimizerAsync.R' 'TunerAsyncGridSearch.R'
'TunerAsyncRandomSearch.R' 'TunerBatch.R' 'TunerBatchCmaes.R'
'TunerBatchDesignPoints.R' 'TunerBatchFromBatchOptimizer.R'
'TunerBatchGenSA.R' 'TunerBatchGridSearch.R'
'TunerBatchInternal.R' 'TunerBatchIrace.R' 'TunerBatchNLoptr.R'
'TunerBatchRandomSearch.R' 'TuningInstanceBatchSingleCrit.R'
'TuningInstanceAsyncMulticrit.R'
'TuningInstanceAsyncSingleCrit.R'
'TuningInstanceBatchMulticrit.R' 'TuningInstanceMultiCrit.R'
'TuningInstanceSingleCrit.R' 'as_search_space.R' 'as_tuner.R'
'assertions.R' 'auto_tuner.R' 'bibentries.R'
'extract_inner_tuning_archives.R'
'extract_inner_tuning_results.R' 'helper.R' 'mlr_callbacks.R'
'reexport.R' 'sugar.R' 'tune.R' 'tune_nested.R' 'zzz.R'

Author Marc Becker [cre, aut]
(<https://orcid.org/0000-0002-8115-0400>), Michel Lang [aut]
(<https://orcid.org/0000-0001-9754-0393>), Jakob Richter [aut]
(<https://orcid.org/0000-0003-4481-5554>), Bernd Bischl [aut]
(<https://orcid.org/0000-0001-6002-6980>), Daniel Schalk [aut]
(<https://orcid.org/0000-0003-0950-1947>)

Maintainer Marc Becker <marcbecker@posteo.de>

Repository CRAN

Date/Publication 2024-06-29 06:40:11 UTC

Contents
mlr3tuning-package . 3
ArchiveAsyncTuning . 4
ArchiveBatchTuning . 8
as_search_space . 12
as_tuner . 12
AutoTuner . 13
auto_tuner . 19
CallbackAsyncTuning . 22
CallbackBatchTuning . 23
callback_async_tuning . 24
callback_batch_tuning . 26
ContextAsyncTuning . 28
ContextBatchTuning . 29
extract_inner_tuning_archives . 30
extract_inner_tuning_results . 31
mlr3tuning.asnyc_mlflow . 33
mlr3tuning.async_default_configuration . 34

https://orcid.org/0000-0002-8115-0400
https://orcid.org/0000-0001-9754-0393
https://orcid.org/0000-0003-4481-5554
https://orcid.org/0000-0001-6002-6980
https://orcid.org/0000-0003-0950-1947

mlr3tuning-package 3

mlr3tuning.async_save_logs . 34
mlr3tuning.backup . 34
mlr3tuning.measures . 35
mlr_tuners . 36
mlr_tuners_async_design_points . 37
mlr_tuners_async_grid_search . 38
mlr_tuners_async_random_search . 39
mlr_tuners_cmaes . 40
mlr_tuners_design_points . 42
mlr_tuners_gensa . 44
mlr_tuners_grid_search . 47
mlr_tuners_internal . 49
mlr_tuners_irace . 51
mlr_tuners_nloptr . 54
mlr_tuners_random_search . 57
ObjectiveTuning . 59
ObjectiveTuningAsync . 61
ObjectiveTuningBatch . 62
set_validate.AutoTuner . 63
ti . 64
ti_async . 67
tnr . 69
tune . 70
Tuner . 73
TunerAsync . 76
TunerBatch . 77
tune_nested . 80
TuningInstanceAsyncMultiCrit . 82
TuningInstanceAsyncSingleCrit . 84
TuningInstanceBatchMultiCrit . 88
TuningInstanceBatchSingleCrit . 91
TuningInstanceMultiCrit . 95
TuningInstanceSingleCrit . 97

Index 99

mlr3tuning-package mlr3tuning: Hyperparameter Optimization for ’mlr3’

Description

Hyperparameter optimization package of the ’mlr3’ ecosystem. It features highly configurable
search spaces via the ’paradox’ package and finds optimal hyperparameter configurations for any
’mlr3’ learner. ’mlr3tuning’ works with several optimization algorithms e.g. Random Search, Iter-
ated Racing, Bayesian Optimization (in ’mlr3mbo’) and Hyperband (in ’mlr3hyperband’). More-
over, it can automatically optimize learners and estimate the performance of optimized models with
nested resampling.

4 ArchiveAsyncTuning

Author(s)

Maintainer: Marc Becker <marcbecker@posteo.de> (ORCID)

Authors:

• Michel Lang <michellang@gmail.com> (ORCID)

• Jakob Richter <jakob1richter@gmail.com> (ORCID)

• Bernd Bischl <bernd_bischl@gmx.net> (ORCID)

• Daniel Schalk <daniel.schalk@stat.uni-muenchen.de> (ORCID)

See Also

Useful links:

• https://mlr3tuning.mlr-org.com

• https://github.com/mlr-org/mlr3tuning

• Report bugs at https://github.com/mlr-org/mlr3tuning/issues

ArchiveAsyncTuning Rush Data Storage

Description

The ‘ArchiveAsyncTuning“ stores all evaluated hyperparameter configurations and performance
scores in a rush::Rush database.

Details

The ArchiveAsyncTuning is a connector to a rush::Rush database.

Data Structure

The table ($data) has the following columns:

• One column for each hyperparameter of the search space ($search_space).

• One (list-)column for the internal_tuned_values

• One column for each performance measure ($codomain).

• x_domain (list())
Lists of (transformed) hyperparameter values that are passed to the learner.

• runtime_learners (numeric(1))
Sum of training and predict times logged in learners per mlr3::ResampleResult / evaluation.
This does not include potential overhead time.

• timestamp (POSIXct)
Time stamp when the evaluation was logged into the archive.

• batch_nr (integer(1))
Hyperparameters are evaluated in batches. Each batch has a unique batch number.

https://orcid.org/0000-0002-8115-0400
https://orcid.org/0000-0001-9754-0393
https://orcid.org/0000-0003-4481-5554
https://orcid.org/0000-0001-6002-6980
https://orcid.org/0000-0003-0950-1947
https://mlr3tuning.mlr-org.com
https://github.com/mlr-org/mlr3tuning
https://github.com/mlr-org/mlr3tuning/issues

ArchiveAsyncTuning 5

Analysis

For analyzing the tuning results, it is recommended to pass the ArchiveAsyncTuning to as.data.table().
The returned data table contains the mlr3::ResampleResult for each hyperparameter evaluation.

S3 Methods

• as.data.table.ArchiveTuning(x, unnest = "x_domain", exclude_columns = "uhash",
measures = NULL)
Returns a tabular view of all evaluated hyperparameter configurations.
ArchiveAsyncTuning -> data.table::data.table()

– x (ArchiveAsyncTuning)
– unnest (character())

Transforms list columns to separate columns. Set to NULL if no column should be unnested.
– exclude_columns (character())

Exclude columns from table. Set to NULL if no column should be excluded.
– measures (List of mlr3::Measure)

Score hyperparameter configurations on additional measures.

Super classes

bbotk::Archive -> bbotk::ArchiveAsync -> ArchiveAsyncTuning

Active bindings

internal_search_space (paradox::ParamSet)
The search space containing those parameters that are internally optimized by the mlr3::Learner.

benchmark_result (mlr3::BenchmarkResult)
Benchmark result.

Methods

Public methods:

• ArchiveAsyncTuning$new()

• ArchiveAsyncTuning$learner()

• ArchiveAsyncTuning$learners()

• ArchiveAsyncTuning$learner_param_vals()

• ArchiveAsyncTuning$predictions()

• ArchiveAsyncTuning$resample_result()

• ArchiveAsyncTuning$print()

• ArchiveAsyncTuning$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

6 ArchiveAsyncTuning

ArchiveAsyncTuning$new(
search_space,
codomain,
rush,
internal_search_space = NULL

)

Arguments:

search_space (paradox::ParamSet)
Hyperparameter search space. If NULL (default), the search space is constructed from the
paradox::TuneToken of the learner’s parameter set (learner$param_set).

codomain (bbotk::Codomain)
Specifies codomain of objective function i.e. a set of performance measures. Internally
created from provided mlr3::Measures.

rush (Rush)
If a rush instance is supplied, the tuning runs without batches.

internal_search_space (paradox::ParamSet or NULL)
The internal search space of the tuner. This includes parameters that the learner can optimize
internally durign $train(), such as the number of epochs via early stopping.

check_values (logical(1))
If TRUE (default), hyperparameter configurations are check for validity.

Method learner(): Retrieve mlr3::Learner of the i-th evaluation, by position or by unique hash
uhash. i and uhash are mutually exclusive. Learner does not contain a model. Use $learners()
to get learners with models.

Usage:
ArchiveAsyncTuning$learner(i = NULL, uhash = NULL)

Arguments:

i (integer(1))
The iteration value to filter for.

uhash (logical(1))
The uhash value to filter for.

Method learners(): Retrieve list of trained mlr3::Learner objects of the i-th evaluation, by
position or by unique hash uhash. i and uhash are mutually exclusive.

Usage:
ArchiveAsyncTuning$learners(i = NULL, uhash = NULL)

Arguments:

i (integer(1))
The iteration value to filter for.

uhash (logical(1))
The uhash value to filter for.

Method learner_param_vals(): Retrieve param values of the i-th evaluation, by position or
by unique hash uhash. i and uhash are mutually exclusive.

Usage:

ArchiveAsyncTuning 7

ArchiveAsyncTuning$learner_param_vals(i = NULL, uhash = NULL)

Arguments:

i (integer(1))
The iteration value to filter for.

uhash (logical(1))
The uhash value to filter for.

Method predictions(): Retrieve list of mlr3::Prediction objects of the i-th evaluation, by
position or by unique hash uhash. i and uhash are mutually exclusive.

Usage:
ArchiveAsyncTuning$predictions(i = NULL, uhash = NULL)

Arguments:

i (integer(1))
The iteration value to filter for.

uhash (logical(1))
The uhash value to filter for.

Method resample_result(): Retrieve mlr3::ResampleResult of the i-th evaluation, by position
or by unique hash uhash. i and uhash are mutually exclusive.

Usage:
ArchiveAsyncTuning$resample_result(i = NULL, uhash = NULL)

Arguments:

i (integer(1))
The iteration value to filter for.

uhash (logical(1))
The uhash value to filter for.

Method print(): Printer.

Usage:
ArchiveAsyncTuning$print()

Arguments:

... (ignored).

Method clone(): The objects of this class are cloneable with this method.

Usage:
ArchiveAsyncTuning$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

8 ArchiveBatchTuning

ArchiveBatchTuning Class for Logging Evaluated Hyperparameter Configurations

Description

The ArchiveBatchTuning stores all evaluated hyperparameter configurations and performance
scores in a data.table::data.table().

Details

The ArchiveBatchTuning is a container around a data.table::data.table(). Each row corre-
sponds to a single evaluation of a hyperparameter configuration. See the section on Data Structure
for more information. The archive stores additionally a mlr3::BenchmarkResult ($benchmark_result)
that records the resampling experiments. Each experiment corresponds to to a single evaluation of a
hyperparameter configuration. The table ($data) and the benchmark result ($benchmark_result)
are linked by the uhash column. If the archive is passed to as.data.table(), both are joined
automatically.

Data Structure

The table ($data) has the following columns:

• One column for each hyperparameter of the search space ($search_space).

• One (list-)column for the internal_tuned_values

• One column for each performance measure ($codomain).

• x_domain (list())
Lists of (transformed) hyperparameter values that are passed to the learner.

• runtime_learners (numeric(1))
Sum of training and predict times logged in learners per mlr3::ResampleResult / evaluation.
This does not include potential overhead time.

• timestamp (POSIXct)
Time stamp when the evaluation was logged into the archive.

• batch_nr (integer(1))
Hyperparameters are evaluated in batches. Each batch has a unique batch number.

• uhash (character(1))
Connects each hyperparameter configuration to the resampling experiment stored in the mlr3::BenchmarkResult.

Analysis

For analyzing the tuning results, it is recommended to pass the ArchiveBatchTuning to as.data.table().
The returned data table is joined with the benchmark result which adds the mlr3::ResampleResult
for each hyperparameter evaluation.

The archive provides various getters (e.g. $learners()) to ease the access. All getters extract by
position (i) or unique hash (uhash). For a complete list of all getters see the methods section.

ArchiveBatchTuning 9

The benchmark result ($benchmark_result) allows to score the hyperparameter configurations
again on a different measure. Alternatively, measures can be supplied to as.data.table().

The mlr3viz package provides visualizations for tuning results.

S3 Methods

• as.data.table.ArchiveTuning(x, unnest = "x_domain", exclude_columns = "uhash",
measures = NULL)
Returns a tabular view of all evaluated hyperparameter configurations.
ArchiveBatchTuning -> data.table::data.table()

– x (ArchiveBatchTuning)
– unnest (character())

Transforms list columns to separate columns. Set to NULL if no column should be unnested.
– exclude_columns (character())

Exclude columns from table. Set to NULL if no column should be excluded.
– measures (List of mlr3::Measure)

Score hyperparameter configurations on additional measures.

Super classes

bbotk::Archive -> bbotk::ArchiveBatch -> ArchiveBatchTuning

Public fields

benchmark_result (mlr3::BenchmarkResult)
Benchmark result.

Active bindings

internal_search_space (paradox::ParamSet)
The search space containing those parameters that are internally optimized by the mlr3::Learner.

Methods

Public methods:
• ArchiveBatchTuning$new()

• ArchiveBatchTuning$learner()

• ArchiveBatchTuning$learners()

• ArchiveBatchTuning$learner_param_vals()

• ArchiveBatchTuning$predictions()

• ArchiveBatchTuning$resample_result()

• ArchiveBatchTuning$print()

• ArchiveBatchTuning$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

https://CRAN.R-project.org/package=mlr3viz

10 ArchiveBatchTuning

ArchiveBatchTuning$new(
search_space,
codomain,
check_values = FALSE,
internal_search_space = NULL

)

Arguments:
search_space (paradox::ParamSet)

Hyperparameter search space. If NULL (default), the search space is constructed from the
paradox::TuneToken of the learner’s parameter set (learner$param_set).

codomain (bbotk::Codomain)
Specifies codomain of objective function i.e. a set of performance measures. Internally
created from provided mlr3::Measures.

check_values (logical(1))
If TRUE (default), hyperparameter configurations are check for validity.

internal_search_space (paradox::ParamSet or NULL)
The internal search space of the tuner. This includes parameters that the learner can optimize
internally durign $train(), such as the number of epochs via early stopping.

Method learner(): Retrieve mlr3::Learner of the i-th evaluation, by position or by unique hash
uhash. i and uhash are mutually exclusive. Learner does not contain a model. Use $learners()
to get learners with models.

Usage:
ArchiveBatchTuning$learner(i = NULL, uhash = NULL)

Arguments:
i (integer(1))

The iteration value to filter for.
uhash (logical(1))

The uhash value to filter for.

Method learners(): Retrieve list of trained mlr3::Learner objects of the i-th evaluation, by
position or by unique hash uhash. i and uhash are mutually exclusive.

Usage:
ArchiveBatchTuning$learners(i = NULL, uhash = NULL)

Arguments:
i (integer(1))

The iteration value to filter for.
uhash (logical(1))

The uhash value to filter for.

Method learner_param_vals(): Retrieve param values of the i-th evaluation, by position or
by unique hash uhash. i and uhash are mutually exclusive.

Usage:
ArchiveBatchTuning$learner_param_vals(i = NULL, uhash = NULL)

Arguments:

ArchiveBatchTuning 11

i (integer(1))
The iteration value to filter for.

uhash (logical(1))
The uhash value to filter for.

Method predictions(): Retrieve list of mlr3::Prediction objects of the i-th evaluation, by
position or by unique hash uhash. i and uhash are mutually exclusive.

Usage:

ArchiveBatchTuning$predictions(i = NULL, uhash = NULL)

Arguments:

i (integer(1))
The iteration value to filter for.

uhash (logical(1))
The uhash value to filter for.

Method resample_result(): Retrieve mlr3::ResampleResult of the i-th evaluation, by position
or by unique hash uhash. i and uhash are mutually exclusive.

Usage:

ArchiveBatchTuning$resample_result(i = NULL, uhash = NULL)

Arguments:

i (integer(1))
The iteration value to filter for.

uhash (logical(1))
The uhash value to filter for.

Method print(): Printer.

Usage:

ArchiveBatchTuning$print()

Arguments:

... (ignored).

Method clone(): The objects of this class are cloneable with this method.

Usage:

ArchiveBatchTuning$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

12 as_tuner

as_search_space Convert to a Search Space

Description

Convert object to a search space.

Usage

as_search_space(x, ...)

S3 method for class 'Learner'
as_search_space(x, ...)

S3 method for class 'ParamSet'
as_search_space(x, ...)

Arguments

x (any)
Object to convert to search space.

... (any)
Additional arguments.

Value

paradox::ParamSet.

as_tuner Convert to a Tuner

Description

Convert object to a Tuner or a list of Tuner.

Usage

as_tuner(x, ...)

S3 method for class 'Tuner'
as_tuner(x, clone = FALSE, ...)

as_tuners(x, ...)

Default S3 method:

AutoTuner 13

as_tuners(x, ...)

S3 method for class 'list'
as_tuners(x, ...)

Arguments

x (any)
Object to convert.

... (any)
Additional arguments.

clone (logical(1))
Whether to clone the object.

AutoTuner Class for Automatic Tuning

Description

The AutoTuner wraps a mlr3::Learner and augments it with an automatic tuning process for a given
set of hyperparameters. The auto_tuner() function creates an AutoTuner object.

Details

The AutoTuner is a mlr3::Learner which wraps another mlr3::Learner and performs the following
steps during $train():

1. The hyperparameters of the wrapped (inner) learner are trained on the training data via resam-
pling. The tuning can be specified by providing a Tuner, a bbotk::Terminator, a search space
as paradox::ParamSet, a mlr3::Resampling and a mlr3::Measure.

2. The best found hyperparameter configuration is set as hyperparameters for the wrapped (inner)
learner stored in at$learner. Access the tuned hyperparameters via at$tuning_result.

3. A final model is fit on the complete training data using the now parametrized wrapped learner.
The respective model is available via field at$learner$model.

During $predict() the AutoTuner just calls the predict method of the wrapped (inner) learner. A
set timeout is disabled while fitting the final model.

Validation

Both, the tuned mlr3::Learner and the AutoTuner itself can make use of validation data. the
$validate field of the AutoTuner determines how validation is done during the final model fit.
In most cases, this should be left as NULL. The $validate field of the tuned mlr3::Learner specifies
how the validation data is constructed during the hyperparameter optimization.

14 AutoTuner

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• Automate the tuning.

• Estimate the model performance with nested resampling.

The gallery features a collection of case studies and demos about optimization.

Nested Resampling

Nested resampling is performed by passing an AutoTuner to mlr3::resample() or mlr3::benchmark().
To access the inner resampling results, set store_tuning_instance = TRUE and execute mlr3::resample()
or mlr3::benchmark() with store_models = TRUE (see examples). The mlr3::Resampling passed
to the AutoTuner is meant to be the inner resampling, operating on the training set of an arbitrary
outer resampling. For this reason, the inner resampling should be not instantiated. If an instantiated
resampling is passed, the AutoTuner fails when a row id of the inner resampling is not present in
the training set of the outer resampling.

Default Measures

If no measure is passed, the default measure is used. The default measure depends on the task type.

Task Default Measure Package
"classif" "classif.ce" mlr3
"regr" "regr.mse" mlr3
"surv" "surv.cindex" mlr3proba
"dens" "dens.logloss" mlr3proba
"classif_st" "classif.ce" mlr3spatial
"regr_st" "regr.mse" mlr3spatial
"clust" "clust.dunn" mlr3cluster

Super class

mlr3::Learner -> AutoTuner

Public fields

instance_args (list())
All arguments from construction to create the TuningInstanceBatchSingleCrit.

tuner (Tuner)
Optimization algorithm.

Active bindings

internal_valid_scores Retrieves the inner validation scores as a named list(). Returns NULL
if learner is not trained yet.

validate How to construct the internal validation data. This parameter can be either NULL, a ratio
in $(0, 1)$, "test", or "predefined".

https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-autotuner
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-nested-resampling
https://mlr-org.com/gallery-all-optimization.html
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3cluster

AutoTuner 15

archive ArchiveBatchTuning
Archive of the TuningInstanceBatchSingleCrit.

learner (mlr3::Learner)
Trained learner

tuning_instance (TuningInstanceAsyncSingleCrit | TuningInstanceBatchSingleCrit)
Internally created tuning instance with all intermediate results.

tuning_result (data.table::data.table)
Short-cut to result from tuning instance.

predict_type (character(1))
Stores the currently active predict type, e.g. "response". Must be an element of $predict_types.

hash (character(1))
Hash (unique identifier) for this object.

phash (character(1))
Hash (unique identifier) for this partial object, excluding some components which are varied
systematically during tuning (parameter values) or feature selection (feature names).

Methods

Public methods:
• AutoTuner$new()

• AutoTuner$base_learner()

• AutoTuner$importance()

• AutoTuner$selected_features()

• AutoTuner$oob_error()

• AutoTuner$loglik()

• AutoTuner$print()

• AutoTuner$marshal()

• AutoTuner$unmarshal()

• AutoTuner$marshaled()

• AutoTuner$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
AutoTuner$new(
tuner,
learner,
resampling,
measure = NULL,
terminator,
search_space = NULL,
store_tuning_instance = TRUE,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
callbacks = NULL,

16 AutoTuner

rush = NULL,
validate = NULL

)

Arguments:
tuner (Tuner)

Optimization algorithm.
learner (mlr3::Learner)

Learner to tune.
resampling (mlr3::Resampling)

Resampling that is used to evaluate the performance of the hyperparameter configurations.
Uninstantiated resamplings are instantiated during construction so that all configurations
are evaluated on the same data splits. Already instantiated resamplings are kept unchanged.
Specialized Tuner change the resampling e.g. to evaluate a hyperparameter configuration
on different data splits. This field, however, always returns the resampling passed in con-
struction.

measure (mlr3::Measure)
Measure to optimize. If NULL, default measure is used.

terminator (bbotk::Terminator)
Stop criterion of the tuning process.

search_space (paradox::ParamSet)
Hyperparameter search space. If NULL (default), the search space is constructed from the
paradox::TuneToken of the learner’s parameter set (learner$param_set).

store_tuning_instance (logical(1))
If TRUE (default), stores the internally created TuningInstanceBatchSingleCrit with all in-
termediate results in slot $tuning_instance.

store_benchmark_result (logical(1))
If TRUE (default), store resample result of evaluated hyperparameter configurations in archive
as mlr3::BenchmarkResult.

store_models (logical(1))
If TRUE, fitted models are stored in the benchmark result (archive$benchmark_result). If
store_benchmark_result = FALSE, models are only stored temporarily and not accessible
after the tuning. This combination is needed for measures that require a model.

check_values (logical(1))
If TRUE, hyperparameter values are checked before evaluation and performance scores after.
If FALSE (default), values are unchecked but computational overhead is reduced.

callbacks (list of mlr3misc::Callback)
List of callbacks.

rush (Rush)
If a rush instance is supplied, the tuning runs without batches.

validate (numeric(1), "test", "predefined" or NULL)
How to construct the internal validation data.

Method base_learner(): Extracts the base learner from nested learner objects like GraphLearner
in mlr3pipelines. If recursive = 0, the (tuned) learner is returned.

Usage:
AutoTuner$base_learner(recursive = Inf)

https://CRAN.R-project.org/package=mlr3pipelines

AutoTuner 17

Arguments:
recursive (integer(1))

Depth of recursion for multiple nested objects.

Returns: mlr3::Learner.

Method importance(): The importance scores of the final model.

Usage:
AutoTuner$importance()

Returns: Named numeric().

Method selected_features(): The selected features of the final model.

Usage:
AutoTuner$selected_features()

Returns: character().

Method oob_error(): The out-of-bag error of the final model.

Usage:
AutoTuner$oob_error()

Returns: numeric(1).

Method loglik(): The log-likelihood of the final model.

Usage:
AutoTuner$loglik()

Returns: logLik. Printer.

Method print():
Usage:
AutoTuner$print()

Arguments:
... (ignored).

Method marshal(): Marshal the learner.

Usage:
AutoTuner$marshal(...)

Arguments:
... (any)

Additional parameters.

Returns: self

Method unmarshal(): Unmarshal the learner.

Usage:
AutoTuner$unmarshal(...)

Arguments:

18 AutoTuner

... (any)
Additional parameters.

Returns: self

Method marshaled(): Whether the learner is marshaled.

Usage:
AutoTuner$marshaled()

Method clone(): The objects of this class are cloneable with this method.

Usage:
AutoTuner$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Automatic Tuning

split to train and external set
task = tsk("penguins")
split = partition(task, ratio = 0.8)

load learner and set search space
learner = lrn("classif.rpart",

cp = to_tune(1e-04, 1e-1, logscale = TRUE)
)

create auto tuner
at = auto_tuner(

tuner = tnr("random_search"),
learner = learner,
resampling = rsmp ("holdout"),
measure = msr("classif.ce"),
term_evals = 4)

tune hyperparameters and fit final model
at$train(task, row_ids = split$train)

predict with final model
at$predict(task, row_ids = split$test)

show tuning result
at$tuning_result

model slot contains trained learner and tuning instance
at$model

shortcut trained learner
at$learner

auto_tuner 19

shortcut tuning instance
at$tuning_instance

Nested Resampling

at = auto_tuner(
tuner = tnr("random_search"),
learner = learner,
resampling = rsmp ("holdout"),
measure = msr("classif.ce"),
term_evals = 4)

resampling_outer = rsmp("cv", folds = 3)
rr = resample(task, at, resampling_outer, store_models = TRUE)

retrieve inner tuning results.
extract_inner_tuning_results(rr)

performance scores estimated on the outer resampling
rr$score()

unbiased performance of the final model trained on the full data set
rr$aggregate()

auto_tuner Function for Automatic Tuning

Description

The AutoTuner wraps a mlr3::Learner and augments it with an automatic tuning process for a given
set of hyperparameters. The auto_tuner() function creates an AutoTuner object.

Usage

auto_tuner(
tuner,
learner,
resampling,
measure = NULL,
term_evals = NULL,
term_time = NULL,
terminator = NULL,
search_space = NULL,
store_tuning_instance = TRUE,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
callbacks = NULL,

20 auto_tuner

validate = NULL,
rush = NULL

)

Arguments

tuner (Tuner)
Optimization algorithm.

learner (mlr3::Learner)
Learner to tune.

resampling (mlr3::Resampling)
Resampling that is used to evaluate the performance of the hyperparameter con-
figurations. Uninstantiated resamplings are instantiated during construction so
that all configurations are evaluated on the same data splits. Already instantiated
resamplings are kept unchanged. Specialized Tuner change the resampling e.g.
to evaluate a hyperparameter configuration on different data splits. This field,
however, always returns the resampling passed in construction.

measure (mlr3::Measure)
Measure to optimize. If NULL, default measure is used.

term_evals (integer(1))
Number of allowed evaluations. Ignored if terminator is passed.

term_time (integer(1))
Maximum allowed time in seconds. Ignored if terminator is passed.

terminator (bbotk::Terminator)
Stop criterion of the tuning process.

search_space (paradox::ParamSet)
Hyperparameter search space. If NULL (default), the search space is constructed
from the paradox::TuneToken of the learner’s parameter set (learner$param_set).

store_tuning_instance

(logical(1))
If TRUE (default), stores the internally created TuningInstanceBatchSingleCrit
with all intermediate results in slot $tuning_instance.

store_benchmark_result

(logical(1))
If TRUE (default), store resample result of evaluated hyperparameter configura-
tions in archive as mlr3::BenchmarkResult.

store_models (logical(1))
If TRUE, fitted models are stored in the benchmark result (archive$benchmark_result).
If store_benchmark_result = FALSE, models are only stored temporarily and
not accessible after the tuning. This combination is needed for measures that
require a model.

check_values (logical(1))
If TRUE, hyperparameter values are checked before evaluation and performance
scores after. If FALSE (default), values are unchecked but computational over-
head is reduced.

auto_tuner 21

callbacks (list of mlr3misc::Callback)
List of callbacks.

validate (numeric(1), "test", "predefined" or NULL)
How to construct the internal validation data.

rush (Rush)
If a rush instance is supplied, the tuning runs without batches.

Details

The AutoTuner is a mlr3::Learner which wraps another mlr3::Learner and performs the following
steps during $train():

1. The hyperparameters of the wrapped (inner) learner are trained on the training data via resam-
pling. The tuning can be specified by providing a Tuner, a bbotk::Terminator, a search space
as paradox::ParamSet, a mlr3::Resampling and a mlr3::Measure.

2. The best found hyperparameter configuration is set as hyperparameters for the wrapped (inner)
learner stored in at$learner. Access the tuned hyperparameters via at$tuning_result.

3. A final model is fit on the complete training data using the now parametrized wrapped learner.
The respective model is available via field at$learner$model.

During $predict() the AutoTuner just calls the predict method of the wrapped (inner) learner. A
set timeout is disabled while fitting the final model.

Value

AutoTuner.

Default Measures

If no measure is passed, the default measure is used. The default measure depends on the task type.

Task Default Measure Package
"classif" "classif.ce" mlr3
"regr" "regr.mse" mlr3
"surv" "surv.cindex" mlr3proba
"dens" "dens.logloss" mlr3proba
"classif_st" "classif.ce" mlr3spatial
"regr_st" "regr.mse" mlr3spatial
"clust" "clust.dunn" mlr3cluster

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• Automate the tuning.

• Estimate the model performance with nested resampling.

The gallery features a collection of case studies and demos about optimization.

https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3cluster
https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-autotuner
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-nested-resampling
https://mlr-org.com/gallery-all-optimization.html

22 CallbackAsyncTuning

Nested Resampling

Nested resampling is performed by passing an AutoTuner to mlr3::resample() or mlr3::benchmark().
To access the inner resampling results, set store_tuning_instance = TRUE and execute mlr3::resample()
or mlr3::benchmark() with store_models = TRUE (see examples). The mlr3::Resampling passed
to the AutoTuner is meant to be the inner resampling, operating on the training set of an arbitrary
outer resampling. For this reason, the inner resampling should be not instantiated. If an instantiated
resampling is passed, the AutoTuner fails when a row id of the inner resampling is not present in
the training set of the outer resampling.

Examples

at = auto_tuner(
tuner = tnr("random_search"),
learner = lrn("classif.rpart", cp = to_tune(1e-04, 1e-1, logscale = TRUE)),
resampling = rsmp ("holdout"),
measure = msr("classif.ce"),
term_evals = 4)

at$train(tsk("pima"))

CallbackAsyncTuning Create Asynchronous Tuning Callback

Description

Specialized bbotk::CallbackAsync for asynchronous tuning. Callbacks allow to customize the be-
havior of processes in mlr3tuning. The callback_async_tuning() function creates a Callback-
AsyncTuning. Predefined callbacks are stored in the dictionary mlr_callbacks and can be retrieved
with clbk(). For more information on tuning callbacks see callback_async_tuning().

Super classes

mlr3misc::Callback -> bbotk::CallbackAsync -> CallbackAsyncTuning

Public fields

on_eval_after_xs (function())
Stage called after xs is passed. Called in ObjectiveTuning$eval().

on_eval_after_resample (function())
Stage called after hyperparameter configurations are evaluated. Called in ObjectiveTuning$eval().

on_eval_before_archive (function())
Stage called before performance values are written to the archive. Called in ObjectiveTuning$eval().

CallbackBatchTuning 23

Methods

Public methods:
• CallbackAsyncTuning$clone()

Method clone(): The objects of this class are cloneable with this method.

Usage:
CallbackAsyncTuning$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

CallbackBatchTuning Create Batch Tuning Callback

Description

Specialized bbotk::CallbackBatch for batch tuning. Callbacks allow to customize the behavior of
processes in mlr3tuning. The callback_batch_tuning() function creates a CallbackBatchTuning.
Predefined callbacks are stored in the dictionary mlr_callbacks and can be retrieved with clbk().
For more information on tuning callbacks see callback_batch_tuning().

Super classes

mlr3misc::Callback -> bbotk::CallbackBatch -> CallbackBatchTuning

Public fields

on_eval_after_design (function())
Stage called after design is created. Called in ObjectiveTuning$eval_many().

on_eval_after_benchmark (function())
Stage called after hyperparameter configurations are evaluated. Called in ObjectiveTuning$eval_many().

on_eval_before_archive (function())
Stage called before performance values are written to the archive. Called in ObjectiveTuning$eval_many().

Methods

Public methods:
• CallbackBatchTuning$clone()

Method clone(): The objects of this class are cloneable with this method.

Usage:
CallbackBatchTuning$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

24 callback_async_tuning

Examples

write archive to disk
callback_batch_tuning("mlr3tuning.backup",

on_optimization_end = function(callback, context) {
saveRDS(context$instance$archive, "archive.rds")

}
)

callback_async_tuning Create Asynchronous Tuning Callback

Description

Function to create a CallbackAsyncTuning. Predefined callbacks are stored in the dictionary mlr_callbacks
and can be retrieved with clbk().

Tuning callbacks can be called from different stages of the tuning process. The stages are prefixed
with on_*.

Start Tuning
- on_optimization_begin
Start Worker

- on_worker_begin
Start Evaluation

- on_eval_after_xs
- on_eval_after_resample
- on_eval_before_archive

End Evaluation
- on_worker_end

End Worker
- on_result
- on_optimization_end

End Tuning

See also the section on parameters for more information on the stages. A tuning callback works
with ContextAsyncTuning.

Usage

callback_async_tuning(
id,
label = NA_character_,
man = NA_character_,
on_optimization_begin = NULL,
on_worker_begin = NULL,
on_eval_after_xs = NULL,
on_eval_after_resample = NULL,

callback_async_tuning 25

on_eval_before_archive = NULL,
on_worker_end = NULL,
on_result = NULL,
on_optimization_end = NULL

)

Arguments

id (character(1))
Identifier for the new instance.

label (character(1))
Label for the new instance.

man (character(1))
String in the format [pkg]::[topic] pointing to a manual page for this object.
The referenced help package can be opened via method $help().

on_optimization_begin

(function())
Stage called at the beginning of the optimization. Called in Optimizer$optimize().

on_worker_begin

(function())
Stage called at the beginning of the optimization on the worker. Called in the
worker loop.

on_eval_after_xs

(function())
Stage called after xs is passed. Called in ObjectiveTuning$eval().

on_eval_after_resample

(function())
Stage called after a hyperparameter configuration is evaluated. Called in ObjectiveTuning$eval().

on_eval_before_archive

(function())
Stage called before performance values are written to the archive. Called in
ObjectiveTuning$eval().

on_worker_end (function())
Stage called at the end of the optimization on the worker. Called in the worker
loop.

on_result (function())
Stage called after the result is written. Called in OptimInstance$assign_result().

on_optimization_end

(function())
Stage called at the end of the optimization. Called in Optimizer$optimize().

Details

When implementing a callback, each function must have two arguments named callback and
context. A callback can write data to the state ($state), e.g. settings that affect the callback
itself. Tuning callbacks access ContextAsyncTuning.

26 callback_batch_tuning

callback_batch_tuning Create Batch Tuning Callback

Description

Function to create a CallbackBatchTuning. Predefined callbacks are stored in the dictionary mlr_callbacks
and can be retrieved with clbk().

Tuning callbacks can be called from different stages of the tuning process. The stages are prefixed
with on_*.

Start Tuning
- on_optimization_begin
Start Tuner Batch

- on_optimizer_before_eval
Start Evaluation

- on_eval_after_design
- on_eval_after_benchmark
- on_eval_before_archive

End Evaluation
- on_optimizer_after_eval

End Tuner Batch
- on_result
- on_optimization_end

End Tuning

See also the section on parameters for more information on the stages. A tuning callback works
with ContextBatchTuning.

Usage

callback_batch_tuning(
id,
label = NA_character_,
man = NA_character_,
on_optimization_begin = NULL,
on_optimizer_before_eval = NULL,
on_eval_after_design = NULL,
on_eval_after_benchmark = NULL,
on_eval_before_archive = NULL,
on_optimizer_after_eval = NULL,
on_result = NULL,
on_optimization_end = NULL

)

callback_batch_tuning 27

Arguments

id (character(1))
Identifier for the new instance.

label (character(1))
Label for the new instance.

man (character(1))
String in the format [pkg]::[topic] pointing to a manual page for this object.
The referenced help package can be opened via method $help().

on_optimization_begin

(function())
Stage called at the beginning of the optimization. Called in Optimizer$optimize().

on_optimizer_before_eval

(function())
Stage called after the optimizer proposes points. Called in OptimInstance$eval_batch().

on_eval_after_design

(function())
Stage called after the design is created. Called in ObjectiveTuning$eval_many().
The context available is ContextBatchTuning.

on_eval_after_benchmark

(function())
Stage called after hyperparameter configurations are evaluated. Called in ObjectiveTuning$eval_many().
The context available is ContextBatchTuning.

on_eval_before_archive

(function())
Stage called before performance values are written to the archive. Called in
ObjectiveTuning$eval_many(). The context available is ContextBatchTun-
ing.

on_optimizer_after_eval

(function())
Stage called after points are evaluated. Called in OptimInstance$eval_batch().

on_result (function())
Stage called after the result is written. Called in OptimInstance$assign_result().

on_optimization_end

(function())
Stage called at the end of the optimization. Called in Optimizer$optimize().

Details

When implementing a callback, each function must have two arguments named callback and
context. A callback can write data to the state ($state), e.g. settings that affect the callback
itself. Tuning callbacks access ContextBatchTuning.

Examples

write archive to disk
callback_batch_tuning("mlr3tuning.backup",

28 ContextAsyncTuning

on_optimization_end = function(callback, context) {
saveRDS(context$instance$archive, "archive.rds")

}
)

ContextAsyncTuning Asynchronous Tuning Context

Description

A CallbackAsyncTuning accesses and modifies data during the optimization via the ContextAsyncTuning.
See the section on active bindings for a list of modifiable objects. See callback_async_tuning()
for a list of stages that access ContextAsyncTuning.

Details

Changes to $instance and $optimizer in the stages executed on the workers are not reflected in
the main process.

Super classes

mlr3misc::Context -> bbotk::ContextAsync -> ContextAsyncTuning

Active bindings

xs (list())
The hyperparameter configuration currently evaluated. Contains the values on the learner
scale i.e. transformations are applied.

resample_result (mlr3::BenchmarkResult)
The resample result of the hyperparameter configuration currently evaluated.

aggregated_performance (list())
Aggregated performance scores and training time of the evaluated hyperparameter configura-
tion. This list is passed to the archive. A callback can add additional elements which are also
written to the archive.

Methods

Public methods:
• ContextAsyncTuning$clone()

Method clone(): The objects of this class are cloneable with this method.

Usage:
ContextAsyncTuning$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

ContextBatchTuning 29

ContextBatchTuning Batch Tuning Context

Description

A CallbackBatchTuning accesses and modifies data during the optimization via the ContextBatchTuning.
See the section on active bindings for a list of modifiable objects. See callback_batch_tuning()
for a list of stages that access ContextBatchTuning.

Super classes

mlr3misc::Context -> bbotk::ContextBatch -> ContextBatchTuning

Active bindings

xss (list())
The hyperparameter configurations of the latest batch. Contains the values on the learner scale
i.e. transformations are applied. See $xdt for the untransformed values.

design (data.table::data.table)
The benchmark design of the latest batch.

benchmark_result (mlr3::BenchmarkResult)
The benchmark result of the latest batch.

aggregated_performance (data.table::data.table)
Aggregated performance scores and training time of the latest batch. This data table is passed
to the archive. A callback can add additional columns which are also written to the archive.

Methods

Public methods:

• ContextBatchTuning$clone()

Method clone(): The objects of this class are cloneable with this method.

Usage:

ContextBatchTuning$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

30 extract_inner_tuning_archives

extract_inner_tuning_archives

Extract Inner Tuning Archives

Description

Extract inner tuning archives of nested resampling. Implemented for mlr3::ResampleResult and
mlr3::BenchmarkResult. The function iterates over the AutoTuner objects and binds the tuning
archives to a data.table::data.table(). AutoTuner must be initialized with store_tuning_instance
= TRUE and mlr3::resample() or mlr3::benchmark() must be called with store_models = TRUE.

Usage

extract_inner_tuning_archives(
x,
unnest = "x_domain",
exclude_columns = "uhash"

)

Arguments

x (mlr3::ResampleResult | mlr3::BenchmarkResult).

unnest (character())
Transforms list columns to separate columns. By default, x_domain is unnested.
Set to NULL if no column should be unnested.

exclude_columns

(character())
Exclude columns from result table. Set to NULL if no column should be excluded.

Value

data.table::data.table().

Data structure

The returned data table has the following columns:

• experiment (integer(1))
Index, giving the according row number in the original benchmark grid.

• iteration (integer(1))
Iteration of the outer resampling.

• One column for each hyperparameter of the search spaces.

• One column for each performance measure.

• runtime_learners (numeric(1))
Sum of training and predict times logged in learners per mlr3::ResampleResult / evaluation.
This does not include potential overhead time.

extract_inner_tuning_results 31

• timestamp (POSIXct)
Time stamp when the evaluation was logged into the archive.

• batch_nr (integer(1))
Hyperparameters are evaluated in batches. Each batch has a unique batch number.

• x_domain (list())
List of transformed hyperparameter values. By default this column is unnested.

• x_domain_* (any)
Separate column for each transformed hyperparameter.

• resample_result (mlr3::ResampleResult)
Resample result of the inner resampling.

• task_id (character(1)).

• learner_id (character(1)).

• resampling_id (character(1)).

Examples

Nested Resampling on Palmer Penguins Data Set

learner = lrn("classif.rpart",
cp = to_tune(1e-04, 1e-1, logscale = TRUE))

create auto tuner
at = auto_tuner(

tuner = tnr("random_search"),
learner = learner,
resampling = rsmp ("holdout"),
measure = msr("classif.ce"),
term_evals = 4)

resampling_outer = rsmp("cv", folds = 2)
rr = resample(tsk("iris"), at, resampling_outer, store_models = TRUE)

extract inner archives
extract_inner_tuning_archives(rr)

extract_inner_tuning_results

Extract Inner Tuning Results

Description

Extract inner tuning results of nested resampling. Implemented for mlr3::ResampleResult and
mlr3::BenchmarkResult.

32 extract_inner_tuning_results

Usage

extract_inner_tuning_results(x, tuning_instance, ...)

S3 method for class 'ResampleResult'
extract_inner_tuning_results(x, tuning_instance = FALSE, ...)

S3 method for class 'BenchmarkResult'
extract_inner_tuning_results(x, tuning_instance = FALSE, ...)

Arguments

x (mlr3::ResampleResult | mlr3::BenchmarkResult).
tuning_instance

(logical(1))
If TRUE, tuning instances are added to the table.

... (any)
Additional arguments.

Details

The function iterates over the AutoTuner objects and binds the tuning results to a data.table::data.table().
The AutoTuner must be initialized with store_tuning_instance = TRUE and mlr3::resample()
or mlr3::benchmark() must be called with store_models = TRUE. Optionally, the tuning instance
can be added for each iteration.

Value

data.table::data.table().

Data structure

The returned data table has the following columns:

• experiment (integer(1))
Index, giving the according row number in the original benchmark grid.

• iteration (integer(1))
Iteration of the outer resampling.

• One column for each hyperparameter of the search spaces.

• One column for each performance measure.

• learner_param_vals (list())
Hyperparameter values used by the learner. Includes fixed and proposed hyperparameter val-
ues.

• x_domain (list())
List of transformed hyperparameter values.

• tuning_instance (TuningInstanceBatchSingleCrit | TuningInstanceBatchMultiCrit)
Optionally, tuning instances.

• task_id (character(1)).

mlr3tuning.asnyc_mlflow 33

• learner_id (character(1)).

• resampling_id (character(1)).

Examples

Nested Resampling on Palmer Penguins Data Set

learner = lrn("classif.rpart",
cp = to_tune(1e-04, 1e-1, logscale = TRUE))

create auto tuner
at = auto_tuner(

tuner = tnr("random_search"),
learner = learner,
resampling = rsmp ("holdout"),
measure = msr("classif.ce"),
term_evals = 4)

resampling_outer = rsmp("cv", folds = 2)
rr = resample(tsk("iris"), at, resampling_outer, store_models = TRUE)

extract inner results
extract_inner_tuning_results(rr)

mlr3tuning.asnyc_mlflow

MLflow Connector Callback

Description

This mlr3misc::Callback logs the hyperparameter configurations and the performance of the con-
figurations to MLflow.

Examples

clbk("mlr3tuning.async_mlflow", tracking_uri = "http://localhost:5000")

Not run:
rush::rush_plan(n_workers = 4)

learner = lrn("classif.rpart",
minsplit = to_tune(2, 128),
cp = to_tune(1e-04, 1e-1))

instance = TuningInstanceAsyncSingleCrit$new(
task = tsk("pima"),
learner = learner,
resampling = rsmp("cv", folds = 3),

34 mlr3tuning.backup

measure = msr("classif.ce"),
terminator = trm("evals", n_evals = 20),
store_benchmark_result = FALSE,
callbacks = clbk("mlr3tuning.rush_mlflow", tracking_uri = "http://localhost:8080")

)

tuner = tnr("random_search_v2")
tuner$optimize(instance)

End(Not run)

mlr3tuning.async_default_configuration

Default Configuration Callback

Description

These CallbackAsyncTuning and CallbackBatchTuning evaluate the default hyperparameter values
of a learner.

mlr3tuning.async_save_logs

Save Logs Callback

Description

This CallbackAsyncTuning saves the logs of the learners to the archive.

mlr3tuning.backup Backup Benchmark Result Callback

Description

This mlr3misc::Callback writes the mlr3::BenchmarkResult after each batch to disk.

mlr3tuning.measures 35

Examples

clbk("mlr3tuning.backup", path = "backup.rds")

tune classification tree on the pima data set
instance = tune(

tuner = tnr("random_search", batch_size = 2),
task = tsk("pima"),
learner = lrn("classif.rpart", cp = to_tune(1e-04, 1e-1, logscale = TRUE)),
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
term_evals = 4,
callbacks = clbk("mlr3tuning.backup", path = tempfile(fileext = ".rds"))

)

mlr3tuning.measures Measure Callback

Description

This mlr3misc::Callback scores the hyperparameter configurations on additional measures while
tuning. Usually, the configurations can be scored on additional measures after tuning (see Archive-
BatchTuning). However, if the memory is not sufficient to store the mlr3::BenchmarkResult, it is
necessary to score the additional measures while tuning. The measures are not taken into account
by the tuner.

Examples

clbk("mlr3tuning.measures")

additionally score the configurations on the accuracy measure
instance = tune(

tuner = tnr("random_search", batch_size = 2),
task = tsk("pima"),
learner = lrn("classif.rpart", cp = to_tune(1e-04, 1e-1, logscale = TRUE)),
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
term_evals = 4,
callbacks = clbk("mlr3tuning.measures", measures = msr("classif.acc"))

)

36 mlr_tuners

mlr_tuners Dictionary of Tuners

Description

A simple mlr3misc::Dictionary storing objects of class Tuner. Each tuner has an associated help
page, see mlr_tuners_[id].

This dictionary can get populated with additional tuners by add-on packages.

For a more convenient way to retrieve and construct tuner, see tnr()/tnrs().

Format

R6::R6Class object inheriting from mlr3misc::Dictionary.

Methods

See mlr3misc::Dictionary.

S3 methods

• as.data.table(dict, ..., objects = FALSE)
mlr3misc::Dictionary -> data.table::data.table()
Returns a data.table::data.table() with fields "key", "label", "param_classes", "prop-
erties" and "packages" as columns. If objects is set to TRUE, the constructed objects are
returned in the list column named object.

See Also

Sugar functions: tnr(), tnrs()

Other Tuner: Tuner, mlr_tuners_cmaes, mlr_tuners_design_points, mlr_tuners_gensa, mlr_tuners_grid_search,
mlr_tuners_internal, mlr_tuners_irace, mlr_tuners_nloptr, mlr_tuners_random_search

Examples

as.data.table(mlr_tuners)
mlr_tuners$get("random_search")
tnr("random_search")

mlr_tuners_async_design_points 37

mlr_tuners_async_design_points

Hyperparameter Tuning with Asynchronous Design Points

Description

Subclass for asynchronous design points tuning.

Dictionary

This Tuner can be instantiated with the associated sugar function tnr():

tnr("async_design_points")

Parameters

design data.table::data.table
Design points to try in search, one per row.

Super classes

mlr3tuning::Tuner -> mlr3tuning::TunerAsync -> mlr3tuning::TunerAsyncFromOptimizerAsync
-> TunerAsyncDesignPoints

Methods

Public methods:

• TunerAsyncDesignPoints$new()

• TunerAsyncDesignPoints$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TunerAsyncDesignPoints$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
TunerAsyncDesignPoints$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other TunerAsync: mlr_tuners_async_grid_search, mlr_tuners_async_random_search

38 mlr_tuners_async_grid_search

mlr_tuners_async_grid_search

Hyperparameter Tuning with Asynchronous Grid Search

Description

Subclass for asynchronous grid search tuning.

Dictionary

This Tuner can be instantiated with the associated sugar function tnr():

tnr("async_design_points")

Parameters

batch_size integer(1)
Maximum number of points to try in a batch.

Super classes

mlr3tuning::Tuner -> mlr3tuning::TunerAsync -> mlr3tuning::TunerAsyncFromOptimizerAsync
-> TunerAsyncGridSearch

Methods

Public methods:

• TunerAsyncGridSearch$new()

• TunerAsyncGridSearch$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TunerAsyncGridSearch$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
TunerAsyncGridSearch$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other TunerAsync: mlr_tuners_async_design_points, mlr_tuners_async_random_search

mlr_tuners_async_random_search 39

mlr_tuners_async_random_search

Hyperparameter Tuning with Asynchronous Random Search

Description

Subclass for asynchronous random search tuning.

Details

The random points are sampled by paradox::generate_design_random().

Dictionary

This Tuner can be instantiated with the associated sugar function tnr():

tnr("async_random_search")

Super classes

mlr3tuning::Tuner -> mlr3tuning::TunerAsync -> mlr3tuning::TunerAsyncFromOptimizerAsync
-> TunerAsyncRandomSearch

Methods

Public methods:
• TunerAsyncRandomSearch$new()

• TunerAsyncRandomSearch$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
TunerAsyncRandomSearch$new()

Method clone(): The objects of this class are cloneable with this method.
Usage:
TunerAsyncRandomSearch$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Source

Bergstra J, Bengio Y (2012). “Random Search for Hyper-Parameter Optimization.” Journal of Ma-
chine Learning Research, 13(10), 281–305. https://jmlr.csail.mit.edu/papers/v13/bergstra12a.
html.

See Also

Other TunerAsync: mlr_tuners_async_design_points, mlr_tuners_async_grid_search

https://jmlr.csail.mit.edu/papers/v13/bergstra12a.html
https://jmlr.csail.mit.edu/papers/v13/bergstra12a.html

40 mlr_tuners_cmaes

mlr_tuners_cmaes Hyperparameter Tuning with Covariance Matrix Adaptation Evolu-
tion Strategy

Description

Subclass for Covariance Matrix Adaptation Evolution Strategy (CMA-ES). Calls adagio::pureCMAES()
from package adagio.

Dictionary

This Tuner can be instantiated with the associated sugar function tnr():

tnr("cmaes")

Control Parameters

start_values character(1)
Create random start values or based on center of search space? In the latter case, it is the
center of the parameters before a trafo is applied.

For the meaning of the control parameters, see adagio::pureCMAES(). Note that we have removed
all control parameters which refer to the termination of the algorithm and where our terminators
allow to obtain the same behavior.

Progress Bars
$optimize() supports progress bars via the package progressr combined with a bbotk::Terminator.
Simply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr::handlers("progress").

Logging

All Tuners use a logger (as implemented in lgr) from package bbotk. Use lgr::get_logger("bbotk")
to access and control the logger.

Optimizer

This Tuner is based on bbotk::OptimizerBatchCmaes which can be applied on any black box opti-
mization problem. See also the documentation of bbotk.

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• An overview of all tuners can be found on our website.
• Learn more about tuners.

The gallery features a collection of case studies and demos about optimization.

• Use the Hyperband optimizer with different budget parameters.

https://CRAN.R-project.org/package=adagio
https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress
https://CRAN.R-project.org/package=lgr
https://CRAN.R-project.org/package=bbotk
https://bbotk.mlr-org.com/
https://mlr3book.mlr-org.com
https://mlr-org.com/tuners.html
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-tuner
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2023-01-15-hyperband-xgboost/

mlr_tuners_cmaes 41

Super classes

mlr3tuning::Tuner -> mlr3tuning::TunerBatch -> mlr3tuning::TunerBatchFromOptimizerBatch
-> TunerBatchCmaes

Methods

Public methods:
• TunerBatchCmaes$new()

• TunerBatchCmaes$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TunerBatchCmaes$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
TunerBatchCmaes$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Source

Hansen N (2016). “The CMA Evolution Strategy: A Tutorial.” 1604.00772.

See Also

Other Tuner: Tuner, mlr_tuners, mlr_tuners_design_points, mlr_tuners_gensa, mlr_tuners_grid_search,
mlr_tuners_internal, mlr_tuners_irace, mlr_tuners_nloptr, mlr_tuners_random_search

Examples

Hyperparameter Optimization

load learner and set search space
learner = lrn("classif.rpart",

cp = to_tune(1e-04, 1e-1, logscale = TRUE),
minsplit = to_tune(p_dbl(2, 128, trafo = as.integer)),
minbucket = to_tune(p_dbl(1, 64, trafo = as.integer))

)

run hyperparameter tuning on the Palmer Penguins data set
instance = tune(

tuner = tnr("cmaes"),
task = tsk("penguins"),
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce"),
term_evals = 10)

42 mlr_tuners_design_points

best performing hyperparameter configuration
instance$result

all evaluated hyperparameter configuration
as.data.table(instance$archive)

fit final model on complete data set
learner$param_set$values = instance$result_learner_param_vals
learner$train(tsk("penguins"))

mlr_tuners_design_points

Hyperparameter Tuning with Design Points

Description

Subclass for tuning w.r.t. fixed design points.

We simply search over a set of points fully specified by the user. The points in the design are
evaluated in order as given.

Dictionary

This Tuner can be instantiated with the associated sugar function tnr():

tnr("design_points")

Parallelization

In order to support general termination criteria and parallelization, we evaluate points in a batch-
fashion of size batch_size. Larger batches mean we can parallelize more, smaller batches im-
ply a more fine-grained checking of termination criteria. A batch contains of batch_size times
resampling$iters jobs. E.g., if you set a batch size of 10 points and do a 5-fold cross validation,
you can utilize up to 50 cores.

Parallelization is supported via package future (see mlr3::benchmark()’s section on paralleliza-
tion for more details).

Logging

All Tuners use a logger (as implemented in lgr) from package bbotk. Use lgr::get_logger("bbotk")
to access and control the logger.

Optimizer

This Tuner is based on bbotk::OptimizerBatchDesignPoints which can be applied on any black box
optimization problem. See also the documentation of bbotk.

https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=lgr
https://CRAN.R-project.org/package=bbotk
https://bbotk.mlr-org.com/

mlr_tuners_design_points 43

Parameters

batch_size integer(1)
Maximum number of configurations to try in a batch.

design data.table::data.table
Design points to try in search, one per row.

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• An overview of all tuners can be found on our website.

• Learn more about tuners.

The gallery features a collection of case studies and demos about optimization.

• Use the Hyperband optimizer with different budget parameters.

Progress Bars
$optimize() supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr::handlers("progress").

Super classes

mlr3tuning::Tuner -> mlr3tuning::TunerBatch -> mlr3tuning::TunerBatchFromOptimizerBatch
-> TunerBatchDesignPoints

Methods

Public methods:
• TunerBatchDesignPoints$new()

• TunerBatchDesignPoints$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TunerBatchDesignPoints$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
TunerBatchDesignPoints$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Package mlr3hyperband for hyperband tuning.

Other Tuner: Tuner, mlr_tuners, mlr_tuners_cmaes, mlr_tuners_gensa, mlr_tuners_grid_search,
mlr_tuners_internal, mlr_tuners_irace, mlr_tuners_nloptr, mlr_tuners_random_search

https://mlr3book.mlr-org.com
https://mlr-org.com/tuners.html
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-tuner
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2023-01-15-hyperband-xgboost/
https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress
https://CRAN.R-project.org/package=mlr3hyperband

44 mlr_tuners_gensa

Examples

Hyperparameter Optimization

load learner and set search space
learner = lrn("classif.rpart",

cp = to_tune(1e-04, 1e-1),
minsplit = to_tune(2, 128),
minbucket = to_tune(1, 64)

)

create design
design = mlr3misc::rowwise_table(

~cp, ~minsplit, ~minbucket,
0.1, 2, 64,
0.01, 64, 32,
0.001, 128, 1

)

run hyperparameter tuning on the Palmer Penguins data set
instance = tune(

tuner = tnr("design_points", design = design),
task = tsk("penguins"),
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce")

)

best performing hyperparameter configuration
instance$result

all evaluated hyperparameter configuration
as.data.table(instance$archive)

fit final model on complete data set
learner$param_set$values = instance$result_learner_param_vals
learner$train(tsk("penguins"))

mlr_tuners_gensa Hyperparameter Tuning with Generalized Simulated Annealing

Description

Subclass for generalized simulated annealing tuning. Calls GenSA::GenSA() from package GenSA.

Details

In contrast to the GenSA::GenSA() defaults, we set smooth = FALSE as a default.

https://CRAN.R-project.org/package=GenSA

mlr_tuners_gensa 45

Dictionary

This Tuner can be instantiated with the associated sugar function tnr():

tnr("gensa")

Parallelization

In order to support general termination criteria and parallelization, we evaluate points in a batch-
fashion of size batch_size. Larger batches mean we can parallelize more, smaller batches im-
ply a more fine-grained checking of termination criteria. A batch contains of batch_size times
resampling$iters jobs. E.g., if you set a batch size of 10 points and do a 5-fold cross validation,
you can utilize up to 50 cores.

Parallelization is supported via package future (see mlr3::benchmark()’s section on paralleliza-
tion for more details).

Logging

All Tuners use a logger (as implemented in lgr) from package bbotk. Use lgr::get_logger("bbotk")
to access and control the logger.

Optimizer

This Tuner is based on bbotk::OptimizerBatchGenSA which can be applied on any black box opti-
mization problem. See also the documentation of bbotk.

Parameters

smooth logical(1)

temperature numeric(1)

acceptance.param numeric(1)

verbose logical(1)

trace.mat logical(1)

For the meaning of the control parameters, see GenSA::GenSA(). Note that we have removed all
control parameters which refer to the termination of the algorithm and where our terminators allow
to obtain the same behavior.

In contrast to the GenSA::GenSA() defaults, we set trace.mat = FALSE. Note that GenSA::GenSA()
uses smooth = TRUE as a default. In the case of using this optimizer for Hyperparameter Optimiza-
tion you may want to set smooth = FALSE.

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• An overview of all tuners can be found on our website.
• Learn more about tuners.

The gallery features a collection of case studies and demos about optimization.

• Use the Hyperband optimizer with different budget parameters.

https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=lgr
https://CRAN.R-project.org/package=bbotk
https://bbotk.mlr-org.com/
https://mlr3book.mlr-org.com
https://mlr-org.com/tuners.html
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-tuner
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2023-01-15-hyperband-xgboost/

46 mlr_tuners_gensa

Progress Bars
$optimize() supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr::handlers("progress").

Super classes

mlr3tuning::Tuner -> mlr3tuning::TunerBatch -> mlr3tuning::TunerBatchFromOptimizerBatch
-> TunerBatchGenSA

Methods

Public methods:
• TunerBatchGenSA$new()

• TunerBatchGenSA$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TunerBatchGenSA$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
TunerBatchGenSA$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

Tsallis C, Stariolo DA (1996). “Generalized simulated annealing.” Physica A: Statistical Mechanics
and its Applications, 233(1-2), 395–406. doi:10.1016/s03784371(96)002713.

Xiang Y, Gubian S, Suomela B, Hoeng J (2013). “Generalized Simulated Annealing for Global
Optimization: The GenSA Package.” The R Journal, 5(1), 13. doi:10.32614/rj2013002.

See Also

Other Tuner: Tuner, mlr_tuners, mlr_tuners_cmaes, mlr_tuners_design_points, mlr_tuners_grid_search,
mlr_tuners_internal, mlr_tuners_irace, mlr_tuners_nloptr, mlr_tuners_random_search

Examples

Hyperparameter Optimization

load learner and set search space
learner = lrn("classif.rpart",

cp = to_tune(1e-04, 1e-1, logscale = TRUE)
)

run hyperparameter tuning on the Palmer Penguins data set

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress
https://doi.org/10.1016/s0378-4371%2896%2900271-3
https://doi.org/10.32614/rj-2013-002

mlr_tuners_grid_search 47

instance = tune(
tuner = tnr("gensa"),
task = tsk("penguins"),
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce"),
term_evals = 10

)

best performing hyperparameter configuration
instance$result

all evaluated hyperparameter configuration
as.data.table(instance$archive)

fit final model on complete data set
learner$param_set$values = instance$result_learner_param_vals
learner$train(tsk("penguins"))

mlr_tuners_grid_search

Hyperparameter Tuning with Grid Search

Description

Subclass for grid search tuning.

Details

The grid is constructed as a Cartesian product over discretized values per parameter, see paradox::generate_design_grid().
If the learner supports hotstarting, the grid is sorted by the hotstart parameter (see also mlr3::HotstartStack).
If not, the points of the grid are evaluated in a random order.

Dictionary

This Tuner can be instantiated with the associated sugar function tnr():

tnr("grid_search")

Control Parameters

resolution integer(1)
Resolution of the grid, see paradox::generate_design_grid().

param_resolutions named integer()
Resolution per parameter, named by parameter ID, see paradox::generate_design_grid().

batch_size integer(1)
Maximum number of points to try in a batch.

48 mlr_tuners_grid_search

Progress Bars
$optimize() supports progress bars via the package progressr combined with a bbotk::Terminator.
Simply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr::handlers("progress").

Parallelization

In order to support general termination criteria and parallelization, we evaluate points in a batch-
fashion of size batch_size. Larger batches mean we can parallelize more, smaller batches im-
ply a more fine-grained checking of termination criteria. A batch contains of batch_size times
resampling$iters jobs. E.g., if you set a batch size of 10 points and do a 5-fold cross validation,
you can utilize up to 50 cores.

Parallelization is supported via package future (see mlr3::benchmark()’s section on paralleliza-
tion for more details).

Logging

All Tuners use a logger (as implemented in lgr) from package bbotk. Use lgr::get_logger("bbotk")
to access and control the logger.

Optimizer

This Tuner is based on bbotk::OptimizerBatchGridSearch which can be applied on any black box
optimization problem. See also the documentation of bbotk.

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• An overview of all tuners can be found on our website.

• Learn more about tuners.

The gallery features a collection of case studies and demos about optimization.

• Use the Hyperband optimizer with different budget parameters.

Super classes

mlr3tuning::Tuner -> mlr3tuning::TunerBatch -> mlr3tuning::TunerBatchFromOptimizerBatch
-> TunerBatchGridSearch

Methods

Public methods:
• TunerBatchGridSearch$new()

• TunerBatchGridSearch$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress
https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=lgr
https://CRAN.R-project.org/package=bbotk
https://bbotk.mlr-org.com/
https://mlr3book.mlr-org.com
https://mlr-org.com/tuners.html
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-tuner
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2023-01-15-hyperband-xgboost/

mlr_tuners_internal 49

TunerBatchGridSearch$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
TunerBatchGridSearch$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other Tuner: Tuner, mlr_tuners, mlr_tuners_cmaes, mlr_tuners_design_points, mlr_tuners_gensa,
mlr_tuners_internal, mlr_tuners_irace, mlr_tuners_nloptr, mlr_tuners_random_search

Examples

Hyperparameter Optimization

load learner and set search space
learner = lrn("classif.rpart",

cp = to_tune(1e-04, 1e-1, logscale = TRUE)
)

run hyperparameter tuning on the Palmer Penguins data set
instance = tune(

tuner = tnr("grid_search"),
task = tsk("penguins"),
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce"),
term_evals = 10

)

best performing hyperparameter configuration
instance$result

all evaluated hyperparameter configuration
as.data.table(instance$archive)

fit final model on complete data set
learner$param_set$values = instance$result_learner_param_vals
learner$train(tsk("penguins"))

mlr_tuners_internal Hyperparameter Tuning with Internal Tuning

Description

Subclass to conduct only internal hyperparameter tuning for a mlr3::Learner.

50 mlr_tuners_internal

Dictionary

This Tuner can be instantiated with the associated sugar function tnr():

tnr("internal")

Progress Bars
$optimize() supports progress bars via the package progressr combined with a bbotk::Terminator.
Simply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr::handlers("progress").

Logging

All Tuners use a logger (as implemented in lgr) from package bbotk. Use lgr::get_logger("bbotk")
to access and control the logger.

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• An overview of all tuners can be found on our website.

• Learn more about tuners.

The gallery features a collection of case studies and demos about optimization.

• Use the Hyperband optimizer with different budget parameters.

Super classes

mlr3tuning::Tuner -> mlr3tuning::TunerBatch -> TunerBatchInternal

Methods

Public methods:

• TunerBatchInternal$new()

• TunerBatchInternal$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TunerBatchInternal$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
TunerBatchInternal$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress
https://CRAN.R-project.org/package=lgr
https://CRAN.R-project.org/package=bbotk
https://mlr3book.mlr-org.com
https://mlr-org.com/tuners.html
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-tuner
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2023-01-15-hyperband-xgboost/

mlr_tuners_irace 51

Note

The selected mlr3::Measure does not influence the tuning result. To change the loss-function for
the internal tuning, consult the hyperparameter documentation of the tuned mlr3::Learner.

See Also

Other Tuner: Tuner, mlr_tuners, mlr_tuners_cmaes, mlr_tuners_design_points, mlr_tuners_gensa,
mlr_tuners_grid_search, mlr_tuners_irace, mlr_tuners_nloptr, mlr_tuners_random_search

Examples

library(mlr3learners)

Retrieve task
task = tsk("pima")

Load learner and set search space
learner = lrn("classif.xgboost",

nrounds = to_tune(upper = 1000, internal = TRUE),
early_stopping_rounds = 10,
validate = "test"

)

Internal hyperparameter tuning on the pima indians diabetes data set
instance = tune(

tnr("internal"),
tsk("iris"),
learner,
rsmp("cv", folds = 3),
msr("classif.ce")

)

best performing hyperparameter configuration
instance$result_learner_param_vals

instance$result_learner_param_vals$internal_tuned_values

mlr_tuners_irace Hyperparameter Tuning with Iterated Racing.

Description

Subclass for iterated racing. Calls irace::irace() from package irace.

Dictionary

This Tuner can be instantiated with the associated sugar function tnr():

tnr("irace")

https://CRAN.R-project.org/package=irace

52 mlr_tuners_irace

Control Parameters

n_instances integer(1)
Number of resampling instances.

For the meaning of all other parameters, see irace::defaultScenario(). Note that we have re-
moved all control parameters which refer to the termination of the algorithm. Use bbotk::TerminatorEvals
instead. Other terminators do not work with TunerIrace.

Archive

The ArchiveBatchTuning holds the following additional columns:

• "race" (integer(1))
Race iteration.

• "step" (integer(1))
Step number of race.

• "instance" (integer(1))
Identifies resampling instances across races and steps.

• "configuration" (integer(1))
Identifies configurations across races and steps.

Result

The tuning result (instance$result) is the best-performing elite of the final race. The reported
performance is the average performance estimated on all used instances.

Progress Bars
$optimize() supports progress bars via the package progressr combined with a bbotk::Terminator.
Simply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr::handlers("progress").

Logging

All Tuners use a logger (as implemented in lgr) from package bbotk. Use lgr::get_logger("bbotk")
to access and control the logger.

Optimizer

This Tuner is based on bbotk::OptimizerBatchIrace which can be applied on any black box opti-
mization problem. See also the documentation of bbotk.

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• An overview of all tuners can be found on our website.
• Learn more about tuners.

The gallery features a collection of case studies and demos about optimization.

• Use the Hyperband optimizer with different budget parameters.

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress
https://CRAN.R-project.org/package=lgr
https://CRAN.R-project.org/package=bbotk
https://bbotk.mlr-org.com/
https://mlr3book.mlr-org.com
https://mlr-org.com/tuners.html
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-tuner
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2023-01-15-hyperband-xgboost/

mlr_tuners_irace 53

Super classes

mlr3tuning::Tuner -> mlr3tuning::TunerBatch -> mlr3tuning::TunerBatchFromOptimizerBatch
-> TunerBatchIrace

Methods

Public methods:

• TunerBatchIrace$new()

• TunerBatchIrace$optimize()

• TunerBatchIrace$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

TunerBatchIrace$new()

Method optimize(): Performs the tuning on a TuningInstanceBatchSingleCrit until termina-
tion. The single evaluations and the final results will be written into the ArchiveBatchTuning that
resides in the TuningInstanceBatchSingleCrit. The final result is returned.

Usage:

TunerBatchIrace$optimize(inst)

Arguments:

inst (TuningInstanceBatchSingleCrit).

Returns: data.table::data.table.

Method clone(): The objects of this class are cloneable with this method.

Usage:

TunerBatchIrace$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

Lopez-Ibanez M, Dubois-Lacoste J, Caceres LP, Birattari M, Stuetzle T (2016). “The irace package:
Iterated racing for automatic algorithm configuration.” Operations Research Perspectives, 3, 43–58.
doi:10.1016/j.orp.2016.09.002.

See Also

Other Tuner: Tuner, mlr_tuners, mlr_tuners_cmaes, mlr_tuners_design_points, mlr_tuners_gensa,
mlr_tuners_grid_search, mlr_tuners_internal, mlr_tuners_nloptr, mlr_tuners_random_search

https://doi.org/10.1016/j.orp.2016.09.002

54 mlr_tuners_nloptr

Examples

retrieve task
task = tsk("pima")

load learner and set search space
learner = lrn("classif.rpart", cp = to_tune(1e-04, 1e-1, logscale = TRUE))

hyperparameter tuning on the pima indians diabetes data set
instance = tune(

tuner = tnr("irace"),
task = task,
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce"),
term_evals = 42

)

best performing hyperparameter configuration
instance$result

all evaluated hyperparameter configuration
as.data.table(instance$archive)

fit final model on complete data set
learner$param_set$values = instance$result_learner_param_vals
learner$train(task)

mlr_tuners_nloptr Hyperparameter Tuning with Non-linear Optimization

Description

Subclass for non-linear optimization (NLopt). Calls nloptr::nloptr from package nloptr.

Details

The termination conditions stopval, maxtime and maxeval of nloptr::nloptr() are deactivated
and replaced by the bbotk::Terminator subclasses. The x and function value tolerance termi-
nation conditions (xtol_rel = 10^-4, xtol_abs = rep(0.0, length(x0)), ftol_rel = 0.0 and
ftol_abs = 0.0) are still available and implemented with their package defaults. To deactivate
these conditions, set them to -1.

Dictionary

This Tuner can be instantiated with the associated sugar function tnr():

tnr("nloptr")

https://CRAN.R-project.org/package=nloptr

mlr_tuners_nloptr 55

Logging

All Tuners use a logger (as implemented in lgr) from package bbotk. Use lgr::get_logger("bbotk")
to access and control the logger.

Optimizer

This Tuner is based on bbotk::OptimizerBatchNLoptr which can be applied on any black box opti-
mization problem. See also the documentation of bbotk.

Parameters

algorithm character(1)

eval_g_ineq function()

xtol_rel numeric(1)

xtol_abs numeric(1)

ftol_rel numeric(1)

ftol_abs numeric(1)

start_values character(1)
Create random start values or based on center of search space? In the latter case, it is the
center of the parameters before a trafo is applied.

For the meaning of the control parameters, see nloptr::nloptr() and nloptr::nloptr.print.options().

The termination conditions stopval, maxtime and maxeval of nloptr::nloptr() are deactivated
and replaced by the Terminator subclasses. The x and function value tolerance termination con-
ditions (xtol_rel = 10^-4, xtol_abs = rep(0.0, length(x0)), ftol_rel = 0.0 and ftol_abs
= 0.0) are still available and implemented with their package defaults. To deactivate these condi-
tions, set them to -1.

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• An overview of all tuners can be found on our website.

• Learn more about tuners.

The gallery features a collection of case studies and demos about optimization.

• Use the Hyperband optimizer with different budget parameters.

Progress Bars
$optimize() supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr::handlers("progress").

Super classes

mlr3tuning::Tuner -> mlr3tuning::TunerBatch -> mlr3tuning::TunerBatchFromOptimizerBatch
-> TunerBatchNLoptr

https://CRAN.R-project.org/package=lgr
https://CRAN.R-project.org/package=bbotk
https://bbotk.mlr-org.com/
https://mlr3book.mlr-org.com
https://mlr-org.com/tuners.html
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-tuner
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2023-01-15-hyperband-xgboost/
https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress

56 mlr_tuners_nloptr

Methods

Public methods:
• TunerBatchNLoptr$new()

• TunerBatchNLoptr$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TunerBatchNLoptr$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
TunerBatchNLoptr$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

Johnson, G S (2020). “The NLopt nonlinear-optimization package.” https://github.com/stevengj/
nlopt.

See Also

Other Tuner: Tuner, mlr_tuners, mlr_tuners_cmaes, mlr_tuners_design_points, mlr_tuners_gensa,
mlr_tuners_grid_search, mlr_tuners_internal, mlr_tuners_irace, mlr_tuners_random_search

Examples

Hyperparameter Optimization

load learner and set search space
learner = lrn("classif.rpart",

cp = to_tune(1e-04, 1e-1, logscale = TRUE)
)

run hyperparameter tuning on the Palmer Penguins data set
instance = tune(

tuner = tnr("nloptr", algorithm = "NLOPT_LN_BOBYQA"),
task = tsk("penguins"),
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce")

)

best performing hyperparameter configuration
instance$result

all evaluated hyperparameter configuration
as.data.table(instance$archive)

https://github.com/stevengj/nlopt
https://github.com/stevengj/nlopt

mlr_tuners_random_search 57

fit final model on complete data set
learner$param_set$values = instance$result_learner_param_vals
learner$train(tsk("penguins"))

mlr_tuners_random_search

Hyperparameter Tuning with Random Search

Description

Subclass for random search tuning.

Details

The random points are sampled by paradox::generate_design_random().

Dictionary

This Tuner can be instantiated with the associated sugar function tnr():

tnr("random_search")

Parallelization

In order to support general termination criteria and parallelization, we evaluate points in a batch-
fashion of size batch_size. Larger batches mean we can parallelize more, smaller batches im-
ply a more fine-grained checking of termination criteria. A batch contains of batch_size times
resampling$iters jobs. E.g., if you set a batch size of 10 points and do a 5-fold cross validation,
you can utilize up to 50 cores.

Parallelization is supported via package future (see mlr3::benchmark()’s section on paralleliza-
tion for more details).

Logging

All Tuners use a logger (as implemented in lgr) from package bbotk. Use lgr::get_logger("bbotk")
to access and control the logger.

Optimizer

This Tuner is based on bbotk::OptimizerBatchRandomSearch which can be applied on any black
box optimization problem. See also the documentation of bbotk.

Parameters

batch_size integer(1)
Maximum number of points to try in a batch.

https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=lgr
https://CRAN.R-project.org/package=bbotk
https://bbotk.mlr-org.com/

58 mlr_tuners_random_search

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• An overview of all tuners can be found on our website.

• Learn more about tuners.

The gallery features a collection of case studies and demos about optimization.

• Use the Hyperband optimizer with different budget parameters.

Progress Bars
$optimize() supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr::handlers("progress").

Super classes

mlr3tuning::Tuner -> mlr3tuning::TunerBatch -> mlr3tuning::TunerBatchFromOptimizerBatch
-> TunerBatchRandomSearch

Methods

Public methods:
• TunerBatchRandomSearch$new()

• TunerBatchRandomSearch$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TunerBatchRandomSearch$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
TunerBatchRandomSearch$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

Bergstra J, Bengio Y (2012). “Random Search for Hyper-Parameter Optimization.” Journal of Ma-
chine Learning Research, 13(10), 281–305. https://jmlr.csail.mit.edu/papers/v13/bergstra12a.
html.

See Also

Package mlr3hyperband for hyperband tuning.

Other Tuner: Tuner, mlr_tuners, mlr_tuners_cmaes, mlr_tuners_design_points, mlr_tuners_gensa,
mlr_tuners_grid_search, mlr_tuners_internal, mlr_tuners_irace, mlr_tuners_nloptr

https://mlr3book.mlr-org.com
https://mlr-org.com/tuners.html
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-tuner
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2023-01-15-hyperband-xgboost/
https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress
https://jmlr.csail.mit.edu/papers/v13/bergstra12a.html
https://jmlr.csail.mit.edu/papers/v13/bergstra12a.html
https://CRAN.R-project.org/package=mlr3hyperband

ObjectiveTuning 59

Examples

Hyperparameter Optimization

load learner and set search space
learner = lrn("classif.rpart",

cp = to_tune(1e-04, 1e-1, logscale = TRUE)
)

run hyperparameter tuning on the Palmer Penguins data set
instance = tune(

tuner = tnr("random_search"),
task = tsk("penguins"),
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce"),
term_evals = 10

)

best performing hyperparameter configuration
instance$result

all evaluated hyperparameter configuration
as.data.table(instance$archive)

fit final model on complete data set
learner$param_set$values = instance$result_learner_param_vals
learner$train(tsk("penguins"))

ObjectiveTuning Class for Tuning Objective

Description

Stores the objective function that estimates the performance of hyperparameter configurations. This
class is usually constructed internally by the TuningInstanceBatchSingleCrit or TuningInstance-
BatchMultiCrit.

Super class

bbotk::Objective -> ObjectiveTuning

Public fields

task (mlr3::Task).

learner (mlr3::Learner).

resampling (mlr3::Resampling).

measures (list of mlr3::Measure).

store_models (logical(1)).

60 ObjectiveTuning

store_benchmark_result (logical(1)).

callbacks (List of mlr3misc::Callback).

default_values (named list()).

Methods

Public methods:
• ObjectiveTuning$new()

• ObjectiveTuning$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
ObjectiveTuning$new(
task,
learner,
resampling,
measures,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
callbacks = NULL

)

Arguments:
task (mlr3::Task)

Task to operate on.
learner (mlr3::Learner)

Learner to tune.
resampling (mlr3::Resampling)

Resampling that is used to evaluate the performance of the hyperparameter configurations.
Uninstantiated resamplings are instantiated during construction so that all configurations
are evaluated on the same data splits. Already instantiated resamplings are kept unchanged.
Specialized Tuner change the resampling e.g. to evaluate a hyperparameter configuration
on different data splits. This field, however, always returns the resampling passed in con-
struction.

measures (list of mlr3::Measure)
Measures to optimize.

store_benchmark_result (logical(1))
If TRUE (default), store resample result of evaluated hyperparameter configurations in archive
as mlr3::BenchmarkResult.

store_models (logical(1))
If TRUE, fitted models are stored in the benchmark result (archive$benchmark_result). If
store_benchmark_result = FALSE, models are only stored temporarily and not accessible
after the tuning. This combination is needed for measures that require a model.

check_values (logical(1))
If TRUE, hyperparameter values are checked before evaluation and performance scores after.
If FALSE (default), values are unchecked but computational overhead is reduced.

ObjectiveTuningAsync 61

callbacks (list of mlr3misc::Callback)
List of callbacks.

Method clone(): The objects of this class are cloneable with this method.

Usage:

ObjectiveTuning$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

ObjectiveTuningAsync Class for Tuning Objective

Description

Stores the objective function that estimates the performance of hyperparameter configurations. This
class is usually constructed internally by the TuningInstanceBatchSingleCrit or TuningInstance-
BatchMultiCrit.

Super classes

bbotk::Objective -> mlr3tuning::ObjectiveTuning -> ObjectiveTuningAsync

Methods

Public methods:

• ObjectiveTuningAsync$clone()

Method clone(): The objects of this class are cloneable with this method.

Usage:

ObjectiveTuningAsync$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

62 ObjectiveTuningBatch

ObjectiveTuningBatch Class for Tuning Objective

Description

Stores the objective function that estimates the performance of hyperparameter configurations. This
class is usually constructed internally by the TuningInstanceBatchSingleCrit or TuningInstance-
BatchMultiCrit.

Super classes

bbotk::Objective -> mlr3tuning::ObjectiveTuning -> ObjectiveTuningBatch

Public fields

archive (ArchiveBatchTuning).

Methods

Public methods:
• ObjectiveTuningBatch$new()

• ObjectiveTuningBatch$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
ObjectiveTuningBatch$new(
task,
learner,
resampling,
measures,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
archive = NULL,
callbacks = NULL

)

Arguments:

task (mlr3::Task)
Task to operate on.

learner (mlr3::Learner)
Learner to tune.

resampling (mlr3::Resampling)
Resampling that is used to evaluate the performance of the hyperparameter configurations.
Uninstantiated resamplings are instantiated during construction so that all configurations
are evaluated on the same data splits. Already instantiated resamplings are kept unchanged.

set_validate.AutoTuner 63

Specialized Tuner change the resampling e.g. to evaluate a hyperparameter configuration
on different data splits. This field, however, always returns the resampling passed in con-
struction.

measures (list of mlr3::Measure)
Measures to optimize.

store_benchmark_result (logical(1))
If TRUE (default), store resample result of evaluated hyperparameter configurations in archive
as mlr3::BenchmarkResult.

store_models (logical(1))
If TRUE, fitted models are stored in the benchmark result (archive$benchmark_result). If
store_benchmark_result = FALSE, models are only stored temporarily and not accessible
after the tuning. This combination is needed for measures that require a model.

check_values (logical(1))
If TRUE, hyperparameter values are checked before evaluation and performance scores after.
If FALSE (default), values are unchecked but computational overhead is reduced.

archive (ArchiveBatchTuning)
Reference to archive of TuningInstanceBatchSingleCrit | TuningInstanceBatchMultiCrit. If
NULL (default), benchmark result and models cannot be stored.

callbacks (list of mlr3misc::Callback)
List of callbacks.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ObjectiveTuningBatch$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

set_validate.AutoTuner

Configure Validation for AutoTuner

Description

Configure validation for the final model fit (final_validate), as well as during the tuning (validate).

Usage

S3 method for class 'AutoTuner'
set_validate(learner, validate, final_validate, ...)

Arguments

learner (AutoTuner)
The autotuner for which to enable validation.

64 ti

validate (numeric(1), "predefined", "test", or NULL)
How to configure the validation during the hyperparameter tuning.

final_validate (numeric(1), "predefined", "test" or NULL)
How to configure the validation during the final model fit. The default behavior
is to not change the value. Rarely needed.

... (any)
Passed when calling set_validate() on the wrapped leaerner.

Examples

at = auto_tuner(
tuner = tnr("random_search"),
learner = lrn("classif.debug", early_stopping = TRUE,
iter = to_tune(upper = 1000L, internal = TRUE), validate = 0.2),

resampling = rsmp("holdout")
)
use the test set as validation data during tuning
set_validate(at, validate = "test")
at$learner$validate

ti Syntactic Sugar for Tuning Instance Construction

Description

Function to construct a TuningInstanceBatchSingleCrit or TuningInstanceBatchMultiCrit.

Usage

ti(
task,
learner,
resampling,
measures = NULL,
terminator,
search_space = NULL,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
callbacks = NULL

)

Arguments

task (mlr3::Task)
Task to operate on.

learner (mlr3::Learner)
Learner to tune.

ti 65

resampling (mlr3::Resampling)
Resampling that is used to evaluate the performance of the hyperparameter con-
figurations. Uninstantiated resamplings are instantiated during construction so
that all configurations are evaluated on the same data splits. Already instantiated
resamplings are kept unchanged. Specialized Tuner change the resampling e.g.
to evaluate a hyperparameter configuration on different data splits. This field,
however, always returns the resampling passed in construction.

measures (mlr3::Measure or list of mlr3::Measure)
A single measure creates a TuningInstanceBatchSingleCrit and multiple mea-
sures a TuningInstanceBatchMultiCrit. If NULL, default measure is used.

terminator (bbotk::Terminator)
Stop criterion of the tuning process.

search_space (paradox::ParamSet)
Hyperparameter search space. If NULL (default), the search space is constructed
from the paradox::TuneToken of the learner’s parameter set (learner$param_set).

store_benchmark_result

(logical(1))
If TRUE (default), store resample result of evaluated hyperparameter configura-
tions in archive as mlr3::BenchmarkResult.

store_models (logical(1))
If TRUE, fitted models are stored in the benchmark result (archive$benchmark_result).
If store_benchmark_result = FALSE, models are only stored temporarily and
not accessible after the tuning. This combination is needed for measures that
require a model.

check_values (logical(1))
If TRUE, hyperparameter values are checked before evaluation and performance
scores after. If FALSE (default), values are unchecked but computational over-
head is reduced.

callbacks (list of mlr3misc::Callback)
List of callbacks.

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• Getting started with hyperparameter optimization.

• Tune a simple classification tree on the Sonar data set.

• Learn about tuning spaces.

The gallery features a collection of case studies and demos about optimization.

• Learn more advanced methods with the practical tuning series.

• Simultaneously optimize hyperparameters and use early stopping with XGBoost.

• Make us of proven search space.

• Learn about hotstarting models.

• Run the default hyperparameter configuration of learners as a baseline.

https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-model-tuning
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-defining-search-spaces
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2021-03-09-practical-tuning-series-tune-a-support-vector-machine/
https://mlr-org.com/gallery/optimization/2022-11-04-early-stopping-with-xgboost/
https://mlr-org.com/gallery/optimization/2021-07-06-introduction-to-mlr3tuningspaces/
https://mlr-org.com/gallery/optimization/2023-01-16-hotstart/
https://mlr-org.com/gallery/optimization/2023-01-31-default-configuration/

66 ti

Default Measures

If no measure is passed, the default measure is used. The default measure depends on the task type.

Task Default Measure Package
"classif" "classif.ce" mlr3
"regr" "regr.mse" mlr3
"surv" "surv.cindex" mlr3proba
"dens" "dens.logloss" mlr3proba
"classif_st" "classif.ce" mlr3spatial
"regr_st" "regr.mse" mlr3spatial
"clust" "clust.dunn" mlr3cluster

Examples

Hyperparameter optimization on the Palmer Penguins data set
task = tsk("penguins")

Load learner and set search space
learner = lrn("classif.rpart",

cp = to_tune(1e-04, 1e-1, logscale = TRUE)
)

Construct tuning instance
instance = ti(

task = task,
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("evals", n_evals = 4)

)

Choose optimization algorithm
tuner = tnr("random_search", batch_size = 2)

Run tuning
tuner$optimize(instance)

Set optimal hyperparameter configuration to learner
learner$param_set$values = instance$result_learner_param_vals

Train the learner on the full data set
learner$train(task)

Inspect all evaluated configurations
as.data.table(instance$archive)

https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3cluster

ti_async 67

ti_async Syntactic Sugar for Asynchronous Tuning Instance Construction

Description

Function to construct a TuningInstanceAsyncSingleCrit or TuningInstanceAsyncMultiCrit.

Usage

ti_async(
task,
learner,
resampling,
measures = NULL,
terminator,
search_space = NULL,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
callbacks = NULL,
rush = NULL

)

Arguments

task (mlr3::Task)
Task to operate on.

learner (mlr3::Learner)
Learner to tune.

resampling (mlr3::Resampling)
Resampling that is used to evaluate the performance of the hyperparameter con-
figurations. Uninstantiated resamplings are instantiated during construction so
that all configurations are evaluated on the same data splits. Already instantiated
resamplings are kept unchanged. Specialized Tuner change the resampling e.g.
to evaluate a hyperparameter configuration on different data splits. This field,
however, always returns the resampling passed in construction.

measures (mlr3::Measure or list of mlr3::Measure)
A single measure creates a TuningInstanceAsyncSingleCrit and multiple mea-
sures a TuningInstanceAsyncMultiCrit. If NULL, default measure is used.

terminator (bbotk::Terminator)
Stop criterion of the tuning process.

search_space (paradox::ParamSet)
Hyperparameter search space. If NULL (default), the search space is constructed
from the paradox::TuneToken of the learner’s parameter set (learner$param_set).

68 ti_async

store_benchmark_result

(logical(1))
If TRUE (default), store resample result of evaluated hyperparameter configura-
tions in archive as mlr3::BenchmarkResult.

store_models (logical(1))
If TRUE, fitted models are stored in the benchmark result (archive$benchmark_result).
If store_benchmark_result = FALSE, models are only stored temporarily and
not accessible after the tuning. This combination is needed for measures that
require a model.

check_values (logical(1))
If TRUE, hyperparameter values are checked before evaluation and performance
scores after. If FALSE (default), values are unchecked but computational over-
head is reduced.

callbacks (list of mlr3misc::Callback)
List of callbacks.

rush (Rush)
If a rush instance is supplied, the tuning runs without batches.

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• Getting started with hyperparameter optimization.

• Tune a simple classification tree on the Sonar data set.

• Learn about tuning spaces.

The gallery features a collection of case studies and demos about optimization.

• Learn more advanced methods with the practical tuning series.

• Simultaneously optimize hyperparameters and use early stopping with XGBoost.

• Make us of proven search space.

• Learn about hotstarting models.

• Run the default hyperparameter configuration of learners as a baseline.

Default Measures

If no measure is passed, the default measure is used. The default measure depends on the task type.

Task Default Measure Package
"classif" "classif.ce" mlr3
"regr" "regr.mse" mlr3
"surv" "surv.cindex" mlr3proba
"dens" "dens.logloss" mlr3proba
"classif_st" "classif.ce" mlr3spatial
"regr_st" "regr.mse" mlr3spatial
"clust" "clust.dunn" mlr3cluster

https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-model-tuning
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-defining-search-spaces
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2021-03-09-practical-tuning-series-tune-a-support-vector-machine/
https://mlr-org.com/gallery/optimization/2022-11-04-early-stopping-with-xgboost/
https://mlr-org.com/gallery/optimization/2021-07-06-introduction-to-mlr3tuningspaces/
https://mlr-org.com/gallery/optimization/2023-01-16-hotstart/
https://mlr-org.com/gallery/optimization/2023-01-31-default-configuration/
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3cluster

tnr 69

Examples

Hyperparameter optimization on the Palmer Penguins data set
task = tsk("penguins")

Load learner and set search space
learner = lrn("classif.rpart",

cp = to_tune(1e-04, 1e-1, logscale = TRUE)
)

Construct tuning instance
instance = ti(

task = task,
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("evals", n_evals = 4)

)

Choose optimization algorithm
tuner = tnr("random_search", batch_size = 2)

Run tuning
tuner$optimize(instance)

Set optimal hyperparameter configuration to learner
learner$param_set$values = instance$result_learner_param_vals

Train the learner on the full data set
learner$train(task)

Inspect all evaluated configurations
as.data.table(instance$archive)

tnr Syntactic Sugar for Tuning Objects Construction

Description

Functions to retrieve objects, set parameters and assign to fields in one go. Relies on mlr3misc::dictionary_sugar_get()
to extract objects from the respective mlr3misc::Dictionary:

• tnr() for a Tuner from mlr_tuners.

• tnrs() for a list of Tuners from mlr_tuners.

• trm() for a bbotk::Terminator from mlr_terminators.

• trms() for a list of Terminators from mlr_terminators.

70 tune

Usage

tnr(.key, ...)

tnrs(.keys, ...)

Arguments

.key (character(1))
Key passed to the respective dictionary to retrieve the object.

... (any)
Additional arguments.

.keys (character())
Keys passed to the respective dictionary to retrieve multiple objects.

Value

R6::R6Class object of the respective type, or a list of R6::R6Class objects for the plural versions.

Examples

random search tuner with batch size of 5
tnr("random_search", batch_size = 5)

run time terminator with 20 seconds
trm("run_time", secs = 20)

tune Function for Tuning a Learner

Description

Function to tune a mlr3::Learner. The function internally creates a TuningInstanceBatchSingleCrit
or TuningInstanceBatchMultiCrit which describes the tuning problem. It executes the tuning with
the Tuner (tuner) and returns the result with the tuning instance ($result). The ArchiveBatch-
Tuning and ArchiveAsyncTuning ($archive) stores all evaluated hyperparameter configurations
and performance scores.

You can find an overview of all tuners on our website.

Usage

tune(
tuner,
task,
learner,
resampling,
measures = NULL,

https://mlr-org.com/tuners.html

tune 71

term_evals = NULL,
term_time = NULL,
terminator = NULL,
search_space = NULL,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
callbacks = NULL,
rush = NULL

)

Arguments

tuner (Tuner)
Optimization algorithm.

task (mlr3::Task)
Task to operate on.

learner (mlr3::Learner)
Learner to tune.

resampling (mlr3::Resampling)
Resampling that is used to evaluate the performance of the hyperparameter con-
figurations. Uninstantiated resamplings are instantiated during construction so
that all configurations are evaluated on the same data splits. Already instantiated
resamplings are kept unchanged. Specialized Tuner change the resampling e.g.
to evaluate a hyperparameter configuration on different data splits. This field,
however, always returns the resampling passed in construction.

measures (mlr3::Measure or list of mlr3::Measure)
A single measure creates a TuningInstanceBatchSingleCrit and multiple mea-
sures a TuningInstanceBatchMultiCrit. If NULL, default measure is used.

term_evals (integer(1))
Number of allowed evaluations. Ignored if terminator is passed.

term_time (integer(1))
Maximum allowed time in seconds. Ignored if terminator is passed.

terminator (bbotk::Terminator)
Stop criterion of the tuning process.

search_space (paradox::ParamSet)
Hyperparameter search space. If NULL (default), the search space is constructed
from the paradox::TuneToken of the learner’s parameter set (learner$param_set).

store_benchmark_result

(logical(1))
If TRUE (default), store resample result of evaluated hyperparameter configura-
tions in archive as mlr3::BenchmarkResult.

store_models (logical(1))
If TRUE, fitted models are stored in the benchmark result (archive$benchmark_result).
If store_benchmark_result = FALSE, models are only stored temporarily and
not accessible after the tuning. This combination is needed for measures that
require a model.

72 tune

check_values (logical(1))
If TRUE, hyperparameter values are checked before evaluation and performance
scores after. If FALSE (default), values are unchecked but computational over-
head is reduced.

callbacks (list of mlr3misc::Callback)
List of callbacks.

rush (Rush)
If a rush instance is supplied, the tuning runs without batches.

Details

The mlr3::Task, mlr3::Learner, mlr3::Resampling, mlr3::Measure and bbotk::Terminator are used
to construct a TuningInstanceBatchSingleCrit. If multiple performance mlr3::Measures are sup-
plied, a TuningInstanceBatchMultiCrit is created. The parameter term_evals and term_time are
shortcuts to create a bbotk::Terminator. If both parameters are passed, a bbotk::TerminatorCombo
is constructed. For other Terminators, pass one with terminator. If no termination criterion is
needed, set term_evals, term_time and terminator to NULL. The search space is created from
paradox::TuneToken or is supplied by search_space.

Value

TuningInstanceBatchSingleCrit | TuningInstanceBatchMultiCrit

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• Simplify tuning with the tune() function.

• Learn about tuning spaces.

The gallery features a collection of case studies and demos about optimization.

• Optimize an rpart classification tree with only a few lines of code.

• Tune an XGBoost model with early stopping.

• Make us of proven search space.

• Learn about hotstarting models.

Default Measures

If no measure is passed, the default measure is used. The default measure depends on the task type.

Task Default Measure Package
"classif" "classif.ce" mlr3
"regr" "regr.mse" mlr3
"surv" "surv.cindex" mlr3proba
"dens" "dens.logloss" mlr3proba
"classif_st" "classif.ce" mlr3spatial
"regr_st" "regr.mse" mlr3spatial

https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-autotuner
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-defining-search-spaces
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/optimization/2022-11-10-hyperparameter-optimization-on-the-palmer-penguins/
https://mlr-org.com/gallery/optimization/2022-11-04-early-stopping-with-xgboost/
https://mlr-org.com/gallery/optimization/2021-07-06-introduction-to-mlr3tuningspaces/
https://mlr-org.com/gallery/optimization/2023-01-16-hotstart/
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3spatial

Tuner 73

"clust" "clust.dunn" mlr3cluster

Analysis

For analyzing the tuning results, it is recommended to pass the ArchiveBatchTuning to as.data.table().
The returned data table is joined with the benchmark result which adds the mlr3::ResampleResult
for each hyperparameter evaluation.

The archive provides various getters (e.g. $learners()) to ease the access. All getters extract by
position (i) or unique hash (uhash). For a complete list of all getters see the methods section.

The benchmark result ($benchmark_result) allows to score the hyperparameter configurations
again on a different measure. Alternatively, measures can be supplied to as.data.table().

The mlr3viz package provides visualizations for tuning results.

Examples

Hyperparameter optimization on the Palmer Penguins data set
task = tsk("pima")

Load learner and set search space
learner = lrn("classif.rpart",

cp = to_tune(1e-04, 1e-1, logscale = TRUE)
)

Run tuning
instance = tune(

tuner = tnr("random_search", batch_size = 2),
task = tsk("pima"),
learner = learner,
resampling = rsmp ("holdout"),
measures = msr("classif.ce"),
terminator = trm("evals", n_evals = 4)

)

Set optimal hyperparameter configuration to learner
learner$param_set$values = instance$result_learner_param_vals

Train the learner on the full data set
learner$train(task)

Inspect all evaluated configurations
as.data.table(instance$archive)

Tuner Tuner

Description

The Tuner implements the optimization algorithm.

https://CRAN.R-project.org/package=mlr3cluster
https://CRAN.R-project.org/package=mlr3viz

74 Tuner

Details

Tuner is an abstract base class that implements the base functionality each tuner must provide.

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• An overview of all tuners can be found on our website.

• Learn more about tuners.

The gallery features a collection of case studies and demos about optimization.

• Use the Hyperband optimizer with different budget parameters.

Extension Packages

Additional tuners are provided by the following packages.

• mlr3hyperband adds the Hyperband and Successive Halving algorithm.

• mlr3mbo adds Bayesian optimization methods.

Public fields

id (character(1))
Identifier of the object. Used in tables, plot and text output.

Active bindings

param_set (paradox::ParamSet)
Set of control parameters.

param_classes (character())
Supported parameter classes for learner hyperparameters that the tuner can optimize, as given
in the paradox::ParamSet $class field.

properties (character())
Set of properties of the tuner. Must be a subset of mlr_reflections$tuner_properties.

packages (character())
Set of required packages. Note that these packages will be loaded via requireNamespace(),
and are not attached.

label (character(1))
Label for this object. Can be used in tables, plot and text output instead of the ID.

man (character(1))
String in the format [pkg]::[topic] pointing to a manual page for this object. The refer-
enced help package can be opened via method $help().

https://mlr3book.mlr-org.com
https://mlr-org.com/tuners.html
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-tuner
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2023-01-15-hyperband-xgboost/
https://github.com/mlr-org/mlr3hyperband
https://github.com/mlr-org/mlr3mbo

Tuner 75

Methods

Public methods:
• Tuner$new()

• Tuner$format()

• Tuner$print()

• Tuner$help()

• Tuner$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Tuner$new(
id = "tuner",
param_set,
param_classes,
properties,
packages = character(),
label = NA_character_,
man = NA_character_

)

Arguments:
id (character(1))

Identifier for the new instance.
param_set (paradox::ParamSet)

Set of control parameters.
param_classes (character())

Supported parameter classes for learner hyperparameters that the tuner can optimize, as
given in the paradox::ParamSet $class field.

properties (character())
Set of properties of the tuner. Must be a subset of mlr_reflections$tuner_properties.

packages (character())
Set of required packages. Note that these packages will be loaded via requireNamespace(),
and are not attached.

label (character(1))
Label for this object. Can be used in tables, plot and text output instead of the ID.

man (character(1))
String in the format [pkg]::[topic] pointing to a manual page for this object. The refer-
enced help package can be opened via method $help().

Method format(): Helper for print outputs.

Usage:
Tuner$format(...)

Arguments:
... (ignored).

Returns: (character()).

76 TunerAsync

Method print(): Print method.

Usage:
Tuner$print()

Returns: (character()).

Method help(): Opens the corresponding help page referenced by field $man.

Usage:
Tuner$help()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Tuner$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other Tuner: mlr_tuners, mlr_tuners_cmaes, mlr_tuners_design_points, mlr_tuners_gensa,
mlr_tuners_grid_search, mlr_tuners_internal, mlr_tuners_irace, mlr_tuners_nloptr, mlr_tuners_random_search

TunerAsync Class for Asynchronous Tuning Algorithms

Description

The TunerAsync implements the asynchronous optimization algorithm.

Details

TunerAsync is an abstract base class that implements the base functionality each asynchronous
tuner must provide.

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• An overview of all tuners can be found on our website.

• Learn more about tuners.

The gallery features a collection of case studies and demos about optimization.

• Use the Hyperband optimizer with different budget parameters.

Super class

mlr3tuning::Tuner -> TunerAsync

https://mlr3book.mlr-org.com
https://mlr-org.com/tuners.html
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-tuner
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2023-01-15-hyperband-xgboost/

TunerBatch 77

Methods

Public methods:
• TunerAsync$optimize()

• TunerAsync$clone()

Method optimize(): Performs the tuning on a TuningInstanceAsyncSingleCrit or TuningIn-
stanceAsyncMultiCrit until termination. The single evaluations will be written into the ArchiveAsync-
Tuning that resides in the TuningInstanceAsyncSingleCrit/TuningInstanceAsyncMultiCrit. The
result will be written into the instance object.

Usage:
TunerAsync$optimize(inst)

Arguments:
inst (TuningInstanceAsyncSingleCrit | TuningInstanceAsyncMultiCrit).

Returns: data.table::data.table()

Method clone(): The objects of this class are cloneable with this method.

Usage:
TunerAsync$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

TunerBatch Class for Batch Tuning Algorithms

Description

The TunerBatch implements the optimization algorithm.

Details

TunerBatch is an abstract base class that implements the base functionality each tuner must provide.
A subclass is implemented in the following way:

• Inherit from Tuner.

• Specify the private abstract method $.optimize() and use it to call into your optimizer.

• You need to call instance$eval_batch() to evaluate design points.

• The batch evaluation is requested at the TuningInstanceBatchSingleCrit/TuningInstanceBatchMultiCrit
object instance, so each batch is possibly executed in parallel via mlr3::benchmark(), and
all evaluations are stored inside of instance$archive.

• Before the batch evaluation, the bbotk::Terminator is checked, and if it is positive, an exception
of class "terminated_error" is generated. In the later case the current batch of evaluations
is still stored in instance, but the numeric scores are not sent back to the handling optimizer
as it has lost execution control.

78 TunerBatch

• After such an exception was caught we select the best configuration from instance$archive
and return it.

• Note that therefore more points than specified by the bbotk::Terminator may be evaluated, as
the Terminator is only checked before a batch evaluation, and not in-between evaluation in a
batch. How many more depends on the setting of the batch size.

• Overwrite the private super-method .assign_result() if you want to decide yourself how
to estimate the final configuration in the instance and its estimated performance. The default
behavior is: We pick the best resample-experiment, regarding the given measure, then assign
its configuration and aggregated performance to the instance.

Private Methods

• .optimize(instance) -> NULL
Abstract base method. Implement to specify tuning of your subclass. See details sections.

• .assign_result(instance) -> NULL
Abstract base method. Implement to specify how the final configuration is selected. See
details sections.

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• An overview of all tuners can be found on our website.

• Learn more about tuners.

The gallery features a collection of case studies and demos about optimization.

• Use the Hyperband optimizer with different budget parameters.

Super class

mlr3tuning::Tuner -> TunerBatch

Methods

Public methods:
• TunerBatch$new()

• TunerBatch$optimize()

• TunerBatch$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TunerBatch$new(
id = "tuner_batch",
param_set,
param_classes,
properties,
packages = character(),

https://mlr3book.mlr-org.com
https://mlr-org.com/tuners.html
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-tuner
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2023-01-15-hyperband-xgboost/

TunerBatch 79

label = NA_character_,
man = NA_character_

)

Arguments:

id (character(1))
Identifier for the new instance.

param_set (paradox::ParamSet)
Set of control parameters.

param_classes (character())
Supported parameter classes for learner hyperparameters that the tuner can optimize, as
given in the paradox::ParamSet $class field.

properties (character())
Set of properties of the tuner. Must be a subset of mlr_reflections$tuner_properties.

packages (character())
Set of required packages. Note that these packages will be loaded via requireNamespace(),
and are not attached.

label (character(1))
Label for this object. Can be used in tables, plot and text output instead of the ID.

man (character(1))
String in the format [pkg]::[topic] pointing to a manual page for this object. The refer-
enced help package can be opened via method $help().

Method optimize(): Performs the tuning on a TuningInstanceBatchSingleCrit or TuningIn-
stanceBatchMultiCrit until termination. The single evaluations will be written into the Archive-
BatchTuning that resides in the TuningInstanceBatchSingleCrit/TuningInstanceBatchMultiCrit.
The result will be written into the instance object.

Usage:

TunerBatch$optimize(inst)

Arguments:

inst (TuningInstanceBatchSingleCrit | TuningInstanceBatchMultiCrit).

Returns: data.table::data.table()

Method clone(): The objects of this class are cloneable with this method.

Usage:

TunerBatch$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

80 tune_nested

tune_nested Function for Nested Resampling

Description

Function to conduct nested resampling.

Usage

tune_nested(
tuner,
task,
learner,
inner_resampling,
outer_resampling,
measure = NULL,
term_evals = NULL,
term_time = NULL,
terminator = NULL,
search_space = NULL,
store_tuning_instance = TRUE,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
callbacks = NULL

)

Arguments

tuner (Tuner)
Optimization algorithm.

task (mlr3::Task)
Task to operate on.

learner (mlr3::Learner)
Learner to tune.

inner_resampling

(mlr3::Resampling)
Resampling used for the inner loop.

outer_resampling

mlr3::Resampling)
Resampling used for the outer loop.

measure (mlr3::Measure)
Measure to optimize. If NULL, default measure is used.

term_evals (integer(1))
Number of allowed evaluations. Ignored if terminator is passed.

tune_nested 81

term_time (integer(1))
Maximum allowed time in seconds. Ignored if terminator is passed.

terminator (bbotk::Terminator)
Stop criterion of the tuning process.

search_space (paradox::ParamSet)
Hyperparameter search space. If NULL (default), the search space is constructed
from the paradox::TuneToken of the learner’s parameter set (learner$param_set).

store_tuning_instance

(logical(1))
If TRUE (default), stores the internally created TuningInstanceBatchSingleCrit
with all intermediate results in slot $tuning_instance.

store_benchmark_result

(logical(1))
If TRUE (default), store resample result of evaluated hyperparameter configura-
tions in archive as mlr3::BenchmarkResult.

store_models (logical(1))
If TRUE, fitted models are stored in the benchmark result (archive$benchmark_result).
If store_benchmark_result = FALSE, models are only stored temporarily and
not accessible after the tuning. This combination is needed for measures that
require a model.

check_values (logical(1))
If TRUE, hyperparameter values are checked before evaluation and performance
scores after. If FALSE (default), values are unchecked but computational over-
head is reduced.

callbacks (list of mlr3misc::Callback)
List of callbacks.

Value

mlr3::ResampleResult

Examples

Nested resampling on Palmer Penguins data set
rr = tune_nested(

tuner = tnr("random_search", batch_size = 2),
task = tsk("penguins"),
learner = lrn("classif.rpart", cp = to_tune(1e-04, 1e-1, logscale = TRUE)),
inner_resampling = rsmp ("holdout"),
outer_resampling = rsmp("cv", folds = 2),
measure = msr("classif.ce"),
term_evals = 2)

Performance scores estimated on the outer resampling
rr$score()

Unbiased performance of the final model trained on the full data set
rr$aggregate()

82 TuningInstanceAsyncMultiCrit

TuningInstanceAsyncMultiCrit

Multi-Criteria Tuning with Rush

Description

The TuningInstanceAsyncMultiCrit specifies a tuning problem for a Tuner. The function ti_async()
creates a TuningInstanceAsyncMultiCrit and the function tune() creates an instance internally.

Details

The instance contains an ObjectiveTuningAsync object that encodes the black box objective func-
tion a Tuner has to optimize. The instance allows the basic operations of querying the objective
at design points ($eval_async()). This operation is usually done by the Tuner. Hyperparameter
configurations are asynchronously sent to workers and evaluated by calling mlr3::resample().
The evaluated hyperparameter configurations are stored in the ArchiveAsyncTuning ($archive).
Before a batch is evaluated, the bbotk::Terminator is queried for the remaining budget. If the
available budget is exhausted, an exception is raised, and no further evaluations can be performed
from this point on. The tuner is also supposed to store its final result, consisting of a selected
hyperparameter configuration and associated estimated performance values, by calling the method
instance$.assign_result.

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• Learn about multi-objective optimization.

The gallery features a collection of case studies and demos about optimization.

Analysis

For analyzing the tuning results, it is recommended to pass the ArchiveAsyncTuning to as.data.table().
The returned data table contains the mlr3::ResampleResult for each hyperparameter evaluation.

Super classes

bbotk::OptimInstance -> bbotk::OptimInstanceAsync -> bbotk::OptimInstanceAsyncMultiCrit
-> TuningInstanceAsyncMultiCrit

Active bindings

result_learner_param_vals (list())
List of param values for the optimal learner call.

internal_search_space (paradox::ParamSet)
The search space containing those parameters that are internally optimized by the mlr3::Learner.

https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter5/advanced_tuning_methods_and_black_box_optimization.html#sec-multi-metrics-tuning
https://mlr-org.com/gallery-all-optimization.html

TuningInstanceAsyncMultiCrit 83

Methods

Public methods:

• TuningInstanceAsyncMultiCrit$new()

• TuningInstanceAsyncMultiCrit$assign_result()

• TuningInstanceAsyncMultiCrit$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TuningInstanceAsyncMultiCrit$new(
task,
learner,
resampling,
measures,
terminator,
search_space = NULL,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
callbacks = NULL,
rush = NULL

)

Arguments:

task (mlr3::Task)
Task to operate on.

learner (mlr3::Learner)
Learner to tune.

resampling (mlr3::Resampling)
Resampling that is used to evaluate the performance of the hyperparameter configurations.
Uninstantiated resamplings are instantiated during construction so that all configurations
are evaluated on the same data splits. Already instantiated resamplings are kept unchanged.
Specialized Tuner change the resampling e.g. to evaluate a hyperparameter configuration
on different data splits. This field, however, always returns the resampling passed in con-
struction.

measures (list of mlr3::Measure)
Measures to optimize.

terminator (bbotk::Terminator)
Stop criterion of the tuning process.

search_space (paradox::ParamSet)
Hyperparameter search space. If NULL (default), the search space is constructed from the
paradox::TuneToken of the learner’s parameter set (learner$param_set).

store_benchmark_result (logical(1))
If TRUE (default), store resample result of evaluated hyperparameter configurations in archive
as mlr3::BenchmarkResult.

store_models (logical(1))
If TRUE, fitted models are stored in the benchmark result (archive$benchmark_result). If

84 TuningInstanceAsyncSingleCrit

store_benchmark_result = FALSE, models are only stored temporarily and not accessible
after the tuning. This combination is needed for measures that require a model.

check_values (logical(1))
If TRUE, hyperparameter values are checked before evaluation and performance scores after.
If FALSE (default), values are unchecked but computational overhead is reduced.

callbacks (list of mlr3misc::Callback)
List of callbacks.

rush (Rush)
If a rush instance is supplied, the tuning runs without batches.

Method assign_result(): The TunerAsync writes the best found points and estimated perfor-
mance values here (probably the Pareto set / front). For internal use.

Usage:

TuningInstanceAsyncMultiCrit$assign_result(xdt, ydt, learner_param_vals = NULL)

Arguments:

xdt (data.table::data.table())
Hyperparameter values as data.table::data.table(). Each row is one configuration.
Contains values in the search space. Can contain additional columns for extra information.

ydt (numeric(1))
Optimal outcomes, e.g. the Pareto front.

learner_param_vals (List of named list()s)
Fixed parameter values of the learner that are neither part of the

Method clone(): The objects of this class are cloneable with this method.

Usage:

TuningInstanceAsyncMultiCrit$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

TuningInstanceAsyncSingleCrit

Single Criterion Tuning with Rush

Description

The TuningInstanceAsyncSingleCrit specifies a tuning problem for a TunerAsync. The function
ti_async() creates a TuningInstanceAsyncSingleCrit and the function tune() creates an instance
internally.

TuningInstanceAsyncSingleCrit 85

Details

The instance contains an ObjectiveTuningAsync object that encodes the black box objective func-
tion a Tuner has to optimize. The instance allows the basic operations of querying the objective
at design points ($eval_async()). This operation is usually done by the Tuner. Hyperparameter
configurations are asynchronously sent to workers and evaluated by calling mlr3::resample().
The evaluated hyperparameter configurations are stored in the ArchiveAsyncTuning ($archive).
Before a batch is evaluated, the bbotk::Terminator is queried for the remaining budget. If the
available budget is exhausted, an exception is raised, and no further evaluations can be performed
from this point on. The tuner is also supposed to store its final result, consisting of a selected
hyperparameter configuration and associated estimated performance values, by calling the method
instance$.assign_result.

Default Measures

If no measure is passed, the default measure is used. The default measure depends on the task type.

Task Default Measure Package
"classif" "classif.ce" mlr3
"regr" "regr.mse" mlr3
"surv" "surv.cindex" mlr3proba
"dens" "dens.logloss" mlr3proba
"classif_st" "classif.ce" mlr3spatial
"regr_st" "regr.mse" mlr3spatial
"clust" "clust.dunn" mlr3cluster

Analysis

For analyzing the tuning results, it is recommended to pass the ArchiveAsyncTuning to as.data.table().
The returned data table contains the mlr3::ResampleResult for each hyperparameter evaluation.

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• Getting started with hyperparameter optimization.

• Tune a simple classification tree on the Sonar data set.

• Learn about tuning spaces.

The gallery features a collection of case studies and demos about optimization.

• Learn more advanced methods with the practical tuning series.

• Simultaneously optimize hyperparameters and use early stopping with XGBoost.

• Make us of proven search space.

• Learn about hotstarting models.

• Run the default hyperparameter configuration of learners as a baseline.

https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3cluster
https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-model-tuning
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-defining-search-spaces
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2021-03-09-practical-tuning-series-tune-a-support-vector-machine/
https://mlr-org.com/gallery/optimization/2022-11-04-early-stopping-with-xgboost/
https://mlr-org.com/gallery/optimization/2021-07-06-introduction-to-mlr3tuningspaces/
https://mlr-org.com/gallery/optimization/2023-01-16-hotstart/
https://mlr-org.com/gallery/optimization/2023-01-31-default-configuration/

86 TuningInstanceAsyncSingleCrit

Extension Packages

mlr3tuning is extended by the following packages.

• mlr3tuningspaces is a collection of search spaces from scientific articles for commonly used
learners.

• mlr3hyperband adds the Hyperband and Successive Halving algorithm.

• mlr3mbo adds Bayesian optimization methods.

Super classes

bbotk::OptimInstance -> bbotk::OptimInstanceAsync -> bbotk::OptimInstanceAsyncSingleCrit
-> TuningInstanceAsyncSingleCrit

Active bindings

result_learner_param_vals (list())
Param values for the optimal learner call.

internal_search_space (paradox::ParamSet)
The search space containing those parameters that are internally optimized by the mlr3::Learner.

Methods

Public methods:
• TuningInstanceAsyncSingleCrit$new()

• TuningInstanceAsyncSingleCrit$assign_result()

• TuningInstanceAsyncSingleCrit$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TuningInstanceAsyncSingleCrit$new(
task,
learner,
resampling,
measure = NULL,
terminator,
search_space = NULL,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
callbacks = NULL,
rush = NULL

)

Arguments:
task (mlr3::Task)

Task to operate on.
learner (mlr3::Learner)

Learner to tune.

https://github.com/mlr-org/mlr3tuningspaces
https://github.com/mlr-org/mlr3hyperband
https://github.com/mlr-org/mlr3mbo

TuningInstanceAsyncSingleCrit 87

resampling (mlr3::Resampling)
Resampling that is used to evaluate the performance of the hyperparameter configurations.
Uninstantiated resamplings are instantiated during construction so that all configurations
are evaluated on the same data splits. Already instantiated resamplings are kept unchanged.
Specialized Tuner change the resampling e.g. to evaluate a hyperparameter configuration
on different data splits. This field, however, always returns the resampling passed in con-
struction.

measure (mlr3::Measure)
Measure to optimize. If NULL, default measure is used.

terminator (bbotk::Terminator)
Stop criterion of the tuning process.

search_space (paradox::ParamSet)
Hyperparameter search space. If NULL (default), the search space is constructed from the
paradox::TuneToken of the learner’s parameter set (learner$param_set).

store_benchmark_result (logical(1))
If TRUE (default), store resample result of evaluated hyperparameter configurations in archive
as mlr3::BenchmarkResult.

store_models (logical(1))
If TRUE, fitted models are stored in the benchmark result (archive$benchmark_result). If
store_benchmark_result = FALSE, models are only stored temporarily and not accessible
after the tuning. This combination is needed for measures that require a model.

check_values (logical(1))
If TRUE, hyperparameter values are checked before evaluation and performance scores after.
If FALSE (default), values are unchecked but computational overhead is reduced.

callbacks (list of mlr3misc::Callback)
List of callbacks.

rush (Rush)
If a rush instance is supplied, the tuning runs without batches.

Method assign_result(): The TunerAsync object writes the best found point and estimated
performance value here. For internal use.

Usage:
TuningInstanceAsyncSingleCrit$assign_result(xdt, y, learner_param_vals = NULL)

Arguments:
xdt (data.table::data.table())

Hyperparameter values as data.table::data.table(). Each row is one configuration.
Contains values in the search space. Can contain additional columns for extra information.

y (numeric(1))
Optimal outcome.

learner_param_vals (List of named list()s)
Fixed parameter values of the learner that are neither part of the

Method clone(): The objects of this class are cloneable with this method.
Usage:
TuningInstanceAsyncSingleCrit$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

88 TuningInstanceBatchMultiCrit

TuningInstanceBatchMultiCrit

Class for Multi Criteria Tuning

Description

The TuningInstanceBatchMultiCrit specifies a tuning problem for a Tuner. The function ti() cre-
ates a TuningInstanceBatchMultiCrit and the function tune() creates an instance internally.

Details

The instance contains an ObjectiveTuningBatch object that encodes the black box objective func-
tion a Tuner has to optimize. The instance allows the basic operations of querying the objective
at design points ($eval_batch()). This operation is usually done by the Tuner. Evaluations of
hyperparameter configurations are performed in batches by calling mlr3::benchmark() internally.
The evaluated hyperparameter configurations are stored in the ArchiveBatchTuning ($archive).
Before a batch is evaluated, the bbotk::Terminator is queried for the remaining budget. If the
available budget is exhausted, an exception is raised, and no further evaluations can be performed
from this point on. The tuner is also supposed to store its final result, consisting of a selected
hyperparameter configuration and associated estimated performance values, by calling the method
instance$assign_result.

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• Learn about multi-objective optimization.

The gallery features a collection of case studies and demos about optimization.

Analysis

For analyzing the tuning results, it is recommended to pass the ArchiveBatchTuning to as.data.table().
The returned data table is joined with the benchmark result which adds the mlr3::ResampleResult
for each hyperparameter evaluation.

The archive provides various getters (e.g. $learners()) to ease the access. All getters extract by
position (i) or unique hash (uhash). For a complete list of all getters see the methods section.

The benchmark result ($benchmark_result) allows to score the hyperparameter configurations
again on a different measure. Alternatively, measures can be supplied to as.data.table().

The mlr3viz package provides visualizations for tuning results.

Super classes

bbotk::OptimInstance -> bbotk::OptimInstanceBatch -> bbotk::OptimInstanceBatchMultiCrit
-> TuningInstanceBatchMultiCrit

https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter5/advanced_tuning_methods_and_black_box_optimization.html#sec-multi-metrics-tuning
https://mlr-org.com/gallery-all-optimization.html
https://CRAN.R-project.org/package=mlr3viz

TuningInstanceBatchMultiCrit 89

Active bindings

result_learner_param_vals (list())
List of param values for the optimal learner call.

internal_search_space (paradox::ParamSet)
The search space containing those parameters that are internally optimized by the mlr3::Learner.

Methods

Public methods:
• TuningInstanceBatchMultiCrit$new()

• TuningInstanceBatchMultiCrit$assign_result()

• TuningInstanceBatchMultiCrit$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TuningInstanceBatchMultiCrit$new(
task,
learner,
resampling,
measures,
terminator,
search_space = NULL,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
callbacks = NULL

)

Arguments:
task (mlr3::Task)

Task to operate on.
learner (mlr3::Learner)

Learner to tune.
resampling (mlr3::Resampling)

Resampling that is used to evaluate the performance of the hyperparameter configurations.
Uninstantiated resamplings are instantiated during construction so that all configurations
are evaluated on the same data splits. Already instantiated resamplings are kept unchanged.
Specialized Tuner change the resampling e.g. to evaluate a hyperparameter configuration
on different data splits. This field, however, always returns the resampling passed in con-
struction.

measures (list of mlr3::Measure)
Measures to optimize.

terminator (bbotk::Terminator)
Stop criterion of the tuning process.

search_space (paradox::ParamSet)
Hyperparameter search space. If NULL (default), the search space is constructed from the
paradox::TuneToken of the learner’s parameter set (learner$param_set).

90 TuningInstanceBatchMultiCrit

store_benchmark_result (logical(1))
If TRUE (default), store resample result of evaluated hyperparameter configurations in archive
as mlr3::BenchmarkResult.

store_models (logical(1))
If TRUE, fitted models are stored in the benchmark result (archive$benchmark_result). If
store_benchmark_result = FALSE, models are only stored temporarily and not accessible
after the tuning. This combination is needed for measures that require a model.

check_values (logical(1))
If TRUE, hyperparameter values are checked before evaluation and performance scores after.
If FALSE (default), values are unchecked but computational overhead is reduced.

callbacks (list of mlr3misc::Callback)
List of callbacks.

Method assign_result(): The Tuner object writes the best found points and estimated perfor-
mance values here. For internal use.

Usage:
TuningInstanceBatchMultiCrit$assign_result(xdt, ydt, learner_param_vals = NULL)

Arguments:

xdt (data.table::data.table())
Hyperparameter values as data.table::data.table(). Each row is one configuration.
Contains values in the search space. Can contain additional columns for extra information.

ydt (data.table::data.table())
Optimal outcomes, e.g. the Pareto front.

learner_param_vals (List of named list()s)
Fixed parameter values of the learner that are neither part of the

Method clone(): The objects of this class are cloneable with this method.

Usage:
TuningInstanceBatchMultiCrit$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Hyperparameter optimization on the Palmer Penguins data set
task = tsk("penguins")

Load learner and set search space
learner = lrn("classif.rpart",
cp = to_tune(1e-04, 1e-1, logscale = TRUE)

)

Construct tuning instance
instance = ti(

task = task,
learner = learner,
resampling = rsmp("cv", folds = 3),

TuningInstanceBatchSingleCrit 91

measures = msrs(c("classif.ce", "time_train")),
terminator = trm("evals", n_evals = 4)

)

Choose optimization algorithm
tuner = tnr("random_search", batch_size = 2)

Run tuning
tuner$optimize(instance)

Optimal hyperparameter configurations
instance$result

Inspect all evaluated configurations
as.data.table(instance$archive)

TuningInstanceBatchSingleCrit

Class for Single Criterion Tuning

Description

The TuningInstanceBatchSingleCrit specifies a tuning problem for a Tuner. The function ti()
creates a TuningInstanceBatchSingleCrit and the function tune() creates an instance internally.

Details

The instance contains an ObjectiveTuningBatch object that encodes the black box objective func-
tion a Tuner has to optimize. The instance allows the basic operations of querying the objective
at design points ($eval_batch()). This operation is usually done by the Tuner. Evaluations of
hyperparameter configurations are performed in batches by calling mlr3::benchmark() internally.
The evaluated hyperparameter configurations are stored in the ArchiveBatchTuning ($archive).
Before a batch is evaluated, the bbotk::Terminator is queried for the remaining budget. If the
available budget is exhausted, an exception is raised, and no further evaluations can be performed
from this point on. The tuner is also supposed to store its final result, consisting of a selected
hyperparameter configuration and associated estimated performance values, by calling the method
instance$assign_result.

Default Measures

If no measure is passed, the default measure is used. The default measure depends on the task type.

Task Default Measure Package
"classif" "classif.ce" mlr3
"regr" "regr.mse" mlr3
"surv" "surv.cindex" mlr3proba
"dens" "dens.logloss" mlr3proba
"classif_st" "classif.ce" mlr3spatial

https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3spatial

92 TuningInstanceBatchSingleCrit

"regr_st" "regr.mse" mlr3spatial
"clust" "clust.dunn" mlr3cluster

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• Getting started with hyperparameter optimization.

• Tune a simple classification tree on the Sonar data set.

• Learn about tuning spaces.

The gallery features a collection of case studies and demos about optimization.

• Learn more advanced methods with the practical tuning series.

• Simultaneously optimize hyperparameters and use early stopping with XGBoost.

• Make us of proven search space.

• Learn about hotstarting models.

• Run the default hyperparameter configuration of learners as a baseline.

Extension Packages

mlr3tuning is extended by the following packages.

• mlr3tuningspaces is a collection of search spaces from scientific articles for commonly used
learners.

• mlr3hyperband adds the Hyperband and Successive Halving algorithm.

• mlr3mbo adds Bayesian optimization methods.

Analysis

For analyzing the tuning results, it is recommended to pass the ArchiveBatchTuning to as.data.table().
The returned data table is joined with the benchmark result which adds the mlr3::ResampleResult
for each hyperparameter evaluation.

The archive provides various getters (e.g. $learners()) to ease the access. All getters extract by
position (i) or unique hash (uhash). For a complete list of all getters see the methods section.

The benchmark result ($benchmark_result) allows to score the hyperparameter configurations
again on a different measure. Alternatively, measures can be supplied to as.data.table().

The mlr3viz package provides visualizations for tuning results.

Super classes

bbotk::OptimInstance -> bbotk::OptimInstanceBatch -> bbotk::OptimInstanceBatchSingleCrit
-> TuningInstanceBatchSingleCrit

https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3cluster
https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-model-tuning
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-defining-search-spaces
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2021-03-09-practical-tuning-series-tune-a-support-vector-machine/
https://mlr-org.com/gallery/optimization/2022-11-04-early-stopping-with-xgboost/
https://mlr-org.com/gallery/optimization/2021-07-06-introduction-to-mlr3tuningspaces/
https://mlr-org.com/gallery/optimization/2023-01-16-hotstart/
https://mlr-org.com/gallery/optimization/2023-01-31-default-configuration/
https://github.com/mlr-org/mlr3tuningspaces
https://github.com/mlr-org/mlr3hyperband
https://github.com/mlr-org/mlr3mbo
https://CRAN.R-project.org/package=mlr3viz

TuningInstanceBatchSingleCrit 93

Active bindings

result_learner_param_vals (list())
Param values for the optimal learner call.

internal_search_space (paradox::ParamSet)
The search space containing those parameters that are internally optimized by the mlr3::Learner.

Methods

Public methods:
• TuningInstanceBatchSingleCrit$new()

• TuningInstanceBatchSingleCrit$assign_result()

• TuningInstanceBatchSingleCrit$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TuningInstanceBatchSingleCrit$new(
task,
learner,
resampling,
measure = NULL,
terminator,
search_space = NULL,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
callbacks = NULL

)

Arguments:
task (mlr3::Task)

Task to operate on.
learner (mlr3::Learner)

Learner to tune.
resampling (mlr3::Resampling)

Resampling that is used to evaluate the performance of the hyperparameter configurations.
Uninstantiated resamplings are instantiated during construction so that all configurations
are evaluated on the same data splits. Already instantiated resamplings are kept unchanged.
Specialized Tuner change the resampling e.g. to evaluate a hyperparameter configuration
on different data splits. This field, however, always returns the resampling passed in con-
struction.

measure (mlr3::Measure)
Measure to optimize. If NULL, default measure is used.

terminator (bbotk::Terminator)
Stop criterion of the tuning process.

search_space (paradox::ParamSet)
Hyperparameter search space. If NULL (default), the search space is constructed from the
paradox::TuneToken of the learner’s parameter set (learner$param_set).

94 TuningInstanceBatchSingleCrit

store_benchmark_result (logical(1))
If TRUE (default), store resample result of evaluated hyperparameter configurations in archive
as mlr3::BenchmarkResult.

store_models (logical(1))
If TRUE, fitted models are stored in the benchmark result (archive$benchmark_result). If
store_benchmark_result = FALSE, models are only stored temporarily and not accessible
after the tuning. This combination is needed for measures that require a model.

check_values (logical(1))
If TRUE, hyperparameter values are checked before evaluation and performance scores after.
If FALSE (default), values are unchecked but computational overhead is reduced.

callbacks (list of mlr3misc::Callback)
List of callbacks.

Method assign_result(): The Tuner object writes the best found point and estimated perfor-
mance value here. For internal use.

Usage:
TuningInstanceBatchSingleCrit$assign_result(xdt, y, learner_param_vals = NULL)

Arguments:

xdt (data.table::data.table())
Hyperparameter values as data.table::data.table(). Each row is one configuration.
Contains values in the search space. Can contain additional columns for extra information.

y (numeric(1))
Optimal outcome.

learner_param_vals (List of named list()s)
Fixed parameter values of the learner that are neither part of the

Method clone(): The objects of this class are cloneable with this method.

Usage:
TuningInstanceBatchSingleCrit$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Hyperparameter optimization on the Palmer Penguins data set
task = tsk("penguins")

Load learner and set search space
learner = lrn("classif.rpart",
cp = to_tune(1e-04, 1e-1, logscale = TRUE)

)

Construct tuning instance
instance = ti(

task = task,
learner = learner,
resampling = rsmp("cv", folds = 3),

TuningInstanceMultiCrit 95

measures = msr("classif.ce"),
terminator = trm("evals", n_evals = 4)

)

Choose optimization algorithm
tuner = tnr("random_search", batch_size = 2)

Run tuning
tuner$optimize(instance)

Set optimal hyperparameter configuration to learner
learner$param_set$values = instance$result_learner_param_vals

Train the learner on the full data set
learner$train(task)

Inspect all evaluated configurations
as.data.table(instance$archive)

TuningInstanceMultiCrit

Multi Criteria Tuning Instance for Batch Tuning

Description

TuningInstanceMultiCrit is a deprecated class that is now a wrapper around TuningInstance-
BatchMultiCrit.

Super classes

bbotk::OptimInstance -> bbotk::OptimInstanceBatch -> bbotk::OptimInstanceBatchMultiCrit
-> mlr3tuning::TuningInstanceBatchMultiCrit -> TuningInstanceMultiCrit

Methods

Public methods:
• TuningInstanceMultiCrit$new()

• TuningInstanceMultiCrit$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TuningInstanceMultiCrit$new(
task,
learner,
resampling,
measures,
terminator,
search_space = NULL,

96 TuningInstanceMultiCrit

store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
callbacks = NULL

)

Arguments:

task (mlr3::Task)
Task to operate on.

learner (mlr3::Learner)
Learner to tune.

resampling (mlr3::Resampling)
Resampling that is used to evaluate the performance of the hyperparameter configurations.
Uninstantiated resamplings are instantiated during construction so that all configurations
are evaluated on the same data splits. Already instantiated resamplings are kept unchanged.
Specialized Tuner change the resampling e.g. to evaluate a hyperparameter configuration
on different data splits. This field, however, always returns the resampling passed in con-
struction.

measures (list of mlr3::Measure)
Measures to optimize.

terminator (bbotk::Terminator)
Stop criterion of the tuning process.

search_space (paradox::ParamSet)
Hyperparameter search space. If NULL (default), the search space is constructed from the
paradox::TuneToken of the learner’s parameter set (learner$param_set).

store_benchmark_result (logical(1))
If TRUE (default), store resample result of evaluated hyperparameter configurations in archive
as mlr3::BenchmarkResult.

store_models (logical(1))
If TRUE, fitted models are stored in the benchmark result (archive$benchmark_result). If
store_benchmark_result = FALSE, models are only stored temporarily and not accessible
after the tuning. This combination is needed for measures that require a model.

check_values (logical(1))
If TRUE, hyperparameter values are checked before evaluation and performance scores after.
If FALSE (default), values are unchecked but computational overhead is reduced.

callbacks (list of mlr3misc::Callback)
List of callbacks.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TuningInstanceMultiCrit$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

TuningInstanceSingleCrit 97

TuningInstanceSingleCrit

Single Criterion Tuning Instance for Batch Tuning

Description

TuningInstanceSingleCrit is a deprecated class that is now a wrapper around TuningInstance-
BatchSingleCrit.

Super classes

bbotk::OptimInstance -> bbotk::OptimInstanceBatch -> bbotk::OptimInstanceBatchSingleCrit
-> mlr3tuning::TuningInstanceBatchSingleCrit -> TuningInstanceSingleCrit

Methods

Public methods:
• TuningInstanceSingleCrit$new()

• TuningInstanceSingleCrit$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TuningInstanceSingleCrit$new(
task,
learner,
resampling,
measure = NULL,
terminator,
search_space = NULL,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
callbacks = NULL

)

Arguments:
task (mlr3::Task)

Task to operate on.
learner (mlr3::Learner)

Learner to tune.
resampling (mlr3::Resampling)

Resampling that is used to evaluate the performance of the hyperparameter configurations.
Uninstantiated resamplings are instantiated during construction so that all configurations
are evaluated on the same data splits. Already instantiated resamplings are kept unchanged.
Specialized Tuner change the resampling e.g. to evaluate a hyperparameter configuration
on different data splits. This field, however, always returns the resampling passed in con-
struction.

98 TuningInstanceSingleCrit

measure (mlr3::Measure)
Measure to optimize. If NULL, default measure is used.

terminator (bbotk::Terminator)
Stop criterion of the tuning process.

search_space (paradox::ParamSet)
Hyperparameter search space. If NULL (default), the search space is constructed from the
paradox::TuneToken of the learner’s parameter set (learner$param_set).

store_benchmark_result (logical(1))
If TRUE (default), store resample result of evaluated hyperparameter configurations in archive
as mlr3::BenchmarkResult.

store_models (logical(1))
If TRUE, fitted models are stored in the benchmark result (archive$benchmark_result). If
store_benchmark_result = FALSE, models are only stored temporarily and not accessible
after the tuning. This combination is needed for measures that require a model.

check_values (logical(1))
If TRUE, hyperparameter values are checked before evaluation and performance scores after.
If FALSE (default), values are unchecked but computational overhead is reduced.

callbacks (list of mlr3misc::Callback)
List of callbacks.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TuningInstanceSingleCrit$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Index

∗ Dictionary
mlr_tuners, 36

∗ TunerAsync
mlr_tuners_async_design_points, 37
mlr_tuners_async_grid_search, 38
mlr_tuners_async_random_search, 39

∗ Tuner
mlr_tuners, 36
mlr_tuners_cmaes, 40
mlr_tuners_design_points, 42
mlr_tuners_gensa, 44
mlr_tuners_grid_search, 47
mlr_tuners_internal, 49
mlr_tuners_irace, 51
mlr_tuners_nloptr, 54
mlr_tuners_random_search, 57
Tuner, 73

∗ datasets
mlr_tuners, 36

adagio::pureCMAES(), 40
ArchiveAsyncTuning, 4, 4, 5, 70, 77, 82, 85
ArchiveBatchTuning, 8, 8, 9, 15, 35, 52, 53,

62, 63, 70, 73, 79, 88, 91, 92
as_search_space, 12
as_tuner, 12
as_tuners (as_tuner), 12
auto_tuner, 19
auto_tuner(), 13, 19
AutoTuner, 13, 13, 14, 19, 21, 22, 30, 32, 63

bbotk::Archive, 5, 9
bbotk::ArchiveAsync, 5
bbotk::ArchiveBatch, 9
bbotk::CallbackAsync, 22
bbotk::CallbackBatch, 23
bbotk::Codomain, 6, 10
bbotk::ContextAsync, 28
bbotk::ContextBatch, 29
bbotk::Objective, 59, 61, 62

bbotk::OptimInstance, 82, 86, 88, 92, 95, 97
bbotk::OptimInstanceAsync, 82, 86
bbotk::OptimInstanceAsyncMultiCrit, 82
bbotk::OptimInstanceAsyncSingleCrit,

86
bbotk::OptimInstanceBatch, 88, 92, 95, 97
bbotk::OptimInstanceBatchMultiCrit, 88,

95
bbotk::OptimInstanceBatchSingleCrit,

92, 97
bbotk::OptimizerBatchCmaes, 40
bbotk::OptimizerBatchDesignPoints, 42
bbotk::OptimizerBatchGenSA, 45
bbotk::OptimizerBatchGridSearch, 48
bbotk::OptimizerBatchIrace, 52
bbotk::OptimizerBatchNLoptr, 55
bbotk::OptimizerBatchRandomSearch, 57
bbotk::Terminator, 13, 16, 20, 21, 40, 48,

50, 52, 54, 65, 67, 69, 71, 72, 77, 78,
81–83, 85, 87–89, 91, 93, 96, 98

bbotk::TerminatorCombo, 72
bbotk::TerminatorEvals, 52

callback_async_tuning, 24
callback_async_tuning(), 22, 28
callback_batch_tuning, 26
callback_batch_tuning(), 23, 29
CallbackAsyncTuning, 22, 22, 24, 28, 34
CallbackBatchTuning, 23, 23, 26, 29, 34
clbk(), 22–24, 26
ContextAsyncTuning, 24, 25, 28
ContextBatchTuning, 26, 27, 29

data.table::data.table, 15, 29, 37, 43, 53
data.table::data.table(), 5, 8, 9, 30, 32,

36, 77, 79
dictionary, 22–24, 26, 70

extract_inner_tuning_archives, 30
extract_inner_tuning_results, 31

99

100 INDEX

GenSA::GenSA(), 44, 45

irace::defaultScenario(), 52
irace::irace(), 51

mlr3::benchmark(), 14, 22, 30, 32, 42, 45,
48, 57, 77, 88, 91

mlr3::BenchmarkResult, 5, 8, 9, 16, 20,
28–32, 34, 35, 60, 63, 65, 68, 71, 81,
83, 87, 90, 94, 96, 98

mlr3::HotstartStack, 47
mlr3::Learner, 5, 6, 9, 10, 13–17, 19–21, 49,

51, 59, 60, 62, 64, 67, 70–72, 80, 82,
83, 86, 89, 93, 96, 97

mlr3::Measure, 5, 6, 9, 10, 13, 16, 20, 21, 51,
59, 60, 63, 65, 67, 71, 72, 80, 83, 87,
89, 93, 96, 98

mlr3::Prediction, 7, 11
mlr3::resample(), 14, 22, 30, 32, 82, 85
mlr3::ResampleResult, 4, 5, 7, 8, 11, 30–32,

73, 81, 82, 85, 88, 92
mlr3::Resampling, 13, 14, 16, 20–22, 59, 60,

62, 65, 67, 71, 72, 80, 83, 87, 89, 93,
96, 97

mlr3::Task, 59, 60, 62, 64, 67, 71, 72, 80, 83,
86, 89, 93, 96, 97

mlr3misc::Callback, 16, 21–23, 33–35, 60,
61, 63, 65, 68, 72, 81, 84, 87, 90, 94,
96, 98

mlr3misc::Context, 28, 29
mlr3misc::Dictionary, 36, 69
mlr3misc::dictionary_sugar_get(), 69
mlr3tuning (mlr3tuning-package), 3
mlr3tuning-package, 3
mlr3tuning.asnyc_mlflow, 33
mlr3tuning.async_default_configuration,

34
mlr3tuning.async_measures

(mlr3tuning.measures), 35
mlr3tuning.async_save_logs, 34
mlr3tuning.backup, 34
mlr3tuning.measures, 35
mlr3tuning::ObjectiveTuning, 61, 62
mlr3tuning::Tuner, 37–39, 41, 43, 46, 48,

50, 53, 55, 58, 76, 78
mlr3tuning::TunerAsync, 37–39
mlr3tuning::TunerAsyncFromOptimizerAsync,

37–39

mlr3tuning::TunerBatch, 41, 43, 46, 48, 50,
53, 55, 58

mlr3tuning::TunerBatchFromOptimizerBatch,
41, 43, 46, 48, 53, 55, 58

mlr3tuning::TuningInstanceBatchMultiCrit,
95

mlr3tuning::TuningInstanceBatchSingleCrit,
97

mlr_callbacks, 22–24, 26
mlr_reflections$tuner_properties, 74,

75, 79
mlr_terminators, 69
mlr_tuners, 36, 41, 43, 46, 49, 51, 53, 56, 58,

69, 76
mlr_tuners_async_design_points, 37, 38,

39
mlr_tuners_async_grid_search, 37, 38, 39
mlr_tuners_async_random_search, 37, 38,

39
mlr_tuners_cmaes, 36, 40, 43, 46, 49, 51, 53,

56, 58, 76
mlr_tuners_design_points, 36, 41, 42, 46,

49, 51, 53, 56, 58, 76
mlr_tuners_gensa, 36, 41, 43, 44, 49, 51, 53,

56, 58, 76
mlr_tuners_grid_search, 36, 41, 43, 46, 47,

51, 53, 56, 58, 76
mlr_tuners_internal, 36, 41, 43, 46, 49, 49,

53, 56, 58, 76
mlr_tuners_irace, 36, 41, 43, 46, 49, 51, 51,

56, 58, 76
mlr_tuners_nloptr, 36, 41, 43, 46, 49, 51,

53, 54, 58, 76
mlr_tuners_random_search, 36, 41, 43, 46,

49, 51, 53, 56, 57, 76

nloptr::nloptr, 54
nloptr::nloptr(), 54, 55
nloptr::nloptr.print.options(), 55

ObjectiveTuning, 59
ObjectiveTuningAsync, 61, 82, 85
ObjectiveTuningBatch, 62, 88, 91

paradox::generate_design_grid(), 47
paradox::generate_design_random(), 39,

57
paradox::ParamSet, 5, 6, 9, 10, 12, 13, 16,

20, 21, 65, 67, 71, 74, 75, 79, 81–83,
86, 87, 89, 93, 96, 98

INDEX 101

paradox::TuneToken, 6, 10, 16, 20, 65, 67,
71, 72, 81, 83, 87, 89, 93, 96, 98

R6, 5, 9, 15, 37–39, 41, 43, 46, 48, 50, 53, 56,
58, 60, 62, 75, 78, 83, 86, 89, 93, 95,
97

R6::R6Class, 36, 70
requireNamespace(), 74, 75, 79
rush::Rush, 4

set_validate.AutoTuner, 63

Terminator, 43, 46, 55, 58
Terminators, 69, 72
ti, 64
ti(), 88, 91
ti_async, 67
ti_async(), 82, 84
tnr, 69
tnr(), 36–40, 42, 45, 47, 50, 51, 54, 57
tnrs (tnr), 69
tnrs(), 36
tune, 70
tune(), 82, 84, 88, 91
tune_nested, 80
Tuner, 12–14, 16, 20, 21, 36–43, 45–58, 60,

63, 65, 67, 69–71, 73, 80, 82, 83, 85,
87–91, 93, 94, 96, 97

TunerAsync, 76, 76, 84, 87
TunerAsyncDesignPoints

(mlr_tuners_async_design_points),
37

TunerAsyncGridSearch
(mlr_tuners_async_grid_search),
38

TunerAsyncRandomSearch
(mlr_tuners_async_random_search),
39

TunerBatch, 77, 77
TunerBatchCmaes (mlr_tuners_cmaes), 40
TunerBatchDesignPoints

(mlr_tuners_design_points), 42
TunerBatchGenSA (mlr_tuners_gensa), 44
TunerBatchGridSearch

(mlr_tuners_grid_search), 47
TunerBatchInternal

(mlr_tuners_internal), 49
TunerBatchIrace (mlr_tuners_irace), 51
TunerBatchNLoptr (mlr_tuners_nloptr), 54

TunerBatchRandomSearch
(mlr_tuners_random_search), 57

Tuners, 69
TuningInstanceAsyncMultiCrit, 67, 77, 82,

82
TuningInstanceAsyncSingleCrit, 15, 67,

77, 84, 84
TuningInstanceBatchMultiCrit, 32, 59,

61–65, 70–72, 77, 79, 88, 88, 95
TuningInstanceBatchSingleCrit, 14–16,

20, 32, 53, 59, 61–65, 70–72, 77, 79,
81, 91, 91, 97

TuningInstanceMultiCrit, 95
TuningInstanceSingleCrit, 97

	mlr3tuning-package
	ArchiveAsyncTuning
	ArchiveBatchTuning
	as_search_space
	as_tuner
	AutoTuner
	auto_tuner
	CallbackAsyncTuning
	CallbackBatchTuning
	callback_async_tuning
	callback_batch_tuning
	ContextAsyncTuning
	ContextBatchTuning
	extract_inner_tuning_archives
	extract_inner_tuning_results
	mlr3tuning.asnyc_mlflow
	mlr3tuning.async_default_configuration
	mlr3tuning.async_save_logs
	mlr3tuning.backup
	mlr3tuning.measures
	mlr_tuners
	mlr_tuners_async_design_points
	mlr_tuners_async_grid_search
	mlr_tuners_async_random_search
	mlr_tuners_cmaes
	mlr_tuners_design_points
	mlr_tuners_gensa
	mlr_tuners_grid_search
	mlr_tuners_internal
	mlr_tuners_irace
	mlr_tuners_nloptr
	mlr_tuners_random_search
	ObjectiveTuning
	ObjectiveTuningAsync
	ObjectiveTuningBatch
	set_validate.AutoTuner
	ti
	ti_async
	tnr
	tune
	Tuner
	TunerAsync
	TunerBatch
	tune_nested
	TuningInstanceAsyncMultiCrit
	TuningInstanceAsyncSingleCrit
	TuningInstanceBatchMultiCrit
	TuningInstanceBatchSingleCrit
	TuningInstanceMultiCrit
	TuningInstanceSingleCrit
	Index

