
Package: mizer (via r-universe)
October 18, 2024

Title Dynamic Multi-Species Size Spectrum Modelling

Date 2024-11-14

Type Package

Description A set of classes and methods to set up and run
multi-species, trait based and community size spectrum
ecological models, focused on the marine environment.

Maintainer Gustav Delius <gustav.delius@york.ac.uk>

Version 2.5.3

License GPL-3

Imports assertthat, deSolve, dplyr, ggplot2 (>= 3.4.0), ggrepel, grid,
lubridate, methods, plotly, plyr, progress, Rcpp, reshape2,
rlang, lifecycle

LinkingTo Rcpp

Depends R (>= 3.1)

Suggests testthat (>= 3.0.0), vdiffr, roxygen2, knitr, rmarkdown,
pkgdown, covr, spelling

Collate 'age_mat.R' 'helpers.R' 'MizerParams-class.R'
'MizerSim-class.R' 'reproduction.R' 'saveParams.R'
'species_params.R' 'setColours.R' 'setInteraction.R'
'setPredKernel.R' 'setSearchVolume.R' 'setMaxIntakeRate.R'
'setMetabolicRate.R' 'setMetadata.R' 'setExtMort.R'
'setExtEncounter.R' 'setReproduction.R' 'setResource.R'
'setFishing.R' 'setInitialValues.R' 'setBevertonHolt.R'
'upgrade.R' 'selectivity_funcs.R' 'pred_kernel_funcs.R'
'resource_dynamics.R' 'resource_semichemostat.R'
'resource_logistic.R' 'project.R' 'mizer-package.R'
'project_methods.R' 'rate_functions.R' 'summary_methods.R'
'plots.R' 'plotBiomassObservedVsModel.R'
'plotYieldObservedVsModel.R' 'animateSpectra.R'
'newMultispeciesParams.R' 'wrapper_functions.R'
'newSingleSpeciesParams.R' 'steady.R' 'extension.R' 'data.R'
'RcppExports.R' 'deprecated.R' 'get_initial_n.R'
'compareParams.R' 'customFunction.R' 'manipulate_species.R'

1

2 Contents

'calibrate.R' 'match.R' 'matchGrowth.R' 'steadySingleSpecies.R'
'defaults_edition.R' 'validSpeciesParams.R'

RoxygenNote 7.3.2

Encoding UTF-8

LazyData true

URL https://sizespectrum.org/mizer/,

https://github.com/sizespectrum/mizer

BugReports https://github.com/sizespectrum/mizer/issues

Language en-GB

RdMacros lifecycle

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation yes

Author Gustav Delius [cre, aut, cph]
(<https://orcid.org/0000-0003-4092-8228>), Finlay Scott [aut,
cph], Julia Blanchard [aut, cph]
(<https://orcid.org/0000-0003-0532-4824>), Ken Andersen [aut,
cph] (<https://orcid.org/0000-0002-8478-3430>), Richard
Southwell [ctb, cph]

Repository CRAN

Date/Publication 2024-10-17 07:10:09 UTC

Contents
mizer-package . 6
addSpecies . 7
age_mat . 9
age_mat_vB . 9
animateSpectra . 10
BevertonHoltRDD . 11
box_pred_kernel . 12
calc_selectivity . 13
calibrateBiomass . 13
calibrateNumber . 14
calibrateYield . 15
compareParams . 16
completeSpeciesParams . 17
constantEggRDI . 18
constantRDD . 19
constant_other . 20
customFunction . 20
defaults_edition . 21
default_pred_kernel_params . 22

https://sizespectrum.org/mizer/
https://github.com/sizespectrum/mizer
https://github.com/sizespectrum/mizer/issues
https://orcid.org/0000-0003-4092-8228
https://orcid.org/0000-0003-0532-4824
https://orcid.org/0000-0002-8478-3430

Contents 3

different . 23
distanceMaxRelRDI . 23
distanceSSLogN . 24
double_sigmoid_length . 25
emptyParams . 26
finalN . 27
finalNOther . 28
gear_params . 28
getBiomass . 30
getCommunitySlope . 31
getComponent . 32
getCriticalFeedingLevel . 33
getDiet . 33
getEffort . 35
getEGrowth . 35
getEncounter . 37
getERepro . 38
getEReproAndGrowth . 40
getESpawning . 41
getFeedingLevel . 43
getFMort . 44
getFMortGear . 46
getGrowthCurves . 47
getM2 . 48
getM2Background . 50
getMeanMaxWeight . 51
getMeanWeight . 52
getMort . 53
getN . 54
getParams . 55
getPhiPrey . 56
getPredMort . 57
getPredRate . 58
getProportionOfLargeFish . 60
getRates . 61
getRDD . 62
getRDI . 64
getReproductionLevel . 65
getResourceMort . 66
getSSB . 67
getTimes . 68
getYield . 68
getYieldGear . 70
getZ . 71
get_f0_default . 72
get_gamma_default . 73
get_initial_n . 73
get_ks_default . 74

4 Contents

get_phi . 75
get_required_reproduction . 75
get_size_range_array . 76
get_time_elements . 77
indicator_functions . 77
initialN<- . 78
initialNOther<- . 79
initialNResource<- . 79
initial_effort . 80
inter . 81
knife_edge . 82
l2w . 82
lognormal_pred_kernel . 83
matchBiomasses . 84
matchGrowth . 85
matchNumbers . 86
matchYields . 87
mizerEGrowth . 88
mizerEncounter . 89
mizerERepro . 91
mizerEReproAndGrowth . 92
mizerFeedingLevel . 93
mizerFMort . 95
mizerFMortGear . 96
mizerMort . 97
MizerParams . 98
MizerParams-class . 99
mizerPredMort . 102
mizerPredRate . 103
mizerRates . 104
mizerRDI . 105
mizerResourceMort . 107
MizerSim . 108
MizerSim-class . 108
N . 109
needs_upgrading . 110
newCommunityParams . 110
newMultispeciesParams . 112
newSingleSpeciesParams . 123
newTraitParams . 125
noRDD . 129
NOther . 130
NS_interaction . 130
NS_params . 131
NS_sim . 131
NS_species_params . 132
NS_species_params_gears . 133
plot,MizerParams,missing-method . 134

Contents 5

plot,MizerSim,missing-method . 135
plotBiomass . 136
plotBiomassObservedVsModel . 138
plotDiet . 140
plotFeedingLevel . 141
plotFMort . 143
plotGrowthCurves . 144
plotM2 . 146
plotPredMort . 147
plotSpectra . 149
plotting_functions . 151
plotYield . 153
plotYieldGear . 154
plotYieldObservedVsModel . 156
power_law_pred_kernel . 158
project . 159
projectToSteady . 161
project_simple . 162
removeSpecies . 164
renameSpecies . 165
resource_constant . 165
resource_logistic . 166
resource_params . 168
resource_semichemostat . 169
RickerRDD . 170
saveParams . 171
scaleModel . 172
setBevertonHolt . 173
setColours . 175
setComponent . 176
setExtEncounter . 177
setExtMort . 179
setFishing . 180
setInitialValues . 183
setInteraction . 185
setMaxIntakeRate . 186
setMetabolicRate . 187
setMetadata . 189
setParams . 190
setPredKernel . 198
setRateFunction . 200
setReproduction . 202
setResource . 205
setRmax . 208
setSearchVolume . 210
set_community_model . 211
set_multispecies_model . 214
set_species_param_default . 215

6 mizer-package

set_trait_model . 216
SheperdRDD . 218
sigmoid_length . 219
sigmoid_weight . 220
species_params . 221
steady . 224
steadySingleSpecies . 225
summary,MizerParams-method . 226
summary,MizerSim-method . 226
summary_functions . 227
truncated_lognormal_pred_kernel . 228
validGearParams . 229
validParams . 230
validSim . 231
validSpeciesParams . 232
valid_gears_arg . 234
valid_species_arg . 234
w . 235

Index 237

mizer-package mizer: Multi-species size-based modelling in R

Description

The mizer package implements multi-species size-based modelling in R. It has been designed for
modelling marine ecosystems.

Details

Using mizer is relatively simple. There are three main stages:

1. Setting the model parameters. This is done by creating an object of class MizerParams. This
includes model parameters such as the life history parameters of each species, and the range of
the size spectrum. There are several setup functions that help to create a MizerParams objects
for particular types of models:

• newSingleSpeciesParams()

• newCommunityParams()

• newTraitParams()

• newMultispeciesParams()

2. Running a simulation. This is done by calling the project() function with the model param-
eters. This produces an object of MizerSim that contains the results of the simulation.

3. Exploring results. After a simulation has been run, the results can be explored using a range
of plotting_functions, summary_functions and indicator_functions.

See the mizer website for full details of the principles behind mizer and how the package can be
used to perform size-based modelling.

https://sizespectrum.org/mizer/

addSpecies 7

Author(s)

Maintainer: Gustav Delius <gustav.delius@york.ac.uk> (ORCID) [copyright holder]

Authors:

• Finlay Scott <drfinlayscott@gmail.com> [copyright holder]

• Julia Blanchard <julia.blanchard@utas.edu.au> (ORCID) [copyright holder]

• Ken Andersen <kha@aqua.dtu.dk> (ORCID) [copyright holder]

Other contributors:

• Richard Southwell <richard.southwell@york.ac.uk> [contributor, copyright holder]

See Also

Useful links:

• https://sizespectrum.org/mizer/

• https://github.com/sizespectrum/mizer

• Report bugs at https://github.com/sizespectrum/mizer/issues

addSpecies Add new species

Description

[Experimental]

Takes a MizerParams object and adds additional species with given parameters to the ecosystem.
It sets the initial values for these new species to their steady-state solution in the given initial state
of the existing ecosystem. This will be close to the true steady state if the abundances of the new
species are sufficiently low. Hence the abundances of the new species are set so that they are at
most 1/100th of the resource power law. Their reproductive efficiencies are set so as to keep them
at that low level.

Usage

addSpecies(
params,
species_params,
gear_params = data.frame(),
initial_effort,
interaction

)

https://orcid.org/0000-0003-4092-8228
https://orcid.org/0000-0003-0532-4824
https://orcid.org/0000-0002-8478-3430
https://sizespectrum.org/mizer/
https://github.com/sizespectrum/mizer
https://github.com/sizespectrum/mizer/issues

8 addSpecies

Arguments

params A mizer params object for the original system.

species_params Data frame with the species parameters of the new species we want to add to the
system.

gear_params Data frame with the gear parameters for the new species. If not provided then
the new species will not be fished.

initial_effort A named vector with the effort for any new fishing gear introduced in gear_params.
Not needed if the added species are only fished by already existing gear. Should
not include effort values for existing gear. New gear for which no effort is set
via this vector will have an initial effort of 0.

interaction Interaction matrix. A square matrix giving either the interaction coefficients
between all species or only those between the new species. In the latter case all
interaction between an old and a new species are set to 1. If this argument is
missing, all interactions involving a new species are set to 1.

Details

The resulting MizerParams object will use the same size grid where possible, but if one of the new
species needs a larger range of w (either because a new species has an egg size smaller than those
of existing species or a maximum size larger than those of existing species) then the grid will be
expanded and all arrays will be enlarged accordingly.

If any of the rate arrays of the existing species had been set by the user to values other than those
calculated as default from the species parameters, then these will be preserved. Only the rates for
the new species will be calculated from their species parameters.

After adding the new species, the background species are not retuned and the system is not run to
steady state. This could be done with steady(). The new species will have a reproduction level of
1/4, this can then be changed with setBevertonHolt()

Value

An object of type MizerParams

See Also

removeSpecies()

Examples

params <- newTraitParams()
species_params <- data.frame(

species = "Mullet",
w_max = 173,
w_mat = 15,
beta = 283,
sigma = 1.8,
h = 30,
a = 0.0085,
b = 3.11

age_mat 9

)
params <- addSpecies(params, species_params)
plotSpectra(params)

age_mat Calculate age at maturity

Description

Uses the growth rate and the size at maturity to calculate the age at maturity

Usage

age_mat(params)

Arguments

params A MizerParams object

Details

Using that by definition of the growth rate g(w) = dw/dt we have that

agemat =

∫ wmat.

0

dw

g(w)

Value

A named vector. The names are the species names and the values are the ages at maturity.

Examples

age_mat(NS_params)

age_mat_vB Calculate age at maturity from von Bertalanffy growth parameters

Description

This is not a good way to determine the age at maturity because the von Bertalanffy growth curve
is not reliable for larvae and juveniles. However this was used in previous versions of mizer and is
supplied for backwards compatibility.

Usage

age_mat_vB(object)

10 animateSpectra

Arguments

object A MizerParams object or a species_params data frame

Details

Uses the age at maturity that is implied by the von Bertalanffy growth curve specified by the w_inf,
k_vb, t0, a and b parameters in the species_params data frame.

If any of k_vb is missing for a species, the function returns NA for that species. Default values of b
= 3 and t0 = 0 are used if these are missing. If w_inf is missing, w_max is used instead.

Value

A named vector. The names are the species names and the values are the ages at maturity.

animateSpectra Animation of the abundance spectra

Description

[Experimental]

Usage

animateSpectra(
sim,
species = NULL,
time_range,
wlim = c(NA, NA),
ylim = c(NA, NA),
power = 1,
total = FALSE,
resource = TRUE

)

Arguments

sim A MizerSim object

species Name or vector of names of the species to be plotted. By default all species are
plotted.

time_range The time range to animate over. Either a vector of values or a vector of min and
max time. Default is the entire time range of the simulation.

wlim A numeric vector of length two providing lower and upper limits for the w axis.
Use NA to refer to the existing minimum or maximum.

ylim A numeric vector of length two providing lower and upper limits for the y axis.
Use NA to refer to the existing minimum or maximum. Any values below 1e-20
are always cut off.

BevertonHoltRDD 11

power The abundance is plotted as the number density times the weight raised to power.
The default power = 1 gives the biomass density, whereas power = 2 gives the
biomass density with respect to logarithmic size bins.

total A boolean value that determines whether the total over all species in the system
is plotted as well. Default is FALSE.

resource A boolean value that determines whether resource is included. Default is TRUE.

Value

A plotly object

See Also

Other plotting functions: plot,MizerParams,missing-method, plot,MizerSim,missing-method,
plotBiomass(), plotDiet(), plotFMort(), plotFeedingLevel(), plotGrowthCurves(), plotPredMort(),
plotSpectra(), plotYield(), plotYieldGear(), plotting_functions

Examples

animateSpectra(NS_sim, power = 2, wlim = c(0.1, NA), time_range = 1997:2007)

BevertonHoltRDD Beverton Holt function to calculate density-dependent reproduction
rate

Description

Takes the density-independent rates Rdi of egg production (as calculated by getRDI()) and returns
reduced, density-dependent reproduction rates Rdd given as

Rdd = Rdi
Rmax

Rdi +Rmax

where Rmax are the maximum possible reproduction rates that must be specified in a column in
the species parameter dataframe. (All quantities in the above equation are species-specific but we
dropped the species index for simplicity.)

Usage

BevertonHoltRDD(rdi, species_params, ...)

Arguments

rdi Vector of density-independent reproduction rates Rdi for all species.

species_params A species parameter dataframe. Must contain a column R_max holding the max-
imum reproduction rate Rmax for each species.

... Unused

12 box_pred_kernel

Details

This is only one example of a density-dependence. You can write your own function based on
this example, returning different density-dependent reproduction rates. Three other examples pro-
vided are RickerRDD(), SheperdRDD(), noRDD() and constantRDD(). For more explanation see
setReproduction().

Value

Vector of density-dependent reproduction rates.

See Also

Other functions calculating density-dependent reproduction rate: RickerRDD(), SheperdRDD(),
constantEggRDI(), constantRDD(), noRDD()

box_pred_kernel Box predation kernel

Description

A predation kernel where the predator/prey mass ratio is uniformly distributed on an interval.

Usage

box_pred_kernel(ppmr, ppmr_min, ppmr_max)

Arguments

ppmr A vector of predator/prey size ratios

ppmr_min Minimum predator/prey mass ratio

ppmr_max Maximum predator/prey mass ratio

Details

Writing the predator mass as w and the prey mass as wp, the feeding kernel is 1 if w/wp is be-
tween ppmr_min and ppmr_max and zero otherwise. The parameters need to be given in the species
parameter dataframe in the columns ppmr_min and ppmr_max.

Value

A vector giving the value of the predation kernel at each of the predator/prey mass ratios in the ppmr
argument.

See Also

setPredKernel()

Other predation kernel: lognormal_pred_kernel(), power_law_pred_kernel(), truncated_lognormal_pred_kernel()

calc_selectivity 13

Examples

params <- NS_params
Set all required paramters before changing kernel type
species_params(params)$ppmr_max <- 4000
species_params(params)$ppmr_min <- 200
species_params(params)$pred_kernel_type <- "box"
plot(w_full(params), getPredKernel(params)["Cod", 10,], type="l", log="x")

calc_selectivity Calculate selectivity from gear parameters

Description

This function calculates the selectivity for each gear, species and size from the gear parameters. It
is called by setFishing() when the selectivity is not set by the user.

Usage

calc_selectivity(params)

Arguments

params A MizerParams object

Value

An array (gear x species x size) with the selectivity values

Examples

params <- NS_params
str(calc_selectivity(params))
calc_selectivity(params)["Pelagic", "Herring",]

calibrateBiomass Calibrate the model scale to match total observed biomass

Description

[Experimental] Given a MizerParams object params for which biomass observations are available
for at least some species via the biomass_observed column in the species_params data frame, this
function returns an updated MizerParams object which is rescaled with scaleModel() so that the
total biomass in the model agrees with the total observed biomass.

Usage

calibrateBiomass(params)

14 calibrateNumber

Arguments

params A MizerParams object

Details

Biomass observations usually only include individuals above a certain size. This size should be
specified in a biomass_cutoff column of the species parameter data frame. If this is missing, it is
assumed that all sizes are included in the observed biomass, i.e., it includes larval biomass.

After using this function the total biomass in the model will match the total biomass, summed over
all species. However the biomasses of the individual species will not match observations yet, with
some species having biomasses that are too high and others too low. So after this function you may
want to use matchBiomasses(). This is described in the blog post at https://bit.ly/2YqXESV.

If you have observations of the yearly yield instead of biomasses, you can use calibrateYield()
instead of this function.

Value

A MizerParams object

Examples

params <- NS_params
species_params(params)$biomass_observed <-

c(0.8, 61, 12, 35, 1.6, 20, 10, 7.6, 135, 60, 30, 78)
species_params(params)$biomass_cutoff <- 10
params2 <- calibrateBiomass(params)
plotBiomassObservedVsModel(params2)

calibrateNumber Calibrate the model scale to match total observed number

Description

[Experimental] Given a MizerParams object params for which number observations are available
for at least some species via the number_observed column in the species_params data frame, this
function returns an updated MizerParams object which is rescaled with scaleModel() so that the
total number in the model agrees with the total observed number.

Usage

calibrateNumber(params)

Arguments

params A MizerParams object

calibrateYield 15

Details

Number observations usually only include individuals above a certain size. This size should be
specified in a number_cutoff column of the species parameter data frame. If this is missing, it is
assumed that all sizes are included in the observed number, i.e., it includes larval number.

After using this function the total number in the model will match the total number, summed over
all species. However the numbers of the individual species will not match observations yet, with
some species having numbers that are too high and others too low. So after this function you may
want to use matchNumbers(). This is described in the blog post at https://bit.ly/2YqXESV.

If you have observations of the yearly yield instead of numbers, you can use calibrateYield()
instead of this function.

Value

A MizerParams object

Examples

params <- NS_params
species_params(params)$number_observed <-

c(0.8, 61, 12, 35, 1.6, 20, 10, 7.6, 135, 60, 30, 78)
species_params(params)$number_cutoff <- 10
params2 <- calibrateNumber(params)

calibrateYield Calibrate the model scale to match total observed yield

Description

[Deprecated]

Usage

calibrateYield(params)

Arguments

params A MizerParams object

Details

This function has been deprecated and will be removed in the future unless you have a use case
for it. If you do have a use case for it, please let the developers know by creating an issue at
https://github.com/sizespectrum/mizer/issues.

Given a MizerParams object params for which yield observations are available for at least some
species via the yield_observed column in the species_params data frame, this function returns
an updated MizerParams object which is rescaled with scaleModel() so that the total yield in the
model agrees with the total observed yield.

https://github.com/sizespectrum/mizer/issues

16 compareParams

After using this function the total yield in the model will match the total observed yield, summed
over all species. However the yields of the individual species will not match observations yet, with
some species having yields that are too high and others too low. So after this function you may want
to use matchYields().

If you have observations of species biomasses instead of yields, you can use calibrateBiomass()
instead of this function.

Value

A MizerParams object

Examples

params <- NS_params
species_params(params)$yield_observed <-

c(0.8, 61, 12, 35, 1.6, 20, 10, 7.6, 135, 60, 30, 78)
gear_params(params)$catchability <-

c(1.3, 0.065, 0.31, 0.18, 0.98, 0.24, 0.37, 0.46, 0.18, 0.30, 0.27, 0.39)
params2 <- calibrateYield(params)
plotYieldObservedVsModel(params2)

compareParams Compare two MizerParams objects and print out differences

Description

[Experimental]

Usage

compareParams(params1, params2)

Arguments

params1 First MizerParams object

params2 Second MizerParams object

Value

String describing the differences

Examples

params1 <- NS_params
params2 <- params1
species_params(params2)$w_mat[1] <- 10
compareParams(params1, params2)

completeSpeciesParams 17

completeSpeciesParams Alias for validSpeciesParams()

Description

[Deprecated]
An alias provided for backward compatibility with mizer version <= 2.5.2

Usage

completeSpeciesParams(species_params)

Arguments

species_params The user-supplied species parameter data frame

Details

validGivenSpeciesParams() checks the validity of the given species parameter It throws an error
if

• the species column does not exist or contains duplicates

• the maximum size is not specified for all species

If a weight-based parameter is missing but the corresponding length-based parameter is given, as
well as the a and b parameters for length-weight conversion, then the weight-based parameters are
added. If both length and weight are given, then weight is used and a warning is issued if the two
are inconsistent.

If a w_inf column is given but no w_max then the value from w_inf is used. This is for backwards
compatibility. But note that the von Bertalanffy parameter w_inf is not the maximum size of the
largest individual, but the asymptotic size of an average individual.

Some inconsistencies in the size parameters are resolved as follows:

• Any w_mat that is not smaller than w_max is set to w_max / 4.

• Any w_mat25 that is not smaller than w_mat is set to NA.

• Any w_min that is not smaller than w_mat is set to 0.001 or w_mat /10, whichever is smaller.

• Any w_repro_max that is not larger than w_mat is set to 4 * w_mat.

The row names of the returned data frame will be the species names. If species_params was
provided as a tibble it is converted back to an ordinary data frame.

The function tests for some typical misspellings of parameter names, like wrong capitalisation or
missing underscores and issues a warning if it detects such a name.

validSpeciesParams() first calls validateGivenSpeciesParams() but then goes further by adding
default values for species parameters that were not provided. The function sets default values if any
of the following species parameters are missing or NA:

18 constantEggRDI

• w_repro_max is set to w_max

• w_mat is set to w_max/4

• w_min is set to 0.001

• alpha is set to 0.6

• interaction_resource is set to 1

• n is set to 3/4

Note that the species parameters returned by these functions are not guaranteed to produce a viable
model. More checks of the parameters are performed by the individual rate-setting functions (see
setParams() for the list of these functions).

Value

For validSpeciesParams(): A valid species parameter data frame with additional parameters with
default values.

For validGivenSpeciesParams(): A valid species parameter data frame without additional pa-
rameters.

See Also

species_params(), validGearParams(), validParams(), validSim()

constantEggRDI Choose egg production to keep egg density constant

Description

[Experimental] The new egg production is set to compensate for the loss of individuals from the
smallest size class through growth and mortality. The result should not be modified by density
dependence, so this should be used together with the noRDD() function, see example.

Usage

constantEggRDI(params, n, e_growth, mort, ...)

Arguments

params A MizerParams object

n A matrix of species abundances (species x size).

e_growth A two dimensional array (species x size) holding the energy available for growth
as calculated by mizerEGrowth().

mort A two dimensional array (species x size) holding the mortality rate as calculated
by mizerMort().

... Unused

constantRDD 19

Value

Vector with the value for each species

See Also

Other functions calculating density-dependent reproduction rate: BevertonHoltRDD(), RickerRDD(),
SheperdRDD(), constantRDD(), noRDD()

Examples

choose an example params object
params <- NS_params
We set the reproduction rate functions
params <- setRateFunction(params, "RDI", "constantEggRDI")
params <- setRateFunction(params, "RDD", "noRDD")
Now the egg density should stay fixed no matter how we fish
sim <- project(params, effort = 10, progress_bar = FALSE)
To check that indeed the egg densities have not changed, we first construct
the indices for addressing the egg densities
no_sp <- nrow(params@species_params)
idx <- (params@w_min_idx - 1) * no_sp + (1:no_sp)
Now we can check equality between egg densities at the start and the end
all.equal(finalN(sim)[idx], initialN(params)[idx])

constantRDD Give constant reproduction rate

Description

[Experimental] Simply returns the value from species_params$constant_reproduction.

Usage

constantRDD(rdi, species_params, ...)

Arguments

rdi Vector of density-independent reproduction rates Rdi for all species.

species_params A species parameter dataframe. Must contain a column constant_reproduction.

... Unused

Value

Vector species_params$constant_reproduction

20 customFunction

See Also

Other functions calculating density-dependent reproduction rate: BevertonHoltRDD(), RickerRDD(),
SheperdRDD(), constantEggRDI(), noRDD()

constant_other Helper function to keep other components constant

Description

Helper function to keep other components constant

Usage

constant_other(params, n_other, component, ...)

Arguments

params MizerParams object

n_other Abundances of other components

component Name of the component that is being updated

... Unused

Value

The current value of the component

customFunction Replace a mizer function with a custom version

Description

[Experimental] This function allows you to make arbitrary changes to how mizer works by allow-
ing you to replace any mizer function with your own version. You should do this only as a last
resort, when you find that you can not use the standard mizer extension mechanism to achieve your
goal.

Usage

customFunction(name, fun)

Arguments

name Name of mizer function to replace

fun The custom function to use as replacement

defaults_edition 21

Details

If the function you need to overwrite is one of the mizer rate functions, then you should use
setRateFunction() instead of this function. Similarly you should use resource_dynamics()<-
to change the resource dynamics and setReproduction() to change the density-dependence in
reproduction. You should also investigate whether you can achieve your goal by introducing addi-
tional ecosystem components with setComponent().

If you find that your goal really does require you to overwrite a mizer function, please also create
an issue on the mizer issue tracker at https://github.com/sizespectrum/mizer/issues to de-
scribe your goal, because it will be interesting to the mizer community and may motivate future
improvements to the mizer functionality.

Note that customFunction() only overwrites the function used by the mizer code. It does not
overwrite the function that is exported by mizer. This will become clear when you run the code in
the Examples section.

This function does not in any way check that your replacement function is compatible with mizer.
Calling this function can totally break mizer. However you can always undo the effect by reloading
mizer with

detach(package:mizer, unload = TRUE)
library(mizer)

Value

No return value, called for side effects

Examples

Not run:
fake_project <- function(...) "Fake"
customFunction("project", fake_project)
mizer::project(NS_params) # This will print "Fake"
project(NS_params) # This will still use the old project() function
To undo the effect:
customFunction("project", project)
mizer::project(NS_params) # This will again use the old project()

End(Not run)

defaults_edition Default editions

Description

Function to set and get which edition of default choices is being used.

Usage

defaults_edition(edition = NULL)

https://github.com/sizespectrum/mizer/issues

22 default_pred_kernel_params

Arguments

edition NULL or a numerical value.

Details

The mizer functions for creating new models make a lot of choices for default values for parameters
that are not provided by the user. Sometimes we find better ways to choose the defaults and update
mizer accordingly. When we do this, we will increase the edition number.

If you call defaults_edition() without an argument it returns the currently active edition. Oth-
erwise it sets the active edition to the given value.

Users who want their existing code for creating models not to change behaviour when run with
future versions of mizer should explicitly set the desired defaults edition at the top of their code.

The most recent edition is edition 2. It will become the default in the next release. The current
default is edition 1. The following defaults are changed in edition 2:

• catchability = 0.3 instead of 1

• initial effort = 1 instead of 0

Value

The current edition number.

default_pred_kernel_params

Set defaults for predation kernel parameters

Description

If the predation kernel type has not been specified for a species, then it is set to "lognormal" and the
default values are set for the parameters beta and sigma.

Usage

default_pred_kernel_params(object)

Arguments

object Either a MizerParams object or a species parameter data frame

Value

The object with updated columns in the species params data frame.

different 23

different Check whether two objects are different

Description

Check whether two objects are numerically different, ignoring all attributes.

Usage

different(a, b)

Arguments

a First object

b Second object

Details

We use this helper function in particular to see if a new value for a slot in MizerParams is different
from the existing value in order to give the appropriate messages.

Value

TRUE or FALSE

distanceMaxRelRDI Measure distance between current and previous state in terms of RDI

Description

[Experimental]

This function can be used in projectToSteady() to decide when sufficient convergence to steady
state has been achieved.

Usage

distanceMaxRelRDI(params, current, previous)

Arguments

params MizerParams

current A named list with entries n, n_pp and n_other describing the current state

previous A named list with entries n, n_pp and n_other describing the previous state

24 distanceSSLogN

Value

The largest absolute relative change in rdi: max(abs((current_rdi - previous_rdi) / previous_rdi))

See Also

Other distance functions: distanceSSLogN()

distanceSSLogN Measure distance between current and previous state in terms of fish
abundances

Description

[Experimental]

Calculates the sum squared difference between log(N) in current and previous state. This function
can be used in projectToSteady() to decide when sufficient convergence to steady state has been
achieved.

Usage

distanceSSLogN(params, current, previous)

Arguments

params MizerParams

current A named list with entries n, n_pp and n_other describing the current state

previous A named list with entries n, n_pp and n_other describing the previous state

Value

The sum of squares of the difference in the logs of the (nonzero) fish abundances n: sum((log(current$n)
- log(previous$n))^2)

See Also

Other distance functions: distanceMaxRelRDI()

double_sigmoid_length 25

double_sigmoid_length Length based double-sigmoid selectivity function

Description

A hump-shaped selectivity function with a sigmoidal rise and an independent sigmoidal drop-off.
This drop-off is what distinguishes this from the function sigmoid_length() and it is intended to
model the escape of large individuals from the fishing gear.

Usage

double_sigmoid_length(w, l25, l50, l50_right, l25_right, species_params, ...)

Arguments

w Vector of sizes.

l25 the length which gives a selectivity of 25%.

l50 the length which gives a selectivity of 50%.

l50_right the length which gives a selectivity of 50%.

l25_right the length which gives a selectivity of 25%.

species_params A list with the species params for the current species. Used to get at the length-
weight parameters a and b

... Unused

Details

The selectivity is obtained as the product of two sigmoidal curves, one rising and one dropping.
The sigmoidal rise is based on the two parameters l25 and l50 which determine the length at which
25% and 50% of the stock is selected respectively. The sigmoidal drop-off is based on the two
parameters l50_right and l25_right which determine the length at which the selectivity curve
has dropped back to 50% and 25% respectively. The selectivity is given by the function

S(l) =
1

1 + exp
(
log(3) l50−l

l50−l25

) 1

1 + exp
(
log(3)

l50right−l
l50right−l25right

)
As the size-based model is weight based, and this selectivity function is length based, it uses the
length-weight parameters a and b to convert between length and weight.

l =
(w
a

)1/b
Value

Vector of selectivities at the given sizes.

26 emptyParams

See Also

gear_params() for setting the selectivity parameters.

Other selectivity functions: knife_edge(), sigmoid_length(), sigmoid_weight()

emptyParams Create empty MizerParams object of the right size

Description

An internal function. Sets up a valid MizerParams object with all the slots initialised and given
dimension names, but with some slots left empty. This function is to be used by other functions to
set up full parameter objects.

Usage

emptyParams(
species_params,
gear_params = data.frame(),
no_w = 100,
min_w = 0.001,
max_w = NA,
min_w_pp = 1e-12

)

Arguments

species_params A data frame of species-specific parameter values.

gear_params A data frame with gear-specific parameter values.

no_w The number of size bins in the consumer spectrum.

min_w Sets the size of the eggs of all species for which this is not given in the w_min
column of the species_params dataframe.

max_w The largest size of the consumer spectrum. By default this is set to the largest
w_max specified in the species_params data frame.

min_w_pp The smallest size of the resource spectrum.

Value

An empty but valid MizerParams object

Size grid

A size grid is created so that the log-sizes are equally spaced. The spacing is chosen so that there
will be no_w fish size bins, with the smallest starting at min_w and the largest starting at max_w. For
the resource spectrum there is a larger set of bins containing additional bins below min_w, with the
same log size. The number of extra bins is such that min_w_pp comes to lie within the smallest bin.

finalN 27

Changes to species params

The species_params slot of the returned MizerParams object may differ from the data frame sup-
plied as argument to this function because default values are set for missing parameters.

See Also

See newMultispeciesParams() for a function that fills the slots left empty by this function.

finalN Size spectra at end of simulation

Description

Size spectra at end of simulation

Usage

finalN(sim)

finalNResource(sim)

idxFinalT(sim)

Arguments

sim A MizerSim object

Value

For finalN(): An array (species x size) holding the consumer number densities at the end of the
simulation

For finalNResource(): A vector holding the resource number densities at the end of the simulation
for all size classes

For idxFinalT(): An integer giving the index for extracting the results for the final time step

Examples

str(finalN(NS_sim))

This could also be obtained using `N()` and `idxFinalT()`
identical(N(NS_sim)[idxFinalT(NS_sim), ,], finalN(NS_sim))
str(finalNResource(NS_sim))
idx <- idxFinalT(NS_sim)
idx
This coincides with
length(getTimes(NS_sim))
and corresponds to the final time

28 gear_params

getTimes(NS_sim)[idx]
We can use this index to extract the result at the final time
identical(N(NS_sim)[idx, ,], finalN(NS_sim))
identical(NResource(NS_sim)[idx,], finalNResource(NS_sim))

finalNOther Values of other ecosystem components at end of simulation

Description

Values of other ecosystem components at end of simulation

Usage

finalNOther(sim)

Arguments

sim A MizerSim object

Value

A named list holding the values of other ecosystem components at the end of the simulation

gear_params Gear parameters

Description

These functions allow you to get or set the gear parameters stored in a MizerParams object. These
are used by setFishing() to set up the selectivity and catchability and thus together with the
fishing effort determine the fishing mortality.

Usage

gear_params(params)

gear_params(params) <- value

Arguments

params A MizerParams object

value A data frame with the gear parameters.

gear_params 29

Details

The gear_params data has one row for each gear-species pair and one column for each parameter
that determines how that gear interacts with that species. The columns are:

• species The name of the species

• gear The name of the gear

• catchability A number specifying how strongly this gear selects this species.

• sel_func The name of the function that calculates the selectivity curve.

• One column for each selectivity parameter needed by the selectivity functions.

For the details see setFishing().

There can optionally also be a column yield_observed that allows you to specify for each gear
and species the total annual fisheries yield.

The fishing effort, which is also needed to determine the fishing mortality exerted by a gear is not
set via the gear_params data frame but is set with initial_effort() or is specified when calling
project().

If you change a gear parameter, this will be used to recalculate the selectivity and catchability
arrays by calling setFishing(), unless you have previously set these by hand.
gear_params<- automatically sets the row names to contain the species name and the gear name,
separated by a comma and a space. The last example below illustrates how this facilitates changing
an individual gear parameter.

Value

Data frame with gear parameters

See Also

validGearParams()

Other functions for setting parameters: setExtEncounter(), setExtMort(), setFishing(), setInitialValues(),
setInteraction(), setMaxIntakeRate(), setMetabolicRate(), setParams(), setPredKernel(),
setReproduction(), setSearchVolume(), species_params()

Examples

params <- NS_params

gears set up in example
gear_params(params)

setting totally different gears
gear_params(params) <- data.frame(

gear = c("gear1", "gear2", "gear1"),
species = c("Cod", "Cod", "Haddock"),
catchability = c(0.5, 2, 1),
sel_fun = c("sigmoid_weight", "knife_edge", "sigmoid_weight"),
sigmoidal_weight = c(1000, NA, 800),
sigmoidal_sigma = c(100, NA, 100),

30 getBiomass

knife_edge_size = c(NA, 1000, NA)
)

gear_params(params)

changing an individual entry
gear_params(params)["Cod, gear1", "catchability"] <- 0.8

getBiomass Calculate the total biomass of each species within a size range at each
time step.

Description

Calculates the total biomass through time within user defined size limits. The default option is to
use the whole size range. You can specify minimum and maximum weight or length range for the
species. Lengths take precedence over weights (i.e. if both min_l and min_w are supplied, only
min_l will be used).

Usage

getBiomass(object, ...)

Arguments

object An object of class MizerParams or MizerSim.

... Arguments passed on to get_size_range_array

min_w Smallest weight in size range. Defaults to smallest weight in the model.
max_w Largest weight in size range. Defaults to largest weight in the model.
min_l Smallest length in size range. If supplied, this takes precedence over

min_w.
max_l Largest length in size range. If supplied, this takes precedence over

max_w.

Value

If called with a MizerParams object, a vector with the biomass in grams for each species in the
model. If called with a MizerSim object, an array (time x species) containing the biomass in grams
at each time step for all species.

See Also

Other summary functions: getDiet(), getGrowthCurves(), getN(), getSSB(), getYield(),
getYieldGear()

getCommunitySlope 31

Examples

biomass <- getBiomass(NS_sim)
biomass["1972", "Herring"]
biomass <- getBiomass(NS_sim, min_w = 10, max_w = 1000)
biomass["1972", "Herring"]

getCommunitySlope Calculate the slope of the community abundance

Description

Calculates the slope of the community abundance through time by performing a linear regression
on the logged total numerical abundance at weight and logged weights (natural logs, not log to base
10, are used). You can specify minimum and maximum weight or length range for the species.
Lengths take precedence over weights (i.e. if both min_l and min_w are supplied, only min_l will
be used). You can also specify the species to be used in the calculation.

Usage

getCommunitySlope(sim, species = NULL, biomass = TRUE, ...)

Arguments

sim A MizerSim object

species The species to be selected. Optional. By default all target species are selected.
A vector of species names, or a numeric vector with the species indices, or a
logical vector indicating for each species whether it is to be selected (TRUE) or
not.

biomass Boolean. If TRUE (default), the abundance is based on biomass, if FALSE the
abundance is based on numbers.

... Arguments passed on to get_size_range_array

min_w Smallest weight in size range. Defaults to smallest weight in the model.
max_w Largest weight in size range. Defaults to largest weight in the model.
min_l Smallest length in size range. If supplied, this takes precedence over

min_w.
max_l Largest length in size range. If supplied, this takes precedence over

max_w.

Value

A data.frame with four columns: time step, slope, intercept and the coefficient of determination
R^2.

See Also

Other functions for calculating indicators: getMeanMaxWeight(), getMeanWeight(), getProportionOfLargeFish()

32 getComponent

Examples

Slope based on biomass, using all species and sizes
slope_biomass <- getCommunitySlope(NS_sim)
slope_biomass[1,] # in 1976
slope_biomass[idxFinalT(NS_sim),] # in 2010

Slope based on numbers, using all species and sizes
slope_numbers <- getCommunitySlope(NS_sim, biomass = FALSE)
slope_numbers[1,] # in 1976

Slope based on biomass, using all species and sizes between 10g and 1000g
slope_biomass <- getCommunitySlope(NS_sim, min_w = 10, max_w = 1000)
slope_biomass[1,] # in 1976

Slope based on biomass, using only demersal species and
sizes between 10g and 1000g
dem_species <- c("Dab","Whiting", "Sole", "Gurnard", "Plaice",

"Haddock", "Cod", "Saithe")
slope_biomass <- getCommunitySlope(NS_sim, species = dem_species,

min_w = 10, max_w = 1000)
slope_biomass[1,] # in 1976

getComponent Get information about other ecosystem components

Description

Get information about other ecosystem components

Usage

getComponent(params, component)

Arguments

params A MizerParams object

component Name of the component of interest. If missing, a list of all components will be
returned.

Value

A list with the entries initial_value, dynamics_fun, encounter_fun, mort_fun, component_params
for the requested component. If the requested component does not exist, NULL is returned. If no
component argument is given, then a list of lists for all components is returned.

getCriticalFeedingLevel 33

getCriticalFeedingLevel

Get critical feeding level

Description

The critical feeding level is the feeding level at which the food intake is just high enough to cover
the metabolic costs, with nothing left over for growth or reproduction.

Usage

getCriticalFeedingLevel(params)

Arguments

params A MizerParams object

Value

A matrix (species x size) with the critical feeding level

Examples

str(getFeedingLevel(NS_params))

getDiet Get diet of predator at size, resolved by prey species

Description

Calculates the rate at which a predator of a particular species and size consumes biomass of each
prey species, resource, and other components of the ecosystem. Returns either the rates in grams/year
or the proportion of the total consumption rate.

Usage

getDiet(
params,
n = initialN(params),
n_pp = initialNResource(params),
n_other = initialNOther(params),
proportion = TRUE

)

34 getDiet

Arguments

params A MizerParams object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

proportion If TRUE (default) the function returns the diet as a proportion of the total con-
sumption rate. If FALSE it returns the consumption rate in grams per year.

Details

The rates Dij(w) at which a predator of species i and size w consumes biomass from prey species
j are calculated from the predation kernel ϕi(w,wp), the search volume γi(w), the feeding level
fi(w), the species interaction matrix θij and the prey abundance density Nj(wp):

Dij(w,wp) = (1− fi(w))γi(w)θij

∫
Nj(wp)ϕi(w,wp)wpdwp.

The prey index j runs over all species and the resource.

Extra columns are added for the external encounter rate and for any extra ecosystem components
in your model for which you have defined an encounter rate function. These encounter rates are
multiplied by 1− fi(w) to give the rate of consumption of biomass from these extra components.

This function performs the same integration as getEncounter() but does not aggregate over prey
species, and multiplies by 1−fi(w) to get the consumed biomass rather than the available biomass.
Outside the range of sizes for a predator species the returned rate is zero.

Value

An array (predator species x predator size x (prey species + resource + other components). Dim-
names are "prey", "w", and "predator".

See Also

plotDiet()

Other summary functions: getBiomass(), getGrowthCurves(), getN(), getSSB(), getYield(),
getYieldGear()

Examples

diet <- getDiet(NS_params)
str(diet)

getEffort 35

getEffort Fishing effort used in simulation

Description

Note that the array returned may not be exactly the same as the effort argument that was passed in
to project(). This is because only the saved effort is stored (the frequency of saving is determined
by the argument t_save).

Usage

getEffort(sim)

Arguments

sim A MizerSim object

Value

An array (time x gear) that contains the fishing effort by time and gear.

Examples

str(getEffort(NS_sim))

getEGrowth Get energy rate available for growth

Description

Calculates the energy rate gi(w) (grams/year) available by species and size for growth after metabolism,
movement and reproduction have been accounted for.

Usage

getEGrowth(
params,
n = initialN(params),
n_pp = initialNResource(params),
n_other = initialNOther(params),
t = 0,
...

)

36 getEGrowth

Arguments

params A MizerParams object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

t The time for which to do the calculation (Not used by standard mizer rate func-
tions but useful for extensions with time-dependent parameters.)

... Unused

Value

A two dimensional array (prey species x prey size)

Your own growth rate function

By default getEGrowth() calls mizerEGrowth(). However you can replace this with your own
alternative growth rate function. If your function is called "myEGrowth" then you register it in a
MizerParams object params with

params <- setRateFunction(params, "EGrowth", "myEGrowth")

Your function will then be called instead of mizerEGrowth(), with the same arguments.

See Also

getERepro(), getEReproAndGrowth()

Other rate functions: getERepro(), getEReproAndGrowth(), getEncounter(), getFMort(), getFMortGear(),
getFeedingLevel(), getMort(), getPredMort(), getPredRate(), getRDD(), getRDI(), getRates(),
getResourceMort()

Examples

params <- NS_params
Project with constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
Get the energy at a particular time step
growth <- getEGrowth(params, n = N(sim)[15, ,], n_pp = NResource(sim)[15,], t = 15)
Growth rate at this time for Sprat of size 2g
growth["Sprat", "2"]

getEncounter 37

getEncounter Get encounter rate

Description

Returns the rate at which a predator of species i and weight w encounters food (grams/year).

Usage

getEncounter(
params,
n = initialN(params),
n_pp = initialNResource(params),
n_other = initialNOther(params),
t = 0,
...

)

Arguments

params A MizerParams object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

t The time for which to do the calculation (Not used by standard mizer rate func-
tions but useful for extensions with time-dependent parameters.)

... Unused

Value

A named two dimensional array (predator species x predator size) with the encounter rates.

Predation encounter

The encounter rate Ei(w) at which a predator of species i and weight w encounters food has con-
tributions from the encounter of fish prey and of resource. This is determined by summing over
all prey species and the resource spectrum and then integrating over all prey sizes wp, weighted by
predation kernel ϕ(w,wp):

Ei(w) = γi(w)

∫ θipNR(wp) +
∑
j

θijNj(wp)

ϕi(w,wp)wp dwp.

Here Nj(w) is the abundance density of species j and NR(w) is the abundance density of re-
source. The overall prefactor γi(w) determines the predation power of the predator. It could

38 getERepro

be interpreted as a search volume and is set with the setSearchVolume() function. The pre-
dation kernel ϕ(w,wp) is set with the setPredKernel() function. The species interaction ma-
trix θij is set with setInteraction() and the resource interaction vector θip is taken from the
interaction_resource column in params@species_params.

Details

The encounter rate is multiplied by 1 − f0 to obtain the consumption rate, where f0 is the feeding
level calculated with getFeedingLevel(). This is used by the project() function for performing
simulations.

The function returns values also for sizes outside the size-range of the species. These values should
not be used, as they are meaningless.

If your model contains additional components that you added with setComponent() and for which
you specified an encounter_fun function then the encounters of these components will be included
in the returned value.

Your own encounter function

By default getEncounter() calls mizerEncounter(). However you can replace this with your
own alternative encounter function. If your function is called "myEncounter" then you register it
in a MizerParams object params with

params <- setRateFunction(params, "Encounter", "myEncounter")

Your function will then be called instead of mizerEncounter(), with the same arguments.

See Also

Other rate functions: getEGrowth(), getERepro(), getEReproAndGrowth(), getFMort(), getFMortGear(),
getFeedingLevel(), getMort(), getPredMort(), getPredRate(), getRDD(), getRDI(), getRates(),
getResourceMort()

Examples

encounter <- getEncounter(NS_params)
str(encounter)

getERepro Get energy rate available for reproduction

Description

Calculates the energy rate (grams/year) available for reproduction after growth and metabolism have
been accounted for.

getERepro 39

Usage

getERepro(
params,
n = initialN(params),
n_pp = initialNResource(params),
n_other = initialNOther(params),
t = 0,
...

)

Arguments

params A MizerParams object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

t The time for which to do the calculation (Not used by standard mizer rate func-
tions but useful for extensions with time-dependent parameters.)

... Unused

Value

A two dimensional array (prey species x prey size) holding

ψi(w)Er.i(w)

where Er.i(w) is the rate at which energy becomes available for growth and reproduction, cal-
culated with getEReproAndGrowth(), and ψi(w) is the proportion of this energy that is used for
reproduction. This proportion is taken from the params object and is set with setReproduction().

Your own reproduction rate function

By default getERepro() calls mizerERepro(). However you can replace this with your own al-
ternative reproduction rate function. If your function is called "myERepro" then you register it in a
MizerParams object params with

params <- setRateFunction(params, "ERepro", "myERepro")

Your function will then be called instead of mizerERepro(), with the same arguments.

See Also

Other rate functions: getEGrowth(), getEReproAndGrowth(), getEncounter(), getFMort(),
getFMortGear(), getFeedingLevel(), getMort(), getPredMort(), getPredRate(), getRDD(),
getRDI(), getRates(), getResourceMort()

40 getEReproAndGrowth

Examples

params <- NS_params
Project with constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
Get the rate at a particular time step
erepro <- getERepro(params, n = N(sim)[15, ,], n_pp = NResource(sim)[15,], t = 15)
Rate at this time for Sprat of size 2g
erepro["Sprat", "2"]

getEReproAndGrowth Get energy rate available for reproduction and growth

Description

Calculates the energy rateEr.i(w) (grams/year) available for reproduction and growth after metabolism
and movement have been accounted for.

Usage

getEReproAndGrowth(
params,
n = initialN(params),
n_pp = initialNResource(params),
n_other = initialNOther(params),
t = 0,
...

)

Arguments

params A MizerParams object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

t The time for which to do the calculation (Not used by standard mizer rate func-
tions but useful for extensions with time-dependent parameters.)

... Unused

Value

A two dimensional array (species x size) holding

Er.i(w) = max(0, αi (1− feeding_leveli(w)) encounteri(w)− metabi(w)).

getESpawning 41

Due to the form of the feeding level, calculated by getFeedingLevel(), this can also be expressed
as

Er.i(w) = max(0, αi feeding_leveli(w)hi(w)− metabi(w))

where hi is the maximum intake rate, set with setMaxIntakeRate(). The assimilation rate αi is
taken from the species parameter data frame in params. The metabolic rate metab is taken from
params and set with setMetabolicRate().

The return value can be negative, which means that the energy intake does not cover the cost of
metabolism and movement.

Your own energy rate function

By default getEReproAndGrowth() calls mizerEReproAndGrowth(). However you can replace
this with your own alternative energy rate function. If your function is called "myEReproAndGrowth"
then you register it in a MizerParams object params with

params <- setRateFunction(params, "EReproAndGrowth", "myEReproAndGrowth")

Your function will then be called instead of mizerEReproAndGrowth(), with the same arguments.

See Also

The part of this energy rate that is invested into growth is calculated with getEGrowth() and the
part that is invested into reproduction is calculated with getERepro().

Other rate functions: getEGrowth(), getERepro(), getEncounter(), getFMort(), getFMortGear(),
getFeedingLevel(), getMort(), getPredMort(), getPredRate(), getRDD(), getRDI(), getRates(),
getResourceMort()

Examples

params <- NS_params
Project with constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
Get the energy at a particular time step
e <- getEReproAndGrowth(params, n = N(sim)[15, ,],

n_pp = NResource(sim)[15,], t = 15)
Rate at this time for Sprat of size 2g
e["Sprat", "2"]

getESpawning Alias for getERepro()

Description

[Deprecated] An alias provided for backward compatibility with mizer version <= 1.0

42 getESpawning

Usage

getESpawning(
params,
n = initialN(params),
n_pp = initialNResource(params),
n_other = initialNOther(params),
t = 0,
...

)

Arguments

params A MizerParams object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

t The time for which to do the calculation (Not used by standard mizer rate func-
tions but useful for extensions with time-dependent parameters.)

... Unused

Value

A two dimensional array (prey species x prey size) holding

ψi(w)Er.i(w)

where Er.i(w) is the rate at which energy becomes available for growth and reproduction, cal-
culated with getEReproAndGrowth(), and ψi(w) is the proportion of this energy that is used for
reproduction. This proportion is taken from the params object and is set with setReproduction().

Your own reproduction rate function

By default getERepro() calls mizerERepro(). However you can replace this with your own al-
ternative reproduction rate function. If your function is called "myERepro" then you register it in a
MizerParams object params with

params <- setRateFunction(params, "ERepro", "myERepro")

Your function will then be called instead of mizerERepro(), with the same arguments.

See Also

Other rate functions: getEGrowth(), getEReproAndGrowth(), getEncounter(), getFMort(),
getFMortGear(), getFeedingLevel(), getMort(), getPredMort(), getPredRate(), getRDD(),
getRDI(), getRates(), getResourceMort()

getFeedingLevel 43

Examples

params <- NS_params
Project with constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
Get the rate at a particular time step
erepro <- getERepro(params, n = N(sim)[15, ,], n_pp = NResource(sim)[15,], t = 15)
Rate at this time for Sprat of size 2g
erepro["Sprat", "2"]

getFeedingLevel Get feeding level

Description

Returns the feeding level. By default this function uses mizerFeedingLevel() to calculate the
feeding level, but this can be overruled via setRateFunction().

Usage

getFeedingLevel(object, n, n_pp, n_other, time_range, drop = FALSE, ...)

Arguments

object A MizerParams object or a MizerSim object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

time_range A vector of times. Only the range of times is relevant, i.e., all times between
the smallest and largest will be selected. The time_range can be character or
numeric.

drop If TRUE then any dimension of length 1 will be removed from the returned array.

... Unused

Value

If a MizerParams object is passed in, the function returns a two dimensional array (predator species
x predator size) based on the abundances also passed in. If a MizerSim object is passed in, the
function returns a three dimensional array (time step x predator species x predator size) with the
feeding level calculated at every time step in the simulation. If drop = TRUE then the dimension of
length 1 will be removed from the returned array.

44 getFMort

Feeding level

The feeding level fi(w) is the proportion of its maximum intake rate at which the predator is actually
taking in fish. It is calculated from the encounter rate Ei and the maximum intake rate hi(w) as

fi(w) =
Ei(w)

Ei(w) + hi(w)
.

The encounter rateEi is passed as an argument or calculated with getEncounter(). The maximum
intake rate hi(w) is taken from the params object, and is set with setMaxIntakeRate(). As a
consequence of the above expression for the feeding level, 1 − fi(w) is the proportion of the food
available to it that the predator actually consumes.

Your own feeding level function

By default getFeedingLevel() calls mizerFeedingLevel(). However you can replace this with
your own alternative feeding level function. If your function is called "myFeedingLevel" then you
register it in a MizerParams object params with

params <- setRateFunction(params, "FeedingLevel", "myFeedingLevel")

Your function will then be called instead of mizerFeedingLevel(), with the same arguments.

See Also

Other rate functions: getEGrowth(), getERepro(), getEReproAndGrowth(), getEncounter(),
getFMort(), getFMortGear(), getMort(), getPredMort(), getPredRate(), getRDD(), getRDI(),
getRates(), getResourceMort()

Examples

params <- NS_params
Get initial feeding level
fl <- getFeedingLevel(params)
Project with constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
Get the feeding level at all saved time steps
fl <- getFeedingLevel(sim)
Get the feeding level for years 15 - 20
fl <- getFeedingLevel(sim, time_range = c(15, 20))

getFMort Get the total fishing mortality rate from all fishing gears by time,
species and size.

Description

Calculates the total fishing mortality (in units 1/year) from all gears by species and size and possibly
time. See setFishing() for details of how fishing gears are set up.

getFMort 45

Usage

getFMort(object, effort, time_range, drop = TRUE)

Arguments

object A MizerParams object or a MizerSim object

effort The effort of each fishing gear. Only used if the object argument is of class
MizerParams. See notes below.

time_range Subset the returned fishing mortalities by time. The time range is either a vector
of values, a vector of min and max time, or a single value. Default is the whole
time range. Only used if the object argument is of type MizerSim.

drop Only used when object is of type MizerSim. Should dimensions of length 1 be
dropped, e.g. if your community only has one species it might make presentation
of results easier. Default is TRUE.

Details

The total fishing mortality is just the sum of the fishing mortalities imposed by each gear, µf.i(w) =∑
g Fg,i,w. The fishing mortality for each gear is obtained as catchability x selectivity x effort.

Value

An array. If the effort argument has a time dimension, or object is of class MizerSim, the output
array has three dimensions (time x species x size). If the effort argument does not have a time
dimension, the output array has two dimensions (species x size).

The effort argument is only used if a MizerParams object is passed in. The effort argument can
be a two dimensional array (time x gear), a vector of length equal to the number of gears (each gear
has a different effort that is constant in time), or a single numeric value (each gear has the same
effort that is constant in time). The order of gears in the effort argument must be the same as in
the MizerParams object.

If the object argument is of class MizerSim then the effort slot of the MizerSim object is used and
the effort argument is not used.

Your own fishing mortality function

By default getFMort() calls mizerFMort(). However you can replace this with your own alter-
native fishing mortality function. If your function is called "myFMort" then you register it in a
MizerParams object params with

params <- setRateFunction(params, "FMort", "myFMort")

Your function will then be called instead of mizerFMort(), with the same arguments.

See Also

Other rate functions: getEGrowth(), getERepro(), getEReproAndGrowth(), getEncounter(),
getFMortGear(), getFeedingLevel(), getMort(), getPredMort(), getPredRate(), getRDD(),
getRDI(), getRates(), getResourceMort()

46 getFMortGear

Examples

params <- NS_params
Get the total fishing mortality in the initial state
F <- getFMort(params, effort = 1)
str(F)
Get the initial total fishing mortality when effort is different
between the four gears:
F <- getFMort(params, effort = c(0.5,1,1.5,0.75))
Get the total fishing mortality when effort is different
between the four gears and changes with time:
effort <- array(NA, dim = c(20,4))
effort[, 1] <- seq(from = 0, to = 1, length = 20)
effort[, 2] <- seq(from = 1, to = 0.5, length = 20)
effort[, 3] <- seq(from = 1, to = 2, length = 20)
effort[, 4] <- seq(from = 2, to = 1, length = 20)
F <- getFMort(params, effort = effort)
str(F)
Get the total fishing mortality using the effort already held in a
MizerSim object.
sim <- project(params, t_max = 20, effort = 0.5)
F <- getFMort(sim)
F <- getFMort(sim, time_range = c(10, 20))

getFMortGear Get the fishing mortality by time, gear, species and size

Description

Calculates the fishing mortality rate Fg,i,w by gear, species and size and possibly time (in units
1/year).

Usage

getFMortGear(object, effort, time_range)

Arguments

object A MizerParams object or a MizerSim object.
effort The effort for each fishing gear. See notes below.
time_range Subset the returned fishing mortalities by time. The time range is either a vector

of values, a vector of min and max time, or a single value. Default is the whole
time range. Only used if the object argument is of type MizerSim.

Value

An array. If the effort argument has a time dimension, or a MizerSim is passed in, the output array
has four dimensions (time x gear x species x size). If the effort argument does not have a time
dimension (i.e. it is a vector or a single numeric), the output array has three dimensions (gear x
species x size).

getGrowthCurves 47

Note

Here: fishing mortality = catchability x selectivity x effort.

The effort argument is only used if a MizerParams object is passed in. The effort argument can
be a two dimensional array (time x gear), a vector of length equal to the number of gears (each gear
has a different effort that is constant in time), or a single numeric value (each gear has the same
effort that is constant in time). The order of gears in the effort argument must be the same the
same as in the MizerParams object. If the effort argument is not supplied, its value is taken from
the @initial_effort slot in the params object.

If the object argument is of class MizerSim then the effort slot of the MizerSim object is used and
the effort argument is not used.

See Also

Other rate functions: getEGrowth(), getERepro(), getEReproAndGrowth(), getEncounter(),
getFMort(), getFeedingLevel(), getMort(), getPredMort(), getPredRate(), getRDD(), getRDI(),
getRates(), getResourceMort()

Examples

params <-NS_params
Get the fishing mortality in initial state
F <- getFMortGear(params, effort = 1)
str(F)
Get the initial fishing mortality when effort is different
between the four gears:
F <- getFMortGear(params, effort = c(0.5, 1, 1.5, 0.75))
Get the fishing mortality when effort is different
between the four gears and changes with time:
effort <- array(NA, dim = c(20, 4))
effort[, 1] <- seq(from=0, to = 1, length = 20)
effort[, 2] <- seq(from=1, to = 0.5, length = 20)
effort[, 3] <- seq(from=1, to = 2, length = 20)
effort[, 4] <- seq(from=2, to = 1, length = 20)
F <- getFMortGear(params, effort = effort)
str(F)
Get the fishing mortality using the effort already held in a MizerSim object.
sim <- project(params, t_max = 20, effort = 0.5)
F <- getFMortGear(sim)
F <- getFMortGear(sim, time_range = c(10, 20))

getGrowthCurves Get growth curves giving weight as a function of age

Description

Get growth curves giving weight as a function of age

48 getM2

Usage

getGrowthCurves(object, species = NULL, max_age = 20, percentage = FALSE)

Arguments

object MizerSim or MizerParams object. If given a MizerSim object, uses the growth
rates at the final time of a simulation to calculate the size at age. If given a
MizerParams object, uses the initial growth rates instead.

species The species to be selected. Optional. By default all target species are selected.
A vector of species names, or a numeric vector with the species indices, or a
logical vector indicating for each species whether it is to be selected (TRUE) or
not.

max_age The age up to which to run the growth curve. Default is 20.

percentage Boolean value. If TRUE, the size is given as a percentage of the maximal size.

Value

An array (species x age) containing the weight in grams.

See Also

Other summary functions: getBiomass(), getDiet(), getN(), getSSB(), getYield(), getYieldGear()

Examples

growth_curves <- getGrowthCurves(NS_params, species = c("Cod", "Haddock"))
str(growth_curves)

library(ggplot2)
ggplot(melt(growth_curves)) +

geom_line(aes(Age, value)) +
facet_wrap(~ Species, scales = "free") +
ylab("Size[g]") + xlab("Age[years]")

getM2 Alias for getPredMort()

Description

[Deprecated] An alias provided for backward compatibility with mizer version <= 1.0

Usage

getM2(object, n, n_pp, n_other, time_range, drop = TRUE, ...)

getM2 49

Arguments

object A MizerParams object or a MizerSim object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

time_range A vector of times. Only the range of times is relevant, i.e., all times between
the smallest and largest will be selected. The time_range can be character or
numeric.

drop If TRUE then any dimension of length 1 will be removed from the returned array.

... Unused

Value

If a MizerParams object is passed in, the function returns a two dimensional array (prey species x
prey size) based on the abundances also passed in. If a MizerSim object is passed in, the function
returns a three dimensional array (time step x prey species x prey size) with the predation mortality
calculated at every time step in the simulation. Dimensions may be dropped if they have length 1
unless drop = FALSE.

Your own predation mortality function

By default getPredMort() calls mizerPredMort(). However you can replace this with your own
alternative predation mortality function. If your function is called "myPredMort" then you register
it in a MizerParams object params with

params <- setRateFunction(params, "PredMort", "myPredMort")

Your function will then be called instead of mizerPredMort(), with the same arguments.

See Also

Other rate functions: getEGrowth(), getERepro(), getEReproAndGrowth(), getEncounter(),
getFMort(), getFMortGear(), getFeedingLevel(), getMort(), getPredRate(), getRDD(), getRDI(),
getRates(), getResourceMort()

Examples

params <- NS_params
Predation mortality in initial state
M2 <- getPredMort(params)
str(M2)
With constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
Get predation mortality at one time step
M2 <- getPredMort(params, n = N(sim)[15, ,], n_pp = NResource(sim)[15,])
Get predation mortality at all saved time steps
M2 <- getPredMort(sim)
str(M2)

50 getM2Background

Get predation mortality over the years 15 - 20
M2 <- getPredMort(sim, time_range = c(15, 20))

getM2Background Alias for getResourceMort()

Description

[Deprecated] An alias provided for backward compatibility with mizer version <= 1.0

Usage

getM2Background(
params,
n = initialN(params),
n_pp = initialNResource(params),
n_other = initialNOther(params),
t = 0,
...

)

Arguments

params A MizerParams object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

t The time for which to do the calculation (Not used by standard mizer rate func-
tions but useful for extensions with time-dependent parameters.)

... Unused

Value

A vector of mortality rate by resource size.

Your own resource mortality function

By default getResourceMort() calls mizerResourceMort(). However you can replace this with
your own alternative resource mortality function. If your function is called "myResourceMort" then
you register it in a MizerParams object params with

params <- setRateFunction(params, "ResourceMort", "myResourceMort")

Your function will then be called instead of mizerResourceMort(), with the same arguments.

getMeanMaxWeight 51

See Also

Other rate functions: getEGrowth(), getERepro(), getEReproAndGrowth(), getEncounter(),
getFMort(), getFMortGear(), getFeedingLevel(), getMort(), getPredMort(), getPredRate(),
getRDD(), getRDI(), getRates()

Examples

params <- NS_params
With constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
Get resource mortality at one time step
getResourceMort(params, n = N(sim)[15, ,], n_pp = NResource(sim)[15,])

getMeanMaxWeight Calculate the mean maximum weight of the community

Description

Calculates the mean maximum weight of the community through time. This can be calculated by
numbers or biomass. The calculation is the sum of the w_max * abundance of each species, divided
by the total abundance community, where abundance is either in biomass or numbers. You can
specify minimum and maximum weight or length range for the species. Lengths take precedence
over weights (i.e. if both min_l and min_w are supplied, only min_l will be used). You can also
specify the species to be used in the calculation.

Usage

getMeanMaxWeight(sim, species = NULL, measure = "both", ...)

Arguments

sim A MizerSim object

species The species to be selected. Optional. By default all target species are selected.
A vector of species names, or a numeric vector with the species indices, or a
logical vector indicating for each species whether it is to be selected (TRUE) or
not.

measure The measure to return. Can be ’numbers’, ’biomass’ or ’both’

... Arguments passed on to get_size_range_array

min_w Smallest weight in size range. Defaults to smallest weight in the model.
max_w Largest weight in size range. Defaults to largest weight in the model.
min_l Smallest length in size range. If supplied, this takes precedence over

min_w.
max_l Largest length in size range. If supplied, this takes precedence over

max_w.

52 getMeanWeight

Value

Depends on the measure argument. If measure = “both” then you get a matrix with two columns,
one with values by numbers, the other with values by biomass at each saved time step. If measure
= “numbers” or “biomass” you get a vector of the respective values at each saved time step.

See Also

Other functions for calculating indicators: getCommunitySlope(), getMeanWeight(), getProportionOfLargeFish()

Examples

mmw <- getMeanMaxWeight(NS_sim)
years <- c("1967", "2010")
mmw[years,]
getMeanMaxWeight(NS_sim, species=c("Herring","Sprat","N.pout"))[years,]
getMeanMaxWeight(NS_sim, min_w = 10, max_w = 5000)[years,]

getMeanWeight Calculate the mean weight of the community

Description

Calculates the mean weight of the community through time. This is simply the total biomass of
the community divided by the abundance in numbers. You can specify minimum and maximum
weight or length range for the species. Lengths take precedence over weights (i.e. if both min_l and
min_w are supplied, only min_l will be used). You can also specify the species to be used in the
calculation.

Usage

getMeanWeight(sim, species = NULL, ...)

Arguments

sim A MizerSim object

species The species to be selected. Optional. By default all target species are selected.
A vector of species names, or a numeric vector with the species indices, or a
logical vector indicating for each species whether it is to be selected (TRUE) or
not.

... Arguments passed on to get_size_range_array

min_w Smallest weight in size range. Defaults to smallest weight in the model.
max_w Largest weight in size range. Defaults to largest weight in the model.
min_l Smallest length in size range. If supplied, this takes precedence over

min_w.
max_l Largest length in size range. If supplied, this takes precedence over

max_w.

getMort 53

Value

A vector containing the mean weight of the community through time

See Also

Other functions for calculating indicators: getCommunitySlope(), getMeanMaxWeight(), getProportionOfLargeFish()

Examples

mean_weight <- getMeanWeight(NS_sim)
years <- c("1967", "2010")
mean_weight[years]
getMeanWeight(NS_sim, species = c("Herring", "Sprat", "N.pout"))[years]
getMeanWeight(NS_sim, min_w = 10, max_w = 5000)[years]

getMort Get total mortality rate

Description

Calculates the total mortality rate µi(w) (in units 1/year) on each species by size from predation
mortality, background mortality and fishing mortality for a single time step.

Usage

getMort(
params,
n = initialN(params),
n_pp = initialNResource(params),
n_other = initialNOther(params),
effort = getInitialEffort(params),
t = 0,
...

)

Arguments

params A MizerParams object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

effort A numeric vector of the effort by gear or a single numeric effort value which is
used for all gears.

t The time for which to do the calculation (Not used by standard mizer rate func-
tions but useful for extensions with time-dependent parameters.)

... Unused

54 getN

Details

If your model contains additional components that you added with setComponent() and for which
you specified a mort_fun function then the mortality inflicted by these components will be included
in the returned value.

Value

A two dimensional array (prey species x prey size).

Your own mortality function

By default getMort() calls mizerMort(). However you can replace this with your own alternative
mortality function. If your function is called "myMort" then you register it in a MizerParams object
params with

params <- setRateFunction(params, "Mort", "myMort")

Your function will then be called instead of mizerMort(), with the same arguments.

See Also

getPredMort(), getFMort()

Other rate functions: getEGrowth(), getERepro(), getEReproAndGrowth(), getEncounter(),
getFMort(), getFMortGear(), getFeedingLevel(), getPredMort(), getPredRate(), getRDD(),
getRDI(), getRates(), getResourceMort()

Examples

params <- NS_params
Project with constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
Get the total mortality at a particular time step
mort <- getMort(params, n = N(sim)[15, ,], n_pp = NResource(sim)[15,],

t = 15, effort = 0.5)
Mortality rate at this time for Sprat of size 2g
mort["Sprat", "2"]

getN Calculate the number of individuals within a size range

Description

Calculates the number of individuals within user-defined size limits. The default option is to use
the whole size range. You can specify minimum and maximum weight or lengths for the species.
Lengths take precedence over weights (i.e. if both min_l and min_w are supplied, only min_l will
be used)

getParams 55

Usage

getN(object, ...)

Arguments

object An object of class MizerParams or MizerSim.

... Arguments passed on to get_size_range_array

min_w Smallest weight in size range. Defaults to smallest weight in the model.
max_w Largest weight in size range. Defaults to largest weight in the model.
min_l Smallest length in size range. If supplied, this takes precedence over

min_w.
max_l Largest length in size range. If supplied, this takes precedence over

max_w.

Value

If called with a MizerParams object, a vector with the numbers for each species in the model. If
called with a MizerSim object, an array (time x species) containing the numbers at each time step
for all species.

See Also

Other summary functions: getBiomass(), getDiet(), getGrowthCurves(), getSSB(), getYield(),
getYieldGear()

Examples

numbers <- getN(NS_sim)
numbers["1972", "Herring"]
The above gave a huge number, because that included all the larvae.
The number of Herrings between 10g and 1kg is much smaller.
numbers <- getN(NS_sim, min_w = 10, max_w = 1000)
numbers["1972", "Herring"]

getParams Extract the parameter object underlying a simulation

Description

Extract the parameter object underlying a simulation

Usage

getParams(sim)

Arguments

sim A MizerSim object

56 getPhiPrey

Value

The MizerParams object that was used to run the simulation

Examples

This will be identical to the params object that was used to create the
simulation
sim <- project(NS_params, t_max = 1)
identical(getParams(sim), NS_params)

getPhiPrey Get available energy

Description

[Deprecated]
This is deprecated and is no longer used by the mizer project() method. Calculates the amount
Ea,i(w) of food exposed to each predator as a function of predator size.

Usage

getPhiPrey(object, n, n_pp, ...)

Arguments

object An MizerParams object
n A matrix of species abundances (species x size)
n_pp A vector of the background abundance by size
... Other arguments (currently unused)

Value

A two dimensional array (predator species x predator size)

See Also

project()

Examples

params <- NS_params
sim <- project(params, t_max = 20, effort = 0.5)
n <- sim@n[21,,]
n_pp <- sim@n_pp[21,]
getPhiPrey(params,n,n_pp)
->
getEncounter(params) / getSearchVolume(params)

getPredMort 57

getPredMort Get total predation mortality rate

Description

Calculates the total predation mortality rate µp,i(wp) (in units of 1/year) on each prey species by
prey size:

µp.i(wp) =
∑
j

pred_ratej(wp) θji.

The predation rate pred_rate is returned by getPredRate().

Usage

getPredMort(object, n, n_pp, n_other, time_range, drop = TRUE, ...)

Arguments

object A MizerParams object or a MizerSim object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

time_range A vector of times. Only the range of times is relevant, i.e., all times between
the smallest and largest will be selected. The time_range can be character or
numeric.

drop If TRUE then any dimension of length 1 will be removed from the returned array.

... Unused

Value

If a MizerParams object is passed in, the function returns a two dimensional array (prey species x
prey size) based on the abundances also passed in. If a MizerSim object is passed in, the function
returns a three dimensional array (time step x prey species x prey size) with the predation mortality
calculated at every time step in the simulation. Dimensions may be dropped if they have length 1
unless drop = FALSE.

Your own predation mortality function

By default getPredMort() calls mizerPredMort(). However you can replace this with your own
alternative predation mortality function. If your function is called "myPredMort" then you register
it in a MizerParams object params with

params <- setRateFunction(params, "PredMort", "myPredMort")

Your function will then be called instead of mizerPredMort(), with the same arguments.

58 getPredRate

See Also

Other rate functions: getEGrowth(), getERepro(), getEReproAndGrowth(), getEncounter(),
getFMort(), getFMortGear(), getFeedingLevel(), getMort(), getPredRate(), getRDD(), getRDI(),
getRates(), getResourceMort()

Examples

params <- NS_params
Predation mortality in initial state
M2 <- getPredMort(params)
str(M2)
With constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
Get predation mortality at one time step
M2 <- getPredMort(params, n = N(sim)[15, ,], n_pp = NResource(sim)[15,])
Get predation mortality at all saved time steps
M2 <- getPredMort(sim)
str(M2)
Get predation mortality over the years 15 - 20
M2 <- getPredMort(sim, time_range = c(15, 20))

getPredRate Get predation rate

Description

Calculates the potential rate (in units 1/year) at which a prey individual of a given size w is killed
by predators from species j. In formulas

pred_ratej(wp) =

∫
ϕj(w,wp)(1− fj(w))γj(w)Nj(w) dw.

This potential rate is used in getPredMort() to calculate the realised predation mortality rate on
the prey individual.

Usage

getPredRate(
params,
n = initialN(params),
n_pp = initialNResource(params),
n_other = initialNOther(params),
t = 0,
...

)

getPredRate 59

Arguments

params A MizerParams object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

t The time for which to do the calculation (Not used by standard mizer rate func-
tions but useful for extensions with time-dependent parameters.)

... Unused

Value

A two dimensional array (predator species x prey size), where the prey size runs over fish commu-
nity plus resource spectrum.

Your own predation rate function

By default getPredRate() calls mizerPredRate(). However you can replace this with your own
alternative predation rate function. If your function is called "myPredRate" then you register it in a
MizerParams object params with

params <- setRateFunction(params, "PredRate", "myPredRate")

Your function will then be called instead of mizerPredRate(), with the same arguments.

See Also

Other rate functions: getEGrowth(), getERepro(), getEReproAndGrowth(), getEncounter(),
getFMort(), getFMortGear(), getFeedingLevel(), getMort(), getPredMort(), getRDD(), getRDI(),
getRates(), getResourceMort()

Examples

params <- NS_params
Predation rate in initial state
pred_rate <- getPredRate(params)
str(pred_rate)
With constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
Get the feeding level at one time step
pred_rate <- getPredRate(params, n = N(sim)[15, ,],

n_pp = NResource(sim)[15,], t = 15)

60 getProportionOfLargeFish

getProportionOfLargeFish

Calculate the proportion of large fish

Description

Calculates the proportion of large fish through time in the MizerSim class within user defined size
limits. The default option is to use the whole size range. You can specify minimum and maximum
size ranges for the species and also the threshold size for large fish. Sizes can be expressed as
weight or size. Lengths take precedence over weights (i.e. if both min_l and min_w are supplied,
only min_l will be used). You can also specify the species to be used in the calculation. This
function can be used to calculate the Large Fish Index. The proportion is based on either abundance
or biomass.

Usage

getProportionOfLargeFish(
sim,
species = NULL,
threshold_w = 100,
threshold_l = NULL,
biomass_proportion = TRUE,
...

)

Arguments

sim A MizerSim object

species The species to be selected. Optional. By default all target species are selected.
A vector of species names, or a numeric vector with the species indices, or a
logical vector indicating for each species whether it is to be selected (TRUE) or
not.

threshold_w the size used as the cutoff between large and small fish. Default value is 100.

threshold_l the size used as the cutoff between large and small fish.
biomass_proportion

a boolean value. If TRUE the proportion calculated is based on biomass, if
FALSE it is based on numbers of individuals. Default is TRUE.

... Arguments passed on to get_size_range_array

min_w Smallest weight in size range. Defaults to smallest weight in the model.
max_w Largest weight in size range. Defaults to largest weight in the model.
min_l Smallest length in size range. If supplied, this takes precedence over

min_w.
max_l Largest length in size range. If supplied, this takes precedence over

max_w.

getRates 61

Value

A vector containing the proportion of large fish through time

See Also

Other functions for calculating indicators: getCommunitySlope(), getMeanMaxWeight(), getMeanWeight()

Examples

lfi <- getProportionOfLargeFish(NS_sim, min_w = 10, max_w = 5000,
threshold_w = 500)

years <- c("1972", "2010")
lfi[years]
getProportionOfLargeFish(NS_sim)[years]
getProportionOfLargeFish(NS_sim, species=c("Herring","Sprat","N.pout"))[years]
getProportionOfLargeFish(NS_sim, min_w = 10, max_w = 5000)[years]
getProportionOfLargeFish(NS_sim, min_w = 10, max_w = 5000,

threshold_w = 500, biomass_proportion = FALSE)[years]

getRates Get all rates

Description

Calls other rate functions in sequence and collects the results in a list.

Usage

getRates(
params,
n = initialN(params),
n_pp = initialNResource(params),
n_other = initialNOther(params),
effort,
t = 0,
...

)

Arguments

params A MizerParams object
n A matrix of species abundances (species x size).
n_pp A vector of the resource abundance by size
n_other A list of abundances for other dynamical components of the ecosystem
effort The effort for each fishing gear
t The time for which to do the calculation (Not used by standard mizer rate func-

tions but useful for extensions with time-dependent parameters.)
... Unused

62 getRDD

Details

By default this function returns a list with the following components:

• encounter from mizerEncounter()

• feeding_level from mizerFeedingLevel()

• e from mizerEReproAndGrowth()

• e_repro from mizerERepro()

• e_growth from mizerEGrowth()

• pred_rate from mizerPredRate()

• pred_mort from mizerPredMort()

• f_mort from mizerFMort()

• mort from mizerMort()

• rdi from mizerRDI()

• rdd from BevertonHoltRDD()

• resource_mort from mizerResourceMort()

However you can replace any of these rate functions by your own rate function if you wish, see
setRateFunction() for details.

Value

List of rates.

See Also

Other rate functions: getEGrowth(), getERepro(), getEReproAndGrowth(), getEncounter(),
getFMort(), getFMortGear(), getFeedingLevel(), getMort(), getPredMort(), getPredRate(),
getRDD(), getRDI(), getResourceMort()

Examples

rates <- getRates(NS_params)
names(rates)
identical(rates$encounter, getEncounter(NS_params))

getRDD Get density dependent reproduction rate

Description

Calculates the density dependent rate of egg production Ri (units 1/year) for each species. This is
the flux entering the smallest size class of each species. The density dependent rate is the density
independent rate obtained with getRDI() after it has been put through the density dependence func-
tion. This is the Beverton-Holt function BevertonHoltRDD() by default, but this can be changed.
See setReproduction() for more details.

getRDD 63

Usage

getRDD(
params,
n = initialN(params),
n_pp = initialNResource(params),
n_other = initialNOther(params),
t = 0,
rdi = getRDI(params, n = n, n_pp = n_pp, n_other = n_other, t = t),
...

)

Arguments

params A MizerParams object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

t The time for which to do the calculation (Not used by standard mizer rate func-
tions but useful for extensions with time-dependent parameters.)

rdi A vector of density-independent reproduction rates for each species. If not spec-
ified, rdi is calculated internally using getRDI().

... Unused

Value

A numeric vector the length of the number of species.

See Also

getRDI()

Other rate functions: getEGrowth(), getERepro(), getEReproAndGrowth(), getEncounter(),
getFMort(), getFMortGear(), getFeedingLevel(), getMort(), getPredMort(), getPredRate(),
getRDI(), getRates(), getResourceMort()

Examples

params <- NS_params
Project with constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
Get the rate at a particular time step
getRDD(params, n = N(sim)[15, ,], n_pp = NResource(sim)[15,], t = 15)

64 getRDI

getRDI Get density independent rate of egg production

Description

Calculates the density-independent rate of total egg production Rdi (units 1/year) before density
dependence, by species.

Usage

getRDI(
params,
n = initialN(params),
n_pp = initialNResource(params),
n_other = initialNOther(params),
t = 0,
...

)

Arguments

params A MizerParams object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

t The time for which to do the calculation (Not used by standard mizer rate func-
tions but useful for extensions with time-dependent parameters.)

... Unused

Details

This rate is obtained by taking the per capita rate Er(w)ψ(w) at which energy is invested in re-
production, as calculated by getERepro(), multiplying it by the number of individualsN(w) and
integrating over all sizes w and then multiplying by the reproductive efficiency ϵ and dividing by
the egg size w_min, and by a factor of two to account for the two sexes:

Rdi =
ϵ

2wmin

∫
N(w)Er(w)ψ(w) dw

Used by getRDD() to calculate the actual, density dependent rate. See setReproduction() for
more details.

Value

A numeric vector the length of the number of species.

getReproductionLevel 65

Your own reproduction function

By default getRDI() calls mizerRDI(). However you can replace this with your own alternative
reproduction function. If your function is called "myRDI" then you register it in a MizerParams
object params with

params <- setRateFunction(params, "RDI", "myRDI")

Your function will then be called instead of mizerRDI(), with the same arguments. For an example
of an alternative reproduction function see constantEggRDI().

See Also

getRDD()

Other rate functions: getEGrowth(), getERepro(), getEReproAndGrowth(), getEncounter(),
getFMort(), getFMortGear(), getFeedingLevel(), getMort(), getPredMort(), getPredRate(),
getRDD(), getRates(), getResourceMort()

Examples

params <- NS_params
Project with constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
Get the density-independent reproduction rate at a particular time step
getRDI(params, n = N(sim)[15, ,], n_pp = NResource(sim)[15,], t = 15)

getReproductionLevel Get reproduction level

Description

[Experimental] The reproduction level is the ratio between the density-dependent reproduction rate
and the maximal reproduction rate.

Usage

getReproductionLevel(params)

Arguments

params A MizerParams object

Value

A named vector with the reproduction level for each species.

66 getResourceMort

Examples

getReproductionLevel(NS_params)

The reproduction level can be changed without changing the steady state:
params <- setBevertonHolt(NS_params, reproduction_level = 0.9)
getReproductionLevel(params)

The result is the ratio of RDD and R_max
identical(getRDD(params) / species_params(params)$R_max,

getReproductionLevel(params))

getResourceMort Get predation mortality rate for resource

Description

Calculates the predation mortality rate µp(w) on the resource spectrum by resource size (in units
1/year).

Usage

getResourceMort(
params,
n = initialN(params),
n_pp = initialNResource(params),
n_other = initialNOther(params),
t = 0,
...

)

Arguments

params A MizerParams object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

t The time for which to do the calculation (Not used by standard mizer rate func-
tions but useful for extensions with time-dependent parameters.)

... Unused

Value

A vector of mortality rate by resource size.

getSSB 67

Your own resource mortality function

By default getResourceMort() calls mizerResourceMort(). However you can replace this with
your own alternative resource mortality function. If your function is called "myResourceMort" then
you register it in a MizerParams object params with

params <- setRateFunction(params, "ResourceMort", "myResourceMort")

Your function will then be called instead of mizerResourceMort(), with the same arguments.

See Also

Other rate functions: getEGrowth(), getERepro(), getEReproAndGrowth(), getEncounter(),
getFMort(), getFMortGear(), getFeedingLevel(), getMort(), getPredMort(), getPredRate(),
getRDD(), getRDI(), getRates()

Examples

params <- NS_params
With constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
Get resource mortality at one time step
getResourceMort(params, n = N(sim)[15, ,], n_pp = NResource(sim)[15,])

getSSB Calculate the SSB of species

Description

Calculates the spawning stock biomass (SSB) through time of the species in the MizerSim class.
SSB is calculated as the total mass of all mature individuals.

Usage

getSSB(object)

Arguments

object An object of class MizerParams or MizerSim‘.

Value

If called with a MizerParams object, a vector with the SSB in grams for each species in the model.
If called with a MizerSim object, an array (time x species) containing the SSB in grams at each time
step for all species.

68 getYield

See Also

Other summary functions: getBiomass(), getDiet(), getGrowthCurves(), getN(), getYield(),
getYieldGear()

Examples

ssb <- getSSB(NS_sim)
ssb[c("1972", "2010"), c("Herring", "Cod")]

getTimes Times for which simulation results are available

Description

Times for which simulation results are available

Usage

getTimes(sim)

Arguments

sim A MizerSim object

Value

A numeric vectors of the times (in years) at which simulation results have been stored in the Miz-
erSim object.

Examples

getTimes(NS_sim)

getYield Calculate the rate at which biomass of each species is fished

Description

This yield rate is given in grams per year. It is calculated at each time step saved in the MizerSim
object.

Usage

getYield(object)

getYield 69

Arguments

object An object of class MizerParams or MizerSim.

Details

The yield rate yi(t) for species i at time t is defined as

yi(t) =

∫
µf.i(w, t)Ni(w, t)wdw

where µf.i(w, t) is the fishing mortality of an individual of species i and weight w at time t and
Ni(w, t) is the abundance density of such individuals. The factor of w converts the abundance
density into a biomass density and the integral aggregates the contribution from all sizes.

The total catch in a time period from t1 to t2 is the integral of the yield rate over that period:

C =

∫ t2

t1

yi(t)dt

In practice, as the yield rate is only available at the saved times, one can only approximate this inte-
gral by averaging over the available yield rates during the time period and multiplying by the time
period. The less the yield changes between the saved values, the more accurate this approximation
is. So the approximation can be improved by saving simulation results at smaller intervals, using
the t_save argument to project(). But this is only a concern if abundances change quickly during
the time period of interest.

Value

If called with a MizerParams object, a vector with the yield rate in grams per year for each species
in the model. If called with a MizerSim object, an array (time x species) containing the yield rate at
each time step for all species.

See Also

getYieldGear()

Other summary functions: getBiomass(), getDiet(), getGrowthCurves(), getN(), getSSB(),
getYieldGear()

Examples

yield <- getYield(NS_sim)
yield[c("1972", "2010"), c("Herring", "Cod")]

Running simulation for another year, saving intermediate time steps
params <- setInitialValues(getParams(NS_sim), NS_sim)
sim <- project(params, t_save = 0.1, t_max = 1,

t_start = 2010, progress_bar = FALSE)
The yield rate for Herring decreases during the year
getYield(sim)[, "Herring"]
We get the total catch in the year by averaging over the year
sum(getYield(sim)[1:10, "Herring"] / 10)

70 getYieldGear

getYieldGear Calculate the rate at which biomass of each species is fished by each
gear

Description

This yield rate is given in grams per year. It is calculated at each time step saved in the MizerSim
object.

Usage

getYieldGear(object)

Arguments

object An object of class MizerParams or MizerSim.

Details

For details of how the yield rate is defined see the help page of getYield().

Value

If called with a MizerParams object, an array (gear x species) with the yield rate in grams per year
from each gear for each species in the model. If called with a MizerSim object, an array (time x
gear x species) containing the yield rate at each time step.

See Also

getYield()

Other summary functions: getBiomass(), getDiet(), getGrowthCurves(), getN(), getSSB(),
getYield()

Examples

yield <- getYieldGear(NS_sim)
yield["1972", "Herring", "Herring"]
(In this example MizerSim object each species was set up with its own gear)

getZ 71

getZ Alias for getMort()

Description

[Deprecated] An alias provided for backward compatibility with mizer version <= 1.0

Usage

getZ(
params,
n = initialN(params),
n_pp = initialNResource(params),
n_other = initialNOther(params),
effort = getInitialEffort(params),
t = 0,
...

)

Arguments

params A MizerParams object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

effort A numeric vector of the effort by gear or a single numeric effort value which is
used for all gears.

t The time for which to do the calculation (Not used by standard mizer rate func-
tions but useful for extensions with time-dependent parameters.)

... Unused

Details

If your model contains additional components that you added with setComponent() and for which
you specified a mort_fun function then the mortality inflicted by these components will be included
in the returned value.

Value

A two dimensional array (prey species x prey size).

72 get_f0_default

Your own mortality function

By default getMort() calls mizerMort(). However you can replace this with your own alternative
mortality function. If your function is called "myMort" then you register it in a MizerParams object
params with

params <- setRateFunction(params, "Mort", "myMort")

Your function will then be called instead of mizerMort(), with the same arguments.

See Also

getPredMort(), getFMort()

Other rate functions: getEGrowth(), getERepro(), getEReproAndGrowth(), getEncounter(),
getFMort(), getFMortGear(), getFeedingLevel(), getPredMort(), getPredRate(), getRDD(),
getRDI(), getRates(), getResourceMort()

Examples

params <- NS_params
Project with constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
Get the total mortality at a particular time step
mort <- getMort(params, n = N(sim)[15, ,], n_pp = NResource(sim)[15,],

t = 15, effort = 0.5)
Mortality rate at this time for Sprat of size 2g
mort["Sprat", "2"]

get_f0_default Get default value for f0

Description

Fills in any missing values for f0 so that if the prey abundance was described by the power law
κw−λ then the encounter rate coming from the given gamma parameter would lead to the feeding
level f0. This is thus doing the inverse of get_gamma_default(). Only for internal use.

Usage

get_f0_default(params)

Arguments

params A MizerParams object

Details

For species for which no value for gamma is specified in the species parameter data frame, the f0
values is kept as provided in the species parameter data frame or it is set to 0.6 if it is not provided.

get_gamma_default 73

Value

A vector with the values of f0 for all species

See Also

Other functions calculating defaults: get_gamma_default(), get_h_default(), get_ks_default()

get_gamma_default Get default value for gamma

Description

Fills in any missing values for gamma so that fish feeding on a resource spectrum described by the
power law κw−λ achieve a feeding level f0. Only for internal use.

Usage

get_gamma_default(params)

Arguments

params A MizerParams object

Value

A vector with the values of gamma for all species

See Also

Other functions calculating defaults: get_f0_default(), get_h_default(), get_ks_default()

get_initial_n Calculate initial population abundances

Description

This function uses the model parameters and other parameters to calculate initial values for the
species number densities. These initial abundances are currently quite arbitrary and not close to the
steady state. We intend to improve this in the future.

Usage

get_initial_n(params, n0_mult = NULL, a = 0.35)

74 get_ks_default

Arguments

params The model parameters. An object of type MizerParams.

n0_mult Multiplier for the abundance at size 0. Default value is kappa/1000.

a A parameter with a default value of 0.35.

Value

A matrix (species x size) of population abundances.

Examples

init_n <- get_initial_n(NS_params)

get_ks_default Get default value for ks

Description

Fills in any missing values for ks so that the critical feeding level needed to sustain the species is as
specified in the fc column in the species parameter data frame. If that column is not provided the
default critical feeding level fc = 0.2 is used.

Usage

get_ks_default(params)

Arguments

params A MizerParams object

Value

A vector with the values of ks for all species

See Also

Other functions calculating defaults: get_f0_default(), get_gamma_default(), get_h_default()

get_phi 75

get_phi Get values from feeding kernel function

Description

This involves finding the feeding kernel function for each species, using the pred_kernel_type pa-
rameter in the species_params data frame, checking that it is valid and all its arguments are con-
tained in the species_params data frame, and then calling this function with the ppmr vector.

Usage

get_phi(species_params, ppmr)

Arguments

species_params A species parameter data frame

ppmr Values of the predator/prey mass ratio at which to evaluate the predation kernel
function

Value

An array (species x ppmr) with the values of the predation kernel function

get_required_reproduction

Determine reproduction rate needed for initial egg abundance

Description

Determine reproduction rate needed for initial egg abundance

Usage

get_required_reproduction(params)

Arguments

params A MizerParams object

Value

A vector of reproduction rates for all species

76 get_size_range_array

get_size_range_array Get size range array

Description

Helper function that returns an array (species x size) of boolean values indicating whether that size
bin is within the size limits specified by the arguments. Either the size limits can be the same for all
species or they can be specified as vectors with one value for each species in the model.

Usage

get_size_range_array(
params,
min_w = min(params@w),
max_w = max(params@w),
min_l = NULL,
max_l = NULL,
...

)

Arguments

params MizerParams object

min_w Smallest weight in size range. Defaults to smallest weight in the model.

max_w Largest weight in size range. Defaults to largest weight in the model.

min_l Smallest length in size range. If supplied, this takes precedence over min_w.

max_l Largest length in size range. If supplied, this takes precedence over max_w.

... Unused

Value

Boolean array (species x size)

Length to weight conversion

If min_l is specified there is no need to specify min_w and so on. However, if a length is specified
(minimum or maximum) then it is necessary for the species parameter data.frame to include the
parameters a and b that determine the relation between length l and weight w by

w = alb.

It is possible to mix length and weight constraints, e.g. by supplying a minimum weight and a
maximum length, but this must be done the same for all species. The default values are the minimum
and maximum weights of the spectrum, i.e., the full range of the size spectrum is used.

get_time_elements 77

get_time_elements Get_time_elements

Description

Internal function to get the array element references of the time dimension for the time based slots
of a MizerSim object.

Usage

get_time_elements(sim, time_range, slot_name = "n")

Arguments

sim A MizerSim object
time_range A vector of times. Only the range of times is relevant, i.e., all times between

the smallest and largest will be selected. The time_range can be character or
numeric.

slot_name Obsolete. Was only needed in early versions of mizer where the effort slot could
have different time dimension from the other slots.

Value

Named boolean vector indicating for each time whether it is included in the range or not.

indicator_functions Description of indicator functions

Description

Mizer provides a range of functions to calculate indicators from a MizerSim object.

Details

A list of available indicator functions for MizerSim objects is given in the table below

Function Returns Description
getProportionOfLargeFish() A vector with values at each time step. Calculates the proportion of large fish through time. The threshold value can be specified. It is possible to calculation the proportion of large fish based on either length or weight.
getMeanWeight() A vector with values at each saved time step. The mean weight of the community through time. This is calculated as the total biomass of the community divided by the total abundance.
getMeanMaxWeight() Depends on the measure argument. If measure = “both” then you get a matrix with two columns, one with values by numbers, the other with values by biomass at each saved time step. If measure = “numbers” or “biomass” you get a vector of the respective values at each saved time step The mean maximum weight of the community through time. This can be calculated by numbers or by biomass. See the help file for more details.
getCommunitySlope() A data.frame with four columns: time step, slope, intercept and the coefficient of determination. Calculates the slope of the community abundance spectrum through time by performing a linear regression on the logged total numerical abundance and logged body size.

See Also

summary_functions, plotting_functions

78 initialN<-

initialN<- Initial values for fish spectra

Description

Values used as starting values for simulations with project().

Usage

initialN(params) <- value

initialN(object)

Arguments

params A MizerParams object

value A matrix with dimensions species x size holding the initial number densities for
the fish spectra.

object An object of class MizerParams or MizerSim

Value

A matrix with dimensions species x size holding the initial number densities for the fish spectra.

See Also

initialNResource(), initialNOther()

Examples

Doubling abundance of Cod in the initial state of the North Sea model
params <- NS_params
initialN(params)["Cod",] <- 2 * initialN(params)["Cod",]
Calculating the corresponding initial biomass
biomass <- initialN(params)["Cod",] * dw(NS_params) * w(NS_params)
Of course this initial state will no longer be a steady state
params <- steady(params)

initialNOther<- 79

initialNOther<- Initial values for other ecosystem components

Description

Values used as starting values for simulations with project().

Usage

initialNOther(params) <- value

initialNOther(object)

Arguments

params A MizerParams object

value A named list with the initial values of other ecosystem components

object An object of class MizerParams or MizerSim

Value

A named list with the initial values of other ecosystem components

See Also

initialNResource(), initialN()

initialNResource<- Initial value for resource spectrum

Description

Value used as starting value for simulations with project().

Usage

initialNResource(params) <- value

initialNResource(object)

Arguments

params A MizerParams object

value A vector with the initial number densities for the resource spectrum

object An object of class MizerParams or MizerSim

80 initial_effort

Value

A vector with the initial number densities for the resource spectrum

See Also

initialN(), initialNOther()

Examples

Doubling resource abundance in the initial state of the North Sea model
params <- NS_params
initialNResource(params) <- 2 * initialNResource(params)
Of course this initial state will no longer be a steady state
params <- steady(params)

initial_effort Initial fishing effort

Description

The fishing effort is a named vector, specifying for each fishing gear the effort invested into fishing
with that gear. The effort value for each gear is multiplied by the catchability and the selectivity
to determine the fishing mortality imposed by that gear, see setFishing() for more details. The
initial effort you have set can be overruled when running a simulation by providing an effort
argument to project() which allows you to specify a time-varying effort.

Usage

initial_effort(params)

initial_effort(params) <- value

validEffortVector(effort, params)

Arguments

params A MizerParams object

value A vector or scalar with the initial fishing effort, see Details below.

effort A vector or scalar with the initial fishing effort, see Details below.

Details

A valid effort vector is a named vector with one effort value for each gear. However you can also
supply the effort value in different ways:

• a scalar, which is then replicated for each gear

inter 81

• an unnamed vector, which is then assumed to be in the same order as the gears in the params
object

• a named vector in which the gear names have a different order than in the params object. This
is then sorted correctly.

• a named vector which only supplies values for some of the gears. The effort for the other gears
is then set to zero.

These conversions are done by the function validEffortVector().

An effort argument will lead to an error if it is either

• unnamed and of the wrong length

• named but where some names do not match any of the gears

• not numeric

Value

Effort vector

inter Alias for NS_interaction

Description

[Deprecated] An alias provided for backward compatibility with mizer version <= 2.3

Usage

inter

Format

A 12 x 12 matrix.

Source

Blanchard et al.

82 l2w

knife_edge Weight based knife-edge selectivity function

Description

A knife-edge selectivity function where weights greater or equal to knife_edge_size are fully
selected and no fish smaller than this size are selected.

Usage

knife_edge(w, knife_edge_size, ...)

Arguments

w Vector of sizes.
knife_edge_size

The weight at which the knife-edge operates.

... Unused

Value

Vector of selectivities at the given sizes.

See Also

gear_params() for setting the knife_edge_size parameter.

Other selectivity functions: double_sigmoid_length(), sigmoid_length(), sigmoid_weight()

l2w Length-weight conversion

Description

For each species, convert between length and weight using the relationship

wi = ail
bi
i

or
li = (wi/ai)

1/bi

where a and b are taken from the species parameter data frame and i is the species index.

Usage

l2w(l, params)

w2l(w, params)

lognormal_pred_kernel 83

Arguments

l Lengths in cm. Either a single number used for all species or a vector with one
number for each species.

params A species parameter data frame or a MizerParams object.
w Weights in grams. Either a single number used for all species or a vector with

one number for each species.

Details

This is useful for converting a length-based species parameter to a weight-based species parameter.

If any a or b parameters are missing the default values a = 0.01 and b = 3 are used for the missing
values.

Value

A vector with one entry for each species. l2w() returns a vector of weights in grams and w2l()
returns a vector of lengths in cm.

lognormal_pred_kernel Lognormal predation kernel

Description

This is the most commonly-used predation kernel. The log of the predator/prey mass ratio is nor-
mally distributed.

Usage

lognormal_pred_kernel(ppmr, beta, sigma)

Arguments

ppmr A vector of predator/prey size ratios
beta The preferred predator/prey size ratio
sigma The width parameter of the log-normal kernel

Details

Writing the predator mass as w and the prey mass as wp, the feeding kernel is given as

ϕi(w,wp) = exp

[
−(ln(w/wp/βi))

2

2σ2
i

]
if w/wp is larger than 1 and zero otherwise. Here βi is the preferred predator-prey mass ratio and σi
determines the width of the kernel. These two parameters need to be given in the species parameter
dataframe in the columns beta and sigma.

This function is called from setPredKernel() to set up the predation kernel slots in a MizerParams
object.

84 matchBiomasses

Value

A vector giving the value of the predation kernel at each of the predator/prey mass ratios in the ppmr
argument.

See Also

setPredKernel()

Other predation kernel: box_pred_kernel(), power_law_pred_kernel(), truncated_lognormal_pred_kernel()

Examples

params <- NS_params
plot(w_full(params), getPredKernel(params)["Cod", 10,], type="l", log="x")
The restriction that the kernel is zero for w/w_p < 1 is more
noticeable for larger sigma
species_params(params)$sigma <- 4
plot(w_full(params), getPredKernel(params)["Cod", 10,], type="l", log="x")

matchBiomasses Match biomasses to observations

Description

[Experimental] The function adjusts the abundances of the species in the model so that their
biomasses match with observations.

Usage

matchBiomasses(params, species = NULL)

Arguments

params A MizerParams object

species The species to be affected. Optional. By default all observed biomasses will
be matched. A vector of species names, or a numeric vector with the species
indices, or a logical vector indicating for each species whether it is to be affected
(TRUE) or not.

Details

The function works by multiplying for each species the abundance density at all sizes by the same
factor. This will of course not give a steady state solution, even if the initial abundance densities
were at steady state. So after using this function you may want to use steady() to run the model
to steady state, after which of course the biomasses will no longer match exactly. You could then
iterate this process. This is described in the blog post at https://bit.ly/2YqXESV.

matchGrowth 85

Before you can use this function you will need to have added a biomass_observed column to your
model which gives the observed biomass in grams. For species for which you have no observed
biomass, you should set the value in the biomass_observed column to 0 or NA.

Biomass observations usually only include individuals above a certain size. This size should be
specified in a biomass_cutoff column of the species parameter data frame. If this is missing, it is
assumed that all sizes are included in the observed biomass, i.e., it includes larval biomass.

Value

A MizerParams object

Examples

params <- NS_params
species_params(params)$biomass_observed <-

c(0.8, 61, 12, 35, 1.6, 20, 10, 7.6, 135, 60, 30, 78)
species_params(params)$biomass_cutoff <- 10
params <- calibrateBiomass(params)
params <- matchBiomasses(params)
plotBiomassObservedVsModel(params)

matchGrowth Adjust model to produce observed growth

Description

Scales the search volume, the maximum consumption rate, the metabolic rate and the external
encounter rate all by the same factor in order to achieve a growth rate that allows individuals to reach
their maturity size by their maturity age while keeping the feeding level and the critical feeding level
unchanged. Then recalculates the size spectra using steadySingleSpecies().

Usage

matchGrowth(params, species = NULL, keep = c("egg", "biomass", "number"))

Arguments

params A MizerParams object

species The species to be affected. Optional. By default all species for which growth
information is available will be affected. A vector of species names, or a numeric
vector with the species indices, or a logical vector indicating for each species
whether it is to be affected (TRUE) or not.

keep A string determining which quantity is to be kept constant. The choices are
"egg" which keeps the egg density constant, "biomass" which keeps the total
biomass of the species constant and "number" which keeps the total number of
individuals constant.

86 matchNumbers

Details

Maturity size and age are taken from the w_mat and age_mat columns in the species_params data
frame. If age_mat is missing, mizer calculates it from the von Bertalanffy growth curve parameters
using age_mat_vB(). If those are not available either for a species, the growth rate for that species
will not be changed.

Value

A modified MizerParams object with rescaled search volume, maximum consumption rate and
metabolic rate and rescaled species parameters gamma,h, ks and k.

matchNumbers Match numbers to observations

Description

[Experimental] The function adjusts the numbers of the species in the model so that their numbers
match with observations.

Usage

matchNumbers(params, species = NULL)

Arguments

params A MizerParams object

species The species to be affected. Optional. By default all observed numbers will
be matched. A vector of species names, or a numeric vector with the species
indices, or a logical vector indicating for each species whether it is to be affected
(TRUE) or not.

Details

The function works by multiplying for each species the number density at all sizes by the same
factor. This will of course not give a steady state solution, even if the initial number densities were
at steady state. So after using this function you may want to use steady() to run the model to
steady state, after which of course the numbers will no longer match exactly. You could then iterate
this process. This is described in the blog post at https://bit.ly/2YqXESV.

Before you can use this function you will need to have added a number_observed column to your
model which gives the observed number in grams. For species for which you have no observed
number, you should set the value in the number_observed column to 0 or NA.

Number observations usually only include individuals above a certain size. This size should be
specified in a number_cutoff column of the species parameter data frame. If this is missing, it is
assumed that all sizes are included in the observed number, i.e., it includes larval number.

matchYields 87

Value

A MizerParams object

Examples

params <- NS_params
species_params(params)$number_observed <-

c(0.8, 61, 12, 35, 1.6, 20, 10, 7.6, 135, 60, 30, 78)
species_params(params)$number_cutoff <- 10
params <- calibrateNumber(params)
params <- matchNumbers(params)

matchYields Match yields to observations

Description

[Deprecated] This function has been deprecated and will be removed in the future unless you have
a use case for it. If you do have a use case for it, please let the developers know by creating an issue
at https://github.com/sizespectrum/mizer/issues.

Usage

matchYields(params, species = NULL)

Arguments

params A MizerParams object
species The species to be affected. Optional. By default all observed yields will be

matched. A vector of species names, or a numeric vector with the species in-
dices, or a logical vector indicating for each species whether it is to be affected
(TRUE) or not.

Details

If you want to match the yields to observations, you should use the matchYield() function from the
mizerExperimental package instead, which adjusts the catchability to match the yield rather than by
adjusting the biomass.

The function adjusts the abundances of the species in the model so that their yearly yields under the
given fishing mortalities match with observations.

The function works by multiplying for each species the abundance density at all sizes by the same
factor. This will of course not give a steady state solution, even if the initial abundance densities
were at steady state. So after using this function you may want to use steady() to run the model
to steady state, after which of course the yields will no longer match exactly. You could then iterate
this process. This is described in the blog post at https://bit.ly/2YqXESV.

Before you can use this function you will need to have added a yield_observed column to your
model which gives the observed yields in grams per year. For species for which you have no
observed biomass, you should set the value in the yield_observed column to 0 or NA.

https://github.com/sizespectrum/mizer/issues

88 mizerEGrowth

Value

A MizerParams object

Examples

params <- NS_params
species_params(params)$yield_observed <-

c(0.8, 61, 12, 35, 1.6, 20, 10, 7.6, 135, 60, 30, 78)
gear_params(params)$catchability <-

c(1.3, 0.065, 0.31, 0.18, 0.98, 0.24, 0.37, 0.46, 0.18, 0.30, 0.27, 0.39)
params <- calibrateYield(params)
params <- matchYields(params)
plotYieldObservedVsModel(params)

mizerEGrowth Get energy rate available for growth needed to project standard mizer
model

Description

Calculates the energy rate gi(w) (grams/year) available by species and size for growth after metabolism,
movement and reproduction have been accounted for. Used by project() for performing simula-
tions. You would not usually call this function directly but instead use getEGrowth(), which then
calls this function unless an alternative function has been registered, see below.

Usage

mizerEGrowth(params, n, n_pp, n_other, t, e_repro, e, ...)

Arguments

params A MizerParams object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

t The time for which to do the calculation (Not used by standard mizer rate func-
tions but useful for extensions with time-dependent parameters.)

e_repro The energy available for reproduction as calculated by getERepro().

e The energy available for reproduction and growth as calculated by getEReproAndGrowth().

... Unused

Value

A two dimensional array (species x size) with the growth rates.

mizerEncounter 89

Your own growth rate function

By default getEGrowth() calls mizerEGrowth(). However you can replace this with your own
alternative growth rate function. If your function is called "myEGrowth" then you register it in a
MizerParams object params with

params <- setRateFunction(params, "EGrowth", "myEGrowth")

Your function will then be called instead of mizerEGrowth(), with the same arguments.

See Also

Other mizer rate functions: mizerERepro(), mizerEReproAndGrowth(), mizerEncounter(), mizerFMort(),
mizerFMortGear(), mizerFeedingLevel(), mizerMort(), mizerPredMort(), mizerPredRate(),
mizerRDI(), mizerRates(), mizerResourceMort()

mizerEncounter Get encounter rate needed to project standard mizer model

Description

Calculates the rateEi(w) at which a predator of species i and weightw encounters food (grams/year).
You would not usually call this function directly but instead use getEncounter(), which then calls
this function unless an alternative function has been registered, see below.

Usage

mizerEncounter(params, n, n_pp, n_other, t, ...)

Arguments

params A MizerParams object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

t The time for which to do the calculation (Not used by standard mizer rate func-
tions but useful for extensions with time-dependent parameters.)

... Unused

Value

A named two dimensional array (predator species x predator size) with the encounter rates.

90 mizerEncounter

Predation encounter

The encounter rate Ei(w) at which a predator of species i and weight w encounters food has con-
tributions from the encounter of fish prey and of resource. This is determined by summing over
all prey species and the resource spectrum and then integrating over all prey sizes wp, weighted by
predation kernel ϕ(w,wp):

Ei(w) = γi(w)

∫ θipNR(wp) +
∑
j

θijNj(wp)

ϕi(w,wp)wp dwp.

Here Nj(w) is the abundance density of species j and NR(w) is the abundance density of re-
source. The overall prefactor γi(w) determines the predation power of the predator. It could
be interpreted as a search volume and is set with the setSearchVolume() function. The pre-
dation kernel ϕ(w,wp) is set with the setPredKernel() function. The species interaction ma-
trix θij is set with setInteraction() and the resource interaction vector θip is taken from the
interaction_resource column in params@species_params.

Details

The encounter rate is multiplied by 1 − f0 to obtain the consumption rate, where f0 is the feeding
level calculated with getFeedingLevel(). This is used by the project() function for performing
simulations.

The function returns values also for sizes outside the size-range of the species. These values should
not be used, as they are meaningless.

If your model contains additional components that you added with setComponent() and for which
you specified an encounter_fun function then the encounters of these components will be included
in the returned value.

Your own encounter function

By default getEncounter() calls mizerEncounter(). However you can replace this with your
own alternative encounter function. If your function is called "myEncounter" then you register it
in a MizerParams object params with

params <- setRateFunction(params, "Encounter", "myEncounter")

Your function will then be called instead of mizerEncounter(), with the same arguments.

See Also

Other mizer rate functions: mizerEGrowth(), mizerERepro(), mizerEReproAndGrowth(), mizerFMort(),
mizerFMortGear(), mizerFeedingLevel(), mizerMort(), mizerPredMort(), mizerPredRate(),
mizerRDI(), mizerRates(), mizerResourceMort()

mizerERepro 91

mizerERepro Get energy rate available for reproduction needed to project standard
mizer model

Description

Calculates the energy rate (grams/year) available for reproduction after growth and metabolism have
been accounted for. You would not usually call this function directly but instead use getERepro(),
which then calls this function unless an alternative function has been registered, see below.

Usage

mizerERepro(params, n, n_pp, n_other, t, e, ...)

Arguments

params A MizerParams object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

t The time for which to do the calculation (Not used by standard mizer rate func-
tions but useful for extensions with time-dependent parameters.)

e A two dimensional array (species x size) holding the energy available for repro-
duction and growth as calculated by mizerEReproAndGrowth().

... Unused

Value

A two dimensional array (species x size) holding

ψi(w)Er.i(w)

where Er.i(w) is the rate at which energy becomes available for growth and reproduction, calcu-
lated with mizerEReproAndGrowth(), and ψi(w) is the proportion of this energy that is used for
reproduction. This proportion is taken from the params object and is set with setReproduction().

Your own reproduction rate function

By default getERepro() calls mizerERepro(). However you can replace this with your own al-
ternative reproduction rate function. If your function is called "myERepro" then you register it in a
MizerParams object params with

params <- setRateFunction(params, "ERepro", "myERepro")

Your function will then be called instead of mizerERepro(), with the same arguments.

92 mizerEReproAndGrowth

See Also

Other mizer rate functions: mizerEGrowth(), mizerEReproAndGrowth(), mizerEncounter(),
mizerFMort(), mizerFMortGear(), mizerFeedingLevel(), mizerMort(), mizerPredMort(),
mizerPredRate(), mizerRDI(), mizerRates(), mizerResourceMort()

mizerEReproAndGrowth Get energy rate available for reproduction and growth needed to
project standard mizer model

Description

Calculates the energy rate Er.i(w) (grams/year) available to an individual of species i and size w
for reproduction and growth after metabolism and movement have been accounted for. You would
not usually call this function directly but instead use getEReproAndGrowth(), which then calls this
function unless an alternative function has been registered, see below.

Usage

mizerEReproAndGrowth(
params,
n,
n_pp,
n_other,
t,
encounter,
feeding_level,
...

)

Arguments

params A MizerParams object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

t The time for which to do the calculation (Not used by standard mizer rate func-
tions but useful for extensions with time-dependent parameters.)

encounter An array (species x size) with the encounter rate as calculated by getEncounter().

feeding_level An array (species x size) with the feeding level as calculated by getFeedingLevel().

... Unused

mizerFeedingLevel 93

Value

A two dimensional array (species x size) holding

Er.i(w) = max(0, αi (1− feeding_leveli(w)) encounteri(w)− metabi(w)).

Due to the form of the feeding level, calculated by getFeedingLevel(), this can also be expressed
as

Er.i(w) = max(0, αi feeding_leveli(w)hi(w)− metabi(w))

where hi is the maximum intake rate, set with setMaxIntakeRate(). The assimilation rate αi is
taken from the species parameter data frame in params. The metabolic rate metab is taken from
params and set with setMetabolicRate().

The return value can be negative, which means that the energy intake does not cover the cost of
metabolism and movement.

Your own energy rate function

By default getEReproAndGrowth() calls mizerEReproAndGrowth(). However you can replace
this with your own alternative energy rate function. If your function is called "myEReproAndGrowth"
then you register it in a MizerParams object params with

params <- setRateFunction(params, "EReproAndGrowth", "myEReproAndGrowth")

Your function will then be called instead of mizerEReproAndGrowth(), with the same arguments.

See Also

Other mizer rate functions: mizerEGrowth(), mizerERepro(), mizerEncounter(), mizerFMort(),
mizerFMortGear(), mizerFeedingLevel(), mizerMort(), mizerPredMort(), mizerPredRate(),
mizerRDI(), mizerRates(), mizerResourceMort()

mizerFeedingLevel Get feeding level needed to project standard mizer model

Description

You would not usually call this function directly but instead use getFeedingLevel(), which then
calls this function unless an alternative function has been registered, see below.

Usage

mizerFeedingLevel(params, n, n_pp, n_other, t, encounter, ...)

94 mizerFeedingLevel

Arguments

params A MizerParams object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

t The time for which to do the calculation (Not used by standard mizer rate func-
tions but useful for extensions with time-dependent parameters.)

encounter A two dimensional array (predator species x predator size) with the encounter
rate.

... Unused

Value

A two dimensional array (predator species x predator size) with the feeding level.

Feeding level

The feeding level fi(w) is the proportion of its maximum intake rate at which the predator is actually
taking in fish. It is calculated from the encounter rate Ei and the maximum intake rate hi(w) as

fi(w) =
Ei(w)

Ei(w) + hi(w)
.

The encounter rateEi is passed as an argument or calculated with getEncounter(). The maximum
intake rate hi(w) is taken from the params object, and is set with setMaxIntakeRate(). As a
consequence of the above expression for the feeding level, 1 − fi(w) is the proportion of the food
available to it that the predator actually consumes.

Your own feeding level function

By default getFeedingLevel() calls mizerFeedingLevel(). However you can replace this with
your own alternative feeding level function. If your function is called "myFeedingLevel" then you
register it in a MizerParams object params with

params <- setRateFunction(params, "FeedingLevel", "myFeedingLevel")

Your function will then be called instead of mizerFeedingLevel(), with the same arguments.

See Also

The feeding level is used in mizerEReproAndGrowth() and in mizerPredRate().

Other mizer rate functions: mizerEGrowth(), mizerERepro(), mizerEReproAndGrowth(), mizerEncounter(),
mizerFMort(), mizerFMortGear(), mizerMort(), mizerPredMort(), mizerPredRate(), mizerRDI(),
mizerRates(), mizerResourceMort()

mizerFMort 95

mizerFMort Get the total fishing mortality rate from all fishing gears

Description

Calculates the total fishing mortality (in units 1/year) from all gears by species and size. The
total fishing mortality is just the sum of the fishing mortalities imposed by each gear, µf.i(w) =∑

g Fg,i,w. You would not usually call this function directly but instead use getFMort(), which
then calls this function unless an alternative function has been registered, see below.

Usage

mizerFMort(params, n, n_pp, n_other, t, effort, e_growth, pred_mort, ...)

Arguments

params A MizerParams object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

t The time for which to do the calculation (Not used by standard mizer rate func-
tions but useful for extensions with time-dependent parameters.)

effort A vector with the effort for each fishing gear.

e_growth An array (species x size) with the energy available for growth as calculated by
getEGrowth(). Unused.

pred_mort A two dimensional array (species x size) with the predation mortality as calcu-
lated by getPredMort(). Unused.

... Unused

Value

An array (species x size) with the fishing mortality.

Your own fishing mortality function

By default getFMort() calls mizerFMort(). However you can replace this with your own alter-
native fishing mortality function. If your function is called "myFMort" then you register it in a
MizerParams object params with

params <- setRateFunction(params, "FMort", "myFMort")

Your function will then be called instead of mizerFMort(), with the same arguments.

Note

Here: fishing mortality = catchability x selectivity x effort.

96 mizerFMortGear

See Also

Other mizer rate functions: mizerEGrowth(), mizerERepro(), mizerEReproAndGrowth(), mizerEncounter(),
mizerFMortGear(), mizerFeedingLevel(), mizerMort(), mizerPredMort(), mizerPredRate(),
mizerRDI(), mizerRates(), mizerResourceMort()

mizerFMortGear Get the fishing mortality needed to project standard mizer model

Description

Calculates the fishing mortality rate Fg,i,w by gear, species and size. This is a helper function for
mizerFMort().

Usage

mizerFMortGear(params, effort)

Arguments

params A MizerParams object

effort A vector with the effort for each fishing gear.

Value

An three dimensional array (gear x species x size) with the fishing mortality

Note

Here: fishing mortality = catchability x selectivity x effort.

See Also

setFishing()

Other mizer rate functions: mizerEGrowth(), mizerERepro(), mizerEReproAndGrowth(), mizerEncounter(),
mizerFMort(), mizerFeedingLevel(), mizerMort(), mizerPredMort(), mizerPredRate(), mizerRDI(),
mizerRates(), mizerResourceMort()

mizerMort 97

mizerMort Get total mortality rate needed to project standard mizer model

Description

Calculates the total mortality rate µi(w) (in units 1/year) on each species by size from predation
mortality, background mortality and fishing mortality. You would not usually call this function
directly but instead use getMort(), which then calls this function unless an alternative function has
been registered, see below.

Usage

mizerMort(params, n, n_pp, n_other, t, f_mort, pred_mort, ...)

Arguments

params A MizerParams object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

t The time for which to do the calculation (Not used by standard mizer rate func-
tions but useful for extensions with time-dependent parameters.)

f_mort A two dimensional array (species x size) with the fishing mortality

pred_mort A two dimensional array (species x size) with the predation mortality

... Unused

Details

If your model contains additional components that you added with setComponent() and for which
you specified a mort_fun function then the mortality inflicted by these components will be included
in the returned value.

Value

A named two dimensional array (species x size) with the total mortality rates.

Your own mortality function

By default getMort() calls mizerMort(). However you can replace this with your own alternative
mortality function. If your function is called "myMort" then you register it in a MizerParams object
params with

params <- setRateFunction(params, "Mort", "myMort")

Your function will then be called instead of mizerMort(), with the same arguments.

98 MizerParams

See Also

Other mizer rate functions: mizerEGrowth(), mizerERepro(), mizerEReproAndGrowth(), mizerEncounter(),
mizerFMort(), mizerFMortGear(), mizerFeedingLevel(), mizerPredMort(), mizerPredRate(),
mizerRDI(), mizerRates(), mizerResourceMort()

MizerParams Alias for set_multispecies_model()

Description

[Deprecated] An alias provided for backward compatibility with mizer version <= 1.0

Usage

MizerParams(
species_params,
interaction = matrix(1, nrow = nrow(species_params), ncol = nrow(species_params)),
min_w_pp = 1e-10,
min_w = 0.001,
max_w = NULL,
no_w = 100,
n = 2/3,
q = 0.8,
f0 = 0.6,
kappa = 1e+11,
lambda = 2 + q - n,
r_pp = 10,
...

)

Arguments

species_params A data frame of species-specific parameter values.

interaction Optional interaction matrix of the species (predator species x prey species). By
default all entries are 1. See "Setting interaction matrix" section below.

min_w_pp The smallest size of the resource spectrum. By default this is set to the smallest
value at which any of the consumers can feed.

min_w Sets the size of the eggs of all species for which this is not given in the w_min
column of the species_params dataframe.

max_w The largest size of the consumer spectrum. By default this is set to the largest
w_max specified in the species_params data frame.

no_w The number of size bins in the consumer spectrum.

n The allometric growth exponent. This can be overruled for individual species
by including a n column in the species_params.

MizerParams-class 99

q Allometric exponent of search volume

f0 Expected average feeding level. Used to set gamma, the coefficient in the search
rate. Ignored if gamma is given explicitly.

kappa The coefficient of the initial resource abundance power-law.

lambda Used to set power-law exponent for resource capacity if the resource_capacity
argument is given as a single number.

r_pp [Deprecated]. Use resource_rate argument instead.

... Unused

Value

A MizerParams object

MizerParams-class A class to hold the parameters for a size based model.

Description

Although it is possible to build a MizerParams object by hand it is not recommended and several
constructors are available. Dynamic simulations are performed using project() function on ob-
jects of this class. As a user you should never need to access the slots inside a MizerParams object
directly.

Details

The MizerParams class is fairly complex with a large number of slots, many of which are multidi-
mensional arrays. The dimensions of these arrays is strictly enforced so that MizerParams objects
are consistent in terms of number of species and number of size classes.

The MizerParams class does not hold any dynamic information, e.g. abundances or harvest effort
through time. These are held in MizerSim objects.

Slots

metadata A list with metadata information. See setMetadata().

mizer_version The package version of mizer (as returned by packageVersion("mizer")) that
created or upgraded the model.

extensions A named vector of strings where each name is the name of and extension package
needed to run the model and each value is a string giving the information that the remotes
package needs to install the correct version of the extension package, see https://remotes.r-
lib.org/.

time_created A POSIXct date-time object with the creation time.

time_modified A POSIXct date-time object with the last modified time.

w The size grid for the fish part of the spectrum. An increasing vector of weights (in grams) running
from the smallest egg size to the largest maximum size.

100 MizerParams-class

dw The widths (in grams) of the size bins

w_full The size grid for the full size range including the resource spectrum. An increasing vector
of weights (in grams) running from the smallest resource size to the largest maximum size of
fish. The last entries of the vector have to be equal to the content of the w slot.

dw_full The width of the size bins for the full spectrum. The last entries have to be equal to the
content of the dw slot.

w_min_idx A vector holding the index of the weight of the egg size of each species

maturity An array (species x size) that holds the proportion of individuals of each species at size
that are mature. This enters in the calculation of the spawning stock biomass with getSSB().
Set with setReproduction().

psi An array (species x size) that holds the allocation to reproduction for each species at size,
ψi(w). Changed with setReproduction().

intake_max An array (species x size) that holds the maximum intake for each species at size.
Changed with setMaxIntakeRate().

search_vol An array (species x size) that holds the search volume for each species at size. Changed
with setSearchVolume().

metab An array (species x size) that holds the metabolism for each species at size. Changed with
setMetabolicRate().

mu_b An array (species x size) that holds the external mortality rate µext.i(w). Changed with
setExtMort().

ext_encounter An array (species x size) that holds the external encounter rateEext.i(w). Changed
with setExtEncounter().

pred_kernel An array (species x predator size x prey size) that holds the predation coefficient of
each predator at size on each prey size. If this is NA then the following two slots will be used.
Changed with setPredKernel().

ft_pred_kernel_e An array (species x log of predator/prey size ratio) that holds the Fourier trans-
form of the feeding kernel in a form appropriate for evaluating the encounter rate integral.
If this is NA then the pred_kernel will be used to calculate the available energy integral.
Changed with setPredKernel().

ft_pred_kernel_p An array (species x log of predator/prey size ratio) that holds the Fourier trans-
form of the feeding kernel in a form appropriate for evaluating the predation mortality inte-
gral. If this is NA then the pred_kernel will be used to calculate the integral. Changed with
setPredKernel().

rr_pp A vector the same length as the w_full slot. The size specific growth rate of the resource
spectrum.

cc_pp A vector the same length as the w_full slot. The size specific carrying capacity of the
resource spectrum.

resource_dynamics Name of the function for projecting the resource abundance density by one
timestep.

other_dynamics A named list of functions for projecting the values of other dynamical compo-
nents of the ecosystem that may be modelled by a mizer extensions you have installed. The
names of the list entries are the names of those components.

other_encounter A named list of functions for calculating the contribution to the encounter rate
from each other dynamical component.

MizerParams-class 101

other_mort A named list of functions for calculating the contribution to the mortality rate from
each other dynamical components.

other_params A list containing the parameters needed by any mizer extensions you may have
installed to model other dynamical components of the ecosystem.

rates_funcs A named list with the names of the functions that should be used to calculate the rates
needed by project(). By default this will be set to the names of the built-in rate functions.

sc [Experimental] The community abundance of the scaling community

species_params A data.frame to hold the species specific parameters. See species_params()
for details.

given_species_params A data.frame to hold the species parameters that were given explicitly
rather than obtained by default calculations.

gear_params Data frame with parameters for gear selectivity. See setFishing() for details.

interaction The species specific interaction matrix, θij . Changed with setInteraction().

selectivity An array (gear x species x w) that holds the selectivity of each gear for species and
size, Sg,i,w. Changed with setFishing().

catchability An array (gear x species) that holds the catchability of each species by each gear,
Qg,i. Changed with setFishing().

initial_effort A vector containing the initial fishing effort for each gear. Changed with setFishing().

initial_n An array (species x size) that holds the initial abundance of each species at each weight.

initial_n_pp A vector the same length as the w_full slot that describes the initial resource abun-
dance at each weight.

initial_n_other A list with the initial abundances of all other ecosystem components. Has length
zero if there are no other components.

resource_params List with parameters for resource.

A [Experimental] Abundance multipliers.

linecolour A named vector of colour values, named by species. Used to give consistent colours
in plots.

linetype A named vector of linetypes, named by species. Used to give consistent line types in
plots.

ft_mask An array (species x w_full) with zeros for weights larger than the maximum weight of
each species. Used to efficiently minimize wrap-around errors in Fourier transform calcula-
tions.

See Also

project() MizerSim() emptyParams() newMultispeciesParams() newCommunityParams() newTraitParams()

102 mizerPredMort

mizerPredMort Get total predation mortality rate needed to project standard mizer
model

Description

Calculates the total predation mortality rate µp,i(wp) (in units of 1/year) on each prey species by
prey size:

µp.i(wp) =
∑
j

pred_ratej(wp) θji.

You would not usually call this function directly but instead use getPredMort(), which then calls
this function unless an alternative function has been registered, see below.

Usage

mizerPredMort(params, n, n_pp, n_other, t, pred_rate, ...)

Arguments

params A MizerParams object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

t The time for which to do the calculation (Not used by standard mizer rate func-
tions but useful for extensions with time-dependent parameters.)

pred_rate A two dimensional array (predator species x predator size) with the feeding
level.

... Unused

Value

A two dimensional array (prey species x prey size) with the predation mortality

Your own predation mortality function

By default getPredMort() calls mizerPredMort(). However you can replace this with your own
alternative predation mortality function. If your function is called "myPredMort" then you register
it in a MizerParams object params with

params <- setRateFunction(params, "PredMort", "myPredMort")

Your function will then be called instead of mizerPredMort(), with the same arguments.

mizerPredRate 103

See Also

Other mizer rate functions: mizerEGrowth(), mizerERepro(), mizerEReproAndGrowth(), mizerEncounter(),
mizerFMort(), mizerFMortGear(), mizerFeedingLevel(), mizerMort(), mizerPredRate(),
mizerRDI(), mizerRates(), mizerResourceMort()

mizerPredRate Get predation rate needed to project standard mizer model

Description

Calculates the potential rate (in units 1/year) at which a prey individual of a given size w is killed
by predators from species j. In formulas

pred_ratej(wp) =

∫
ϕj(w,wp)(1− fj(w))γj(w)Nj(w) dw.

This potential rate is used in the function mizerPredMort() to calculate the realised predation mor-
tality rate on the prey individual. You would not usually call this function directly but instead use
getPredRate(), which then calls this function unless an alternative function has been registered,
see below.

Usage

mizerPredRate(params, n, n_pp, n_other, t, feeding_level, ...)

Arguments

params A MizerParams object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

t The time for which to do the calculation (Not used by standard mizer rate func-
tions but useful for extensions with time-dependent parameters.)

feeding_level An array (species x size) with the feeding level as calculated by getFeedingLevel().

... Unused

Value

A named two dimensional array (predator species x prey size) with the predation rate, where the
prey size runs over fish community plus resource spectrum.

104 mizerRates

Your own predation rate function

By default getPredRate() calls mizerPredRate(). However you can replace this with your own
alternative predation rate function. If your function is called "myPredRate" then you register it in a
MizerParams object params with

params <- setRateFunction(params, "PredRate", "myPredRate")

Your function will then be called instead of mizerPredRate(), with the same arguments.

See Also

Other mizer rate functions: mizerEGrowth(), mizerERepro(), mizerEReproAndGrowth(), mizerEncounter(),
mizerFMort(), mizerFMortGear(), mizerFeedingLevel(), mizerMort(), mizerPredMort(),
mizerRDI(), mizerRates(), mizerResourceMort()

mizerRates Get all rates needed to project standard mizer model

Description

Calls other rate functions in sequence and collects the results in a list.

Usage

mizerRates(params, n, n_pp, n_other, t = 0, effort, rates_fns, ...)

Arguments

params A MizerParams object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

t The time for which to do the calculation (Not used by standard mizer rate func-
tions but useful for extensions with time-dependent parameters.)

effort The effort for each fishing gear

rates_fns Named list of the functions to call to calculate the rates. Note that this list holds
the functions themselves, not their names.

... Unused

mizerRDI 105

Details

By default this function returns a list with the following components:

• encounter from mizerEncounter()

• feeding_level from mizerFeedingLevel()

• e from mizerEReproAndGrowth()

• e_repro from mizerERepro()

• e_growth from mizerEGrowth()

• pred_rate from mizerPredRate()

• pred_mort from mizerPredMort()

• f_mort from mizerFMort()

• mort from mizerMort()

• rdi from mizerRDI()

• rdd from BevertonHoltRDD()

• resource_mort from mizerResourceMort()

However you can replace any of these rate functions by your own rate function if you wish, see
setRateFunction() for details.

Value

List of rates.

See Also

Other mizer rate functions: mizerEGrowth(), mizerERepro(), mizerEReproAndGrowth(), mizerEncounter(),
mizerFMort(), mizerFMortGear(), mizerFeedingLevel(), mizerMort(), mizerPredMort(),
mizerPredRate(), mizerRDI(), mizerResourceMort()

mizerRDI Get density-independent rate of reproduction needed to project stan-
dard mizer model

Description

Calculates the density-independent rate of total egg production Rdi (units 1/year) before density
dependence, by species. You would not usually call this function directly but instead use getRDI(),
which then calls this function unless an alternative function has been registered, see below.

Usage

mizerRDI(params, n, n_pp, n_other, t, e_growth, mort, e_repro, ...)

106 mizerRDI

Arguments

params A MizerParams object
n A matrix of species abundances (species x size).
n_pp A vector of the resource abundance by size
n_other A list of abundances for other dynamical components of the ecosystem
t The time for which to do the calculation (Not used by standard mizer rate func-

tions but useful for extensions with time-dependent parameters.)
e_growth An array (species x size) with the energy available for growth as calculated by

getEGrowth(). Unused.
mort An array (species x size) with the mortality rate as calculated by getMort().

Unused.
e_repro An array (species x size) with the energy available for reproduction as calculated

by getERepro().
... Unused

Details

This rate is obtained by taking the per capita rate Er(w)ψ(w) at which energy is invested in re-
production, as calculated by getERepro(), multiplying it by the number of individualsN(w) and
integrating over all sizes w and then multiplying by the reproductive efficiency ϵ and dividing by
the egg size w_min, and by a factor of two to account for the two sexes:

Rdi =
ϵ

2wmin

∫
N(w)Er(w)ψ(w) dw

Used by getRDD() to calculate the actual, density dependent rate. See setReproduction() for
more details.

Value

A numeric vector with the rate of egg production for each species.

Your own reproduction function

By default getRDI() calls mizerRDI(). However you can replace this with your own alternative
reproduction function. If your function is called "myRDI" then you register it in a MizerParams
object params with

params <- setRateFunction(params, "RDI", "myRDI")

Your function will then be called instead of mizerRDI(), with the same arguments. For an example
of an alternative reproduction function see constantEggRDI().

See Also

Other mizer rate functions: mizerEGrowth(), mizerERepro(), mizerEReproAndGrowth(), mizerEncounter(),
mizerFMort(), mizerFMortGear(), mizerFeedingLevel(), mizerMort(), mizerPredMort(),
mizerPredRate(), mizerRates(), mizerResourceMort()

mizerResourceMort 107

mizerResourceMort Get predation mortality rate for resource needed to project standard
mizer model

Description

Calculates the predation mortality rate µp(w) on the resource spectrum by resource size (in units
1/year). You would not usually call this function directly but instead use getResourceMort(),
which then calls this function unless an alternative function has been registered, see below.

Usage

mizerResourceMort(params, n, n_pp, n_other, t, pred_rate, ...)

Arguments

params A MizerParams object

n A matrix of species abundances (species x size).

n_pp A vector of the resource abundance by size

n_other A list of abundances for other dynamical components of the ecosystem

t The time for which to do the calculation (Not used by standard mizer rate func-
tions but useful for extensions with time-dependent parameters.)

pred_rate A two dimensional array (predator species x prey size) with the predation rate,
where the prey size runs over fish community plus resource spectrum.

... Unused

Value

A vector of mortality rate by resource size.

Your own resource mortality function

By default getResourceMort() calls mizerResourceMort(). However you can replace this with
your own alternative resource mortality function. If your function is called "myResourceMort" then
you register it in a MizerParams object params with

params <- setRateFunction(params, "ResourceMort", "myResourceMort")

Your function will then be called instead of mizerResourceMort(), with the same arguments.

See Also

Other mizer rate functions: mizerEGrowth(), mizerERepro(), mizerEReproAndGrowth(), mizerEncounter(),
mizerFMort(), mizerFMortGear(), mizerFeedingLevel(), mizerMort(), mizerPredMort(),
mizerPredRate(), mizerRDI(), mizerRates()

108 MizerSim-class

MizerSim Constructor for the MizerSim class

Description

A constructor for the MizerSim class. This is used by project() to create MizerSim objects of the
right dimensions. It is not necessary for users to use this constructor.

Usage

MizerSim(params, t_dimnames = NA, t_max = 100, t_save = 1)

Arguments

params a MizerParams object

t_dimnames Numeric vector that is used for the time dimensions of the slots. Default = NA.

t_max The maximum time step of the simulation. Only used if t_dimnames = NA.
Default value = 100.

t_save How often should the results of the simulation be stored. Only used if t_dimnames
= NA. Default value = 1.

Value

An object of type MizerSim

MizerSim-class A class to hold the results of a simulation

Description

A class that holds the results of projecting a MizerParams object through time using project().

Details

A new MizerSim object can be created with the MizerSim() constructor, but you will never have
to do that because the object is created automatically by project() when needed.

As a user you should never have to access the slots of a MizerSim object directly. Instead there are
a range of functions to extract the information. N() and NResource() return arrays with the saved
abundances of the species and the resource population at size respectively. getEffort() returns
the fishing effort of each gear through time. getTimes() returns the vector of times at which
simulation results were stored and idxFinalT() returns the index with which to access specifically
the value at the final time in the arrays returned by the other functions. getParams() returns the
MizerParams object that was passed to project(). There are also several summary_functions and
plotting_functions available to explore the contents of a MizerSim object.

N 109

The arrays all have named dimensions. The names of the time dimension denote the time in years.
The names of the w dimension are weights in grams rounded to three significant figures. The names
of the sp dimension are the same as the species name in the order specified in the species_params
data frame. The names of the gear dimension are the names of the gears, in the same order as
specified when setting up the MizerParams object.

Extensions of mizer can use the n_other slot to store the abundances of other ecosystem compo-
nents and these extensions should provide their own functions for accessing that information.

The MizerSim class has changed since previous versions of mizer. To use a MizerSim object created
by a previous version, you need to upgrade it with upgradeSim().

Slots

params An object of type MizerParams.

n Three-dimensional array (time x species x size) that stores the projected community number
densities.

n_pp An array (time x size) that stores the projected resource number densities.

n_other A list array (time x component) that stores the projected values for other ecosystem com-
ponents.

effort An array (time x gear) that stores the fishing effort by time and gear.

N Time series of size spectra

Description

Fetch the simulation results for the size spectra over time.

Usage

N(sim)

NResource(sim)

Arguments

sim A MizerSim object

Value

For N(): A three-dimensional array (time x species x size) with the number density of consumers

For NResource(): An array (time x size) with the number density of resource

Examples

str(N(NS_sim))
str(NResource(NS_sim))

110 newCommunityParams

needs_upgrading Determine whether a MizerParams or MizerSim object needs to be
upgraded

Description

Looks at the mizer version that was used to last update the object and returns TRUE if changes
since that version require an upgrade of the object. You would not usually have to call this function.
Upgrades are initiated automatically by validParams and validSim when necessary.

Usage

needs_upgrading(object)

Arguments

object A MizerParams or MizerSim object

Value

TRUE or FALSE

newCommunityParams Set up parameters for a community-type model

Description

This functions creates a MizerParams object describing a community-type model. The function has
many arguments, all of which have default values.

Usage

newCommunityParams(
max_w = 1e+06,
min_w = 0.001,
no_w = 100,
min_w_pp = 1e-10,
z0 = 0.1,
alpha = 0.2,
f0 = 0.7,
h = 10,
gamma = NA,
beta = 100,
sigma = 2,
n = 2/3,
kappa = 1000,

newCommunityParams 111

lambda = 2.05,
r_pp = 10,
knife_edge_size = 1000,
reproduction

)

Arguments

max_w The maximum size of the community. The w_max of the species used to repre-
sent the community is set to this value.

min_w The minimum size of the community.

no_w The number of size bins in the consumer spectrum.

min_w_pp The smallest size of the resource spectrum. By default this is set to the smallest
value at which any of the consumers can feed.

z0 The background mortality of the community.

alpha The assimilation efficiency of the community.

f0 The average feeding level of individuals who feed on a power-law spectrum.
This value is used to calculate the search rate parameter gamma.

h The coefficient of the maximum food intake rate.

gamma Volumetric search rate. Estimated using h, f0 and kappa if not supplied.

beta The preferred predator prey mass ratio.

sigma The width of the prey preference.

n The allometric growth exponent. Used as allometric exponent for the maximum
intake rate of the community as well as the intrinsic growth rate of the resource.

kappa The coefficient of the initial resource abundance power-law.

lambda Used to set power-law exponent for resource capacity if the resource_capacity
argument is given as a single number.

r_pp [Deprecated]. Use resource_rate argument instead.
knife_edge_size

The size at the edge of the knife-edge-selectivity function.

reproduction The constant reproduction in the smallest size class of the community spectrum.
By default this is set so that the community spectrum is continuous with the
resource spectrum.

Details

A community model has several features that distinguish it from a multi-species model:

• Species identities of individuals are ignored. All are aggregated into a single community.

• The resource spectrum only extends to the start of the community spectrum.

• Reproductive rate is constant, independent of the energy invested in reproduction, which is set
to 0.

• Standard metabolism is turned off (the parameter ks is set to 0). Consequently, the growth
rate is now determined solely by the assimilated food

112 newMultispeciesParams

Fishing selectivity is modelled as a knife-edge function with one parameter, knife_edge_size,
which determines the size at which species are selected.

The resulting MizerParams object can be projected forward using project() like any other MizerParams
object. When projecting the community model it may be necessary to keep a small time step size
dt of around 0.1 to avoid any instabilities with the solver. You can check for these numerical
instabilities by plotting the biomass or abundance through time after the projection.

Value

An object of type MizerParams

References

K. H. Andersen,J. E. Beyer and P. Lundberg, 2009, Trophic and individual efficiencies of size-
structured communities, Proceedings of the Royal Society, 276, 109-114

See Also

Other functions for setting up models: newMultispeciesParams(), newSingleSpeciesParams(),
newTraitParams()

Examples

params <- newCommunityParams()
sim <- project(params, t_max = 10)
plotBiomass(sim)
plotSpectra(sim, power = 2)

More satiation. More mortality
params <- newCommunityParams(f0 = 0.8, z0 = 0.4)
sim <- project(params, t_max = 10)
plotBiomass(sim)
plotSpectra(sim, power = 2)

newMultispeciesParams Set up parameters for a general multispecies model

Description

Sets up a multi-species size spectrum model by filling all slots in the MizerParams object based
on user-provided or default parameters. There is a long list of arguments, but almost all of them
have sensible default values. The only required argument is the species_params data frame. All
arguments are described in more details in the sections below the list.

newMultispeciesParams 113

Usage

newMultispeciesParams(
species_params,
interaction = NULL,
no_w = 100,
min_w = 0.001,
max_w = NA,
min_w_pp = NA,
pred_kernel = NULL,
search_vol = NULL,
intake_max = NULL,
metab = NULL,
p = 0.7,
ext_mort = NULL,
z0pre = 0.6,
z0exp = n - 1,
ext_encounter = NULL,
maturity = NULL,
repro_prop = NULL,
RDD = "BevertonHoltRDD",
kappa = 1e+11,
n = 2/3,
resource_rate = 10,
resource_capacity = kappa,
lambda = 2.05,
w_pp_cutoff = 10,
resource_dynamics = "resource_semichemostat",
gear_params = NULL,
selectivity = NULL,
catchability = NULL,
initial_effort = NULL,
info_level = 3,
z0 = deprecated(),
r_pp = deprecated()

)

Arguments

species_params A data frame of species-specific parameter values.

interaction Optional interaction matrix of the species (predator species x prey species). By
default all entries are 1. See "Setting interaction matrix" section below.

no_w The number of size bins in the consumer spectrum.

min_w Sets the size of the eggs of all species for which this is not given in the w_min
column of the species_params dataframe.

max_w The largest size of the consumer spectrum. By default this is set to the largest
w_max specified in the species_params data frame.

114 newMultispeciesParams

min_w_pp The smallest size of the resource spectrum. By default this is set to the smallest
value at which any of the consumers can feed.

pred_kernel Optional. An array (species x predator size x prey size) that holds the predation
coefficient of each predator at size on each prey size. If not supplied, a default
is set as described in section "Setting predation kernel".

search_vol Optional. An array (species x size) holding the search volume for each species
at size. If not supplied, a default is set as described in the section "Setting search
volume".

intake_max Optional. An array (species x size) holding the maximum intake rate for each
species at size. If not supplied, a default is set as described in the section "Setting
maximum intake rate".

metab Optional. An array (species x size) holding the metabolic rate for each species
at size. If not supplied, a default is set as described in the section "Setting
metabolic rate".

p The allometric metabolic exponent. This is only used if metab is not given ex-
plicitly and if the exponent is not specified in a p column in the species_params.

ext_mort Optional. An array (species x size) holding the external mortality rate. If not
supplied, a default is set as described in the section "Setting external mortality
rate".

z0pre If z0, the mortality from other sources, is not a column in the species data frame,
it is calculated as z0pre * w_max ^ z0exp. Default value is 0.6.

z0exp If z0, the mortality from other sources, is not a column in the species data frame,
it is calculated as z0pre * w_max ^ z0exp. Default value is n-1.

ext_encounter Optional. An array (species x size) holding the external encounter rate. If not
supplied, the external encounter rate is left unchanged. Initially is is set to 0.

maturity Optional. An array (species x size) that holds the proportion of individuals of
each species at size that are mature. If not supplied, a default is set as described
in the section "Setting reproduction".

repro_prop Optional. An array (species x size) that holds the proportion of consumed energy
that a mature individual allocates to reproduction for each species at size. If not
supplied, a default is set as described in the section "Setting reproduction".

RDD The name of the function calculating the density-dependent reproduction rate
from the density-independent rate. Defaults to "BevertonHoltRDD()".

kappa The coefficient of the initial resource abundance power-law.

n The allometric growth exponent. This can be overruled for individual species
by including a n column in the species_params.

resource_rate Optional. Vector of resource intrinsic birth rates or coefficient in the power-law
for the birth rate, see Details. Must be strictly positive.

resource_capacity

Optional. Vector of resource intrinsic carrying capacities or coefficient in the
power-law for the capacity, see Details. The resource capacity must be larger
than the resource abundance.

lambda Used to set power-law exponent for resource capacity if the resource_capacity
argument is given as a single number.

newMultispeciesParams 115

w_pp_cutoff The upper cut off size of the resource spectrum power law used only if resource_capacity
is given as a single number.

resource_dynamics

Optional. Name of the function that determines the resource dynamics by cal-
culating the resource spectrum at the next time step from the current state.

gear_params A data frame with gear-specific parameter values.

selectivity Optional. An array (gear x species x size) that holds the selectivity of each gear
for species and size, Sg,i,w.

catchability Optional. An array (gear x species) that holds the catchability of each species
by each gear, Qg,i.

initial_effort Optional. A number or a named numeric vector specifying the fishing effort. If
a number, the same effort is used for all gears. If a vector, must be named by
gear.

info_level Controls the amount of information messages that are shown when the function
sets default values for parameters. Higher levels lead to more messages.

z0 [Deprecated] Use ext_mort instead. Not to be confused with the species_parameter
z0.

r_pp [Deprecated]. Use resource_rate argument instead.

Value

An object of type MizerParams

Species parameters

The only essential argument is a data frame that contains the species parameters. The data frame is
arranged species by parameter, so each column of the parameter data frame is a parameter and each
row has the values of the parameters for one of the species in the model.

There are two essential columns that must be included in the species parameter data.frame and
that do not have default values: the species column that should hold strings with the names of
the species and the w_max column with the maximum sizes of the species in grams. (You could
alternatively specify the maximum length in cm in an l_max column.)

The species_params dataframe also needs to contain the parameters needed by any predation
kernel function (size selectivity function). This will be mentioned in the appropriate sections below.

For all other species parameters, mizer will calculate default values if they are not included in the
species parameter data frame. They will be automatically added when the MizerParams object is
created. For these parameters you can also specify values for only some species and leave the other
entries as NA and the missing values will be set to the defaults. So the species_params data frame
saved in the returned MizerParams object will differ from the one you supply because it will have
the missing species parameters filled in with default values.

If you are not happy with any of the species parameter values used you can always change them
later with species_params<-().

All the parameters will be mentioned in the following sections.

116 newMultispeciesParams

Setting initial values

The initial values for the species number densities are set using the function get_initial_n().
These are quite arbitrary and not very close to the steady state abundances. We intend to improve
this in the future.

The initial resource number density NR(w) is set to a power law with coefficient kappa (κ) and
exponent -lambda (−λ):

NR(w) = κw−λ

for all w less than w_pp_cutoff and zero for larger sizes.

Size grid

A size grid is created so that the log-sizes are equally spaced. The spacing is chosen so that there
will be no_w fish size bins, with the smallest starting at min_w and the largest starting at max_w. For
the resource spectrum there is a larger set of bins containing additional bins below min_w, with the
same log size. The number of extra bins is such that min_w_pp comes to lie within the smallest bin.

Units in mizer

Mizer uses grams to measure weight, centimetres to measure lengths, and years to measure time.

Mizer is agnostic about whether abundances are given as

1. numbers per area,

2. numbers per volume or

3. total numbers for the entire study area.

You should make the choice most convenient for your application and then stick with it. If you
make choice 1 or 2 you will also have to choose a unit for area or volume. Your choice will then
determine the units for some of the parameters. This will be mentioned when the parameters are
discussed in the sections below.

Your choice will also affect the units of the quantities you may want to calculate with the model. For
example, the yield will be in grams/year/m^2 in case 1 if you choose m^2 as your measure of area,
in grams/year/m^3 in case 2 if you choose m^3 as your unit of volume, or simply grams/year in case
3. The same comment applies for other measures, like total biomass, which will be grams/area in
case 1, grams/volume in case 2 or simply grams in case 3. When mizer puts units on axes in plots,
it will choose the units appropriate for case 3. So for example in plotBiomass() it gives the unit
as grams.

You can convert between these choices. For example, if you use case 1, you need to multiply with
the area of the ecosystem to get the total quantity. If you work with case 2, you need to multiply by
both area and the thickness of the productive layer. In that respect, case 2 is a bit cumbersome. The
function scaleModel() is useful to change the units you are using.

Setting interaction matrix

You do not need to specify an interaction matrix. If you do not, then the predator-prey interactions
are purely determined by the size of predator and prey and totally independent of the species of
predator and prey.

newMultispeciesParams 117

The interaction matrix θij modifies the interaction of each pair of species in the model. This can
be used for example to allow for different spatial overlap among the species. The values in the
interaction matrix are used to scale the encountered food and predation mortality (see on the website
the section on predator-prey encounter rate and on predation mortality). The first index refers to the
predator species and the second to the prey species.

The interaction matrix is used when calculating the food encounter rate in getEncounter() and
the predation mortality rate in getPredMort(). Its entries are dimensionless numbers. If all the
values in the interaction matrix are equal then predator-prey interactions are determined entirely by
size-preference.

This function checks that the supplied interaction matrix is valid and then stores it in the interaction
slot of the params object.

The order of the columns and rows of the interaction argument should be the same as the order in
the species params data frame in the params object. If you supply a named array then the function
will check the order and warn if it is different. One way of creating your own interaction matrix is
to enter the data using a spreadsheet program and saving it as a .csv file. The data can then be read
into R using the command read.csv().

The interaction of the species with the resource are set via a column interaction_resource in the
species_params data frame. By default this column is set to all 1s.

Setting predation kernel

Kernel dependent on predator to prey size ratio

If the pred_kernel argument is not supplied, then this function sets a predation kernel that depends
only on the ratio of predator mass to prey mass, not on the two masses independently. The shape of
that kernel is then determined by the pred_kernel_type column in species_params.

The default for pred_kernel_type is "lognormal". This will call the function lognormal_pred_kernel()
to calculate the predation kernel. An alternative pred_kernel type is "box", implemented by the func-
tion box_pred_kernel(), and "power_law", implemented by the function power_law_pred_kernel().
These functions require certain species parameters in the species_params data frame. For the log-
normal kernel these are beta and sigma, for the box kernel they are ppmr_min and ppmr_max. They
are explained in the help pages for the kernel functions. Except for beta and sigma, no defaults are
set for these parameters. If they are missing from the species_params data frame then mizer will
issue an error message.

You can use any other string for pred_kernel_type. If for example you choose "my" then you need
to define a function my_pred_kernel that you can model on the existing functions like lognormal_pred_kernel().

When using a kernel that depends on the predator/prey size ratio only, mizer does not need to store
the entire three dimensional array in the MizerParams object. Such an array can be very big when
there is a large number of size bins. Instead, mizer only needs to store two two-dimensional arrays
that hold Fourier transforms of the feeding kernel function that allow the encounter rate and the
predation rate to be calculated very efficiently. However, if you need the full three-dimensional
array you can calculate it with the getPredKernel() function.

Kernel dependent on both predator and prey size

If you want to work with a feeding kernel that depends on predator mass and prey mass indepen-
dently, you can specify the full feeding kernel as a three-dimensional array (predator species x
predator size x prey size).

https://sizespectrum.org/mizer/articles/model_description.html#sec:pref
https://sizespectrum.org/mizer/articles/model_description.html#mortality

118 newMultispeciesParams

You should use this option only if a kernel dependent only on the predator/prey mass ratio is not
appropriate. Using a kernel dependent on predator/prey mass ratio only allows mizer to use fast
Fourier transform methods to significantly reduce the running time of simulations.

The order of the predator species in pred_kernel should be the same as the order in the species
params dataframe in the params object. If you supply a named array then the function will check
the order and warn if it is different.

Setting search volume

The search volume γi(w) of an individual of species i and weight w multiplies the predation kernel
when calculating the encounter rate in getEncounter() and the predation rate in getPredRate().

The name "search volume" is a bit misleading, because γi(w) does not have units of volume. It
is simply a parameter that determines the rate of predation. Its units depend on your choice, see
section "Units in mizer". If you have chosen to work with total abundances, then it is a rate with
units 1/year. If you have chosen to work with abundances per m^2 then it has units of m^2/year. If
you have chosen to work with abundances per m^3 then it has units of m^3/year.

If the search_vol argument is not supplied, then the search volume is set to

γi(w) = γiw
q
i .

The values of γi (the search volume at 1g) and qi (the allometric exponent of the search volume) are
taken from the gamma and q columns in the species parameter dataframe. If the gamma column is not
supplied in the species parameter dataframe, a default is calculated by the get_gamma_default()
function. Note that only for predators of size w = 1 gram is the value of the species parameter γi
the same as the value of the search volume γi(w).

Setting maximum intake rate

The maximum intake rate hi(w) of an individual of species i and weight w determines the feeding
level, calculated with getFeedingLevel(). It is measured in grams/year.

If the intake_max argument is not supplied, then the maximum intake rate is set to

hi(w) = hiw
ni .

The values of hi (the maximum intake rate of an individual of size 1 gram) and ni (the allomet-
ric exponent for the intake rate) are taken from the h and n columns in the species parameter
dataframe. If the h column is not supplied in the species parameter dataframe, it is calculated
by the get_h_default() function.

If hi is set to Inf, fish of species i will consume all encountered food.

Setting metabolic rate

The metabolic rate is subtracted from the energy income rate to calculate the rate at which energy is
available for growth and reproduction, see getEReproAndGrowth(). It is measured in grams/year.

If the metab argument is not supplied, then for each species the metabolic rate k(w) for an individual
of size w is set to

k(w) = ksw
p + kw,

newMultispeciesParams 119

where kswp represents the rate of standard metabolism and kw is the rate at which energy is ex-
pended on activity and movement. The values of ks, p and k are taken from the ks, p and k columns
in the species parameter dataframe. If any of these parameters are not supplied, the defaults are
k = 0, p = n and

ks = fchαw
n−p
mat ,

where fc is the critical feeding level taken from the fc column in the species parameter data frame.
If the critical feeding level is not specified, a default of fc = 0.2 is used.

Setting external mortality rate

The external mortality is all the mortality that is not due to fishing or predation by predators included
in the model. The external mortality could be due to predation by predators that are not explicitly
included in the model (e.g. mammals or seabirds) or due to other causes like illness. It is a rate with
units 1/year.

The ext_mort argument allows you to specify an external mortality rate that depends on species
and body size. You can see an example of this in the Examples section of the help page for
setExtMort().

If the ext_mort argument is not supplied, then the external mortality is assumed to depend only on
the species, not on the size of the individual: µext.i(w) = z0.i. The value of the constant z0 for
each species is taken from the z0 column of the species parameter data frame, if that column exists.
Otherwise it is calculated as

z0.i = z0prei w
z0exp
inf .

Setting external encounter rate

The external encounter rate is the rate at which a predator encounters food that is not explicitly
modelled. It is a rate with units mass/year.

The ext_encounter argument allows you to specify an external encounter rate that depends on
species and body size. You can see an example of this in the Examples section of the help page for
setExtEncounter().

Setting reproduction

For each species and at each size, the proportion ψ of the available energy that is invested into
reproduction is the product of two factors: the proportion maturity of individuals that are mature
and the proportion repro_prop of the energy available to a mature individual that is invested into
reproduction. There is a size w_repro_max at which all the energy is invested into reproduction and
therefore all growth stops. There can be no fish larger than w_repro_max. If you have not specified
the w_repro_max column in the species parameter data frame, then the maximum size w_max is
used instead.

Maturity ogive: If the the proportion of individuals that are mature is not supplied via the
maturity argument, then it is set to a sigmoidal maturity ogive that changes from 0 to 1 at around
the maturity size:

maturity(w) =

[
1 +

(
w

wmat

)−U
]−1

.

120 newMultispeciesParams

(To avoid clutter, we are not showing the species index in the equations, although each species
has its own maturity ogive.) The maturity weights are taken from the w_mat column of the
species_params data frame. Any missing maturity weights are set to 1/4 of the maximum weight
in the w_max column.
The exponent U determines the steepness of the maturity ogive. By default it is chosen as U =
10, however this can be overridden by including a column w_mat25 in the species parameter
dataframe that specifies the weight at which 25% of individuals are mature, which sets U =
log(3)/ log(wmat/wmat25).

The sigmoidal function given above would strictly reach 1 only asymptotically. Mizer instead
sets the function equal to 1 already at a size taken from the w_repro_max column in the species
parameter data frame, if it exists, or otherwise from the w_max column. Also, for computational
simplicity, any proportion smaller than 1e-8 is set to 0.

Investment into reproduction: If the the energy available to a mature individual that is invested
into reproduction is not supplied via the repro_prop argument, it is set to the allometric form

repro_prop(w) =
(

w

wmatmax

)m−n

.

Here n is the scaling exponent of the energy income rate. Hence the exponent m determines the
scaling of the investment into reproduction for mature individuals. By default it is chosen to be
m = 1 so that the rate at which energy is invested into reproduction scales linearly with the size.
This default can be overridden by including a column m in the species parameter dataframe. The
maximum sizes are taken from the w_repro_max column in the species parameter data frame, if
it exists, or otherwise from the w_max column.
The total proportion of energy invested into reproduction of an individual of size w is then

ψ(w) = maturity(w)repro_prop(w)

Reproductive efficiency: The reproductive efficiency ϵ, i.e., the proportion of energy allocated to
reproduction that results in egg biomass, is set through the erepro column in the species_params
data frame. If that is not provided, the default is set to 1 (which you will want to override).
The offspring biomass divided by the egg biomass gives the rate of egg production, returned by
getRDI():

Rdi =
ϵ

2wmin

∫
N(w)Er(w)ψ(w) dw

Density dependence: The stock-recruitment relationship is an emergent phenomenon in mizer,
with several sources of density dependence. Firstly, the amount of energy invested into reproduc-
tion depends on the energy income of the spawners, which is density-dependent due to compe-
tition for prey. Secondly, the proportion of larvae that grow up to recruitment size depends on
the larval mortality, which depends on the density of predators, and on larval growth rate, which
depends on density of prey.
Finally, to encode all the density dependence in the stock-recruitment relationship that is not
already included in the other two sources of density dependence, mizer puts the the density-
independent rate of egg production through a density-dependence function. The result is returned
by getRDD(). The name of the density-dependence function is specified by the RDD argument.
The default is the Beverton-Holt function BevertonHoltRDD(), which requires an R_max column
in the species_params data frame giving the maximum egg production rate. If this column does

newMultispeciesParams 121

not exist, it is initialised to Inf, leading to no density-dependence. Other functions provided by
mizer are RickerRDD() and SheperdRDD() and you can easily use these as models for writing
your own functions.

Setting fishing

Gears

In mizer, fishing mortality is imposed on species by fishing gears. The total per-capita fishing
mortality (1/year) is obtained by summing over the mortality from all gears,

µf.i(w) =
∑
g

Fg,i(w),

where the fishing mortality Fg,i(w) imposed by gear g on species i at size w is calculated as:

Fg,i(w) = Sg,i(w)Qg,iEg,

where S is the selectivity by species, gear and size, Q is the catchability by species and gear and E
is the fishing effort by gear.

Selectivity

The selectivity at size of each gear for each species is saved as a three dimensional array (gear x
species x size). Each entry has a range between 0 (that gear is not selecting that species at that size)
to 1 (that gear is selecting all individuals of that species of that size). This three dimensional array
can be specified explicitly via the selectivity argument, but usually mizer calculates it from the
gear_params slot of the MizerParams object.

To allow the calculation of the selectivity array, the gear_params slot must be a data frame
with one row for each gear-species combination. So if for example a gear can select three species,
then that gear contributes three rows to the gear_params data frame, one for each species it can
select. The data frame must have columns gear, holding the name of the gear, species, holding the
name of the species, and sel_func, holding the name of the function that calculates the selectivity
curve. Some selectivity functions are included in the package: knife_edge(), sigmoid_length(),
double_sigmoid_length(), and sigmoid_weight(). Users are able to write their own size-based
selectivity function. The first argument to the function must be w and the function must return a
vector of the selectivity (between 0 and 1) at size.

Each selectivity function may have parameters. Values for these parameters must be included as
columns in the gear parameters data.frame. The names of the columns must exactly match the
names of the corresponding arguments of the selectivity function. For example, the default selectiv-
ity function is knife_edge() that a has sudden change of selectivity from 0 to 1 at a certain size. In
its help page you can see that the knife_edge() function has arguments w and knife_edge_size.
The first argument, w, is size (the function calculates selectivity at size). All selectivity functions
must have w as the first argument. The values for the other arguments must be found in the gear
parameters data.frame. So for the knife_edge() function there should be a knife_edge_size col-
umn. Because knife_edge() is the default selectivity function, the knife_edge_size argument
has a default value = w_mat.

The most commonly-used selectivity function is sigmoid_length(). It has a smooth transition
from 0 to 1 at a certain size. The sigmoid_length() function has the two parameters l50 and l25
that are the lengths in cm at which 50% or 25% of the fish are selected by the gear. If you choose

122 newMultispeciesParams

this selectivity function then the l50 and l25 columns must be included in the gear parameters
data.frame.

In case each species is only selected by one gear, the columns of the gear_params data frame can
alternatively be provided as columns of the species_params data frame, if this is more convenient
for the user to set up. Mizer will then copy these columns over to create the gear_params data
frame when it creates the MizerParams object. However changing these columns in the species
parameter data frame later will not update the gear_params data frame.

Catchability

Catchability is used as an additional factor to make the link between gear selectivity, fishing effort
and fishing mortality. For example, it can be set so that an effort of 1 gives a desired fishing
mortality. In this way effort can then be specified relative to a ’base effort’, e.g. the effort in a
particular year.

Catchability is stored as a two dimensional array (gear x species). This can either be provided
explicitly via the catchability argument, or the information can be provided via a catchability
column in the gear_params data frame.

In the case where each species is selected by only a single gear, the catchability column can also
be provided in the species_params data frame. Mizer will then copy this over to the gear_params
data frame when the MizerParams object is created.

Effort

The initial fishing effort is stored in the MizerParams object. If it is not supplied, it is set to zero.
The initial effort can be overruled when the simulation is run with project(), where it is also
possible to specify an effort that varies through time.

Setting resource dynamics

You would usually set the resource dynamics only after having finished the calibration of the steady
state. Then setting the resource dynamics with this function will preserve that steady state, unless
you explicitly choose to set balance = FALSE. Your choice of the resource dynamics only affects the
dynamics around the steady state. The higher the resource rate or the lower the resource capacity
the less sensitive the model will be to changes in the competition for resource.

The resource_dynamics argument allows you to choose the resource dynamics function. By de-
fault, mizer uses a semichemostat model to describe the resource dynamics in each size class inde-
pendently. This semichemostat dynamics is implemented by the function resource_semichemostat().
You can change that to use a logistic model implemented by resource_logistic() or you can use
resource_constant() which keeps the resource constant or you can write your own function.

Both the resource_semichemostat() and the resource_logistic() dynamics are parametrised
in terms of a size-dependent rate rR(w) and a size-dependent capacity cR. The help pages of these
functions give the details.

The resource_rate argument can be a vector (with the same length as w_full(params)) specify-
ing the intrinsic resource growth rate for each size class. Alternatively it can be a single number,
which is then used as the coefficient in a power law: then the intrinsic growth rate rR(w) at size w
is set to

rR(w) = rRw
n−1.

The power-law exponent n is taken from the n argument.

newSingleSpeciesParams 123

The resource_capacity argument can be a vector specifying the intrinsic resource carrying capac-
ity for each size class. Alternatively it can be a single number, which is then used as the coefficient
in a truncated power law: then the intrinsic growth rate cR(w) at size w is set to

c(w) = κw−λ

for all w less than w_pp_cutoff and zero for larger sizes. The power-law exponent λ is taken from
the lambda argument.

The values for lambda, n and w_pp_cutoff are stored in a list in the resource_params slot of
the MizerParams object so that they can be re-used automatically in the future. That list can be
accessed with resource_params(). It also holds the coefficient kappa that describes the steady-
state resource abundance.

See Also

Other functions for setting up models: newCommunityParams(), newSingleSpeciesParams(),
newTraitParams()

Examples

params <- newMultispeciesParams(NS_species_params)

newSingleSpeciesParams

Set up parameters for a single species in a power-law background

Description

[Experimental]
This functions creates a MizerParams object with a single species. This species is embedded in a
fixed power-law community spectrum

Nc(w) = κw−λ

This community provides the food income for the species. Cannibalism is switched off. The pre-
dation mortality arises only from the predators in the power-law community and it is assumed that
the predators in the community have the same feeding parameters as the foreground species. The
function has many arguments, all of which have default values.

Usage

newSingleSpeciesParams(
species_name = "Target species",
w_max = 100,
w_min = 0.001,
eta = 10^(-0.6),
w_mat = w_max * eta,
no_w = log10(w_max/w_min) * 20 + 1,

124 newSingleSpeciesParams

n = 3/4,
p = n,
lambda = 2.05,
kappa = 0.005,
alpha = 0.4,
h = 30,
beta = 100,
sigma = 1.3,
f0 = 0.6,
fc = 0.25,
ks = NA,
gamma = NA,
ext_mort_prop = 0,
reproduction_level = 0,
R_factor = deprecated(),
w_inf = deprecated(),
k_vb = deprecated()

)

Arguments

species_name A string with a name for the species. Will be used in plot legends.

w_max Maximum size of species

w_min Egg size of species

eta Ratio between maturity size w_mat and maximum size w_max. Default is 10^(-
0.6), approximately 1/4. Ignored if w_mat is supplied explicitly.

w_mat Maturity size of species. Default value is eta * w_max.

no_w The number of size bins in the community spectrum. These bins will be equally
spaced on a logarithmic scale. Default value is such that there are 20 bins for
each factor of 10 in weight.

n Scaling exponent of the maximum intake rate.

p Scaling exponent of the standard metabolic rate. By default this is equal to the
exponent n.

lambda Exponent of the abundance power law.

kappa Coefficient in abundance power law.

alpha The assimilation efficiency.

h Maximum food intake rate.

beta Preferred predator prey mass ratio.

sigma Width of prey size preference.

f0 Expected average feeding level. Used to set gamma, the coefficient in the search
rate. Ignored if gamma is given explicitly.

fc Critical feeding level. Used to determine ks if it is not given explicitly.

ks Standard metabolism coefficient. If not provided, default will be calculated from
critical feeding level argument fc.

newTraitParams 125

gamma Volumetric search rate. If not provided, default is determined by get_gamma_default()
using the value of f0.

ext_mort_prop The proportion of the total mortality that comes from external mortality, i.e.,
from sources not explicitly modelled. A number in the interval [0, 1).

reproduction_level

A number between 0 an 1 that determines the level of density dependence in
reproduction, see setBevertonHolt().

R_factor [Deprecated] Use reproduction_level = 1 / R_factor instead.

w_inf [Deprecated] The argument has been renamed to w_max.

k_vb [Deprecated] The von Bertalanffy growth parameter.

Details

In addition to setting up the parameters, this function also sets up an initial condition that is close
to steady state, under the assumption of no fishing.

Value

An object of type MizerParams

See Also

Other functions for setting up models: newCommunityParams(), newMultispeciesParams(), newTraitParams()

Examples

params <- newSingleSpeciesParams()
sim <- project(params, t_max = 5, effort = 0)
plotSpectra(sim)

newTraitParams Set up parameters for a trait-based multispecies model

Description

This functions creates a MizerParams object describing a trait-based model. This is a simplification
of the general size-based model used in mizer in which the species-specific parameters are the
same for all species, except for the maximum size, which is considered the most important trait
characterizing a species. Other parameters are related to the maximum size. For example, the size
at maturity is given by w_max * eta, where eta is the same for all species. For the trait-based model
the number of species is not important. For applications of the trait-based model see Andersen &
Pedersen (2010). See the mizer website for more details and examples of the trait-based model.

126 newTraitParams

Usage

newTraitParams(
no_sp = 11,
min_w_max = 10,
max_w_max = 10^4,
min_w = 10^(-3),
max_w = max_w_max,
eta = 10^(-0.6),
min_w_mat = min_w_max * eta,
no_w = round(log10(max_w_max/min_w) * 20 + 1),
min_w_pp = 1e-10,
w_pp_cutoff = min_w_mat,
n = 2/3,
p = n,
lambda = 2.05,
r_pp = 0.1,
kappa = 0.005,
alpha = 0.4,
h = 40,
beta = 100,
sigma = 1.3,
f0 = 0.6,
fc = 0.25,
ks = NA,
gamma = NA,
ext_mort_prop = 0,
reproduction_level = 1/4,
R_factor = deprecated(),
gear_names = "knife_edge_gear",
knife_edge_size = 1000,
egg_size_scaling = FALSE,
resource_scaling = FALSE,
perfect_scaling = FALSE,
min_w_inf = deprecated(),
max_w_inf = deprecated()

)

Arguments

no_sp The number of species in the model.

min_w_max The maximum size of the smallest species in the community. This will be
rounded to lie on a grid point.

max_w_max The maximum size of the largest species in the community. This will be rounded
to lie on a grid point.

min_w The size of the the egg of the smallest species. This also defines the start of the
community size spectrum.

newTraitParams 127

max_w The largest size in the model. By default this is set to the largest maximum size
max_w_max. Setting it to something larger only makes sense if you plan to add
larger species to the model later.

eta Ratio between maturity size and maximum size of a species. Ignored if min_w_mat
is supplied. Default is 10^(-0.6), approximately 1/4.

min_w_mat The maturity size of the smallest species. Default value is eta * min_w_max.
This will be rounded to lie on a grid point.

no_w The number of size bins in the community spectrum. These bins will be equally
spaced on a logarithmic scale. Default value is such that there are 20 bins for
each factor of 10 in weight.

min_w_pp The smallest size of the resource spectrum. By default this is set to the smallest
value at which any of the consumers can feed.

w_pp_cutoff The largest size of the resource spectrum. Default value is min_w_max unless
perfect_scaling = TRUE when it is Inf.

n Scaling exponent of the maximum intake rate.

p Scaling exponent of the standard metabolic rate. By default this is equal to the
exponent n.

lambda Exponent of the abundance power law.

r_pp Growth rate parameter for the resource spectrum.

kappa Coefficient in abundance power law.

alpha The assimilation efficiency.

h Maximum food intake rate.

beta Preferred predator prey mass ratio.

sigma Width of prey size preference.

f0 Expected average feeding level. Used to set gamma, the coefficient in the search
rate. Ignored if gamma is given explicitly.

fc Critical feeding level. Used to determine ks if it is not given explicitly.

ks Standard metabolism coefficient. If not provided, default will be calculated from
critical feeding level argument fc.

gamma Volumetric search rate. If not provided, default is determined by get_gamma_default()
using the value of f0.

ext_mort_prop The proportion of the total mortality that comes from external mortality, i.e.,
from sources not explicitly modelled. A number in the interval [0, 1).

reproduction_level

A number between 0 an 1 that determines the level of density dependence in
reproduction, see setBevertonHolt().

R_factor [Deprecated] Use reproduction_level = 1 / R_factor instead.

gear_names The names of the fishing gears for each species. A character vector, the same
length as the number of species.

knife_edge_size

The minimum size at which the gear or gears select fish. A single value for each
gear or a vector with one value for each gear.

128 newTraitParams

egg_size_scaling

[Experimental] If TRUE, the egg size is a constant fraction of the maximum
size of each species. This fraction is min_w / min_w_max. If FALSE, all species
have the egg size w_min.

resource_scaling

[Experimental] If TRUE, the carrying capacity for larger resource is reduced
to compensate for the fact that fish eggs and larvae are present in the same size
range.

perfect_scaling

[Experimental] If TRUE then parameters are set so that the community abun-
dance, growth before reproduction and death are perfect power laws. In partic-
ular all other scaling corrections are turned on.

min_w_inf [Deprecated] The argument has been renamed to min_w_max to make it clearer
that it refers to the maximum size of a species not the von Bertalanffy asymptotic
size parameter.

max_w_inf [Deprecated] The argument has been renamed to max_w_max.

Details

The function has many arguments, all of which have default values. Of particular interest to the
user are the number of species in the model and the minimum and maximum sizes.

The characteristic weights of the smallest species are defined by min_w (egg size), min_w_mat
(maturity size) and min_w_max (maximum size). The maximum sizes of the no_sp species are
logarithmically evenly spaced, ranging from min_w_max to max_w_max. Similarly the maturity sizes
of the species are logarithmically evenly spaced, so that the ratio eta between maturity size and
maximum size is the same for all species. If egg_size_scaling = TRUE then also the ratio between
maximum size and egg size is the same for all species. Otherwise all species have the same egg
size.

In addition to setting up the parameters, this function also sets up an initial condition that is close
to steady state.

The search rate coefficient gamma is calculated using the expected feeding level, f0.

The option of including fishing is given, but the steady state may loose its natural stability if too
much fishing is included. In such a case the user may wish to include stabilising effects (like
reproduction_level) to ensure the steady state is stable. Fishing selectivity is modelled as a
knife-edge function with one parameter, knife_edge_size, which is the size at which species are
selected. Each species can either be fished by the same gear (knife_edge_size has a length of 1)
or by a different gear (the length of knife_edge_size has the same length as the number of species
and the order of selectivity size is that of the maximum size).

The resulting MizerParams object can be projected forward using project() like any other MizerParams
object. When projecting the model it may be necessary to reduce dt below 0.1 to avoid any insta-
bilities with the solver. You can check this by plotting the biomass or abundance through time after
the projection.

Value

An object of type MizerParams

noRDD 129

See Also

Other functions for setting up models: newCommunityParams(), newMultispeciesParams(), newSingleSpeciesParams()

Examples

params <- newTraitParams()
sim <- project(params, t_max = 5, effort = 0)
plotSpectra(sim)

noRDD Give density-independent reproduction rate

Description

Simply returns its rdi argument.

Usage

noRDD(rdi, ...)

Arguments

rdi Vector of density-independent reproduction rates Rdi for all species.

... Not used.

Value

Vector of density-dependent reproduction rates.

See Also

Other functions calculating density-dependent reproduction rate: BevertonHoltRDD(), RickerRDD(),
SheperdRDD(), constantEggRDI(), constantRDD()

130 NS_interaction

NOther Time series of other components

Description

Fetch the simulation results for other components over time.

Usage

NOther(sim)

Arguments

sim A MizerSim object

Value

A list array (time x component) that stores the projected values for other ecosystem components.

NS_interaction Example interaction matrix for the North Sea example

Description

The interaction coefficient between predator and prey species in the North Sea.

Usage

NS_interaction

Format

A 12 x 12 matrix.

Source

Blanchard et al.

Examples

params <- MizerParams(NS_species_params_gears,
interaction = NS_interaction)

NS_params 131

NS_params Example MizerParams object for the North Sea example

Description

A MizerParams object created from the NS_species_params_gears species parameters and the
inter interaction matrix together with an initial condition corresponding to the steady state ob-
tained from fishing with an effort effort = c(Industrial = 0, Pelagic = 1, Beam = 0.5, Otter
= 0.5).

Usage

NS_params

Format

A MizerParams object

Source

Blanchard et al.

See Also

Other example parameter objects: NS_sim

Examples

sim = project(NS_params, effort = c(Industrial = 0, Pelagic = 1,
Beam = 0.5, Otter = 0.5))

plot(sim)

NS_sim Example MizerSim object for the North Sea example

Description

A MizerSim object containing a simulation with historical fishing mortalities from the North Sea,
as created in the tutorial "A Multi-Species Model of the North Sea".

Usage

NS_sim

132 NS_species_params

Format

A MizerSim object

Source

https://sizespectrum.org/mizer/articles/a_multispecies_model_of_the_north_sea.html

See Also

Other example parameter objects: NS_params

Examples

plotBiomass(NS_sim)

NS_species_params Example species parameter set based on the North Sea

Description

This data set is based on species in the North Sea (Blanchard et al.). It is a data.frame that contains
all the necessary information to be used by the MizerParams() constructor. As there is no gear
column, each species is assumed to be fished by a separate gear.

Usage

NS_species_params

Format

A data frame with 12 rows and 7 columns. Each row is a species.

species Name of the species
w_max Maximum size.
w_mat Size at maturity
beta Size preference ratio
sigma Width of the size-preference
R_max Maximum reproduction rate
k_vb The von Bertalanffy k parameter
w_inf The von Bertalanffy asymptotic size

Source

Blanchard et al.

Examples

params <- MizerParams(NS_species_params)

https://sizespectrum.org/mizer/articles/a_multispecies_model_of_the_north_sea.html

NS_species_params_gears 133

NS_species_params_gears

Example species parameter set based on the North Sea with different
gears

Description

This data set is based on species in the North Sea (Blanchard et al.). It is similar to the data set
NS_species_params except that this one has an additional column specifying the fishing gear that
operates on each species.

Usage

NS_species_params_gears

Format

A data frame with 12 rows and 8 columns. Each row is a species.

species Name of the species

w_max Maximum size.

w_mat Size at maturity

beta Size preference ratio

sigma Width of the size-preference

R_max Maximum reproduction rate

k_vb The von Bertalanffy k parameter

w_inf The von Bertalanffy asymptotic size

gear Name of the fishing gear

Source

Blanchard et al.

Examples

params <- MizerParams(NS_species_params_gears)

134 plot,MizerParams,missing-method

plot,MizerParams,missing-method

Summary plot for MizerParams objects

Description

Produces 3 plots in the same window: abundance spectra, feeding level and predation mortality of
each species through time. This method just uses the other plotting functions and puts them all in
one window.

Usage

S4 method for signature 'MizerParams,missing'
plot(x, y, ...)

Arguments

x An object of class MizerParams

y Not used

... For additional arguments see the documentation for plotFeedingLevel(),plotSpectra(),plotPredMort()

Value

A viewport object

See Also

plotting_functions

Other plotting functions: animateSpectra(), plot,MizerSim,missing-method, plotBiomass(),
plotDiet(), plotFMort(), plotFeedingLevel(), plotGrowthCurves(), plotPredMort(), plotSpectra(),
plotYield(), plotYieldGear(), plotting_functions

Examples

params <- NS_params
plot(params)

plot,MizerSim,missing-method 135

plot,MizerSim,missing-method

Summary plot for MizerSim objects

Description

After running a projection, produces 5 plots in the same window: feeding level, abundance spectra,
predation mortality and fishing mortality of each species by size; and biomass of each species
through time. This method just uses the other plotting functions and puts them all in one window.

Usage

S4 method for signature 'MizerSim,missing'
plot(x, y, ...)

Arguments

x An object of class MizerSim

y Not used

... For additional arguments see the documentation for plotBiomass(), plotFeedingLevel(),plotSpectra(),plotPredMort()
and plotFMort().

Value

A viewport object

See Also

plotting_functions

Other plotting functions: animateSpectra(), plot,MizerParams,missing-method, plotBiomass(),
plotDiet(), plotFMort(), plotFeedingLevel(), plotGrowthCurves(), plotPredMort(), plotSpectra(),
plotYield(), plotYieldGear(), plotting_functions

Examples

params <- NS_params
sim <- project(params, effort=1, t_max=20, t_save = 2, progress_bar = FALSE)
plot(sim)

136 plotBiomass

plotBiomass Plot the biomass of species through time

Description

After running a projection, the biomass of each species can be plotted against time. The biomass is
calculated within user defined size limits (min_w, max_w, min_l, max_l, see getBiomass()).

Usage

plotBiomass(
sim,
species = NULL,
start_time,
end_time,
y_ticks = 6,
ylim = c(NA, NA),
total = FALSE,
background = TRUE,
highlight = NULL,
return_data = FALSE,
...

)

plotlyBiomass(
sim,
species = NULL,
start_time,
end_time,
y_ticks = 6,
ylim = c(NA, NA),
total = FALSE,
background = TRUE,
highlight = NULL,
...

)

Arguments

sim An object of class MizerSim

species The species to be selected. Optional. By default all target species are selected.
A vector of species names, or a numeric vector with the species indices, or a
logical vector indicating for each species whether it is to be selected (TRUE) or
not.

start_time The first time to be plotted. Default is the beginning of the time series.

end_time The last time to be plotted. Default is the end of the time series.

plotBiomass 137

y_ticks The approximate number of ticks desired on the y axis

ylim A numeric vector of length two providing lower and upper limits for the y axis.
Use NA to refer to the existing minimum or maximum. Any values below 1e-20
are always cut off.

total A boolean value that determines whether the total biomass from all species is
plotted as well. Default is FALSE.

background A boolean value that determines whether background species are included. Ig-
nored if the model does not contain background species. Default is TRUE.

highlight Name or vector of names of the species to be highlighted.

return_data A boolean value that determines whether the formatted data used for the plot is
returned instead of the plot itself. Default value is FALSE

... Arguments passed on to get_size_range_array

min_w Smallest weight in size range. Defaults to smallest weight in the model.
max_w Largest weight in size range. Defaults to largest weight in the model.
min_l Smallest length in size range. If supplied, this takes precedence over

min_w.
max_l Largest length in size range. If supplied, this takes precedence over

max_w.

Value

A ggplot2 object, unless return_data = TRUE, in which case a data frame with the four variables
’Year’, ’Biomass’, ’Species’, ’Legend’ is returned.

See Also

plotting_functions, getBiomass()

Other plotting functions: animateSpectra(), plot,MizerParams,missing-method, plot,MizerSim,missing-method,
plotDiet(), plotFMort(), plotFeedingLevel(), plotGrowthCurves(), plotPredMort(), plotSpectra(),
plotYield(), plotYieldGear(), plotting_functions

Examples

plotBiomass(NS_sim)
plotBiomass(NS_sim, species = c("Sandeel", "Herring"), total = TRUE)
plotBiomass(NS_sim, start_time = 1980, end_time = 1990)

Returning the data frame
fr <- plotBiomass(NS_sim, return_data = TRUE)
str(fr)

138 plotBiomassObservedVsModel

plotBiomassObservedVsModel

Plotting observed vs. model biomass data

Description

[Experimental] If biomass observations are available for at least some species via the biomass_observed
column in the species parameter data frame, this function plots the biomass of each species in the
model against the observed biomasses. When called with a MizerSim object, the plot will use the
model biomasses predicted for the final time step in the simulation.

Usage

plotBiomassObservedVsModel(
object,
species = NULL,
ratio = TRUE,
log_scale = TRUE,
return_data = FALSE,
labels = TRUE,
show_unobserved = FALSE

)

plotlyBiomassObservedVsModel(
object,
species = NULL,
ratio = FALSE,
log_scale = TRUE,
return_data = FALSE,
show_unobserved = FALSE

)

Arguments

object An object of class MizerParams or MizerSim.

species The species to be included. Optional. By default all observed biomasses will
be included. A vector of species names, or a numeric vector with the species
indices, or a logical vector indicating for each species whether it is to be included
(TRUE) or not.

ratio Whether to plot model biomass vs. observed biomass (FALSE) or the ratio of
model : observed biomass (TRUE). Default is TRUE.

log_scale Whether to plot on the log10 scale (TRUE) or not (FALSE). For the non-ratio
plot this applies for both axes, for the ratio plot only the x-axis is on the log10
scale. Default is TRUE.

return_data Whether to return the data frame for the plot (TRUE) or not (FALSE). Default
is FALSE.

plotBiomassObservedVsModel 139

labels Whether to show text labels for each species (TRUE) or not (FALSE). Default
is TRUE.

show_unobserved

Whether to include also species for which no biomass observation is available.
If TRUE, these species will be shown as if their observed biomass was equal to
the model biomass.

Details

Before you can use this function you will need to have added a biomass_observed column to your
model which gives the observed biomass in grams. For species for which you have no observed
biomass, you should set the value in the biomass_observed column to 0 or NA.

Biomass observations usually only include individuals above a certain size. This size should be
specified in a biomass_cutoff column of the species parameter data frame. If this is missing, it is
assumed that all sizes are included in the observed biomass, i.e., it includes larval biomass.

The total relative error is shown in the caption of the plot, calculated by

TRE =
∑
i

|1− ratioi|

where ratioi is the ratio of model biomass / observed biomass for species i.

Value

A ggplot2 object with the plot of model biomass by species compared to observed biomass. If
return_data = TRUE, the data frame used to create the plot is returned instead of the plot.

Examples

create an example
params <- NS_params
species_params(params)$biomass_observed <-

c(0.8, 61, 12, 35, 1.6, NA, 10, 7.6, 135, 60, 30, NA)
species_params(params)$biomass_cutoff <- 10
params <- calibrateBiomass(params)

Plot with default options
plotBiomassObservedVsModel(params, ratio = FALSE)

Plot including also species without observations
plotBiomassObservedVsModel(params, show_unobserved = TRUE, ratio = FALSE)

Show the ratio instead
plotBiomassObservedVsModel(params)

140 plotDiet

plotDiet Plot diet, resolved by prey species, as function of predator at size.

Description

[Experimental] Plots the proportions with which each prey species contributes to the total biomass
consumed by the specified predator species, as a function of the predator’s size. These proportions
are obtained with getDiet().

Usage

plotDiet(object, species = NULL, return_data = FALSE)

Arguments

object An object of class MizerSim or MizerParams.

species The species to be selected. Optional. By default all target species are selected.
A vector of species names, or a numeric vector with the species indices, or a
logical vector indicating for each species whether it is to be selected (TRUE) or
not.

return_data A boolean value that determines whether the formatted data used for the plot is
returned instead of the plot itself. Default value is FALSE

Details

Prey species that contribute less than 1 permille to the diet are suppressed in the plot.

If more than one predator species is selected, then the plot contains one facet for each species.

Value

A ggplot2 object, unless return_data = TRUE, in which case a data frame with the four variables
’Predator’, ’w’, ’Proportion’, ’Prey’ is returned.

See Also

getDiet()

Other plotting functions: animateSpectra(), plot,MizerParams,missing-method, plot,MizerSim,missing-method,
plotBiomass(), plotFMort(), plotFeedingLevel(), plotGrowthCurves(), plotPredMort(),
plotSpectra(), plotYield(), plotYieldGear(), plotting_functions

Examples

plotDiet(NS_params, species = "Cod")
plotDiet(NS_params, species = 5:9)

Returning the data frame
fr <- plotDiet(NS_params, species = "Cod", return_data = TRUE)

plotFeedingLevel 141

str(fr)

plotFeedingLevel Plot the feeding level of species by size

Description

After running a projection, plot the feeding level of each species by size. The feeding level is
averaged over the specified time range (a single value for the time range can be used).

Usage

plotFeedingLevel(
object,
species = NULL,
time_range,
highlight = NULL,
all.sizes = FALSE,
include_critical = FALSE,
return_data = FALSE,
...

)

plotlyFeedingLevel(
object,
species = NULL,
time_range,
highlight = NULL,
include_critical,
...

)

Arguments

object An object of class MizerSim or MizerParams.

species The species to be selected. Optional. By default all target species are selected.
A vector of species names, or a numeric vector with the species indices, or a
logical vector indicating for each species whether it is to be selected (TRUE) or
not.

time_range The time range (either a vector of values, a vector of min and max time, or
a single value) to average the abundances over. Default is the final time step.
Ignored when called with a MizerParams object.

highlight Name or vector of names of the species to be highlighted.

all.sizes If TRUE, then feeding level is plotted also for sizes outside a species’ size range.
Default FALSE.

142 plotFeedingLevel

include_critical

If TRUE, then the critical feeding level is also plotted. Default FALSE.

return_data A boolean value that determines whether the formatted data used for the plot is
returned instead of the plot itself. Default value is FALSE

... Other arguments (currently unused)

Details

When called with a MizerSim object, the feeding level is averaged over the specified time range
(a single value for the time range can be used to plot a single time step). When called with a
MizerParams object the initial feeding level is plotted.

If include_critical = TRUE then the critical feeding level (the feeding level at which the intake
just covers the metabolic cost) is also plotted, with a thinner line. This line should always stay below
the line of the actual feeding level, because the species would stop growing at any point where the
feeding level drops to the critical feeding level.

Value

A ggplot2 object, unless return_data = TRUE, in which case a data frame with the variables ’w’,
’value’ and ’Species’ is returned. If also include_critical = TRUE then the data frame contains a
fourth variable ’Type’ that distinguishes between ’actual’ and ’critical’ feeding level.

See Also

plotting_functions, getFeedingLevel()

Other plotting functions: animateSpectra(), plot,MizerParams,missing-method, plot,MizerSim,missing-method,
plotBiomass(), plotDiet(), plotFMort(), plotGrowthCurves(), plotPredMort(), plotSpectra(),
plotYield(), plotYieldGear(), plotting_functions

Examples

params <- NS_params
sim <- project(params, effort=1, t_max=20, t_save = 2, progress_bar = FALSE)
plotFeedingLevel(sim)
plotFeedingLevel(sim, time_range = 10:20, species = c("Cod", "Herring"),

include_critical = TRUE)

Returning the data frame
fr <- plotFeedingLevel(sim, return_data = TRUE)
str(fr)

plotFMort 143

plotFMort Plot total fishing mortality of each species by size

Description

After running a projection, plot the total fishing mortality of each species by size. The total fishing
mortality is averaged over the specified time range (a single value for the time range can be used to
plot a single time step).

Usage

plotFMort(
object,
species = NULL,
time_range,
all.sizes = FALSE,
highlight = NULL,
return_data = FALSE,
...

)

plotlyFMort(object, species = NULL, time_range, highlight = NULL, ...)

Arguments

object An object of class MizerSim or MizerParams.

species The species to be selected. Optional. By default all target species are selected.
A vector of species names, or a numeric vector with the species indices, or a
logical vector indicating for each species whether it is to be selected (TRUE) or
not.

time_range The time range (either a vector of values, a vector of min and max time, or
a single value) to average the abundances over. Default is the final time step.
Ignored when called with a MizerParams object.

all.sizes If TRUE, then fishing mortality is plotted also for sizes outside a species’ size
range. Default FALSE.

highlight Name or vector of names of the species to be highlighted.

return_data A boolean value that determines whether the formatted data used for the plot is
returned instead of the plot itself. Default value is FALSE

... Other arguments (currently unused)

Value

A ggplot2 object, unless return_data = TRUE, in which case a data frame with the three variables
’w’, ’value’, ’Species’ is returned.

144 plotGrowthCurves

See Also

plotting_functions, getFMort()

Other plotting functions: animateSpectra(), plot,MizerParams,missing-method, plot,MizerSim,missing-method,
plotBiomass(), plotDiet(), plotFeedingLevel(), plotGrowthCurves(), plotPredMort(),
plotSpectra(), plotYield(), plotYieldGear(), plotting_functions

Examples

params <- NS_params
sim <- project(params, effort=1, t_max=20, t_save = 2, progress_bar = FALSE)
plotFMort(sim)
plotFMort(sim, highlight = c("Cod", "Haddock"))

Returning the data frame
fr <- plotFMort(sim, return_data = TRUE)
str(fr)

plotGrowthCurves Plot growth curves

Description

The growth curves represent the average age of all the living fish of a species as a function of their
size. So it would be natural to plot size on the x-axis. But to follow the usual convention from
age-based models, we plot size on the y-axis and age on the x-axis.

Usage

plotGrowthCurves(
object,
species = NULL,
max_age = 20,
percentage = FALSE,
species_panel = FALSE,
highlight = NULL,
size_at_age = NULL,
return_data = FALSE,
...

)

plotlyGrowthCurves(
object,
species = NULL,
max_age = 20,
percentage = FALSE,
species_panel = FALSE,

plotGrowthCurves 145

highlight = NULL
)

Arguments

object MizerSim or MizerParams object. If given a MizerSim object, uses the growth
rates at the final time of a simulation to calculate the size at age. If given a
MizerParams object, uses the initial growth rates instead.

species The species to be selected. Optional. By default all target species are selected.
A vector of species names, or a numeric vector with the species indices, or a
logical vector indicating for each species whether it is to be selected (TRUE) or
not.

max_age The age up to which to run the growth curve. Default is 20.

percentage Boolean value. If TRUE, the size is given as a percentage of the maximal size.

species_panel If TRUE (default), and percentage = FALSE, display all species as facets. Oth-
erwise puts all species into a single panel.

highlight Name or vector of names of the species to be highlighted.

size_at_age A data frame with observed size at age data to be plotted on top of growth curve
graphs. Should contain columns species (species name as used in the model),
age (in years) and either weight (in grams) or length (in cm). If both weight
and length are provided, only weight is used.

return_data A boolean value that determines whether the formatted data used for the plot is
returned instead of the plot itself. Default value is FALSE

... Other arguments (currently unused)

Details

In each panel for a single species, a horizontal line is included that indicate the maturity size of the
species and a vertical line indicating its maturity age.

If size at age data is passed via the size_at_age argument, this is plotted on top of the growth
curve. When comparing this to the growth curves, you need to remember that the growth curves
should only represent the average age at each size. So a scatter in the x-direction around the curve
is to be expected.

For legacy reasons, if the species parameters contain the variables a and b for length to weight con-
version and the von Bertalanffy parameter k_vb, w_inf (and optionally t0), then the von Bertalanffy
growth curve is superimposed in black. This was implemented before we understood that the von
Bertalanffy curves (which approximates the average length at each age) should not be compared to
the mizer growth curves (which approximate the average age at each length).

Value

A ggplot2 object

146 plotM2

See Also

plotting_functions

Other plotting functions: animateSpectra(), plot,MizerParams,missing-method, plot,MizerSim,missing-method,
plotBiomass(), plotDiet(), plotFMort(), plotFeedingLevel(), plotPredMort(), plotSpectra(),
plotYield(), plotYieldGear(), plotting_functions

Examples

params <- NS_params
sim <- project(params, effort=1, t_max=20, t_save = 2, progress_bar = FALSE)
plotGrowthCurves(sim, percentage = TRUE)
plotGrowthCurves(sim, species = "Cod", max_age = 24)
plotGrowthCurves(sim, species_panel = TRUE)

Returning the data frame
fr <- plotGrowthCurves(sim, return_data = TRUE)
str(fr)

plotM2 Alias for plotPredMort()

Description

[Deprecated] An alias provided for backward compatibility with mizer version <= 1.0

Usage

plotM2(
object,
species = NULL,
time_range,
all.sizes = FALSE,
highlight = NULL,
return_data = FALSE,
...

)

Arguments

object An object of class MizerSim or MizerParams.

species The species to be selected. Optional. By default all target species are selected.
A vector of species names, or a numeric vector with the species indices, or a
logical vector indicating for each species whether it is to be selected (TRUE) or
not.

plotPredMort 147

time_range The time range (either a vector of values, a vector of min and max time, or
a single value) to average the abundances over. Default is the final time step.
Ignored when called with a MizerParams object.

all.sizes If TRUE, then predation mortality is plotted also for sizes outside a species’ size
range. Default FALSE.

highlight Name or vector of names of the species to be highlighted.

return_data A boolean value that determines whether the formatted data used for the plot is
returned instead of the plot itself. Default value is FALSE

... Other arguments (currently unused)

Value

A ggplot2 object, unless return_data = TRUE, in which case a data frame with the three variables
’w’, ’value’, ’Species’ is returned.

See Also

plotting_functions, getPredMort()

Other plotting functions: animateSpectra(), plot,MizerParams,missing-method, plot,MizerSim,missing-method,
plotBiomass(), plotDiet(), plotFMort(), plotFeedingLevel(), plotGrowthCurves(), plotSpectra(),
plotYield(), plotYieldGear(), plotting_functions

Examples

params <- NS_params
sim <- project(params, effort=1, t_max=20, t_save = 2, progress_bar = FALSE)
plotPredMort(sim)
plotPredMort(sim, time_range = 10:20)

Returning the data frame
fr <- plotPredMort(sim, return_data = TRUE)
str(fr)

plotPredMort Plot predation mortality rate of each species against size

Description

After running a projection, plot the predation mortality rate of each species by size. The mortality
rate is averaged over the specified time range (a single value for the time range can be used to plot
a single time step).

148 plotPredMort

Usage

plotPredMort(
object,
species = NULL,
time_range,
all.sizes = FALSE,
highlight = NULL,
return_data = FALSE,
...

)

plotlyPredMort(object, species = NULL, time_range, highlight = NULL, ...)

Arguments

object An object of class MizerSim or MizerParams.

species The species to be selected. Optional. By default all target species are selected.
A vector of species names, or a numeric vector with the species indices, or a
logical vector indicating for each species whether it is to be selected (TRUE) or
not.

time_range The time range (either a vector of values, a vector of min and max time, or
a single value) to average the abundances over. Default is the final time step.
Ignored when called with a MizerParams object.

all.sizes If TRUE, then predation mortality is plotted also for sizes outside a species’ size
range. Default FALSE.

highlight Name or vector of names of the species to be highlighted.

return_data A boolean value that determines whether the formatted data used for the plot is
returned instead of the plot itself. Default value is FALSE

... Other arguments (currently unused)

Value

A ggplot2 object, unless return_data = TRUE, in which case a data frame with the three variables
’w’, ’value’, ’Species’ is returned.

See Also

plotting_functions, getPredMort()

Other plotting functions: animateSpectra(), plot,MizerParams,missing-method, plot,MizerSim,missing-method,
plotBiomass(), plotDiet(), plotFMort(), plotFeedingLevel(), plotGrowthCurves(), plotSpectra(),
plotYield(), plotYieldGear(), plotting_functions

Examples

params <- NS_params
sim <- project(params, effort=1, t_max=20, t_save = 2, progress_bar = FALSE)
plotPredMort(sim)

plotSpectra 149

plotPredMort(sim, time_range = 10:20)

Returning the data frame
fr <- plotPredMort(sim, return_data = TRUE)
str(fr)

plotSpectra Plot the abundance spectra

Description

Plots the number density multiplied by a power of the weight, with the power specified by the power
argument.

Usage

plotSpectra(
object,
species = NULL,
time_range,
geometric_mean = FALSE,
wlim = c(NA, NA),
ylim = c(NA, NA),
power = 1,
biomass = TRUE,
total = FALSE,
resource = TRUE,
background = TRUE,
highlight = NULL,
return_data = FALSE,
...

)

plotlySpectra(
object,
species = NULL,
time_range,
geometric_mean = FALSE,
wlim = c(NA, NA),
ylim = c(NA, NA),
power = 1,
biomass = TRUE,
total = FALSE,
resource = TRUE,
background = TRUE,
highlight = NULL,
...

)

150 plotSpectra

Arguments

object An object of class MizerSim or MizerParams.

species The species to be selected. Optional. By default all target species are selected.
A vector of species names, or a numeric vector with the species indices, or a
logical vector indicating for each species whether it is to be selected (TRUE) or
not.

time_range The time range (either a vector of values, a vector of min and max time, or
a single value) to average the abundances over. Default is the final time step.
Ignored when called with a MizerParams object.

geometric_mean [Experimental] If TRUE then the average of the abundances over the time range
is a geometric mean instead of the default arithmetic mean.

wlim A numeric vector of length two providing lower and upper limits for the w axis.
Use NA to refer to the existing minimum or maximum.

ylim A numeric vector of length two providing lower and upper limits for the y axis.
Use NA to refer to the existing minimum or maximum. Any values below 1e-20
are always cut off.

power The abundance is plotted as the number density times the weight raised to power.
The default power = 1 gives the biomass density, whereas power = 2 gives the
biomass density with respect to logarithmic size bins.

biomass [Deprecated] Only used if power argument is missing. Then biomass = TRUE
is equivalent to power=1 and biomass = FALSE is equivalent to power=0

total A boolean value that determines whether the total over all species in the system
is plotted as well. Note that even if the plot only shows a selection of species,
the total is including all species. Default is FALSE.

resource A boolean value that determines whether resource is included. Default is TRUE.

background A boolean value that determines whether background species are included. Ig-
nored if the model does not contain background species. Default is TRUE.

highlight Name or vector of names of the species to be highlighted.

return_data A boolean value that determines whether the formatted data used for the plot is
returned instead of the plot itself. Default value is FALSE

... Other arguments (currently unused)

Details

When called with a MizerSim object, the abundance is averaged over the specified time range
(a single value for the time range can be used to plot a single time step). When called with a
MizerParams object the initial abundance is plotted.

Value

A ggplot2 object, unless return_data = TRUE, in which case a data frame with the four variables
’w’, ’value’, ’Species’, ’Legend’ is returned.

plotting_functions 151

See Also

plotting_functions

Other plotting functions: animateSpectra(), plot,MizerParams,missing-method, plot,MizerSim,missing-method,
plotBiomass(), plotDiet(), plotFMort(), plotFeedingLevel(), plotGrowthCurves(), plotPredMort(),
plotYield(), plotYieldGear(), plotting_functions

Examples

params <- NS_params
sim <- project(params, effort=1, t_max=20, t_save = 2, progress_bar = FALSE)
plotSpectra(sim)
plotSpectra(sim, wlim = c(1e-6, NA))
plotSpectra(sim, time_range = 10:20)
plotSpectra(sim, time_range = 10:20, power = 0)
plotSpectra(sim, species = c("Cod", "Herring"), power = 1)

Returning the data frame
fr <- plotSpectra(sim, return_data = TRUE)
str(fr)

plotting_functions Description of the plotting functions

Description

Mizer provides a range of plotting functions for visualising the results of running a simulation,
stored in a MizerSim object, or the initial state stored in a MizerParams object. Every plotting
function exists in two versions, plotSomething and plotlySomething. The plotly version is more
interactive but not suitable for inclusion in documents.

Details

This table shows the available plotting functions.

Plot Description
plotBiomass() Plots the total biomass of each species through time. A time range to be plotted can be specified. The size range of the community can be specified in the same way as for getBiomass().
plotSpectra() Plots the abundance (biomass or numbers) spectra of each species and the background community. It is possible to specify a minimum size which is useful for truncating the plot.
plotFeedingLevel() Plots the feeding level of each species against size.
plotPredMort() Plots the predation mortality of each species against size.
plotFMort() Plots the total fishing mortality of each species against size.
plotYield() Plots the total yield of each species across all fishing gears against time.
plotYieldGear() Plots the total yield of each species by gear against time.
plotDiet() Plots the diet composition at size for a given predator species.
plotGrowthCurves() Plots the size as a function of age.
plot() Produces 5 plots (plotFeedingLevel(), plotBiomass(), plotPredMort(), plotFMort() and plotSpectra()) in the same window.

152 plotting_functions

These functions use the ggplot2 package and return the plot as a ggplot object. This means that
you can manipulate the plot further after its creation using the ggplot grammar of graphics. The
corresponding function names with plot replaced by plotly produce interactive plots with the
help of the plotly package.

While most plot functions take their data from a MizerSim object, some of those that make plots
representing data at a single time can also take their data from the initial values in a MizerParams
object.

Where plots show results for species, the line colour and line type for each species are specified
by the linecolour and linetype slots in the MizerParams object. These were either taken from
a default palette hard-coded into emptyParams() or they were specified by the user in the species
parameters dataframe used to set up the MizerParams object. The linecolour and linetype slots
hold named vectors, named by the species. They can be overwritten by the user at any time.

Most plots allow the user to select to show only a subset of species, specified as a vector in the
species argument to the plot function.

The ordering of the species in the legend is the same as the ordering in the species parameter data
frame.

See Also

summary_functions, indicator_functions

Other plotting functions: animateSpectra(), plot,MizerParams,missing-method, plot,MizerSim,missing-method,
plotBiomass(), plotDiet(), plotFMort(), plotFeedingLevel(), plotGrowthCurves(), plotPredMort(),
plotSpectra(), plotYield(), plotYieldGear()

Examples

sim <- NS_sim

Some example plots
plotFeedingLevel(sim)

Plotting only a subset of species
plotFeedingLevel(sim, species = c("Cod", "Herring"))

Specifying new colours and linetypes for some species
sim@params@linetype["Cod"] <- "dashed"
sim@params@linecolour["Cod"] <- "red"
plotFeedingLevel(sim, species = c("Cod", "Herring"))

Manipulating the plot
library(ggplot2)
p <- plotFeedingLevel(sim)
p <- p + geom_hline(aes(yintercept = 0.7))
p <- p + theme_bw()
p

plotYield 153

plotYield Plot the total yield of species through time

Description

After running a projection, the total yield of each species across all fishing gears can be plotted
against time. The yield is obtained with getYield().

Usage

plotYield(
sim,
sim2,
species = NULL,
total = FALSE,
log = TRUE,
highlight = NULL,
return_data = FALSE,
...

)

plotlyYield(
sim,
sim2,
species = NULL,
total = FALSE,
log = TRUE,
highlight = NULL,
...

)

Arguments

sim An object of class MizerSim

sim2 An optional second object of class MizerSim. If this is provided its yields will
be shown on the same plot in bolder lines.

species The species to be selected. Optional. By default all target species are selected.
A vector of species names, or a numeric vector with the species indices, or a
logical vector indicating for each species whether it is to be selected (TRUE) or
not.

total A boolean value that determines whether the total over all species in the system
is plotted as well. Note that even if the plot only shows a selection of species,
the total is including all species. Default is FALSE.

log Boolean whether yield should be plotted on a logarithmic axis. Defaults to true.

highlight Name or vector of names of the species to be highlighted.

154 plotYieldGear

return_data A boolean value that determines whether the formatted data used for the plot is
returned instead of the plot itself. Default value is FALSE

... Other arguments (currently unused)

Value

A ggplot2 object, unless return_data = TRUE, in which case a data frame with the three variables
’Year’, ’Yield’, ’Species’ is returned.

See Also

plotting_functions, getYield()

Other plotting functions: animateSpectra(), plot,MizerParams,missing-method, plot,MizerSim,missing-method,
plotBiomass(), plotDiet(), plotFMort(), plotFeedingLevel(), plotGrowthCurves(), plotPredMort(),
plotSpectra(), plotYieldGear(), plotting_functions

Examples

params <- NS_params
sim <- project(params, effort = 1, t_max = 20, t_save = 0.2, progress_bar = FALSE)
plotYield(sim)
plotYield(sim, species = c("Cod", "Herring"), total = TRUE)

Comparing with yield from twice the effort
sim2 <- project(params, effort=2, t_max=20, t_save = 0.2, progress_bar = FALSE)
plotYield(sim, sim2, species = c("Cod", "Herring"), log = FALSE)

Returning the data frame
fr <- plotYield(sim, return_data = TRUE)
str(fr)

plotYieldGear Plot the total yield of each species by gear through time

Description

After running a projection, the total yield of each species by fishing gear can be plotted against time.

Usage

plotYieldGear(
sim,
species = NULL,
gears = NULL,
total = FALSE,
highlight = NULL,
return_data = FALSE,

plotYieldGear 155

...
)

plotlyYieldGear(sim, species = NULL, total = FALSE, highlight = NULL, ...)

Arguments

sim An object of class MizerSim

species The species to be selected. Optional. By default all target species are selected.
A vector of species names, or a numeric vector with the species indices, or a
logical vector indicating for each species whether it is to be selected (TRUE) or
not.

gears A vector of gear names to be included in the plot. Default is all gears.

total A boolean value that determines whether the total over all species in the system
is plotted as well. Note that even if the plot only shows a selection of species,
the total is including all species. Default is FALSE.

highlight Name or vector of names of the species to be highlighted.

return_data A boolean value that determines whether the formatted data used for the plot is
returned instead of the plot itself. Default value is FALSE

... Other arguments (currently unused)

Details

This plot is pretty easy to do by hand. It just gets the biomass using the getYieldGear() method
and plots using the ggplot2 package. You can then fiddle about with colours and linetypes etc. Just
look at the source code for details.

Value

A ggplot2 object, unless return_data = TRUE, in which case a data frame with the four variables
’Year’, ’Yield’, ’Species’ and ’Gear’ is returned.

See Also

plotting_functions, getYieldGear()

Other plotting functions: animateSpectra(), plot,MizerParams,missing-method, plot,MizerSim,missing-method,
plotBiomass(), plotDiet(), plotFMort(), plotFeedingLevel(), plotGrowthCurves(), plotPredMort(),
plotSpectra(), plotYield(), plotting_functions

Examples

params <- NS_params
sim <- project(params, effort=1, t_max=20, t_save = 0.2, progress_bar = FALSE)
plotYieldGear(sim)
plotYieldGear(sim, species = c("Cod", "Herring"), total = TRUE)

Returning the data frame
fr <- plotYieldGear(sim, return_data = TRUE)

156 plotYieldObservedVsModel

str(fr)

plotYieldObservedVsModel

Plotting observed vs. model yields

Description

[Experimental] If yield observations are available for at least some species via the yield_observed
column in the species parameter data frame, this function plots the yield of each species in the model
against the observed yields. When called with a MizerSim object, the plot will use the model yields
predicted for the final time step in the simulation.

Usage

plotYieldObservedVsModel(
object,
species = NULL,
ratio = FALSE,
log_scale = TRUE,
return_data = FALSE,
labels = TRUE,
show_unobserved = FALSE

)

plotlyYieldObservedVsModel(
object,
species = NULL,
ratio = FALSE,
log_scale = TRUE,
return_data = FALSE,
show_unobserved = FALSE

)

Arguments

object An object of class MizerParams or MizerSim.

species The species to be included. Optional. By default all observed yields will be
included. A vector of species names, or a numeric vector with the species in-
dices, or a logical vector indicating for each species whether it is to be included
(TRUE) or not.

ratio Whether to plot model yield vs. observed yield (FALSE) or the ratio of model :
observed yield (TRUE). Default is FALSE.

log_scale Whether to plot on the log10 scale (TRUE) or not (FALSE). For the non-ratio
plot this applies for both axes, for the ratio plot only the x-axis is on the log10
scale. Default is TRUE.

plotYieldObservedVsModel 157

return_data Whether to return the data frame for the plot (TRUE) or not (FALSE). Default
is FALSE.

labels Whether to show text labels for each species (TRUE) or not (FALSE). Default
is TRUE.

show_unobserved

Whether to include also species for which no yield observation is available. If
TRUE, these species will be shown as if their observed yield was equal to the
model yield.

Details

Before you can use this function you will need to have added a yield_observed column to your
model which gives the observed yield in grams per year. For species for which you have no observed
yield, you should set the value in the yield_observed column to 0 or NA.

The total relative error is shown in the caption of the plot, calculated by

TRE =
∑
i

|1− ratioi|

where ratioi is the ratio of model yield / observed yield for species i.

Value

A ggplot2 object with the plot of model yield by species compared to observed yield. If return_data
= TRUE, the data frame used to create the plot is returned instead of the plot.

Examples

create an example
params <- NS_params
species_params(params)$yield_observed <-

c(0.8, 61, 12, 35, 1.6, NA, 10, 7.6, 135, 60, 30, NA)
params <- calibrateYield(params)

Plot with default options
plotYieldObservedVsModel(params)

Plot including also species without observations
plotYieldObservedVsModel(params, show_unobserved = TRUE)

Show the ratio instead
plotYieldObservedVsModel(params, ratio = TRUE)

158 power_law_pred_kernel

power_law_pred_kernel Power-law predation kernel

Description

This predation kernel is a power-law, with sigmoidal cut-offs at large and small predator/prey mass
ratios.

Usage

power_law_pred_kernel(
ppmr,
kernel_exp,
kernel_l_l,
kernel_u_l,
kernel_l_r,
kernel_u_r

)

Arguments

ppmr A vector of predator/prey size ratios at which to evaluate the predation kernel.

kernel_exp The exponent of the power law

kernel_l_l The location of the left, rising sigmoid

kernel_u_l The shape of the left, rising sigmoid

kernel_l_r The location of the right, falling sigmoid

kernel_u_r The shape of the right, falling sigmoid

Details

The return value is calculated as

ppmr^kernel_exp / (1 + (exp(kernel_l_l) / ppmr)^kernel_u_l) / (1 + (ppmr / exp(kernel_l_r))^kernel_u_r)

The parameters need to be given as columns in the species parameter dataframe.

Value

A vector giving the value of the predation kernel at each of the predator/prey mass ratios in the ppmr
argument.

See Also

setPredKernel()

Other predation kernel: box_pred_kernel(), lognormal_pred_kernel(), truncated_lognormal_pred_kernel()

project 159

Examples

params <- NS_params
Set all required paramters before changing kernel type
species_params(params)["Cod", "kernel_exp"] <- -0.8
species_params(params)["Cod", "kernel_l_l"] <- 4.6
species_params(params)["Cod", "kernel_u_l"] <- 3
species_params(params)["Cod", "kernel_l_r"] <- 12.5
species_params(params)["Cod", "kernel_u_r"] <- 4.3
species_params(params)["Cod", "kernel_type"] <- "power_law"
plot(w_full(params), getPredKernel(params)["Cod", 10,], type="l", log="x")

project Project size spectrum forward in time

Description

Runs the size spectrum model simulation. The function returns an object of type MizerSim that can
then be explored with a range of summary_functions, indicator_functions and plotting_functions.

Usage

project(
object,
effort,
t_max = 100,
dt = 0.1,
t_save = 1,
t_start = 0,
initial_n,
initial_n_pp,
append = TRUE,
progress_bar = TRUE,
...

)

Arguments

object Either a MizerParams object or a MizerSim object (which contains a MizerParams
object).

effort The effort of each fishing gear through time. See notes below.

t_max The number of years the projection runs for. The default value is 100. This
argument is ignored if an array is used for the effort argument. See notes
below.

dt Time step of the solver. The default value is 0.1.

t_save The frequency with which the output is stored. The default value is 1. This
argument is ignored if an array is used for the effort argument. See notes
below.

160 project

t_start The the year of the start of the simulation. The simulation will cover the period
from t_start to t_start + t_max. Defaults to 0. Ignored if an array is used
for the effort argument or a MizerSim for the object argument.

initial_n [Deprecated] The initial abundances of species. Instead of using this argument
you should set initialN(params) to the desired value.

initial_n_pp [Deprecated] The initial abundances of resource. Instead of using this argument
you should set initialNResource(params) to the desired value.

append A boolean that determines whether the new simulation results are appended to
the previous ones. Only relevant if object is a MizerSim object. Default =
TRUE.

progress_bar Either a boolean value to determine whether a progress bar should be shown in
the console, or a shiny Progress object to implement a progress bar in a shiny
app.

... Other arguments will be passed to rate functions.

Value

An object of class MizerSim.

Note

The effort argument specifies the level of fishing effort during the simulation. If it is not supplied,
the initial effort stored in the params object is used. The effort can be specified in four different
ways:

• A single numeric value. This specifies the effort of all fishing gears which is constant through
time (i.e. all the gears have the same constant effort).

• A named vector whose names match with existing gear names. The values in the vector specify
the constant fishing effort for those fishing gears, i.e. the effort is constant through time. The
effort for gears that are not included in the effort vector is set to 0.

• A numerical vector which has the same length as the number of fishing gears. The values in
the vector specify the constant fishing effort of each of the fishing gears, with the ordering
assumed to be the same as in the MizerParams object.

• A numerical array with dimensions time x gear. This specifies the fishing effort of each gear
at each time step. The first dimension, time, must be named numerically and increasing. The
second dimension of the array must be named and the names must correspond to the gear
names in the MizerParams object. The value for the effort for a particular time is used during
the interval from that time to the next time in the array.

If effort is specified as an array then the smallest time in the array is used as the initial time for the
simulation. Otherwise the initial time is set to the final time of the previous simulation if object
is a MizerSim object or to t_start otherwise. Also, if the effort is an array then the t_max and
t_save arguments are ignored and the simulation times will be taken from the effort array.

If the object argument is of class MizerSim then the initial values for the simulation are taken
from the final values in the MizerSim object and the corresponding arguments to this function will
be ignored.

projectToSteady 161

Examples

params <- NS_params
With constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
With constant fishing effort which is different for each gear
effort <- c(Industrial = 0, Pelagic = 1, Beam = 0.5, Otter = 0.5)
sim <- project(params, t_max = 20, effort = effort)
With fishing effort that varies through time for each gear
gear_names <- c("Industrial","Pelagic","Beam","Otter")
times <- seq(from = 1, to = 10, by = 1)
effort_array <- array(NA, dim = c(length(times), length(gear_names)),

dimnames = list(time = times, gear = gear_names))
effort_array[,"Industrial"] <- 0.5
effort_array[,"Pelagic"] <- seq(from = 1, to = 2, length = length(times))
effort_array[,"Beam"] <- seq(from = 1, to = 0, length = length(times))
effort_array[,"Otter"] <- seq(from = 1, to = 0.5, length = length(times))
sim <- project(params, effort = effort_array)

projectToSteady Project to steady state

Description

[Experimental]

Run the full dynamics, as in project(), but stop once the change has slowed down sufficiently, in
the sense that the distance between states at successive time steps is less than tol. You determine
how the distance is calculated.

Usage

projectToSteady(
params,
effort = params@initial_effort,
distance_func = distanceSSLogN,
t_per = 1.5,
t_max = 100,
dt = 0.1,
tol = 0.1 * t_per,
return_sim = FALSE,
progress_bar = TRUE,
...

)

Arguments

params A MizerParams object

162 project_simple

effort The fishing effort to be used throughout the simulation. This must be a vector
or list with one named entry per fishing gear.

distance_func A function that will be called after every t_per years with both the previous and
the new state and that should return a number that in some sense measures the
distance between the states. By default this uses the function distanceSSLogN()
that you can use as a model for your own distance function.

t_per The simulation is broken up into shorter runs of t_per years, after each of which
we check for convergence. Default value is 1.5. This should be chosen as an odd
multiple of the timestep dt in order to be able to detect period 2 cycles.

t_max The maximum number of years to run the simulation. Default is 100.

dt The time step to use in project().

tol The simulation stops when the relative change in the egg production RDI over
t_per years is less than tol for every species.

return_sim If TRUE, the function returns the MizerSim object holding the result of the
simulation run, saved at intervals of t_per. If FALSE (default) the function
returns a MizerParams object with the "initial" slots set to the steady state.

progress_bar A shiny progress object to implement a progress bar in a shiny app. Default
FALSE.

... Further arguments will be passed on to your distance function.

Value

A MizerParams or a MizerSim object

See Also

distanceSSLogN(), distanceMaxRelRDI()

project_simple Project abundances by a given number of time steps into the future

Description

This is an internal function used by the user-facing project() function. It is of potential interest
only to mizer extension authors.

Usage

project_simple(
params,
n = params@initial_n,
n_pp = params@initial_n_pp,
n_other = params@initial_n_other,
effort = params@initial_effort,
t = 0,

project_simple 163

dt = 0.1,
steps,
resource_dynamics_fn = get(params@resource_dynamics),
other_dynamics_fns = lapply(params@other_dynamics, get),
rates_fns = lapply(params@rates_funcs, get),
...

)

Arguments

params A MizerParams object.

n An array (species x size) with the number density at start of simulation.

n_pp A vector (size) with the resource number density at start of simulation.

n_other A named list with the abundances of other components at start of simulation.

effort The fishing effort to be used throughout the simulation. This must be a vector
or list with one named entry per fishing gear.

t Time at the start of the simulation.

dt Size of time step.

steps The number of time steps by which to project.
resource_dynamics_fn

The function for the resource dynamics. See Details.
other_dynamics_fns

List with the functions for the dynamics of the other components. See Details.

rates_fns List with the functions for calculating the rates. See Details.

... Other arguments that are passed on to the rate functions.

Details

The function does not check its arguments because it is meant to be as fast as possible to allow it to
be used in a loop. For example, it is called in project() once for every saved value. The function
also does not save its intermediate results but only returns the result at time t + dt * steps. During
this time it uses the constant fishing effort effort.

The functional arguments can be calculated from slots in the params object with

resource_dynamics_fn <- get(params@resource_dynamics)
other_dynamics_fns <- lapply(params@other_dynamics, get)
rates_fns <- lapply(params@rates_funcs, get)

The reason the function does not do that itself is to shave 20 microseconds of its running time,
which pays when the function is called hundreds of times in a row.

This function is also used in steady(). In between calls to project_simple() the steady()
function checks whether the values are still changing significantly, so that it can stop when a steady
state has been approached. Mizer extension packages might have a similar need to run a simulation
repeatedly for short periods to run some other code in between. Because this code may want to use
the values of the rates at the final time step, these too are included in the returned list.

164 removeSpecies

Value

List with the final values of n, n_pp and n_other, rates.

removeSpecies Remove species

Description

[Experimental]

This function simply removes all entries from the MizerParams object that refer to the selected
species. It does not recalculate the steady state for the remaining species or retune their reproductive
efficiency.

Usage

removeSpecies(params, species)

Arguments

params A mizer params object for the original system.

species The species to be removed. A vector of species names, or a numeric vector of
species indices, or a logical vector indicating for each species whether it is to be
removed (TRUE) or not.

Value

An object of type MizerParams

Examples

params <- NS_params
species_params(params)$species
params <- removeSpecies(params, c("Cod", "Haddock"))
species_params(params)$species

renameSpecies 165

renameSpecies Rename species

Description

[Experimental]
Changes the names of species in a MizerParams object. This involves for example changing the
species dimension names of rate arrays appropriately.

Usage

renameSpecies(params, replace)

Arguments

params A mizer params object

replace A named character vector, with new names as values, and old names as names.

Value

An object of type MizerParams

Examples

replace <- c(Cod = "Kabeljau", Haddock = "Schellfisch")
params <- renameSpecies(NS_params, replace)
species_params(params)$species

resource_constant Keep resource abundance constant

Description

If you set your resource dynamics to use this function then the resource abundances are kept constant
over time.

Usage

resource_constant(params, n_pp, ...)

Arguments

params A MizerParams object

n_pp A vector of the resource abundance by size

... Unused

166 resource_logistic

Details

To set your model to keep the resource constant over time you do

resource_dynamics(params) <- "resource_constant"

where you should replace params with the name of the variable holding your MizerParams object.

Value

Vector containing resource spectrum at next timestep

See Also

Other resource dynamics: resource_logistic(), resource_semichemostat()

Examples

params <- NS_params
resource_dynamics(params) <- "resource_constant"

resource_logistic Project resource using logistic model

Description

If you set your resource dynamics to use this function then the time evolution of the resource
spectrum is described by a logistic equation

∂NR(w, t)

∂t
= rR(w)NR(w)

[
1− NR(w, t)

cR(w)

]
− µR(w, t)NR(w, t)

Usage

resource_logistic(
params,
n,
n_pp,
n_other,
rates,
t,
dt,
resource_rate,
resource_capacity,
...

)

balance_resource_logistic(params, resource_rate, resource_capacity)

resource_logistic 167

Arguments

params A MizerParams object

n A matrix of species abundances (species x size)

n_pp A vector of the resource abundance by size

n_other A list with the abundances of other components

rates A list of rates as returned by mizerRates()

t The current time

dt Time step

resource_rate Resource replenishment rate
resource_capacity

Resource carrying capacity

... Unused

Details

Here rR(w) is the resource regeneration rate and cR(w) is the carrying capacity in the absence of
predation. These parameters are changed with setResource(). The mortality µR(w, t) is due to
predation by consumers and is calculate with getResourceMort().

This function uses the analytic solution of the above equation to calculate the resource abundance at
time t + dt from all abundances and rates at time t, keeping the mortality fixed during the timestep.

To set your model to use logistic dynamics for the resource you do

params <- setResource(params,
resource_dynamics = "resource_logistic",
resource_level = 0.5)

where you should replace params with the name of the variable holding your MizerParams object.
You can of course choose any value between 0 and 1 for the resource level.

The balance_resource_logistic() function is called by setResource() to determine the values
of the resource parameters that are needed to make the replenishment rate at each size equal the
consumption rate at that size, as calculated by getResourceMort(). It should be called with only
one of resource_rate or resource_capacity should and will return a named list with the values
for both.

Value

Vector containing resource spectrum at next timestep

See Also

Other resource dynamics: resource_constant(), resource_semichemostat()

168 resource_params

resource_params Resource parameters

Description

The recommended way to change the resource dynamics parameters is to use setResource().
The resource_params list contains values that are helpful in setting up the actual size-dependent
parameters with setResource(). If you have specified a custom resource dynamics function that
requires additional parameters, then these should also be added to the resource_params list.

Usage

resource_params(params)

resource_params(params) <- value

Arguments

params A MizerParams object

value A named list of resource parameters.

Details

The resource_params list will at least contain the slots kappa, lambda, w_pp_cutoff and n.

The resource parameter n is the exponent for the power-law form for the replenishment rate rR(w):

rR(w) = rR w
n−1.

The resource parameter lambda (λ) is the exponent for the power-law form for the carrying capacity
cR(w) and w_pp_cutoff is its cutoff value:

cR(w) = cRw
−λ

for all w less than w_pp_cutoff and zero for larger sizes.

The resource parameter kappa (κ) determines the initial resource abundance:

NR(w) = κw−λ

for all w less than w_pp_cutoff and zero for larger sizes.

Value

A named list of resource parameters.

resource_semichemostat 169

resource_semichemostat

Project resource using semichemostat model

Description

If you set your resource dynamics to use this function then the time evolution of the resource
spectrum is described by a semi-chemostat equation

∂NR(w, t)

∂t
= rR(w)

[
cR(w)−NR(w, t)

]
− µR(w, t)NR(w, t)

Usage

resource_semichemostat(
params,
n,
n_pp,
n_other,
rates,
t,
dt,
resource_rate,
resource_capacity,
...

)

balance_resource_semichemostat(params, resource_rate, resource_capacity)

Arguments

params A MizerParams object

n A matrix of species abundances (species x size)

n_pp A vector of the resource abundance by size

n_other A list with the abundances of other components

rates A list of rates as returned by mizerRates()

t The current time

dt Time step

resource_rate Resource replenishment rate

resource_capacity

Resource carrying capacity

... Unused

170 RickerRDD

Details

Here rR(w) is the resource regeneration rate and cR(w) is the carrying capacity in the absence of
predation. These parameters are changed with setResource(). The mortality µR(w, t) is due to
predation by consumers and is calculate with getResourceMort().

This function uses the analytic solution of the above equation to calculate the resource abundance at
time t + dt from all abundances and rates at time t, keeping the mortality fixed during the timestep.

To set your model to use semichemostat dynamics for the resource you do

params <- setResource(params,
resource_dynamics = "resource_semichemostat",
resource_level = 0.5)

where you should replace params with the name of the variable holding your MizerParams object.
You can of course choose any value between 0 and 1 for the resource level.

The balance_resource_semichemostat() function is called by setResource() to determine the
values of the resource parameters that are needed to make the replenishment rate at each size equal
the consumption rate at that size, as calculated by getResourceMort(). It should be called with
only one of resource_rate or resource_capacity should and will return a named list with the
values for both.

Value

Vector containing resource spectrum at next timestep

See Also

Other resource dynamics: resource_constant(), resource_logistic()

RickerRDD Ricker function to calculate density-dependent reproduction rate

Description

[Experimental] Takes the density-independent rates Rdi of egg production and returns reduced,
density-dependent rates Rdd given as

Rdd = Rdi exp(−bRdi)

Usage

RickerRDD(rdi, species_params, ...)

Arguments

rdi Vector of density-independent reproduction rates Rdi for all species.
species_params A species parameter dataframe. Must contain a column ricker_b holding the

coefficient b.
... Unused

saveParams 171

Value

Vector of density-dependent reproduction rates.

See Also

Other functions calculating density-dependent reproduction rate: BevertonHoltRDD(), SheperdRDD(),
constantEggRDI(), constantRDD(), noRDD()

saveParams Save a MizerParams object to file, and restore it

Description

[Experimental] saveParams() saves a MizerParams object to a file. This can then be restored with
readParams().

Usage

saveParams(params, file)

readParams(file)

Arguments

params A MizerParams object

file The name of the file or a connection where the MizerParams object is saved to
or read from.

Details

Issues a warning if the model you are saving relies on some custom functions. Before saving a
model you may want to set its metadata with setMetadata().

Value

NULL invisibly

172 scaleModel

scaleModel Change scale of the model

Description

[Experimental]

The abundances in mizer and some rates depend on the size of the area to which they refer. So
they could be given per square meter or per square kilometer or for an entire study area or any
other choice of yours. This function allows you to change the scale of the model by automatically
changing the abundances and rates accordingly.

Usage

scaleModel(params, factor)

Arguments

params A MizerParams object

factor The factor by which the scale is multiplied

Details

If you rescale the model by a factor c then this function makes the following rescalings in the params
object:

• The initial abundances are rescaled by c.

• The search volume is rescaled by 1/c.

• The resource carrying capacity is rescaled by c

• The maximum reproduction rate Rmax is rescaled by c.

The effect of this is that the dynamics of the rescaled model are identical to those of the unscaled
model, in the sense that it does not matter whether one first calls scaleModel() and then runs a
simulation with project() or whether one first runs a simulation and then rescales the resulting
abundances.

Note that if you use non-standard resource dynamics or other components then you may need to
rescale additional parameters that appear in those dynamics.

In practice you will need to use some observations to set the scale for your model. If you have
biomass observations you can use calibrateBiomass(), if you have yearly yields you can use
calibrateYield().

Value

The rescaled MizerParams object

setBevertonHolt 173

setBevertonHolt Set Beverton-Holt reproduction without changing the steady state

Description

[Experimental] Takes a MizerParams object params with arbitrary density dependence in repro-
duction and returns a MizerParams object with Beverton-Holt density-dependence in such a way
that the energy invested into reproduction by the mature individuals leads to the reproduction rate
that is required to maintain the given egg abundance. Hence if you have tuned your params ob-
ject to describe a particular steady state, then setting the Beverton-Holt density dependence with
this function will leave you with the exact same steady state. By specifying one of the parameters
erepro, R_max or reproduction_level you pick the desired reproduction curve. More details of
these parameters are provided below.

Usage

setBevertonHolt(
params,
R_factor = deprecated(),
erepro,
R_max,
reproduction_level

)

Arguments

params A MizerParams object

R_factor [Deprecated] Use reproduction_level = 1 / R_factor instead.

erepro Reproductive efficiency for each species. See details.

R_max Maximum reproduction rate. See details.
reproduction_level

Sets R_max so that the reproduction rate at the initial state is R_max * reproduction_level.

Details

With Beverton-Holt density dependence the relation between the energy invested into reproduc-
tion and the number of eggs hatched is determined by two parameters: the reproductive efficiency
erepro and the maximum reproduction rate R_max.

If no maximum is imposed on the reproduction rate (Rmax = ∞) then the resulting density-
independent reproduction rate Rdi is proportional to the total rate ER at which energy is invested
into reproduction,

Rdi =
erepro

2wmin
ER,

where the proportionality factor is given by the reproductive efficiency erepro divided by the egg
size w_min to convert energy to egg number and divided by 2 to account for the two sexes.

174 setBevertonHolt

Imposing a finite maximum reproduction rate Rmax leads to a non-linear relationship between
energy invested and eggs hatched. This density-dependent reproduction rate Rdd is given as

Rdd = Rdi
Rmax

Rdi +Rmax
.

(All quantities in the above equations are species-specific but we dropped the species index for
simplicity.)

The following plot illustrates the Beverton-Holt density dependence in the reproduction rate for two

different choices of parameters.

This plot shows that a given energyER invested into reproduction can lead to the same reproduction
rate Rdd with different choices of the parameters R_max and erepro. R_max determines the asymp-
tote of the curve and erepro its initial slope. A higher R_max coupled with a lower erepro (black
curves) can give the same value as a lower R_max coupled with a higher erepro (blue curves).

For the given initial state in the MizerParams object params one can calculate the energy ER that is
invested into reproduction by the mature individuals and the reproduction rate Rdd that is required
to keep the egg abundance constant. These two values determine the location of the black dot in the
above graph. You then only need one parameter to select one curve from the family of Beverton-Holt
curves going through that point. This parameter can be erepro or R_max. Instead of R_max you can
alternatively specify the reproduction_level which is the ratio between the density-dependent
reproduction rate Rdd and the maximal reproduction rate Rmax.

If you do not provide a value for any of the reproduction parameter arguments, then erepro will
be set to the value it has in the current species parameter data frame. If you do provide one of the
reproduction parameters, this can be either a vector with one value for each species, or a named
vector where the names determine which species are affected, or a single unnamed value that is
then used for all species. Any species for which the given value is NA will remain unaffected.

The values for R_max must be larger than Rdd and can range up to Inf. If a smaller value is
requested a warning is issued and the value is increased to the value required for a reproduction
level of 0.99.

The values for the reproduction_level must be positive and less than 1. The values for erepro
must be large enough to allow the required reproduction rate. If a smaller value is requested a
warning is issued and the value is increased to the smallest possible value. The values for erepro
should also be smaller than 1 to be physiologically sensible, but this is not enforced by the function.

As can be seen in the graph above, choosing a lower value for R_max or a higher value for erepro
means that near the steady state the reproduction will be less sensitive to a change in the energy

setColours 175

invested into reproduction and hence less sensitive to changes in the spawning stock biomass or
its energy income. As a result the species will also be less sensitive to fishing, leading to a higher
F_MSY.

Value

A MizerParams object

Examples

params <- NS_params
species_params(params)$erepro
Attempting to set the same erepro for all species
params <- setBevertonHolt(params, erepro = 0.1)
t(species_params(params)[, c("erepro", "R_max")])
Setting erepro for some species
params <- setBevertonHolt(params, erepro = c("Gurnard" = 0.6, "Plaice" = 0.95))
t(species_params(params)[, c("erepro", "R_max")])
Setting R_max
R_max <- 1e17 * species_params(params)$w_max^-1
params <- setBevertonHolt(NS_params, R_max = R_max)
t(species_params(params)[, c("erepro", "R_max")])
Setting reproduction_level
params <- setBevertonHolt(params, reproduction_level = 0.3)
t(species_params(params)[, c("erepro", "R_max")])

setColours Set line colours and line types to be used in mizer plots

Description

[Experimental] Used for setting the colour and type of lines representing "Total", "Resource",
"Fishing", "Background", "External" and possibly other categories in plots.

Usage

setColours(params, colours)

getColours(params)

setLinetypes(params, linetypes)

getLinetypes(params)

Arguments

params A MizerParams object

colours A named list or named vector of line colours.

linetypes A named list or named vector of linetypes.

176 setComponent

Details

Colours for names that already had a colour set for them will be overwritten by the colour you
specify. Colours for names that did not yet have a colour will be appended to the list of colours.

Do not use this for setting the colours or linetypes of species, because those are determined by
setting the linecolour and linetype variables in the species parameter data frame.

You can use the same colours in your own ggplot2 plots by adding scale_colour_manual(values
= getColours(params)) to your plot. Similarly you can use the linetypes with scale_linetype_manual(values
= getLinetypes(params)).

Value

setColours: The MizerParams object with updated line colours

getColours(): A named vector of colours

setLinetypes(): The MizerParams object with updated linetypes

getLinetypes(): A named vector of linetypes

Examples

params <- setColours(NS_params, list("Resource" = "red","Total" = "#0000ff"))
params <- setLinetypes(NS_params, list("Total" = "dotted"))
Set colours and linetypes for species
species_params(params)["Cod", "linecolour"] <- "black"
species_params(params)["Cod", "linetype"] <- "dashed"
plotSpectra(params, total = TRUE)
getColours(params)
getLinetypes(params)

setComponent Add a dynamical ecosystem component

Description

By default, mizer models any number of size-resolved consumer species and a single size-resolved
resource spectrum. Your model may require additional components, like for example detritus or
carrion or multiple resources or This function allows you to set up such components.

Usage

setComponent(
params,
component,
initial_value,
dynamics_fun,
encounter_fun,
mort_fun,
component_params

setExtEncounter 177

)

removeComponent(params, component)

Arguments

params A MizerParams object

component Name of the component

initial_value Initial value of the component

dynamics_fun Name of function to calculate value at the next time step

encounter_fun Name of function to calculate contribution to encounter rate. Optional.

mort_fun Name of function to calculate contribution to the mortality rate. Optional.
component_params

Object holding the parameters needed by the component functions. This could
for example be a named list of parameters. Optional.

Details

The component can be a number, a vector, an array, a list, or any other data structure you like.

If you set a component with a new name, the new component will be added to the existing compo-
nents. If you set a component with an existing name, that component will be overwritten. You can
remove a component with removeComponent().

Value

The updated MizerParams object

setExtEncounter Set external encounter rate

Description

Set external encounter rate

Usage

setExtEncounter(params, ext_encounter = NULL, ...)

getExtEncounter(params)

ext_encounter(params)

ext_encounter(params) <- value

178 setExtEncounter

Arguments

params MizerParams

ext_encounter Optional. An array (species x size) holding the external encounter rate. If not
supplied, the external encounter rate is left unchanged. Initially is is set to 0.

... Unused

value ext_encounter

Value

setExtEncounter(): A MizerParams object with updated external encounter rate.

getExtEncounter() or equivalently ext_encounter(): An array (species x size) with the external
encounter rate.

Setting external encounter rate

The external encounter rate is the rate at which a predator encounters food that is not explicitly
modelled. It is a rate with units mass/year.

The ext_encounter argument allows you to specify an external encounter rate that depends on
species and body size. You can see an example of this in the Examples section of the help page for
setExtEncounter().

See Also

Other functions for setting parameters: gear_params(), setExtMort(), setFishing(), setInitialValues(),
setInteraction(), setMaxIntakeRate(), setMetabolicRate(), setParams(), setPredKernel(),
setReproduction(), setSearchVolume(), species_params()

Examples

params <- newMultispeciesParams(NS_species_params)

Setting allometric encounter rate

Set coefficient for each species. Here we choose 0.1 for each species
encounter_pre <- rep(0.1, nrow(species_params(params)))

Multiply by power of size with exponent, here chosen to be 3/4
The outer() function makes it an array species x size
allo_encounter <- outer(encounter_pre, w(params)^(3/4))

Change the external encounter rate in the params object
ext_encounter(params) <- allo_encounter

setExtMort 179

setExtMort Set external mortality rate

Description

Set external mortality rate

Usage

setExtMort(
params,
ext_mort = NULL,
z0pre = 0.6,
z0exp = -1/4,
reset = FALSE,
z0 = deprecated(),
...

)

getExtMort(params)

ext_mort(params)

ext_mort(params) <- value

Arguments

params MizerParams

ext_mort Optional. An array (species x size) holding the external mortality rate. If not
supplied, a default is set as described in the section "Setting external mortality
rate".

z0pre If z0, the mortality from other sources, is not a column in the species data frame,
it is calculated as z0pre * w_max ^ z0exp. Default value is 0.6.

z0exp If z0, the mortality from other sources, is not a column in the species data frame,
it is calculated as z0pre * w_max ^ z0exp. Default value is n-1.

reset [Experimental] If set to TRUE, then the external mortality rate will be reset to
the value calculated from the z0 parameters, even if it was previously overwrit-
ten with a custom value. If set to FALSE (default) then a recalculation from the
species parameters will take place only if no custom value has been set.

z0 [Deprecated] Use ext_mort instead. Not to be confused with the species_parameter
z0.

... Unused

value ext_mort

180 setFishing

Value

setExtMort(): A MizerParams object with updated external mortality rate.

getExtMort() or equivalently ext_mort(): An array (species x size) with the external mortality.

Setting external mortality rate

The external mortality is all the mortality that is not due to fishing or predation by predators included
in the model. The external mortality could be due to predation by predators that are not explicitly
included in the model (e.g. mammals or seabirds) or due to other causes like illness. It is a rate with
units 1/year.

The ext_mort argument allows you to specify an external mortality rate that depends on species
and body size. You can see an example of this in the Examples section of the help page for
setExtMort().

If the ext_mort argument is not supplied, then the external mortality is assumed to depend only on
the species, not on the size of the individual: µext.i(w) = z0.i. The value of the constant z0 for
each species is taken from the z0 column of the species parameter data frame, if that column exists.
Otherwise it is calculated as

z0.i = z0prei w
z0exp
inf .

See Also

Other functions for setting parameters: gear_params(), setExtEncounter(), setFishing(),
setInitialValues(), setInteraction(), setMaxIntakeRate(), setMetabolicRate(), setParams(),
setPredKernel(), setReproduction(), setSearchVolume(), species_params()

Examples

params <- newMultispeciesParams(NS_species_params)

Setting allometric death rate

Set coefficient for each species. Here we choose 0.1 for each species
z0pre <- rep(0.1, nrow(species_params(params)))

Multiply by power of size with exponent, here chosen to be -1/4
The outer() function makes it an array species x size
allo_mort <- outer(z0pre, w(params)^(-1/4))

Change the external mortality rate in the params object
ext_mort(params) <- allo_mort

setFishing Set fishing parameters

Description

Set fishing parameters

setFishing 181

Usage

setFishing(
params,
selectivity = NULL,
catchability = NULL,
reset = FALSE,
initial_effort = NULL,
...

)

getCatchability(params)

catchability(params)

catchability(params) <- value

getSelectivity(params)

selectivity(params)

selectivity(params) <- value

getInitialEffort(params)

Arguments

params A MizerParams object
selectivity Optional. An array (gear x species x size) that holds the selectivity of each gear

for species and size, Sg,i,w.
catchability Optional. An array (gear x species) that holds the catchability of each species

by each gear, Qg,i.
reset [Experimental] If set to TRUE, then both catchability and selectivity

will be reset to the values calculated from the gear parameters, even if it was
previously overwritten with a custom value. If set to FALSE (default) then a
recalculation from the gear parameters will take place only if no custom value
has been set.

initial_effort Optional. A number or a named numeric vector specifying the fishing effort. If
a number, the same effort is used for all gears. If a vector, must be named by
gear.

... Unused
value .

Value

setFishing(): A MizerParams object with updated fishing parameters.

getCatchability() or equivalently catchability(): An array (gear x species) that holds the
catchability of each species by each gear, Qg,i. The names of the dimensions are "gear, "sp".

182 setFishing

getSelectivity() or equivalently selectivity(): An array (gear x species x size) that holds the
selectivity of each gear for species and size, Sg,i,w. The names of the dimensions are "gear, "sp",
"w".

getInitialEffort() or equivalently initial_effort(): A named vector with the initial fishing
effort for each gear.

Setting fishing

Gears
In mizer, fishing mortality is imposed on species by fishing gears. The total per-capita fishing
mortality (1/year) is obtained by summing over the mortality from all gears,

µf.i(w) =
∑
g

Fg,i(w),

where the fishing mortality Fg,i(w) imposed by gear g on species i at size w is calculated as:

Fg,i(w) = Sg,i(w)Qg,iEg,

where S is the selectivity by species, gear and size, Q is the catchability by species and gear and E
is the fishing effort by gear.

Selectivity
The selectivity at size of each gear for each species is saved as a three dimensional array (gear x
species x size). Each entry has a range between 0 (that gear is not selecting that species at that size)
to 1 (that gear is selecting all individuals of that species of that size). This three dimensional array
can be specified explicitly via the selectivity argument, but usually mizer calculates it from the
gear_params slot of the MizerParams object.

To allow the calculation of the selectivity array, the gear_params slot must be a data frame
with one row for each gear-species combination. So if for example a gear can select three species,
then that gear contributes three rows to the gear_params data frame, one for each species it can
select. The data frame must have columns gear, holding the name of the gear, species, holding the
name of the species, and sel_func, holding the name of the function that calculates the selectivity
curve. Some selectivity functions are included in the package: knife_edge(), sigmoid_length(),
double_sigmoid_length(), and sigmoid_weight(). Users are able to write their own size-based
selectivity function. The first argument to the function must be w and the function must return a
vector of the selectivity (between 0 and 1) at size.

Each selectivity function may have parameters. Values for these parameters must be included as
columns in the gear parameters data.frame. The names of the columns must exactly match the
names of the corresponding arguments of the selectivity function. For example, the default selectiv-
ity function is knife_edge() that a has sudden change of selectivity from 0 to 1 at a certain size. In
its help page you can see that the knife_edge() function has arguments w and knife_edge_size.
The first argument, w, is size (the function calculates selectivity at size). All selectivity functions
must have w as the first argument. The values for the other arguments must be found in the gear
parameters data.frame. So for the knife_edge() function there should be a knife_edge_size col-
umn. Because knife_edge() is the default selectivity function, the knife_edge_size argument
has a default value = w_mat.

The most commonly-used selectivity function is sigmoid_length(). It has a smooth transition
from 0 to 1 at a certain size. The sigmoid_length() function has the two parameters l50 and l25

setInitialValues 183

that are the lengths in cm at which 50% or 25% of the fish are selected by the gear. If you choose
this selectivity function then the l50 and l25 columns must be included in the gear parameters
data.frame.

In case each species is only selected by one gear, the columns of the gear_params data frame can
alternatively be provided as columns of the species_params data frame, if this is more convenient
for the user to set up. Mizer will then copy these columns over to create the gear_params data
frame when it creates the MizerParams object. However changing these columns in the species
parameter data frame later will not update the gear_params data frame.

Catchability

Catchability is used as an additional factor to make the link between gear selectivity, fishing effort
and fishing mortality. For example, it can be set so that an effort of 1 gives a desired fishing
mortality. In this way effort can then be specified relative to a ’base effort’, e.g. the effort in a
particular year.

Catchability is stored as a two dimensional array (gear x species). This can either be provided
explicitly via the catchability argument, or the information can be provided via a catchability
column in the gear_params data frame.

In the case where each species is selected by only a single gear, the catchability column can also
be provided in the species_params data frame. Mizer will then copy this over to the gear_params
data frame when the MizerParams object is created.

Effort

The initial fishing effort is stored in the MizerParams object. If it is not supplied, it is set to zero.
The initial effort can be overruled when the simulation is run with project(), where it is also
possible to specify an effort that varies through time.

See Also

gear_params()

Other functions for setting parameters: gear_params(), setExtEncounter(), setExtMort(),
setInitialValues(), setInteraction(), setMaxIntakeRate(), setMetabolicRate(), setParams(),
setPredKernel(), setReproduction(), setSearchVolume(), species_params()

Examples

str(getCatchability(NS_params))
str(getSelectivity(NS_params))
str(getInitialEffort(NS_params))

setInitialValues Set initial values to values from a simulation

Description

This is used to use the results from one simulation as the starting values for another simulation.

184 setInitialValues

Usage

setInitialValues(params, sim, time_range, geometric_mean = FALSE)

Arguments

params A MizerParams object in which to set the initial values

sim A MizerSim object from which to take the values.

time_range The time range to average the abundances over. Can be a vector of values,
a vector of min and max time, or a single value. Only the range of times is
relevant, i.e., all times between the smallest and largest will be selected. Default
is the final time step.

geometric_mean [Experimental] If TRUE then the average of the abundances over the time range
is a geometric mean instead of the default arithmetic mean. This does not affect
the average of the effort or of other components, which is always arithmetic.

Details

The initial abundances (for both species and resource) in the params object are set to the abundances
in a MizerSim object, averaged over a range of times. Similarly, the initial effort in the params
object is set to the effort in the MizerSim object, again averaged over that range of times. When no
time range is specified, the initial values are taken from the final time step of the simulation.

If the model described by sim and params has additional components created with setComponent()
then the values of these components are also averaged and copied to params.

The MizerSim object must come from a model with the same set of species and gears and other
components and the same size bins as the MizerParams object. Otherwise an error is raised.

Value

The params object with updated initial values and initial effort. Because of the way the R language
works, setInitialValues() does not make the changes to the params object that you pass to it
but instead returns a new params object. So to affect the change you call the function in the form
params <- setInitialValues(params, sim).

See Also

Other functions for setting parameters: gear_params(), setExtEncounter(), setExtMort(),
setFishing(), setInteraction(), setMaxIntakeRate(), setMetabolicRate(), setParams(),
setPredKernel(), setReproduction(), setSearchVolume(), species_params()

Examples

params <- NS_params
sim <- project(params, t_max = 20, effort = 0.5)
params <- setInitialValues(params, sim)

setInteraction 185

setInteraction Set species interaction matrix

Description

Set species interaction matrix

Usage

setInteraction(params, interaction = NULL)

interaction_matrix(params)

interaction_matrix(params) <- value

Arguments

params MizerParams object

interaction Optional interaction matrix of the species (predator species x prey species). By
default all entries are 1. See "Setting interaction matrix" section below.

value An interaction matrix

Value

setInteraction: A MizerParams object with updated interaction matrix

interaction_matrix(): The interaction matrix (predator species x prey species)

Setting interaction matrix

You do not need to specify an interaction matrix. If you do not, then the predator-prey interactions
are purely determined by the size of predator and prey and totally independent of the species of
predator and prey.

The interaction matrix θij modifies the interaction of each pair of species in the model. This can
be used for example to allow for different spatial overlap among the species. The values in the
interaction matrix are used to scale the encountered food and predation mortality (see on the website
the section on predator-prey encounter rate and on predation mortality). The first index refers to the
predator species and the second to the prey species.

The interaction matrix is used when calculating the food encounter rate in getEncounter() and
the predation mortality rate in getPredMort(). Its entries are dimensionless numbers. If all the
values in the interaction matrix are equal then predator-prey interactions are determined entirely by
size-preference.

This function checks that the supplied interaction matrix is valid and then stores it in the interaction
slot of the params object.

The order of the columns and rows of the interaction argument should be the same as the order in
the species params data frame in the params object. If you supply a named array then the function

https://sizespectrum.org/mizer/articles/model_description.html#sec:pref
https://sizespectrum.org/mizer/articles/model_description.html#mortality

186 setMaxIntakeRate

will check the order and warn if it is different. One way of creating your own interaction matrix is
to enter the data using a spreadsheet program and saving it as a .csv file. The data can then be read
into R using the command read.csv().

The interaction of the species with the resource are set via a column interaction_resource in the
species_params data frame. By default this column is set to all 1s.

See Also

Other functions for setting parameters: gear_params(), setExtEncounter(), setExtMort(),
setFishing(), setInitialValues(), setMaxIntakeRate(), setMetabolicRate(), setParams(),
setPredKernel(), setReproduction(), setSearchVolume(), species_params()

Examples

params <- newTraitParams(no_sp = 3)
inter <- getInteraction(params)
inter[1, 2:3] <- 0
params <- setInteraction(params, interaction = inter)
getInteraction(params)

setMaxIntakeRate Set maximum intake rate

Description

Set maximum intake rate

Usage

setMaxIntakeRate(params, intake_max = NULL, reset = FALSE, ...)

getMaxIntakeRate(params)

intake_max(params)

intake_max(params) <- value

Arguments

params MizerParams
intake_max Optional. An array (species x size) holding the maximum intake rate for each

species at size. If not supplied, a default is set as described in the section "Setting
maximum intake rate".

reset [Experimental] If set to TRUE, then the intake rate will be reset to the value
calculated from the species parameters, even if it was previously overwritten
with a custom value. If set to FALSE (default) then a recalculation from the
species parameters will take place only if no custom value has been set.

... Unused
value intake_max

setMetabolicRate 187

Value

setReproduction(): A MizerParams object with updated maximum intake rate.

getMaxIntakeRate() or equivalently intake_max(): An array (species x size) with the maximum
intake rate.

Setting maximum intake rate

The maximum intake rate hi(w) of an individual of species i and weight w determines the feeding
level, calculated with getFeedingLevel(). It is measured in grams/year.

If the intake_max argument is not supplied, then the maximum intake rate is set to

hi(w) = hiw
ni .

The values of hi (the maximum intake rate of an individual of size 1 gram) and ni (the allomet-
ric exponent for the intake rate) are taken from the h and n columns in the species parameter
dataframe. If the h column is not supplied in the species parameter dataframe, it is calculated
by the get_h_default() function.

If hi is set to Inf, fish of species i will consume all encountered food.

See Also

Other functions for setting parameters: gear_params(), setExtEncounter(), setExtMort(),
setFishing(), setInitialValues(), setInteraction(), setMetabolicRate(), setParams(),
setPredKernel(), setReproduction(), setSearchVolume(), species_params()

setMetabolicRate Set metabolic rate

Description

Sets the rate at which energy is used for metabolism and activity

Usage

setMetabolicRate(params, metab = NULL, p = NULL, reset = FALSE, ...)

getMetabolicRate(params)

metab(params)

metab(params) <- value

188 setMetabolicRate

Arguments

params MizerParams

metab Optional. An array (species x size) holding the metabolic rate for each species
at size. If not supplied, a default is set as described in the section "Setting
metabolic rate".

p The allometric metabolic exponent. This is only used if metab is not given ex-
plicitly and if the exponent is not specified in a p column in the species_params.

reset [Experimental] If set to TRUE, then the metabolic rate will be reset to the value
calculated from the species parameters, even if it was previously overwritten
with a custom value. If set to FALSE (default) then a recalculation from the
species parameters will take place only if no custom value has been set.

... Unused

value metab

Value

setMetabolicRate(): A MizerParams object with updated metabolic rate.

getMetabolicRate() or equivalently metab(): An array (species x size) with the metabolic rate.

Setting metabolic rate

The metabolic rate is subtracted from the energy income rate to calculate the rate at which energy is
available for growth and reproduction, see getEReproAndGrowth(). It is measured in grams/year.

If the metab argument is not supplied, then for each species the metabolic rate k(w) for an individual
of size w is set to

k(w) = ksw
p + kw,

where kswp represents the rate of standard metabolism and kw is the rate at which energy is ex-
pended on activity and movement. The values of ks, p and k are taken from the ks, p and k columns
in the species parameter dataframe. If any of these parameters are not supplied, the defaults are
k = 0, p = n and

ks = fchαw
n−p
mat ,

where fc is the critical feeding level taken from the fc column in the species parameter data frame.
If the critical feeding level is not specified, a default of fc = 0.2 is used.

See Also

Other functions for setting parameters: gear_params(), setExtEncounter(), setExtMort(),
setFishing(), setInitialValues(), setInteraction(), setMaxIntakeRate(), setParams(),
setPredKernel(), setReproduction(), setSearchVolume(), species_params()

setMetadata 189

setMetadata Set metadata for a model

Description

[Experimental] Setting metadata is particularly important for sharing your model with others. All
metadata fields are optional and you can also add other fields of your own choosing. If you set a
value for a field that already existed, the old value will be overwritten.

Usage

setMetadata(params, title, description, authors, url, doi, ...)

getMetadata(params)

Arguments

params The MizerParams object for the model

title A string with the title for the model

description A string with a description of the model. This could for example contain infor-
mation about any publications using the model.

authors An author entry or a list of author entries, where each author entry could either
be just a name or could itself be a list with fields like name, orcid, possibly
email.

url A URL where more information about the model can be found. This could be a
blog post on the mizer blog, for example.

doi The digital object identifier for your model. To create a doi you can use online
services like https://zenodo.org/ or https://figshare.com.

... Additional metadata fields that you would like to add

Details

In addition to the metadata fields you can set by hand, there are four fields that are set automatically
by mizer:

• mizer_version The version string of the mizer version under which the model was created or
last upgraded. Can be compared to the current version which is obtained with packageVersion("mizer").
The purpose of this field is that if the model is not working as expected in the current version
of mizer, you can go back to the older version under which presumably it was working.

• extensions A named vector of strings where each name is the name of and extension package
needed to run the model and each value is a string giving the information that the remotes
package needs to install the correct version of the extension package, see https://remotes.r-
lib.org/. This field is set by the extension packages.

• time_created A POSIXct date-time object with the creation time.

• time_modified A POSIXct date-time object with the last modified time.

190 setParams

Setting the metadata with this function does not count as a modification of the object, so the
time_modified field will not be updated.

Value

setMetadata(): The MizerParams object with updated metadata

getMetadata(): A list with all metadata entries that have been set, including at least mizer_version,
extensions, time_created and time_modified.

setParams Set or change any model parameters

Description

This is a convenient wrapper function calling each of the following functions

• setPredKernel()

• setSearchVolume()

• setInteraction()

• setMaxIntakeRate()

• setMetabolicRate()

• setExtMort()

• setExtEncounter()

• setReproduction()

• setFishing()

• setResource()

See the Details section below for a discussion of how to use this function.

Usage

setParams(params, interaction = NULL, ...)

Arguments

params A MizerParams object

interaction Optional interaction matrix of the species (predator species x prey species). By
default all entries are 1. See "Setting interaction matrix" section below.

... Arguments passed on to setPredKernel, setSearchVolume, setMaxIntakeRate,
setMetabolicRate, setExtMort, setReproduction, setFishing

pred_kernel Optional. An array (species x predator size x prey size) that holds
the predation coefficient of each predator at size on each prey size. If not
supplied, a default is set as described in section "Setting predation kernel".

setParams 191

search_vol Optional. An array (species x size) holding the search volume for
each species at size. If not supplied, a default is set as described in the
section "Setting search volume".

intake_max Optional. An array (species x size) holding the maximum intake
rate for each species at size. If not supplied, a default is set as described in
the section "Setting maximum intake rate".

metab Optional. An array (species x size) holding the metabolic rate for each
species at size. If not supplied, a default is set as described in the section
"Setting metabolic rate".

p The allometric metabolic exponent. This is only used if metab is not given ex-
plicitly and if the exponent is not specified in a p column in the species_params.

ext_mort Optional. An array (species x size) holding the external mortality
rate. If not supplied, a default is set as described in the section "Setting
external mortality rate".

z0pre If z0, the mortality from other sources, is not a column in the species
data frame, it is calculated as z0pre * w_max ^ z0exp. Default value is 0.6.

z0exp If z0, the mortality from other sources, is not a column in the species data
frame, it is calculated as z0pre * w_max ^ z0exp. Default value is n-1.

z0 [Deprecated] Use ext_mort instead. Not to be confused with the species_parameter
z0.

maturity Optional. An array (species x size) that holds the proportion of indi-
viduals of each species at size that are mature. If not supplied, a default is
set as described in the section "Setting reproduction".

repro_prop Optional. An array (species x size) that holds the proportion of
consumed energy that a mature individual allocates to reproduction for each
species at size. If not supplied, a default is set as described in the section
"Setting reproduction".

RDD The name of the function calculating the density-dependent reproduction
rate from the density-independent rate. Defaults to "BevertonHoltRDD()".

selectivity Optional. An array (gear x species x size) that holds the selectiv-
ity of each gear for species and size, Sg,i,w.

catchability Optional. An array (gear x species) that holds the catchability
of each species by each gear, Qg,i.

initial_effort Optional. A number or a named numeric vector specifying
the fishing effort. If a number, the same effort is used for all gears. If a
vector, must be named by gear.

Details

If you are not happy with the assumptions that mizer makes by default about the shape of the model
functions, for example if you want to change one of the allometric scaling assumptions, you can do
this by providing your choice as an array in the appropriate argument to setParams(). The sections
below discuss all the model functions that you can change this way.

Because of the way the R language works, setParams does not make the changes to the params
object that you pass to it but instead returns a new params object. So to affect the change you call
the function in the form params <- setParams(params, ...).

192 setParams

Usually, if you are happy with the way mizer calculates its model functions from the species parame-
ters and only want to change the values of some species parameters, you would make those changes
in the species_params data frame contained in the params object using species_params<-().
Here is an example which assumes that you have have a MizerParams object params in which you
just want to change the gamma parameter of the third species:

species_params(params)$gamma[[3]] <- 1000

Internally that will actually call setParams() to recalculate any of the other parameters that are
affected by the change in the species parameter.

setParams() will use the species parameters in the params object to recalculate the values of all
the model functions except those for which you have set custom values.

Value

A MizerParams object

Units in mizer

Mizer uses grams to measure weight, centimetres to measure lengths, and years to measure time.

Mizer is agnostic about whether abundances are given as

1. numbers per area,

2. numbers per volume or

3. total numbers for the entire study area.

You should make the choice most convenient for your application and then stick with it. If you
make choice 1 or 2 you will also have to choose a unit for area or volume. Your choice will then
determine the units for some of the parameters. This will be mentioned when the parameters are
discussed in the sections below.

Your choice will also affect the units of the quantities you may want to calculate with the model. For
example, the yield will be in grams/year/m^2 in case 1 if you choose m^2 as your measure of area,
in grams/year/m^3 in case 2 if you choose m^3 as your unit of volume, or simply grams/year in case
3. The same comment applies for other measures, like total biomass, which will be grams/area in
case 1, grams/volume in case 2 or simply grams in case 3. When mizer puts units on axes in plots,
it will choose the units appropriate for case 3. So for example in plotBiomass() it gives the unit
as grams.

You can convert between these choices. For example, if you use case 1, you need to multiply with
the area of the ecosystem to get the total quantity. If you work with case 2, you need to multiply by
both area and the thickness of the productive layer. In that respect, case 2 is a bit cumbersome. The
function scaleModel() is useful to change the units you are using.

Setting interaction matrix

You do not need to specify an interaction matrix. If you do not, then the predator-prey interactions
are purely determined by the size of predator and prey and totally independent of the species of
predator and prey.

setParams 193

The interaction matrix θij modifies the interaction of each pair of species in the model. This can
be used for example to allow for different spatial overlap among the species. The values in the
interaction matrix are used to scale the encountered food and predation mortality (see on the website
the section on predator-prey encounter rate and on predation mortality). The first index refers to the
predator species and the second to the prey species.

The interaction matrix is used when calculating the food encounter rate in getEncounter() and
the predation mortality rate in getPredMort(). Its entries are dimensionless numbers. If all the
values in the interaction matrix are equal then predator-prey interactions are determined entirely by
size-preference.

This function checks that the supplied interaction matrix is valid and then stores it in the interaction
slot of the params object.

The order of the columns and rows of the interaction argument should be the same as the order in
the species params data frame in the params object. If you supply a named array then the function
will check the order and warn if it is different. One way of creating your own interaction matrix is
to enter the data using a spreadsheet program and saving it as a .csv file. The data can then be read
into R using the command read.csv().

The interaction of the species with the resource are set via a column interaction_resource in the
species_params data frame. By default this column is set to all 1s.

Setting predation kernel

Kernel dependent on predator to prey size ratio

If the pred_kernel argument is not supplied, then this function sets a predation kernel that depends
only on the ratio of predator mass to prey mass, not on the two masses independently. The shape of
that kernel is then determined by the pred_kernel_type column in species_params.

The default for pred_kernel_type is "lognormal". This will call the function lognormal_pred_kernel()
to calculate the predation kernel. An alternative pred_kernel type is "box", implemented by the func-
tion box_pred_kernel(), and "power_law", implemented by the function power_law_pred_kernel().
These functions require certain species parameters in the species_params data frame. For the log-
normal kernel these are beta and sigma, for the box kernel they are ppmr_min and ppmr_max. They
are explained in the help pages for the kernel functions. Except for beta and sigma, no defaults are
set for these parameters. If they are missing from the species_params data frame then mizer will
issue an error message.

You can use any other string for pred_kernel_type. If for example you choose "my" then you need
to define a function my_pred_kernel that you can model on the existing functions like lognormal_pred_kernel().

When using a kernel that depends on the predator/prey size ratio only, mizer does not need to store
the entire three dimensional array in the MizerParams object. Such an array can be very big when
there is a large number of size bins. Instead, mizer only needs to store two two-dimensional arrays
that hold Fourier transforms of the feeding kernel function that allow the encounter rate and the
predation rate to be calculated very efficiently. However, if you need the full three-dimensional
array you can calculate it with the getPredKernel() function.

Kernel dependent on both predator and prey size

If you want to work with a feeding kernel that depends on predator mass and prey mass indepen-
dently, you can specify the full feeding kernel as a three-dimensional array (predator species x
predator size x prey size).

https://sizespectrum.org/mizer/articles/model_description.html#sec:pref
https://sizespectrum.org/mizer/articles/model_description.html#mortality

194 setParams

You should use this option only if a kernel dependent only on the predator/prey mass ratio is not
appropriate. Using a kernel dependent on predator/prey mass ratio only allows mizer to use fast
Fourier transform methods to significantly reduce the running time of simulations.

The order of the predator species in pred_kernel should be the same as the order in the species
params dataframe in the params object. If you supply a named array then the function will check
the order and warn if it is different.

Setting search volume

The search volume γi(w) of an individual of species i and weight w multiplies the predation kernel
when calculating the encounter rate in getEncounter() and the predation rate in getPredRate().

The name "search volume" is a bit misleading, because γi(w) does not have units of volume. It
is simply a parameter that determines the rate of predation. Its units depend on your choice, see
section "Units in mizer". If you have chosen to work with total abundances, then it is a rate with
units 1/year. If you have chosen to work with abundances per m^2 then it has units of m^2/year. If
you have chosen to work with abundances per m^3 then it has units of m^3/year.

If the search_vol argument is not supplied, then the search volume is set to

γi(w) = γiw
q
i .

The values of γi (the search volume at 1g) and qi (the allometric exponent of the search volume) are
taken from the gamma and q columns in the species parameter dataframe. If the gamma column is not
supplied in the species parameter dataframe, a default is calculated by the get_gamma_default()
function. Note that only for predators of size w = 1 gram is the value of the species parameter γi
the same as the value of the search volume γi(w).

Setting maximum intake rate

The maximum intake rate hi(w) of an individual of species i and weight w determines the feeding
level, calculated with getFeedingLevel(). It is measured in grams/year.

If the intake_max argument is not supplied, then the maximum intake rate is set to

hi(w) = hiw
ni .

The values of hi (the maximum intake rate of an individual of size 1 gram) and ni (the allomet-
ric exponent for the intake rate) are taken from the h and n columns in the species parameter
dataframe. If the h column is not supplied in the species parameter dataframe, it is calculated
by the get_h_default() function.

If hi is set to Inf, fish of species i will consume all encountered food.

Setting metabolic rate

The metabolic rate is subtracted from the energy income rate to calculate the rate at which energy is
available for growth and reproduction, see getEReproAndGrowth(). It is measured in grams/year.

If the metab argument is not supplied, then for each species the metabolic rate k(w) for an individual
of size w is set to

k(w) = ksw
p + kw,

setParams 195

where kswp represents the rate of standard metabolism and kw is the rate at which energy is ex-
pended on activity and movement. The values of ks, p and k are taken from the ks, p and k columns
in the species parameter dataframe. If any of these parameters are not supplied, the defaults are
k = 0, p = n and

ks = fchαw
n−p
mat ,

where fc is the critical feeding level taken from the fc column in the species parameter data frame.
If the critical feeding level is not specified, a default of fc = 0.2 is used.

Setting external mortality rate

The external mortality is all the mortality that is not due to fishing or predation by predators included
in the model. The external mortality could be due to predation by predators that are not explicitly
included in the model (e.g. mammals or seabirds) or due to other causes like illness. It is a rate with
units 1/year.

The ext_mort argument allows you to specify an external mortality rate that depends on species
and body size. You can see an example of this in the Examples section of the help page for
setExtMort().

If the ext_mort argument is not supplied, then the external mortality is assumed to depend only on
the species, not on the size of the individual: µext.i(w) = z0.i. The value of the constant z0 for
each species is taken from the z0 column of the species parameter data frame, if that column exists.
Otherwise it is calculated as

z0.i = z0prei w
z0exp
inf .

Setting external encounter rate

The external encounter rate is the rate at which a predator encounters food that is not explicitly
modelled. It is a rate with units mass/year.

The ext_encounter argument allows you to specify an external encounter rate that depends on
species and body size. You can see an example of this in the Examples section of the help page for
setExtEncounter().

Setting reproduction

For each species and at each size, the proportion ψ of the available energy that is invested into
reproduction is the product of two factors: the proportion maturity of individuals that are mature
and the proportion repro_prop of the energy available to a mature individual that is invested into
reproduction. There is a size w_repro_max at which all the energy is invested into reproduction and
therefore all growth stops. There can be no fish larger than w_repro_max. If you have not specified
the w_repro_max column in the species parameter data frame, then the maximum size w_max is
used instead.

Maturity ogive: If the the proportion of individuals that are mature is not supplied via the
maturity argument, then it is set to a sigmoidal maturity ogive that changes from 0 to 1 at around
the maturity size:

maturity(w) =

[
1 +

(
w

wmat

)−U
]−1

.

196 setParams

(To avoid clutter, we are not showing the species index in the equations, although each species
has its own maturity ogive.) The maturity weights are taken from the w_mat column of the
species_params data frame. Any missing maturity weights are set to 1/4 of the maximum weight
in the w_max column.
The exponent U determines the steepness of the maturity ogive. By default it is chosen as U =
10, however this can be overridden by including a column w_mat25 in the species parameter
dataframe that specifies the weight at which 25% of individuals are mature, which sets U =
log(3)/ log(wmat/wmat25).

The sigmoidal function given above would strictly reach 1 only asymptotically. Mizer instead
sets the function equal to 1 already at a size taken from the w_repro_max column in the species
parameter data frame, if it exists, or otherwise from the w_max column. Also, for computational
simplicity, any proportion smaller than 1e-8 is set to 0.

Investment into reproduction: If the the energy available to a mature individual that is invested
into reproduction is not supplied via the repro_prop argument, it is set to the allometric form

repro_prop(w) =
(

w

wmatmax

)m−n

.

Here n is the scaling exponent of the energy income rate. Hence the exponent m determines the
scaling of the investment into reproduction for mature individuals. By default it is chosen to be
m = 1 so that the rate at which energy is invested into reproduction scales linearly with the size.
This default can be overridden by including a column m in the species parameter dataframe. The
maximum sizes are taken from the w_repro_max column in the species parameter data frame, if
it exists, or otherwise from the w_max column.
The total proportion of energy invested into reproduction of an individual of size w is then

ψ(w) = maturity(w)repro_prop(w)

Reproductive efficiency: The reproductive efficiency ϵ, i.e., the proportion of energy allocated to
reproduction that results in egg biomass, is set through the erepro column in the species_params
data frame. If that is not provided, the default is set to 1 (which you will want to override).
The offspring biomass divided by the egg biomass gives the rate of egg production, returned by
getRDI():

Rdi =
ϵ

2wmin

∫
N(w)Er(w)ψ(w) dw

Density dependence: The stock-recruitment relationship is an emergent phenomenon in mizer,
with several sources of density dependence. Firstly, the amount of energy invested into reproduc-
tion depends on the energy income of the spawners, which is density-dependent due to compe-
tition for prey. Secondly, the proportion of larvae that grow up to recruitment size depends on
the larval mortality, which depends on the density of predators, and on larval growth rate, which
depends on density of prey.
Finally, to encode all the density dependence in the stock-recruitment relationship that is not
already included in the other two sources of density dependence, mizer puts the the density-
independent rate of egg production through a density-dependence function. The result is returned
by getRDD(). The name of the density-dependence function is specified by the RDD argument.
The default is the Beverton-Holt function BevertonHoltRDD(), which requires an R_max column
in the species_params data frame giving the maximum egg production rate. If this column does

setParams 197

not exist, it is initialised to Inf, leading to no density-dependence. Other functions provided by
mizer are RickerRDD() and SheperdRDD() and you can easily use these as models for writing
your own functions.

Setting fishing

Gears

In mizer, fishing mortality is imposed on species by fishing gears. The total per-capita fishing
mortality (1/year) is obtained by summing over the mortality from all gears,

µf.i(w) =
∑
g

Fg,i(w),

where the fishing mortality Fg,i(w) imposed by gear g on species i at size w is calculated as:

Fg,i(w) = Sg,i(w)Qg,iEg,

where S is the selectivity by species, gear and size, Q is the catchability by species and gear and E
is the fishing effort by gear.

Selectivity

The selectivity at size of each gear for each species is saved as a three dimensional array (gear x
species x size). Each entry has a range between 0 (that gear is not selecting that species at that size)
to 1 (that gear is selecting all individuals of that species of that size). This three dimensional array
can be specified explicitly via the selectivity argument, but usually mizer calculates it from the
gear_params slot of the MizerParams object.

To allow the calculation of the selectivity array, the gear_params slot must be a data frame
with one row for each gear-species combination. So if for example a gear can select three species,
then that gear contributes three rows to the gear_params data frame, one for each species it can
select. The data frame must have columns gear, holding the name of the gear, species, holding the
name of the species, and sel_func, holding the name of the function that calculates the selectivity
curve. Some selectivity functions are included in the package: knife_edge(), sigmoid_length(),
double_sigmoid_length(), and sigmoid_weight(). Users are able to write their own size-based
selectivity function. The first argument to the function must be w and the function must return a
vector of the selectivity (between 0 and 1) at size.

Each selectivity function may have parameters. Values for these parameters must be included as
columns in the gear parameters data.frame. The names of the columns must exactly match the
names of the corresponding arguments of the selectivity function. For example, the default selectiv-
ity function is knife_edge() that a has sudden change of selectivity from 0 to 1 at a certain size. In
its help page you can see that the knife_edge() function has arguments w and knife_edge_size.
The first argument, w, is size (the function calculates selectivity at size). All selectivity functions
must have w as the first argument. The values for the other arguments must be found in the gear
parameters data.frame. So for the knife_edge() function there should be a knife_edge_size col-
umn. Because knife_edge() is the default selectivity function, the knife_edge_size argument
has a default value = w_mat.

The most commonly-used selectivity function is sigmoid_length(). It has a smooth transition
from 0 to 1 at a certain size. The sigmoid_length() function has the two parameters l50 and l25
that are the lengths in cm at which 50% or 25% of the fish are selected by the gear. If you choose

198 setPredKernel

this selectivity function then the l50 and l25 columns must be included in the gear parameters
data.frame.

In case each species is only selected by one gear, the columns of the gear_params data frame can
alternatively be provided as columns of the species_params data frame, if this is more convenient
for the user to set up. Mizer will then copy these columns over to create the gear_params data
frame when it creates the MizerParams object. However changing these columns in the species
parameter data frame later will not update the gear_params data frame.

Catchability

Catchability is used as an additional factor to make the link between gear selectivity, fishing effort
and fishing mortality. For example, it can be set so that an effort of 1 gives a desired fishing
mortality. In this way effort can then be specified relative to a ’base effort’, e.g. the effort in a
particular year.

Catchability is stored as a two dimensional array (gear x species). This can either be provided
explicitly via the catchability argument, or the information can be provided via a catchability
column in the gear_params data frame.

In the case where each species is selected by only a single gear, the catchability column can also
be provided in the species_params data frame. Mizer will then copy this over to the gear_params
data frame when the MizerParams object is created.

Effort

The initial fishing effort is stored in the MizerParams object. If it is not supplied, it is set to zero.
The initial effort can be overruled when the simulation is run with project(), where it is also
possible to specify an effort that varies through time.

See Also

Other functions for setting parameters: gear_params(), setExtEncounter(), setExtMort(),
setFishing(), setInitialValues(), setInteraction(), setMaxIntakeRate(), setMetabolicRate(),
setPredKernel(), setReproduction(), setSearchVolume(), species_params()

setPredKernel Set predation kernel

Description

The predation kernel determines the distribution of prey sizes that a predator feeds on. It is used
in getEncounter() when calculating the rate at which food is encountered and in getPredRate()
when calculating the rate at which a prey is predated upon. The predation kernel can be a function
of the predator/prey size ratio or it can be a function of the predator size and the prey size separately.
Both types can be set up with this function.

setPredKernel 199

Usage

setPredKernel(params, pred_kernel = NULL, reset = FALSE, ...)

getPredKernel(params)

pred_kernel(params)

pred_kernel(params) <- value

Arguments

params A MizerParams object

pred_kernel Optional. An array (species x predator size x prey size) that holds the predation
coefficient of each predator at size on each prey size. If not supplied, a default
is set as described in section "Setting predation kernel".

reset [Experimental] If set to TRUE, then the predation kernel will be reset to the
value calculated from the species parameters, even if it was previously overwrit-
ten with a custom value. If set to FALSE (default) then a recalculation from the
species parameters will take place only if no custom value has been set.

... Unused

value pred_kernel

Value

setPredKernel(): A MizerParams object with updated predation kernel.

getPredKernel() or equivalently pred_kernel(): An array (predator species x predator_size x
prey_size)

Setting predation kernel

Kernel dependent on predator to prey size ratio
If the pred_kernel argument is not supplied, then this function sets a predation kernel that depends
only on the ratio of predator mass to prey mass, not on the two masses independently. The shape of
that kernel is then determined by the pred_kernel_type column in species_params.

The default for pred_kernel_type is "lognormal". This will call the function lognormal_pred_kernel()
to calculate the predation kernel. An alternative pred_kernel type is "box", implemented by the func-
tion box_pred_kernel(), and "power_law", implemented by the function power_law_pred_kernel().
These functions require certain species parameters in the species_params data frame. For the log-
normal kernel these are beta and sigma, for the box kernel they are ppmr_min and ppmr_max. They
are explained in the help pages for the kernel functions. Except for beta and sigma, no defaults are
set for these parameters. If they are missing from the species_params data frame then mizer will
issue an error message.

You can use any other string for pred_kernel_type. If for example you choose "my" then you need
to define a function my_pred_kernel that you can model on the existing functions like lognormal_pred_kernel().

When using a kernel that depends on the predator/prey size ratio only, mizer does not need to store
the entire three dimensional array in the MizerParams object. Such an array can be very big when

200 setRateFunction

there is a large number of size bins. Instead, mizer only needs to store two two-dimensional arrays
that hold Fourier transforms of the feeding kernel function that allow the encounter rate and the
predation rate to be calculated very efficiently. However, if you need the full three-dimensional
array you can calculate it with the getPredKernel() function.

Kernel dependent on both predator and prey size

If you want to work with a feeding kernel that depends on predator mass and prey mass indepen-
dently, you can specify the full feeding kernel as a three-dimensional array (predator species x
predator size x prey size).

You should use this option only if a kernel dependent only on the predator/prey mass ratio is not
appropriate. Using a kernel dependent on predator/prey mass ratio only allows mizer to use fast
Fourier transform methods to significantly reduce the running time of simulations.

The order of the predator species in pred_kernel should be the same as the order in the species
params dataframe in the params object. If you supply a named array then the function will check
the order and warn if it is different.

See Also

Other functions for setting parameters: gear_params(), setExtEncounter(), setExtMort(),
setFishing(), setInitialValues(), setInteraction(), setMaxIntakeRate(), setMetabolicRate(),
setParams(), setReproduction(), setSearchVolume(), species_params()

Examples

Set up a MizerParams object
params <- NS_params

If you change predation kernel parameters after setting up a model,
this will be used to recalculate the kernel
species_params(params)["Cod", "beta"] <- 200

You can change to a different predation kernel type
species_params(params)$ppmr_max <- 4000
species_params(params)$ppmr_min <- 200
species_params(params)$pred_kernel_type <- "box"
plot(w_full(params), getPredKernel(params)["Cod", 100,], type="l", log="x")

If you need a kernel that depends also on prey size you need to define
it yourself.
pred_kernel <- getPredKernel(params)
pred_kernel["Herring", ,] <- sweep(pred_kernel["Herring", ,], 2,

params@w_full, "*")
params<- setPredKernel(params, pred_kernel = pred_kernel)

setRateFunction Set own rate function to replace mizer rate function

setRateFunction 201

Description

If the way mizer calculates a fundamental rate entering the model is not flexible enough for you
(for example if you need to introduce time dependence) then you can write your own functions for
calculating that rate and use setRateFunction() to register it with mizer.

Usage

setRateFunction(params, rate, fun)

getRateFunction(params, rate)

other_params(params)

other_params(params) <- value

Arguments

params A MizerParams object

rate Name of the rate for which a new function is to be set.

fun Name of the function to use to calculate the rate.

value Values for other parameters

Details

At each time step during a simulation with the project() function, mizer needs to calculate the
instantaneous values of the various rates. By default it calls the mizerRates() function which
creates a list with the following components:

• encounter from mizerEncounter()

• feeding_level from mizerFeedingLevel()

• pred_rate from mizerPredRate()

• pred_mort from mizerPredMort()

• f_mort from mizerFMort()

• mort from mizerMort()

• resource_mort from mizerResourceMort()

• e from mizerEReproAndGrowth()

• e_repro from mizerERepro()

• e_growth from mizerEGrowth()

• rdi from mizerRDI()

• rdd from BevertonHoltRDD()

For each of these you can substitute your own function. So for example if you have written your
own function for calculating the total mortality rate and have called it myMort and have a mizer
model stored in a MizerParams object called params that you want to run with your new mortality
rate, then you would call

202 setReproduction

params <- setRateFunction(params, "Mort", "myMort")

In general if you want to replace a function mizerSomeRateFunc() with a function myVersionOfThis()
you would call

params <- setRateFunction(params, "SomeRateFunc", "myVersionOfThis")

In some extreme cases you may need to swap out the entire mizerRates() function for your own
function called myRates(). That you can do with

params <- setRateFunction(params, "Rates", "myRates")

Your new rate functions may need their own model parameters. These you can store in other_params(params).
For example

other_params(params)$my_param <- 42

Note that your own rate functions need to be defined in the global environment or in a package. If
they are defined within a function then mizer will not find them.

Value

For setRateFunction(): An updated MizerParams object

For getRateFunction(): The name of the registered rate function for the requested rate, or the
list of all rate functions if called without rate argument.

For other_params(): A named list with all the parameters for which you have set values.

setReproduction Set reproduction parameters

Description

Sets the proportion of the total energy available for reproduction and growth that is invested into
reproduction as a function of the size of the individual and sets additional density dependence.

Usage

setReproduction(
params,
maturity = NULL,
repro_prop = NULL,
reset = FALSE,
RDD = NULL,
...

)

setReproduction 203

getMaturityProportion(params)

maturity(params)

maturity(params) <- value

getReproductionProportion(params)

repro_prop(params)

repro_prop(params) <- value

Arguments

params A MizerParams object

maturity Optional. An array (species x size) that holds the proportion of individuals of
each species at size that are mature. If not supplied, a default is set as described
in the section "Setting reproduction".

repro_prop Optional. An array (species x size) that holds the proportion of consumed energy
that a mature individual allocates to reproduction for each species at size. If not
supplied, a default is set as described in the section "Setting reproduction".

reset [Experimental] If set to TRUE, then both maturity and repro_prop will be
reset to the value calculated from the species parameters, even if they were pre-
viously overwritten with custom values. If set to FALSE (default) then a recal-
culation from the species parameters will take place only if no custom values
have been set.

RDD The name of the function calculating the density-dependent reproduction rate
from the density-independent rate. Defaults to "BevertonHoltRDD()".

... Unused

value .

Value

setReproduction(): A MizerParams object with updated reproduction parameters.

getMaturityProportion() or equivalently ‘maturity(): An array (species x size) that holds the
proportion of individuals of each species at size that are mature.

getReproductionProportion() or equivalently repro_prop(): An array (species x size) that
holds the proportion of consumed energy that a mature individual allocates to reproduction for each
species at size. For sizes where the maturity proportion is zero, also the reproduction proportion is
returned as zero.

Setting reproduction

For each species and at each size, the proportion ψ of the available energy that is invested into
reproduction is the product of two factors: the proportion maturity of individuals that are mature
and the proportion repro_prop of the energy available to a mature individual that is invested into
reproduction. There is a size w_repro_max at which all the energy is invested into reproduction and

204 setReproduction

therefore all growth stops. There can be no fish larger than w_repro_max. If you have not specified
the w_repro_max column in the species parameter data frame, then the maximum size w_max is
used instead.

Maturity ogive: If the the proportion of individuals that are mature is not supplied via the
maturity argument, then it is set to a sigmoidal maturity ogive that changes from 0 to 1 at around
the maturity size:

maturity(w) =

[
1 +

(
w

wmat

)−U
]−1

.

(To avoid clutter, we are not showing the species index in the equations, although each species
has its own maturity ogive.) The maturity weights are taken from the w_mat column of the
species_params data frame. Any missing maturity weights are set to 1/4 of the maximum weight
in the w_max column.
The exponent U determines the steepness of the maturity ogive. By default it is chosen as U =
10, however this can be overridden by including a column w_mat25 in the species parameter
dataframe that specifies the weight at which 25% of individuals are mature, which sets U =
log(3)/ log(wmat/wmat25).

The sigmoidal function given above would strictly reach 1 only asymptotically. Mizer instead
sets the function equal to 1 already at a size taken from the w_repro_max column in the species
parameter data frame, if it exists, or otherwise from the w_max column. Also, for computational
simplicity, any proportion smaller than 1e-8 is set to 0.

Investment into reproduction: If the the energy available to a mature individual that is invested
into reproduction is not supplied via the repro_prop argument, it is set to the allometric form

repro_prop(w) =
(

w

wmatmax

)m−n

.

Here n is the scaling exponent of the energy income rate. Hence the exponent m determines the
scaling of the investment into reproduction for mature individuals. By default it is chosen to be
m = 1 so that the rate at which energy is invested into reproduction scales linearly with the size.
This default can be overridden by including a column m in the species parameter dataframe. The
maximum sizes are taken from the w_repro_max column in the species parameter data frame, if
it exists, or otherwise from the w_max column.
The total proportion of energy invested into reproduction of an individual of size w is then

ψ(w) = maturity(w)repro_prop(w)

Reproductive efficiency: The reproductive efficiency ϵ, i.e., the proportion of energy allocated to
reproduction that results in egg biomass, is set through the erepro column in the species_params
data frame. If that is not provided, the default is set to 1 (which you will want to override).
The offspring biomass divided by the egg biomass gives the rate of egg production, returned by
getRDI():

Rdi =
ϵ

2wmin

∫
N(w)Er(w)ψ(w) dw

Density dependence: The stock-recruitment relationship is an emergent phenomenon in mizer,
with several sources of density dependence. Firstly, the amount of energy invested into reproduc-
tion depends on the energy income of the spawners, which is density-dependent due to compe-
tition for prey. Secondly, the proportion of larvae that grow up to recruitment size depends on

setResource 205

the larval mortality, which depends on the density of predators, and on larval growth rate, which
depends on density of prey.
Finally, to encode all the density dependence in the stock-recruitment relationship that is not
already included in the other two sources of density dependence, mizer puts the the density-
independent rate of egg production through a density-dependence function. The result is returned
by getRDD(). The name of the density-dependence function is specified by the RDD argument.
The default is the Beverton-Holt function BevertonHoltRDD(), which requires an R_max column
in the species_params data frame giving the maximum egg production rate. If this column does
not exist, it is initialised to Inf, leading to no density-dependence. Other functions provided by
mizer are RickerRDD() and SheperdRDD() and you can easily use these as models for writing
your own functions.

See Also

Other functions for setting parameters: gear_params(), setExtEncounter(), setExtMort(),
setFishing(), setInitialValues(), setInteraction(), setMaxIntakeRate(), setMetabolicRate(),
setParams(), setPredKernel(), setSearchVolume(), species_params()

Examples

Plot maturity and reproduction ogives for Cod in North Sea model
maturity <- getMaturityProportion(NS_params)["Cod",]
repro_prop <- getReproductionProportion(NS_params)["Cod",]
df <- data.frame(Size = w(NS_params),

Reproduction = repro_prop,
Maturity = maturity,
Total = maturity * repro_prop)

dff <- melt(df, id.vars = "Size",
variable.name = "Type",
value.name = "Proportion")

library(ggplot2)
ggplot(dff) + geom_line(aes(x = Size, y = Proportion, colour = Type))

setResource Set resource dynamics

Description

Sets the intrinsic resource growth rate and the intrinsic resource carrying capacity as well as the
name of the function used to simulate the resource dynamics. By default this function changes both
the rate and the capacity together in such a way that the resource replenishes at the same rate at
which it is consumed.

Usage

setResource(
params,

206 setResource

resource_rate = NULL,
resource_capacity = NULL,
resource_level = NULL,
resource_dynamics = NULL,
balance = NULL,
lambda = resource_params(params)[["lambda"]],
n = resource_params(params)[["n"]],
w_pp_cutoff = resource_params(params)[["w_pp_cutoff"]],
r_pp = deprecated(),
kappa = deprecated(),
...

)

resource_rate(params)

resource_rate(params) <- value

resource_capacity(params)

resource_capacity(params) <- value

resource_level(params)

resource_level(params) <- value

resource_dynamics(params)

resource_dynamics(params) <- value

Arguments

params A MizerParams object

resource_rate Optional. Vector of resource intrinsic birth rates or coefficient in the power-law
for the birth rate, see Details. Must be strictly positive.

resource_capacity

Optional. Vector of resource intrinsic carrying capacities or coefficient in the
power-law for the capacity, see Details. The resource capacity must be larger
than the resource abundance.

resource_level Optional. The ratio between the current resource number density and the re-
source capacity. Either a number used at all sizes or a vector specifying a value
for each size. Must be strictly between 0 and 1, except at sizes where the re-
source is zero, where it can be NaN. This determines the resource capacity, so do
not specify both this and resource_capacity.

resource_dynamics

Optional. Name of the function that determines the resource dynamics by cal-
culating the resource spectrum at the next time step from the current state.

balance By default, if possible, the resource parameters are set so that the resource re-
plenishes at the same rate at which it is consumed. In this case you should only

setResource 207

specify either the resource rate or the resource capacity (or resource level) be-
cause the other is then determined automatically. Set to FALSE if you do not
want the balancing.

lambda Used to set power-law exponent for resource capacity if the resource_capacity
argument is given as a single number.

n Used to set power-law exponent for resource rate if the resource_rate argu-
ment is given as a single number.

w_pp_cutoff The upper cut off size of the resource spectrum power law used only if resource_capacity
is given as a single number.

r_pp [Deprecated]. Use resource_rate argument instead.

kappa [Deprecated]. Use resource_capacity argument instead.

... Unused

value The desired new value for the respective parameter.

Value

setResource: A MizerParams object with updated resource parameters

Setting resource dynamics

You would usually set the resource dynamics only after having finished the calibration of the steady
state. Then setting the resource dynamics with this function will preserve that steady state, unless
you explicitly choose to set balance = FALSE. Your choice of the resource dynamics only affects the
dynamics around the steady state. The higher the resource rate or the lower the resource capacity
the less sensitive the model will be to changes in the competition for resource.

The resource_dynamics argument allows you to choose the resource dynamics function. By de-
fault, mizer uses a semichemostat model to describe the resource dynamics in each size class inde-
pendently. This semichemostat dynamics is implemented by the function resource_semichemostat().
You can change that to use a logistic model implemented by resource_logistic() or you can use
resource_constant() which keeps the resource constant or you can write your own function.

Both the resource_semichemostat() and the resource_logistic() dynamics are parametrised
in terms of a size-dependent rate rR(w) and a size-dependent capacity cR. The help pages of these
functions give the details.

The resource_rate argument can be a vector (with the same length as w_full(params)) specify-
ing the intrinsic resource growth rate for each size class. Alternatively it can be a single number,
which is then used as the coefficient in a power law: then the intrinsic growth rate rR(w) at size w
is set to

rR(w) = rRw
n−1.

The power-law exponent n is taken from the n argument.

The resource_capacity argument can be a vector specifying the intrinsic resource carrying capac-
ity for each size class. Alternatively it can be a single number, which is then used as the coefficient
in a truncated power law: then the intrinsic growth rate cR(w) at size w is set to

c(w) = κw−λ

208 setRmax

for all w less than w_pp_cutoff and zero for larger sizes. The power-law exponent λ is taken from
the lambda argument.

The values for lambda, n and w_pp_cutoff are stored in a list in the resource_params slot of
the MizerParams object so that they can be re-used automatically in the future. That list can be
accessed with resource_params(). It also holds the coefficient kappa that describes the steady-
state resource abundance.

Examples

params <- NS_params
resource_dynamics(params)
resource_dynamics(params) <- "resource_constant"

setRmax Alias for setBevertonHolt()

Description

[Deprecated]
An alias provided for backward compatibility with mizer version <= 2.0.4

Usage

setRmax(params, R_factor = deprecated(), erepro, R_max, reproduction_level)

Arguments

params A MizerParams object

R_factor [Deprecated] Use reproduction_level = 1 / R_factor instead.

erepro Reproductive efficiency for each species. See details.

R_max Maximum reproduction rate. See details.
reproduction_level

Sets R_max so that the reproduction rate at the initial state is R_max * reproduction_level.

Details

With Beverton-Holt density dependence the relation between the energy invested into reproduc-
tion and the number of eggs hatched is determined by two parameters: the reproductive efficiency
erepro and the maximum reproduction rate R_max.

If no maximum is imposed on the reproduction rate (Rmax = ∞) then the resulting density-
independent reproduction rate Rdi is proportional to the total rate ER at which energy is invested
into reproduction,

Rdi =
erepro

2wmin
ER,

where the proportionality factor is given by the reproductive efficiency erepro divided by the egg
size w_min to convert energy to egg number and divided by 2 to account for the two sexes.

setRmax 209

Imposing a finite maximum reproduction rate Rmax leads to a non-linear relationship between
energy invested and eggs hatched. This density-dependent reproduction rate Rdd is given as

Rdd = Rdi
Rmax

Rdi +Rmax
.

(All quantities in the above equations are species-specific but we dropped the species index for
simplicity.)

The following plot illustrates the Beverton-Holt density dependence in the reproduction rate for two

different choices of parameters.

This plot shows that a given energyER invested into reproduction can lead to the same reproduction
rate Rdd with different choices of the parameters R_max and erepro. R_max determines the asymp-
tote of the curve and erepro its initial slope. A higher R_max coupled with a lower erepro (black
curves) can give the same value as a lower R_max coupled with a higher erepro (blue curves).

For the given initial state in the MizerParams object params one can calculate the energy ER that is
invested into reproduction by the mature individuals and the reproduction rate Rdd that is required
to keep the egg abundance constant. These two values determine the location of the black dot in the
above graph. You then only need one parameter to select one curve from the family of Beverton-Holt
curves going through that point. This parameter can be erepro or R_max. Instead of R_max you can
alternatively specify the reproduction_level which is the ratio between the density-dependent
reproduction rate Rdd and the maximal reproduction rate Rmax.

If you do not provide a value for any of the reproduction parameter arguments, then erepro will
be set to the value it has in the current species parameter data frame. If you do provide one of the
reproduction parameters, this can be either a vector with one value for each species, or a named
vector where the names determine which species are affected, or a single unnamed value that is
then used for all species. Any species for which the given value is NA will remain unaffected.

The values for R_max must be larger than Rdd and can range up to Inf. If a smaller value is
requested a warning is issued and the value is increased to the value required for a reproduction
level of 0.99.

The values for the reproduction_level must be positive and less than 1. The values for erepro
must be large enough to allow the required reproduction rate. If a smaller value is requested a
warning is issued and the value is increased to the smallest possible value. The values for erepro
should also be smaller than 1 to be physiologically sensible, but this is not enforced by the function.

As can be seen in the graph above, choosing a lower value for R_max or a higher value for erepro
means that near the steady state the reproduction will be less sensitive to a change in the energy

210 setSearchVolume

invested into reproduction and hence less sensitive to changes in the spawning stock biomass or
its energy income. As a result the species will also be less sensitive to fishing, leading to a higher
F_MSY.

Value

A MizerParams object

Examples

params <- NS_params
species_params(params)$erepro
Attempting to set the same erepro for all species
params <- setBevertonHolt(params, erepro = 0.1)
t(species_params(params)[, c("erepro", "R_max")])
Setting erepro for some species
params <- setBevertonHolt(params, erepro = c("Gurnard" = 0.6, "Plaice" = 0.95))
t(species_params(params)[, c("erepro", "R_max")])
Setting R_max
R_max <- 1e17 * species_params(params)$w_max^-1
params <- setBevertonHolt(NS_params, R_max = R_max)
t(species_params(params)[, c("erepro", "R_max")])
Setting reproduction_level
params <- setBevertonHolt(params, reproduction_level = 0.3)
t(species_params(params)[, c("erepro", "R_max")])

setSearchVolume Set search volume

Description

Set search volume

Usage

setSearchVolume(params, search_vol = NULL, reset = FALSE, ...)

getSearchVolume(params)

search_vol(params)

search_vol(params) <- value

Arguments

params MizerParams

search_vol Optional. An array (species x size) holding the search volume for each species
at size. If not supplied, a default is set as described in the section "Setting search
volume".

set_community_model 211

reset [Experimental] If set to TRUE, then the search volume will be reset to the value
calculated from the species parameters, even if it was previously overwritten
with a custom value. If set to FALSE (default) then a recalculation from the
species parameters will take place only if no custom value has been set.

... Unused

value search_vol

Value

setSearchVolume(): A MizerParams object with updated search volume.

getSearchVolume() or equivalently search_vol(): An array (species x size) holding the search
volume

Setting search volume

The search volume γi(w) of an individual of species i and weight w multiplies the predation kernel
when calculating the encounter rate in getEncounter() and the predation rate in getPredRate().

The name "search volume" is a bit misleading, because γi(w) does not have units of volume. It
is simply a parameter that determines the rate of predation. Its units depend on your choice, see
section "Units in mizer". If you have chosen to work with total abundances, then it is a rate with
units 1/year. If you have chosen to work with abundances per m^2 then it has units of m^2/year. If
you have chosen to work with abundances per m^3 then it has units of m^3/year.

If the search_vol argument is not supplied, then the search volume is set to

γi(w) = γiw
q
i .

The values of γi (the search volume at 1g) and qi (the allometric exponent of the search volume) are
taken from the gamma and q columns in the species parameter dataframe. If the gamma column is not
supplied in the species parameter dataframe, a default is calculated by the get_gamma_default()
function. Note that only for predators of size w = 1 gram is the value of the species parameter γi
the same as the value of the search volume γi(w).

See Also

Other functions for setting parameters: gear_params(), setExtEncounter(), setExtMort(),
setFishing(), setInitialValues(), setInteraction(), setMaxIntakeRate(), setMetabolicRate(),
setParams(), setPredKernel(), setReproduction(), species_params()

set_community_model Deprecated function for setting up parameters for a community-type
model

Description

[Deprecated]
This function has been deprecated in favour of the function newCommunityParams() that sets better
default values.

212 set_community_model

Usage

set_community_model(
max_w = 1e+06,
min_w = 0.001,
min_w_pp = 1e-10,
z0 = 0.1,
alpha = 0.2,
h = 10,
beta = 100,
sigma = 2,
q = 0.8,
n = 2/3,
kappa = 1000,
lambda = 2 + q - n,
f0 = 0.7,
r_pp = 10,
gamma = NA,
knife_edge_size = 1000,
knife_is_min = TRUE,
recruitment = kappa * min_w^-lambda,
rec_mult = 1,
...

)

Arguments

max_w The maximum size of the community. The w_inf of the species used to repre-
sent the community is set to this value. The default value is 1e6.

min_w The minimum size of the community. Default value is 1e-3.

min_w_pp The smallest size of the resource spectrum.

z0 The background mortality of the community. Default value is 0.1.

alpha The assimilation efficiency of the community. Default value 0.2

h The maximum food intake rate. Default value is 10.

beta The preferred predator prey mass ratio. Default value is 100.

sigma The width of the prey preference. Default value is 2.0.

q The search volume exponent. Default value is 0.8.

n The scaling of the intake. Default value is 2/3.

kappa The carrying capacity of the resource spectrum. Default value is 1000.

lambda The exponent of the resource spectrum. Default value is 2 + q - n.

f0 The average feeding level of individuals who feed on a power-law spectrum.
This value is used to calculate the search rate parameter gamma (see the package
vignette). Default value is 0.7.

r_pp Growth rate parameter for the resource spectrum. Default value is 10.

gamma Volumetric search rate. Estimated using h, f0 and kappa if not supplied.

set_community_model 213

knife_edge_size

The size at the edge of the knife-selectivity function. Default value is 1000.
knife_is_min Is the knife-edge selectivity function selecting above (TRUE) or below (FALSE)

the edge. Default is TRUE.
recruitment The constant recruitment in the smallest size class of the community spectrum.

This should be set so that the community spectrum continues the resource spec-
trum. Default value = kappa * min_w^-lambda.

rec_mult Additional multiplier for the constant recruitment. Default value is 1.
... Other arguments to pass to the MizerParams constructor.

Details

This functions creates a MizerParams object so that community-type models can be easily set up
and run. A community model has several features that distinguish it from the food-web type models.
Only one ’species’ is resolved, i.e. one ’species’ is used to represent the whole community. The
resource spectrum only extends to the start of the community spectrum. Recruitment to the smallest
size in the community spectrum is constant and set by the user. As recruitment is constant, the
proportion of energy invested in reproduction (the slot psi of the returned MizerParams object) is
set to 0. Standard metabolism has been turned off (the parameter ks is set to 0). Consequently, the
growth rate is now determined solely by the assimilated food (see the package vignette for more
details).

The function has many arguments, all of which have default values. The main arguments that the
users should be concerned with are z0, recruitment, alpha and f0 as these determine the average
growth rate of the community.

Fishing selectivity is modelled as a knife-edge function with one parameter, knife_edge_size,
which determines the size at which species are selected.

The resulting MizerParams object can be projected forward using project() like any other MizerParams
object. When projecting the community model it may be necessary to keep a small time step size
dt of around 0.1 to avoid any instabilities with the solver. You can check for these numerical
instabilities by plotting the biomass or abundance through time after the projection.

Value

An object of type MizerParams

References

K. H. Andersen,J. E. Beyer and P. Lundberg, 2009, Trophic and individual efficiencies of size-
structured communities, Proceedings of the Royal Society, 276, 109-114

Examples

params <- set_community_model(f0=0.7, z0=0.2, recruitment=3e7)
This is now achieved with
params <- newCommunityParams(f0 = 0.7, z0 = 0.2)
sim <- project(params, effort = 0, t_max = 100, dt=0.1)
plotBiomass(sim)
plotSpectra(sim)

214 set_multispecies_model

set_multispecies_model

Deprecated obsolete function for setting up multispecies parameters

Description

[Deprecated]

This function has been deprecated in favour of the function newMultispeciesParams() that sets
better default values.

Usage

set_multispecies_model(
species_params,
interaction = matrix(1, nrow = nrow(species_params), ncol = nrow(species_params)),
min_w_pp = 1e-10,
min_w = 0.001,
max_w = NULL,
no_w = 100,
n = 2/3,
q = 0.8,
f0 = 0.6,
kappa = 1e+11,
lambda = 2 + q - n,
r_pp = 10,
...

)

Arguments

species_params A data frame of species-specific parameter values.

interaction Optional interaction matrix of the species (predator species x prey species). By
default all entries are 1. See "Setting interaction matrix" section below.

min_w_pp The smallest size of the resource spectrum. By default this is set to the smallest
value at which any of the consumers can feed.

min_w Sets the size of the eggs of all species for which this is not given in the w_min
column of the species_params dataframe.

max_w The largest size of the consumer spectrum. By default this is set to the largest
w_max specified in the species_params data frame.

no_w The number of size bins in the consumer spectrum.

n The allometric growth exponent. This can be overruled for individual species
by including a n column in the species_params.

q Allometric exponent of search volume

set_species_param_default 215

f0 Expected average feeding level. Used to set gamma, the coefficient in the search
rate. Ignored if gamma is given explicitly.

kappa The coefficient of the initial resource abundance power-law.

lambda Used to set power-law exponent for resource capacity if the resource_capacity
argument is given as a single number.

r_pp [Deprecated]. Use resource_rate argument instead.

... Unused

Value

A MizerParams object

set_species_param_default

Set a species parameter to a default value

Description

If the species parameter does not yet exist in the species parameter data frame, then create it and fill
it with the default. Otherwise use the default only to fill in any NAs. Optionally gives a message if
the parameter did not already exist.

Usage

set_species_param_default(object, parname, default, message = NULL)

Arguments

object Either a MizerParams object or a species parameter data frame

parname A string with the name of the species parameter to set

default A single default value or a vector with one default value for each species

message A string with a message to be issued when the parameter did not already exist

Value

The object with an updated column in the species params data frame.

216 set_trait_model

set_trait_model Deprecated function for setting up parameters for a trait-based model

Description

[Deprecated]

This function has been deprecated in favour of the function newTraitParams() that sets better
default values.

Usage

set_trait_model(
no_sp = 10,
min_w_inf = 10,
max_w_inf = 1e+05,
no_w = 100,
min_w = 0.001,
max_w = max_w_inf * 1.1,
min_w_pp = 1e-10,
w_pp_cutoff = 1,
k0 = 50,
n = 2/3,
p = 0.75,
q = 0.9,
eta = 0.25,
r_pp = 4,
kappa = 0.005,
lambda = 2 + q - n,
alpha = 0.6,
ks = 4,
z0pre = 0.6,
h = 30,
beta = 100,
sigma = 1.3,
f0 = 0.5,
gamma = NA,
knife_edge_size = 1000,
gear_names = "knife_edge_gear",
...

)

Arguments

no_sp The number of species in the model. The default value is 10. The more species,
the longer takes to run.

min_w_inf The asymptotic size of the smallest species in the community.

set_trait_model 217

max_w_inf The asymptotic size of the largest species in the community.

no_w The number of size bins in the community spectrum.

min_w The smallest size of the community spectrum.

max_w Obsolete argument because the maximum size of the consumer spectrum is set
to max_w_inf.

min_w_pp Obsolete argument because the smallest resource size is set to the smallest size
at which the consumers feed.

w_pp_cutoff The cut off size of the resource spectrum. Default value is 1.

k0 Multiplier for the maximum recruitment. Default value is 50.

n Scaling of the intake. Default value is 2/3.

p Scaling of the standard metabolism. Default value is 0.75.

q Exponent of the search volume. Default value is 0.9.

eta Factor to calculate w_mat from asymptotic size.

r_pp Growth rate parameter for the resource spectrum. Default value is 4.

kappa Coefficient in abundance power law. Default value is 0.005.

lambda Exponent of the abundance power law. Default value is (2+q-n).

alpha The assimilation efficiency of the community. The default value is 0.6

ks Standard metabolism coefficient. Default value is 4.

z0pre The coefficient of the background mortality of the community. z0 = z0pre *
w_inf ^ (n-1). The default value is 0.6.

h Maximum food intake rate. Default value is 30.

beta Preferred predator prey mass ratio. Default value is 100.

sigma Width of prey size preference. Default value is 1.3.

f0 Expected average feeding level. Used to set gamma, the factor for the search
volume. The default value is 0.5.

gamma Volumetric search rate. Estimated using h, f0 and kappa if not supplied.
knife_edge_size

The minimum size at which the gear or gears select species. Must be of length
1 or no_sp.

gear_names The names of the fishing gears. A character vector, the same length as the num-
ber of species. Default is 1 - no_sp.

... Other arguments to pass to the MizerParams constructor.

Details

This functions creates a MizerParams object so that trait-based-type models can be easily set up
and run. The trait-based size spectrum model can be derived as a simplification of the general size-
based model used in mizer. The species-specific parameters are the same for all species, except for
the asymptotic size, which is considered the most important trait characterizing a species. Other
parameters are related to the asymptotic size. For example, the size at maturity is given by w_max
* eta, where eta is the same for all species. For the trait-based model the number of species is

218 SheperdRDD

not important. For applications of the trait-based model see Andersen & Pedersen (2010). See the
mizer vignette for more details and examples of the trait-based model.

The function has many arguments, all of which have default values. Of particular interest to the
user are the number of species in the model and the minimum and maximum asymptotic sizes. The
asymptotic sizes of the species are spread evenly on a logarithmic scale within this range.

The stock recruitment relationship is the default Beverton-Holt style. The maximum recruitment is
calculated using equilibrium theory (see Andersen & Pedersen, 2010) and a multiplier, k0. Users
should adjust k0 to get the spectra they want.

The factor for the search volume, gamma, is calculated using the expected feeding level, f0.

Fishing selectivity is modelled as a knife-edge function with one parameter, knife_edge_size,
which is the size at which species are selected. Each species can either be fished by the same gear
(knife_edge_size has a length of 1) or by a different gear (the length of knife_edge_size has
the same length as the number of species and the order of selectivity size is that of the asymptotic
size).

The resulting MizerParams object can be projected forward using project like any other MizerParams
object. When projecting the community model it may be necessary to reduce dt to 0.1 to avoid any
instabilities with the solver. You can check this by plotting the biomass or abundance through time
after the projection.

Value

An object of type MizerParams

References

K. H. Andersen and M. Pedersen, 2010, Damped trophic cascades driven by fishing in model marine
ecosystems. Proceedings of the Royal Society V, Biological Sciences, 1682, 795-802.

SheperdRDD Sheperd function to calculate density-dependent reproduction rate

Description

[Experimental] Takes the density-independent rates Rdi of egg production and returns reduced,
density-dependent rates Rdd given as

Rdd =
Rdi

1 + (b Rdi)c

Usage

SheperdRDD(rdi, species_params, ...)

sigmoid_length 219

Arguments

rdi Vector of density-independent reproduction rates Rdi for all species.

species_params A species parameter dataframe. Must contain columns sheperd_b and sheperd_c
with the parameters b and c.

... Unused

Details

With b = 1/Rmax and c = 1 this reduces to the Beverton-Holt reproduction rate, see BevertonHoltRDD().

Value

Vector of density-dependent reproduction rates.

See Also

Other functions calculating density-dependent reproduction rate: BevertonHoltRDD(), RickerRDD(),
constantEggRDI(), constantRDD(), noRDD()

sigmoid_length Length based sigmoid selectivity function

Description

A sigmoid shaped selectivity function. Based on two parameters l25 and l50 which determine the
length at which 25% and 50% of the stock is selected respectively.

Usage

sigmoid_length(w, l25, l50, species_params, ...)

Arguments

w Vector of sizes.

l25 the length which gives a selectivity of 25%.

l50 the length which gives a selectivity of 50%.

species_params A list with the species params for the current species. Used to get at the length-
weight parameters a and b.

... Unused

220 sigmoid_weight

Details

The selectivity is given by the logistic function

S(l) =
1

1 + exp
(
log(3) l50−l

l50−l25

)
As the mizer model is weight based, and this selectivity function is length based, it uses the length-
weight parameters a and b to convert between length and weight

l =
(w
a

)1/b
Value

Vector of selectivities at the given sizes.

See Also

gear_params() for setting the selectivity parameters.

Other selectivity functions: double_sigmoid_length(), knife_edge(), sigmoid_weight()

sigmoid_weight Weight based sigmoidal selectivity function

Description

A sigmoidal selectivity function with 50% selectivity at weight sigmoidal_weight = wsigmoid and
width sigmoidal_sigma = σ.

S(w) =

(
1 +

(
w

wsigmoid

)−σ
)−1

Usage

sigmoid_weight(w, sigmoidal_weight, sigmoidal_sigma, ...)

Arguments

w Vector of sizes.
sigmoidal_weight

The weight at which the knife-edge operates.
sigmoidal_sigma

The width of the selection function.

... Unused

species_params 221

Value

Vector of selectivities at the given sizes.

See Also

gear_params() for setting the selectivity parameters.

Other selectivity functions: double_sigmoid_length(), knife_edge(), sigmoid_length()

species_params Species parameters

Description

These functions allow you to get or set the species-specific parameters stored in a MizerParams
object.

Usage

species_params(params)

species_params(params) <- value

given_species_params(params)

given_species_params(params) <- value

calculated_species_params(params)

Arguments

params A MizerParams object

value A data frame with the species parameters

Details

There are a lot of species parameters and we will list them all below, but most of them have sensible
default values. The only required columns are species for the species name and w_max for its
maximum size. However if you have information about the values of other parameters then you
should provide them.

Mizer distinguishes between the species parameters that you have given explicitly and the species
parameters that have been calculated by mizer or set to default values. You can retrieve the given
species parameters with given_species_params() and the calculated ones with calculated_species_params().
You get all species_params with species_params().

If you change given species parameters with given_species_params<-() this will trigger a re-
calculation of the calculated species parameters, where necessary. However if you change species
parameters with species_params<-() no recalculation will take place and furthermore your values

222 species_params

could be overwritten by a future recalculation triggered by a call to given_species_params<-() .
So in most use cases you will only want to use given_species_params<-().

There are some species parameters that are used to set up the size-dependent parameters that are
used in the mizer model:

• gamma and q are used to set the search volume, see setSearchVolume().

• h and n are used to set the maximum intake rate, see setMaxIntakeRate().

• k, ks and p are used to set activity and basic metabolic rate, see setMetabolicRate().

• z0 is used to set the external mortality rate, see setExtMort().

• w_mat, w_mat25, w_repro_max and m are used to set the allocation to reproduction, see setReproduction().

• pred_kernel_type specifies the shape of the predation kernel. The default is a "lognormal",
for other options see the "Setting predation kernel" section in the help for setPredKernel().

• beta and sigma are parameters of the lognormal predation kernel, see lognormal_pred_kernel().
There will be other parameters if you are using other predation kernel functions.

When you change one of the above species parameters using given_species_params<-() or
species_params<-(), the new value will be used to update the corresponding size-dependent rates
automatically, unless you have set those size-dependent rates manually, in which case the corre-
sponding species parameters will be ignored.

There are some species parameters that are used directly in the model rather than being used for
setting up size-dependent parameters:

• alpha is the assimilation efficiency, the proportion of the consumed biomass that can be used
for growth, metabolism and reproduction, see the help for getEReproAndGrowth().

• w_min is the egg size.

• interaction_resource sets the interaction strength with the resource, see "Predation en-
counter" section in the help for getEncounter().

• erepro is the reproductive efficiency, the proportion of the energy invested into reproduction
that is converted to egg biomass, see getRDI().

• Rmax is the parameter in the Beverton-Holt density dependence added to the reproduction, see
setBevertonHolt(). There will be other such parameters if you use other density depen-
dence functions, see the "Density dependence" section in the help for setReproduction().

Two parameters are used only by functions that need to convert between weight and length:

• a and b are the parameters in the allometric weight-length relationship w = alb.

If you have supplied the a and b parameters, then you can replace weight parameters like w_max,
w_mat, w_mat25, w_repro_max and w_min by their corresponding length parameters l_max, l_mat,
l_mat25, l_repro_max and l_min.

The parameters that are only used to calculate default values for other parameters are:

• f0 is the feeding level and is used to get a default value for the coefficient of the search volume
gamma, see get_gamma_default().

• fc is the critical feeding level below which the species can not maintain itself. This is used to
get a default value for the coefficient ks of the metabolic rate, see get_ks_default().

species_params 223

• age_mat is the age at maturity and is used to get a default value for the coefficient h of the
maximum intake rate, see get_h_default().

Note that setting these parameters with species_params<-() will have no effect. You need to
set them with given_species_params<-() in order to trigger a re-calculation of the other species
parameters.

In the past, mizer also used the von Bertalanffy parameters k_vb, w_inf and t0 to determine a
default for h. This is unreliable and is therefore now deprecated.

There are other species parameters that are used in tuning the model to observations:

• biomass_observed and biomass_cutoff allow you to specify for each species the total ob-
served biomass above some cutoff size. This is used by calibrateBiomass() and matchBiomasses().

• yield_observed allows you to specify for each species the total annual fisheries yield. This
is used by calibrateYield() and matchYields().

Finally there are two species parameters that control the way the species are represented in plots:

• linecolour specifies the colour and can be any valid R colour value.

• linetype specifies the line type ("solid", "dashed", "dotted", "dotdash", "longdash", "twodash"
or "blank")

Other species-specific information that is related to how the species is fished is specified in a gear
parameter data frame, see gear_params(). However in the case where each species is caught
by only a single gear, this information can also optionally be provided as species parameters and
newMultispeciesParams() will transfer them to the gear_params data frame. However changing
these parameters later in the species parameter data frames will have no effect.

You are allowed to include additional columns in the species parameter data frames. They will
simply be ignored by mizer but will be stored in the MizerParams object, in case your own code
makes use of them.

Value

Data frame of species parameters

See Also

validSpeciesParams(), setParams()

Other functions for setting parameters: gear_params(), setExtEncounter(), setExtMort(),
setFishing(), setInitialValues(), setInteraction(), setMaxIntakeRate(), setMetabolicRate(),
setParams(), setPredKernel(), setReproduction(), setSearchVolume()

224 steady

steady Set initial values to a steady state for the model

Description

The steady state is found by running the dynamics while keeping reproduction, resource and other
components constant until the size spectra no longer change much (or until time t_max is reached,
if earlier).

Usage

steady(
params,
t_max = 100,
t_per = 1.5,
dt = 0.1,
tol = 0.1 * dt,
return_sim = FALSE,
preserve = c("reproduction_level", "erepro", "R_max"),
progress_bar = TRUE

)

Arguments

params A MizerParams object

t_max The maximum number of years to run the simulation. Default is 100.

t_per The simulation is broken up into shorter runs of t_per years, after each of which
we check for convergence. Default value is 1.5. This should be chosen as an odd
multiple of the timestep dt in order to be able to detect period 2 cycles.

dt The time step to use in project().

tol The simulation stops when the relative change in the egg production RDI over
t_per years is less than tol for every species.

return_sim If TRUE, the function returns the MizerSim object holding the result of the
simulation run, saved at intervals of t_per. If FALSE (default) the function
returns a MizerParams object with the "initial" slots set to the steady state.

preserve [Experimental] Specifies whether the reproduction_level should be pre-
served (default) or the maximum reproduction rate R_max or the reproductive ef-
ficiency erepro. See setBevertonHolt() for an explanation of the reproduction_level.

progress_bar A shiny progress object to implement a progress bar in a shiny app. Default
FALSE.

Details

If the model use Beverton-Holt reproduction then the reproduction parameters are set to values that
give the level of reproduction observed in that steady state. The preserve argument can be used to
specify which of the reproduction parameters should be preserved.

steadySingleSpecies 225

Value

A MizerParams or a MizerSim object

Examples

params <- newTraitParams()
species_params(params)$gamma[5] <- 3000
params <- steady(params)
plotSpectra(params)

steadySingleSpecies Set initial abundances to single-species steady state abundances

Description

[Experimental] This first calculates growth and death rates that arise from the current initial abun-
dances. Then it uses these growth and death rates to determine the steady-state abundances of the
selected species.

Usage

steadySingleSpecies(
params,
species = NULL,
keep = c("egg", "biomass", "number")

)

Arguments

params A MizerParams object

species The species to be selected. Optional. By default all target species are selected.
A vector of species names, or a numeric vector with the species indices, or a
logical vector indicating for each species whether it is to be selected (TRUE) or
not.

keep A string determining which quantity is to be kept constant. The choices are
"egg" which keeps the egg density constant, "biomass" which keeps the total
biomass of the species constant and "number" which keeps the total number of
individuals constant.

Details

The result of applying this function is of course not a multi-species steady state, because after
changing the abundances of the selected species the growth and death rates will have changed.

226 summary,MizerSim-method

Value

A MizerParams object in which the initial abundances of the selected species are changed to their
single-species steady state abundances.

summary,MizerParams-method

Summarize MizerParams object

Description

Outputs a general summary of the structure and content of the object

Usage

S4 method for signature 'MizerParams'
summary(object, ...)

Arguments

object A MizerParams object.

... Other arguments (currently not used).

Value

The MizerParams object, invisibly

Examples

summary(NS_params)

summary,MizerSim-method

Summarize MizerSim object

Description

Outputs a general summary of the structure and content of the object

Usage

S4 method for signature 'MizerSim'
summary(object, ...)

summary_functions 227

Arguments

object A MizerSim object.

... Other arguments (currently not used).

Value

The MizerSim object, invisibly

Examples

summary(NS_sim)

summary_functions Description of summary functions

Description

Mizer provides a range of functions to summarise the results of a simulation.

Details

A list of available summary functions is given in the table below.

Function Returns Description
getDiet() Three dimensional array (predator x size x prey) Diet of predator at size, resolved by prey species
getSSB() Two dimensional array (time x species) Total Spawning Stock Biomass (SSB) of each species through time where SSB is calculated as the sum of weight of all mature individuals.
getBiomass() Two dimensional array (time x species) Total biomass of each species through time.
getN() Two dimensional array (time x species) Total abundance of each species through time.
getFeedingLevel() Three dimensional array (time x species x size) Feeding level of each species by size through time.
getM2 Three dimensional array (time x species x size) The predation mortality imposed on each species by size through time.
getFMort() Three dimensional array (time x species x size) Total fishing mortality on each species by size through time.
getFMortGear() Four dimensional array (time x gear x species x size) Fishing mortality on each species by each gear at size through time.
getYieldGear() Three dimensional array (time x gear x species) Total yield by gear and species through time.
getYield() Two dimensional array (time x species) Total yield of each species across all gears through time.

See Also

indicator_functions, plotting_functions

228 truncated_lognormal_pred_kernel

truncated_lognormal_pred_kernel

Truncated lognormal predation kernel

Description

This is like the lognormal_pred_kernel() but with an imposed maximum predator/prey mass
ratio

Usage

truncated_lognormal_pred_kernel(ppmr, beta, sigma)

Arguments

ppmr A vector of predator/prey size ratios

beta The preferred predator/prey size ratio

sigma The width parameter of the log-normal kernel

Details

Writing the predator mass as w and the prey mass as wp, the feeding kernel is given as

ϕi(w,wp) = exp

[
−(ln(w/wp/βi))

2

2σ2
i

]
if w/wp is between 1 and βi exp(3σi) and zero otherwise. Here βi is the preferred predator-prey
mass ratio and σi determines the width of the kernel. These two parameters need to be given in the
species parameter dataframe in the columns beta and sigma.

This function is called from setPredKernel() to set up the predation kernel slots in a MizerParams
object.

Value

A vector giving the value of the predation kernel at each of the predator/prey mass ratios in the ppmr
argument.

See Also

setPredKernel()

Other predation kernel: box_pred_kernel(), lognormal_pred_kernel(), power_law_pred_kernel()

Examples

params <- NS_params
species_params(params)$pred_kernel_type <- "truncated_lognormal"
plot(w_full(params), getPredKernel(params)["Cod", 10,], type="l", log="x")

validGearParams 229

validGearParams Check validity of gear parameters and set defaults

Description

The function returns a valid gear parameter data frame that can be used by setFishing() or it gives
an error message.

Usage

validGearParams(gear_params, species_params)

Arguments

gear_params Gear parameter data frame

species_params Species parameter data frame

Details

The gear_params data frame is allowed to have zero rows, but if it has rows, then the following
requirements apply:

• There must be columns species and gear and any species - gear pair is allowed to appear at
most once. Any species that appears must also appear in the species_params data frame.

• There must be a sel_func column. If a selectivity function is not supplied, it will be set to
"knife_edge".

• There must be a catchability column. If a catchability is not supplied, it will be set to 1.

• All the parameters required by the selectivity functions must be provided.

If gear_params is empty, then this function tries to find the necessary information in the species_params
data frame. This restricts each species to be fished by only one gear. Defaults are used for informa-
tion that can not be found in the species_params dataframe, as follows:

• If there is no gear column or it is NA then a new gear named after the species is introduced.

• If there is no sel_func column or it is NA then knife_edge is used.

• If there is no catchability column or it is NA then this is set to 1.

• If the selectivity function is knife_edge and no knife_edge_size is provided, it is set to
w_mat.

The row names of the returned data frame are of the form "species, gear".

When gear_params is NULL and there is no gear information in species_params, then a gear called
knife_edge_gear is set up with a knife_edge selectivity for each species and a knive_edge_size
equal to w_mat. Catchability is set to 0.3 for all species.

Value

A valid gear parameter data frame

230 validParams

See Also

gear_params()

validParams Validate MizerParams object and upgrade if necessary

Description

Checks that the given MizerParams object is valid and upgrades it if necessary.

Usage

validParams(params)

Arguments

params The MizerParams object to validate

Details

It is possible to render a MizerParams object invalid by manually changing its slots. This function
checks that the object is valid and if not it attempts to upgrade it to a valid object or gives an error
message. If the object is valid then it is returned unchanged. The function reports an error if any of
the rate arrays contain any non-finite numbers (except for the maximum intake rate that is allowed
to be infinite).

Occasionally, during the development of new features for mizer, the MizerParams object gains
extra slots. MizerParams objects created in older versions of mizer are then no longer valid in the
new version because of the missing slots. You need to upgrade them with this function. It adds
the missing slots and fills them with default values. Any object from version 0.4 onwards can be
upgraded. Any old MizerSim objects should be similarly updated with validSim().

This function uses newMultispeciesParams() to create a new MizerParams object using the pa-
rameters extracted from the old MizerParams object.

Besides upgrading, if necessary, the only changes that may be made to the given MizerParams
object is that the w_min_idx and ft_mask slots are recalculated.

Value

A valid MizerParams object

Backwards compatibility

The internal numerics in mizer have changed over time, so there may be small discrepancies be-
tween the results obtained with the upgraded object in the new version and the original object in
the old version. If it is important for you to reproduce the exact results then you should install the
version of mizer with which you obtained the results. You can do this with

validSim 231

remotes::install_github("sizespectrum/mizer", ref = "v0.2")

where you should replace "v0.2" with the version number you require. You can see the list of
available releases at https://github.com/sizespectrum/mizer/tags.

If you only have a serialised version of the old object, for example created via saveRDS(), and
you get an error when trying to read it in with readRDS() then unfortunately you will need to
install the old version of mizer first to read the params object into your workspace, then switch to
the current version and then call validParams(). You can then save the new version again with
saveParams().

validSim Validate MizerSim object and upgrade if necessary

Description

Checks that the given MizerSim object is valid and upgrades it if necessary. Checks whether any
abundances are non-finite and if any are found, a warning is issued and the simulation is truncated
at the last time step where all results are finite.

Usage

validSim(sim)

Arguments

sim The MizerSim object to validate

Details

Occasionally, during the development of new features for mizer, the MizerSim class or the Miz-
erParams class gains extra slots. MizerSim objects created in older versions of mizer are then no
longer valid in the new version because of the missing slots. You need to upgrade them with this
function.

This function adds the missing slots and fills them with default values. It also calls validParams()
to upgrade the MizerParams object inside the MizerSim object. Any object from version 0.4 on-
wards can be upgraded.

Value

A valid MizerSim object

https://github.com/sizespectrum/mizer/tags

232 validSpeciesParams

Backwards compatibility

The internal numerics in mizer have changed over time, so there may be small discrepancies be-
tween the results obtained with the upgraded object in the new version and the original object in
the old version. If it is important for you to reproduce the exact results then you should install the
version of mizer with which you obtained the results. You can do this with

remotes::install_github("sizespectrum/mizer", ref = "v0.2")

where you should replace "v0.2" with the version number you require. You can see the list of
available releases at https://github.com/sizespectrum/mizer/tags.

If you only have a serialised version of the old object, for example created via saveRDS(), and
you get an error when trying to read it in with readRDS() then unfortunately you will need to
install the old version of mizer first to read the params object into your workspace, then switch to
the current version and then call validParams(). You can then save the new version again with
saveParams().

validSpeciesParams Validate species parameter data frame

Description

These functions check the validity of a species parameter frame and, where necessary, make cor-
rections. validGivenSpeciesParams() only checks and corrects the given species parameters but
does not add default values for species parameters that were not provided. validSpeciesParams()
first calls validGivenSpeciesParams() but then goes further by adding default values for species
parameters that were not provided.

Usage

validSpeciesParams(species_params)

validGivenSpeciesParams(species_params)

Arguments

species_params The user-supplied species parameter data frame

Details

validGivenSpeciesParams() checks the validity of the given species parameter It throws an error
if

• the species column does not exist or contains duplicates

• the maximum size is not specified for all species

https://github.com/sizespectrum/mizer/tags

validSpeciesParams 233

If a weight-based parameter is missing but the corresponding length-based parameter is given, as
well as the a and b parameters for length-weight conversion, then the weight-based parameters are
added. If both length and weight are given, then weight is used and a warning is issued if the two
are inconsistent.

If a w_inf column is given but no w_max then the value from w_inf is used. This is for backwards
compatibility. But note that the von Bertalanffy parameter w_inf is not the maximum size of the
largest individual, but the asymptotic size of an average individual.

Some inconsistencies in the size parameters are resolved as follows:

• Any w_mat that is not smaller than w_max is set to w_max / 4.

• Any w_mat25 that is not smaller than w_mat is set to NA.

• Any w_min that is not smaller than w_mat is set to 0.001 or w_mat /10, whichever is smaller.

• Any w_repro_max that is not larger than w_mat is set to 4 * w_mat.

The row names of the returned data frame will be the species names. If species_params was
provided as a tibble it is converted back to an ordinary data frame.

The function tests for some typical misspellings of parameter names, like wrong capitalisation or
missing underscores and issues a warning if it detects such a name.

validSpeciesParams() first calls validateGivenSpeciesParams() but then goes further by adding
default values for species parameters that were not provided. The function sets default values if any
of the following species parameters are missing or NA:

• w_repro_max is set to w_max

• w_mat is set to w_max/4

• w_min is set to 0.001

• alpha is set to 0.6

• interaction_resource is set to 1

• n is set to 3/4

Note that the species parameters returned by these functions are not guaranteed to produce a viable
model. More checks of the parameters are performed by the individual rate-setting functions (see
setParams() for the list of these functions).

Value

For validSpeciesParams(): A valid species parameter data frame with additional parameters with
default values.

For validGivenSpeciesParams(): A valid species parameter data frame without additional pa-
rameters.

See Also

species_params(), validGearParams(), validParams(), validSim()

234 valid_species_arg

valid_gears_arg Helper function to assure validity of gears argument

Description

If the gears argument contains invalid gears, then these are ignored but a warning is issued.

Usage

valid_gears_arg(object, gears = NULL, error_on_empty = FALSE)

Arguments

object A MizerSim or MizerParams object from which the gears should be selected.
gears The gears to be selected. Optional. By default all gears are selected. A vector

of gear names.
error_on_empty Whether to throw an error if there are zero valid gears. Default FALSE.

Value

A vector of gear names.

valid_species_arg Helper function to assure validity of species argument

Description

If the species argument contains invalid species, then these are ignored but a warning is issued.

Usage

valid_species_arg(
object,
species = NULL,
return.logical = FALSE,
error_on_empty = FALSE

)

Arguments

object A MizerSim or MizerParams object from which the species should be selected.
species The species to be selected. Optional. By default all target species are selected.

A vector of species names, or a numeric vector with the species indices, or a
logical vector indicating for each species whether it is to be selected (TRUE) or
not.

return.logical Whether the return value should be a logical vector. Default FALSE.
error_on_empty Whether to throw an error if there are zero valid species. Default FALSE.

w 235

Value

A vector of species names, in the same order as specified in the ’species’ argument. If ’return.logical
= TRUE’ then a logical vector is returned instead, with length equal to the number of species, with
TRUE entry for each selected species.

w Size bins

Description

Functions to fetch information about the size bins used in the model described by params.

Usage

w(params)

w_full(params)

dw(params)

dw_full(params)

Arguments

params A MizerParams object

Details

To represent the continuous size spectrum in the computer, the size variable is discretized into a
vector w of discrete weights, providing a grid of sizes spanning the range from the smallest egg size
to the largest maximum size. These grid values divide the full size range into a finite number of size
bins. The size bins should be chosen small enough to avoid the discretisation errors from becoming
too big. You can fetch this vector with w() and the vector of bin widths with dw().

The weight grid is set up to be logarithmically spaced, so that w[j]=w[1]*10^(j*dx) for some
fixed dx. This means that the bin widths increase with size: dw[j] = w[j] * (10^dx - 1). This grid
is set up automatically when creating a MizerParams object.

Because the resource spectrum spans a larger range of sizes, these sizes are discretized into a dif-
ferent vector of weights w_full. This usually starts at a much smaller size than w, but also runs up
to the same largest size, so that the last entries of w_full have to coincide with the entries of w. The
logarithmic spacing for w_full is the same as that for w, so that again w_full[j]=w_full[1]*10^(j*dx).
The function w_full() gives the vector of sizes and dw_full() gives the vector of bin widths.

You will need these vectors when converting number densities to numbers. For example the size
spectrum of a species is stored as a vector of values that represent the density of fish in each
size bin rather than the number of fish. The number of fish in the size bin between w[j] and
w[j+1]=w[j]+dw[j] is obtained as N[j]*dw[j].

236 w

The vector w can be used for example to convert the number of individuals in a size bin into the
biomass in the size bin. The biomass in the jth bin is biomass[j] = N[j] * dw[j] * w[j].

Of course all these calculations with discrete sizes and size bins are only giving approximations to
the continuous values, and these approximations get better the smaller the size bins are, i.e., the
more size bins are used. However using more size bins also slows down the calculations, so there
is a trade-off. This is why the functions setting up MizerParams objects allow you to choose the
number of size bins no_w.

Value

w() returns a vector with the sizes at the start of each size bin of the consumer spectrum.

w_full() returns a vector with the sizes at the start of each size bin of the resource spectrum, which
typically starts at smaller sizes than the consumer spectrum.

dw() returns a vector with the widths of the size bins of the consumer spectrum.

dw_full() returns a vector with the widths of the size bins of the resource spectrum.

Examples

str(w(NS_params))
str(dw(NS_params))
str(w_full(NS_params))
str(dw_full(NS_params))

Calculating the biomass of Cod in each bin in the North Sea model
biomass <- initialN(NS_params)["Cod",] * dw(NS_params) * w(NS_params)
Summing to get total biomass
sum(biomass)

Index

∗ datasets
inter, 81
NS_interaction, 130
NS_params, 131
NS_sim, 131
NS_species_params, 132
NS_species_params_gears, 133

∗ deprecated
calibrateYield, 15
completeSpeciesParams, 17
getESpawning, 41
getM2, 48
getM2Background, 50
getPhiPrey, 56
getZ, 71
inter, 81
matchYields, 87
MizerParams, 98
plotM2, 146
set_community_model, 211
set_multispecies_model, 214
set_trait_model, 216
setRmax, 208

∗ distance functions
distanceMaxRelRDI, 23
distanceSSLogN, 24

∗ example parameter objects
NS_params, 131
NS_sim, 131

∗ functions calculating defaults
get_f0_default, 72
get_gamma_default, 73
get_ks_default, 74

∗ functions calculating density-dependent
reproduction rate

BevertonHoltRDD, 11
constantEggRDI, 18
constantRDD, 19
noRDD, 129

RickerRDD, 170
SheperdRDD, 218

∗ functions for calculating indicators
getCommunitySlope, 31
getMeanMaxWeight, 51
getMeanWeight, 52
getProportionOfLargeFish, 60

∗ functions for setting parameters
gear_params, 28
setExtEncounter, 177
setExtMort, 179
setFishing, 180
setInitialValues, 183
setInteraction, 185
setMaxIntakeRate, 186
setMetabolicRate, 187
setParams, 190
setPredKernel, 198
setReproduction, 202
setSearchVolume, 210
species_params, 221

∗ functions for setting up models
newCommunityParams, 110
newMultispeciesParams, 112
newSingleSpeciesParams, 123
newTraitParams, 125

∗ helper
age_mat, 9
age_mat_vB, 9
calc_selectivity, 13
constant_other, 20
default_pred_kernel_params, 22
different, 23
distanceMaxRelRDI, 23
distanceSSLogN, 24
emptyParams, 26
get_f0_default, 72
get_gamma_default, 73
get_initial_n, 73

237

238 INDEX

get_ks_default, 74
get_phi, 75
get_required_reproduction, 75
get_size_range_array, 76
get_time_elements, 77
l2w, 82
needs_upgrading, 110
project_simple, 162
set_species_param_default, 215
valid_gears_arg, 234
valid_species_arg, 234
validGearParams, 229
validSpeciesParams, 232

∗ mizer rate functions
mizerEGrowth, 88
mizerEncounter, 89
mizerERepro, 91
mizerEReproAndGrowth, 92
mizerFeedingLevel, 93
mizerFMort, 95
mizerFMortGear, 96
mizerMort, 97
mizerPredMort, 102
mizerPredRate, 103
mizerRates, 104
mizerRDI, 105
mizerResourceMort, 107

∗ plotting functions
animateSpectra, 10
plot,MizerParams,missing-method,

134
plot,MizerSim,missing-method, 135
plotBiomass, 136
plotDiet, 140
plotFeedingLevel, 141
plotFMort, 143
plotGrowthCurves, 144
plotPredMort, 147
plotSpectra, 149
plotting_functions, 151
plotYield, 153
plotYieldGear, 154

∗ predation kernel
box_pred_kernel, 12
lognormal_pred_kernel, 83
power_law_pred_kernel, 158
truncated_lognormal_pred_kernel,

228

∗ rate functions
getEGrowth, 35
getEncounter, 37
getERepro, 38
getEReproAndGrowth, 40
getFeedingLevel, 43
getFMort, 44
getFMortGear, 46
getMort, 53
getPredMort, 57
getPredRate, 58
getRates, 61
getRDD, 62
getRDI, 64
getResourceMort, 66

∗ resource dynamics
resource_constant, 165
resource_logistic, 166
resource_semichemostat, 169

∗ resource parameters
setResource, 205

∗ selectivity functions
double_sigmoid_length, 25
knife_edge, 82
sigmoid_length, 219
sigmoid_weight, 220

∗ summary functions
getBiomass, 30
getDiet, 33
getGrowthCurves, 47
getN, 54
getSSB, 67
getYield, 68
getYieldGear, 70

∗ summary_function
getBiomass, 30
getCommunitySlope, 31
getDiet, 33
getMeanMaxWeight, 51
getMeanWeight, 52
getN, 54
getProportionOfLargeFish, 60
getSSB, 67
getYield, 68
getYieldGear, 70
summary,MizerParams-method, 226
summary,MizerSim-method, 226

addSpecies, 7

INDEX 239

age_mat, 9
age_mat_vB, 9
animateSpectra, 10, 134, 135, 137, 140, 142,

144, 146–148, 151, 152, 154, 155

balance_resource_logistic
(resource_logistic), 166

balance_resource_logistic(), 167
balance_resource_semichemostat

(resource_semichemostat), 169
balance_resource_semichemostat(), 170
BevertonHoltRDD, 11, 19, 20, 129, 171, 219
BevertonHoltRDD(), 62, 105, 114, 120, 191,

196, 201, 203, 205, 219
box_pred_kernel, 12, 84, 158, 228
box_pred_kernel(), 117, 193, 199

calc_selectivity, 13
calculated_species_params

(species_params), 221
calibrateBiomass, 13
calibrateBiomass(), 16, 172, 223
calibrateNumber, 14
calibrateYield, 15
calibrateYield(), 14, 15, 172, 223
catchability (setFishing), 180
catchability<- (setFishing), 180
compareParams, 16
completeSpeciesParams, 17
constant_other, 20
constantEggRDI, 12, 18, 20, 129, 171, 219
constantRDD, 12, 19, 19, 129, 171, 219
constantRDD(), 12
customFunction, 20

default_pred_kernel_params, 22
defaults_edition, 21
different, 23
distanceMaxRelRDI, 23, 24
distanceMaxRelRDI(), 162
distanceSSLogN, 24, 24
distanceSSLogN(), 162
double_sigmoid_length, 25, 82, 220, 221
dw (w), 235
dw_full (w), 235

emptyParams, 26
emptyParams(), 101, 152
ext_encounter (setExtEncounter), 177

ext_encounter<- (setExtEncounter), 177
ext_mort (setExtMort), 179
ext_mort<- (setExtMort), 179

finalN, 27
finalNOther, 28
finalNResource (finalN), 27

gear_params, 28, 178, 180, 183, 184,
186–188, 198, 200, 205, 211, 223

gear_params(), 26, 82, 183, 220, 221, 223,
230

gear_params<- (gear_params), 28
get_f0_default, 72, 73, 74
get_gamma_default, 73, 73, 74
get_gamma_default(), 72, 118, 125, 127,

194, 211, 222
get_h_default, 73, 74
get_h_default(), 118, 187, 194, 223
get_initial_n, 73
get_ks_default, 73, 74
get_ks_default(), 222
get_phi, 75
get_required_reproduction, 75
get_size_range_array, 30, 31, 51, 52, 55,

60, 76, 137
get_time_elements, 77
getBiomass, 30, 34, 48, 55, 68–70
getBiomass(), 136, 137, 151, 227
getCatchability (setFishing), 180
getColours (setColours), 175
getCommunitySlope, 31, 52, 53, 61
getCommunitySlope(), 77
getComponent, 32
getCriticalFeedingLevel, 33
getDiet, 30, 33, 48, 55, 68–70
getDiet(), 140, 227
getEffort, 35
getEffort(), 108
getEGrowth, 35, 38, 39, 41, 42, 44, 45, 47, 49,

51, 54, 58, 59, 62, 63, 65, 67, 72
getEGrowth(), 36, 41, 88, 89, 95, 106
getEncounter, 36, 37, 39, 41, 42, 44, 45, 47,

49, 51, 54, 58, 59, 62, 63, 65, 67, 72
getEncounter(), 34, 38, 44, 89, 90, 92, 94,

117, 118, 185, 193, 194, 198, 211,
222

getERepro, 36, 38, 38, 41, 44, 45, 47, 49, 51,
54, 58, 59, 62, 63, 65, 67, 72

240 INDEX

getERepro(), 36, 39, 41, 42, 64, 88, 91, 106
getEReproAndGrowth, 36, 38, 39, 40, 42, 44,

45, 47, 49, 51, 54, 58, 59, 62, 63, 65,
67, 72

getEReproAndGrowth(), 36, 39, 41, 42, 88,
92, 93, 118, 188, 194, 222

getESpawning, 41
getExtEncounter (setExtEncounter), 177
getExtMort (setExtMort), 179
getFeedingLevel, 36, 38, 39, 41, 42, 43, 45,

47, 49, 51, 54, 58, 59, 62, 63, 65, 67,
72

getFeedingLevel(), 38, 41, 44, 90, 92–94,
103, 118, 142, 187, 194, 227

getFMort, 36, 38, 39, 41, 42, 44, 44, 47, 49,
51, 54, 58, 59, 62, 63, 65, 67, 72

getFMort(), 45, 54, 72, 95, 144, 227
getFMortGear, 36, 38, 39, 41, 42, 44, 45, 46,

49, 51, 54, 58, 59, 62, 63, 65, 67, 72
getFMortGear(), 227
getGrowthCurves, 30, 34, 47, 55, 68–70
getInitialEffort (setFishing), 180
getLinetypes (setColours), 175
getM2, 48, 227
getM2Background, 50
getMaturityProportion

(setReproduction), 202
getMaxIntakeRate (setMaxIntakeRate), 186
getMeanMaxWeight, 31, 51, 53, 61
getMeanMaxWeight(), 77
getMeanWeight, 31, 52, 52, 61
getMeanWeight(), 77
getMetabolicRate (setMetabolicRate), 187
getMetadata (setMetadata), 189
getMort, 36, 38, 39, 41, 42, 44, 45, 47, 49, 51,

53, 58, 59, 62, 63, 65, 67
getMort(), 54, 72, 97, 106
getN, 30, 34, 48, 54, 68–70
getN(), 227
getParams, 55
getParams(), 108
getPhiPrey, 56
getPredKernel (setPredKernel), 198
getPredKernel(), 117, 193, 200
getPredMort, 36, 38, 39, 41, 42, 44, 45, 47,

51, 54, 57, 59, 62, 63, 65, 67, 72
getPredMort(), 49, 54, 57, 58, 72, 95, 102,

117, 147, 148, 185, 193

getPredRate, 36, 38, 39, 41, 42, 44, 45, 47,
49, 51, 54, 58, 58, 62, 63, 65, 67, 72

getPredRate(), 57, 59, 103, 104, 118, 194,
198, 211

getProportionOfLargeFish, 31, 52, 53, 60
getProportionOfLargeFish(), 77
getRateFunction (setRateFunction), 200
getRates, 36, 38, 39, 41, 42, 44, 45, 47, 49,

51, 54, 58, 59, 61, 63, 65, 67, 72
getRDD, 36, 38, 39, 41, 42, 44, 45, 47, 49, 51,

54, 58, 59, 62, 62, 65, 67, 72
getRDD(), 64, 65, 106, 120, 196, 205
getRDI, 36, 38, 39, 41, 42, 44, 45, 47, 49, 51,

54, 58, 59, 62, 63, 64, 67, 72
getRDI(), 11, 62, 63, 65, 105, 106, 120, 196,

204, 222
getReproductionLevel, 65
getReproductionProportion

(setReproduction), 202
getResourceMort, 36, 38, 39, 41, 42, 44, 45,

47, 49, 54, 58, 59, 62, 63, 65, 66, 72
getResourceMort(), 50, 67, 107, 167, 170
getSearchVolume (setSearchVolume), 210
getSelectivity (setFishing), 180
getSSB, 30, 34, 48, 55, 67, 69, 70
getSSB(), 100, 227
getTimes, 68
getTimes(), 108
getYield, 30, 34, 48, 55, 68, 68, 70
getYield(), 70, 153, 154, 227
getYieldGear, 30, 34, 48, 55, 68, 69, 70
getYieldGear(), 69, 155, 227
getZ, 71
given_species_params (species_params),

221
given_species_params<-

(species_params), 221

idxFinalT (finalN), 27
idxFinalT(), 108
indicator_functions, 6, 77, 152, 159, 227
initial_effort, 80
initial_effort<- (initial_effort), 80
initialN (initialN<-), 78
initialN(), 79, 80
initialN<-, 78
initialNOther (initialNOther<-), 79
initialNOther(), 78, 80
initialNOther<-, 79

INDEX 241

initialNResource (initialNResource<-),
79

initialNResource(), 78, 79
initialNResource<-, 79
intake_max (setMaxIntakeRate), 186
intake_max<- (setMaxIntakeRate), 186
inter, 81
interaction_matrix (setInteraction), 185
interaction_matrix<- (setInteraction),

185

knife_edge, 26, 82, 220, 221

l2w, 82
lognormal_pred_kernel, 12, 83, 158, 228
lognormal_pred_kernel(), 117, 193, 199,

222, 228

matchBiomasses, 84
matchBiomasses(), 14, 223
matchGrowth, 85
matchNumbers, 86
matchNumbers(), 15
matchYields, 87
matchYields(), 16, 223
maturity (setReproduction), 202
maturity<- (setReproduction), 202
metab (setMetabolicRate), 187
metab<- (setMetabolicRate), 187
mizer (mizer-package), 6
mizer-package, 6
mizerEGrowth, 88, 90, 92–94, 96, 98, 103–107
mizerEGrowth(), 18, 36, 62, 89, 105, 201
mizerEncounter, 89, 89, 92–94, 96, 98,

103–107
mizerEncounter(), 38, 62, 90, 105, 201
mizerERepro, 89, 90, 91, 93, 94, 96, 98,

103–107
mizerERepro(), 39, 42, 62, 91, 105, 201
mizerEReproAndGrowth, 89, 90, 92, 92, 94,

96, 98, 103–107
mizerEReproAndGrowth(), 41, 62, 91, 93, 94,

105, 201
mizerFeedingLevel, 89, 90, 92, 93, 93, 96,

98, 103–107
mizerFeedingLevel(), 43, 44, 62, 94, 105,

201
mizerFMort, 89, 90, 92–94, 95, 96, 98,

103–107

mizerFMort(), 45, 62, 95, 96, 105, 201
mizerFMortGear, 89, 90, 92–94, 96, 96, 98,

103–107
mizerMort, 89, 90, 92–94, 96, 97, 103–107
mizerMort(), 18, 54, 62, 72, 97, 105, 201
MizerParams, 6–8, 26, 34, 36, 37, 39, 40, 42,

48, 50, 53, 56, 59, 61, 63, 64, 66, 71,
74, 88, 89, 91, 92, 94–97, 98, 99,
102–104, 106–110, 112, 115, 134,
138, 140–143, 145–148, 150, 156,
159, 161, 164, 165, 167, 169, 190,
192, 213, 224, 230, 231

MizerParams(), 132
MizerParams-class, 99
mizerPredMort, 89, 90, 92–94, 96, 98, 102,

104–107
mizerPredMort(), 49, 57, 62, 102, 103, 105,

201
mizerPredRate, 89, 90, 92–94, 96, 98, 103,

103, 105–107
mizerPredRate(), 59, 62, 94, 104, 105, 201
mizerRates, 89, 90, 92–94, 96, 98, 103, 104,

104, 106, 107
mizerRates(), 167, 169, 201
mizerRDI, 89, 90, 92–94, 96, 98, 103–105,

105, 107
mizerRDI(), 62, 65, 105, 106, 201
mizerResourceMort, 89, 90, 92–94, 96, 98,

103–106, 107
mizerResourceMort(), 50, 62, 67, 105, 107,

201
MizerSim, 6, 31, 48, 51, 52, 60, 99, 108, 108,

135, 136, 138, 140–143, 145, 146,
148, 150, 153, 155, 156, 159, 160,
230, 231

MizerSim(), 101, 108
MizerSim-class, 108

N, 109
N(), 108
needs_upgrading, 110
newCommunityParams, 110, 123, 125, 129
newCommunityParams(), 6, 101, 211
newMultispeciesParams, 112, 112, 125, 129
newMultispeciesParams(), 6, 27, 101, 214,

223, 230
newSingleSpeciesParams, 112, 123, 123,

129
newSingleSpeciesParams(), 6

242 INDEX

newTraitParams, 112, 123, 125, 125
newTraitParams(), 6, 101, 216
noRDD, 12, 19, 20, 129, 171, 219
noRDD(), 12
NOther, 130
NResource (N), 109
NResource(), 108
NS_interaction, 130
NS_params, 131, 132
NS_sim, 131, 131
NS_species_params, 132
NS_species_params_gears, 133

other_params (setRateFunction), 200
other_params<- (setRateFunction), 200

plot(), 151
plot,MizerParams,missing-method, 134
plot,MizerSim,missing-method, 135
plotBiomass, 11, 134, 135, 136, 140, 142,

144, 146–148, 151, 152, 154, 155
plotBiomass(), 116, 135, 151, 192
plotBiomassObservedVsModel, 138
plotDiet, 11, 134, 135, 137, 140, 142, 144,

146–148, 151, 152, 154, 155
plotDiet(), 34, 151
plotFeedingLevel, 11, 134, 135, 137, 140,

141, 144, 146–148, 151, 152, 154,
155

plotFeedingLevel(), 134, 135, 151
plotFMort, 11, 134, 135, 137, 140, 142, 143,

146–148, 151, 152, 154, 155
plotFMort(), 135, 151
plotGrowthCurves, 11, 134, 135, 137, 140,

142, 144, 144, 147, 148, 151, 152,
154, 155

plotGrowthCurves(), 151
plotlyBiomass (plotBiomass), 136
plotlyBiomassObservedVsModel

(plotBiomassObservedVsModel),
138

plotlyFeedingLevel (plotFeedingLevel),
141

plotlyFMort (plotFMort), 143
plotlyGrowthCurves (plotGrowthCurves),

144
plotlyPredMort (plotPredMort), 147
plotlySpectra (plotSpectra), 149
plotlyYield (plotYield), 153

plotlyYieldGear (plotYieldGear), 154
plotlyYieldObservedVsModel

(plotYieldObservedVsModel), 156
plotM2, 146
plotPredMort, 11, 134, 135, 137, 140, 142,

144, 146, 147, 151, 152, 154, 155
plotPredMort(), 134, 135, 151
plotSpectra, 11, 134, 135, 137, 140, 142,

144, 146–148, 149, 152, 154, 155
plotSpectra(), 134, 135, 151
plotting_functions, 6, 11, 77, 108, 134,

135, 137, 140, 142, 144, 146–148,
151, 151, 154, 155, 159, 227

plotYield, 11, 134, 135, 137, 140, 142, 144,
146–148, 151, 152, 153, 155

plotYield(), 151
plotYieldGear, 11, 134, 135, 137, 140, 142,

144, 146–148, 151, 152, 154, 154
plotYieldGear(), 151
plotYieldObservedVsModel, 156
power_law_pred_kernel, 12, 84, 158, 228
power_law_pred_kernel(), 117, 193, 199
pred_kernel (setPredKernel), 198
pred_kernel<- (setPredKernel), 198
project, 159
project(), 6, 38, 56, 69, 80, 88, 90, 99, 101,

108, 161, 172, 201
project_simple, 162
projectToSteady, 161
projectToSteady(), 23, 24

readParams (saveParams), 171
readRDS(), 231, 232
removeComponent (setComponent), 176
removeSpecies, 164
removeSpecies(), 8
renameSpecies, 165
repro_prop (setReproduction), 202
repro_prop<- (setReproduction), 202
resource_capacity (setResource), 205
resource_capacity<- (setResource), 205
resource_constant, 165, 167, 170
resource_constant(), 122, 207
resource_dynamics (setResource), 205
resource_dynamics<- (setResource), 205
resource_level (setResource), 205
resource_level<- (setResource), 205
resource_logistic, 166, 166, 170
resource_logistic(), 122, 207

INDEX 243

resource_params, 168
resource_params(), 123, 208
resource_params<- (resource_params), 168
resource_rate (setResource), 205
resource_rate<- (setResource), 205
resource_semichemostat, 166, 167, 169
resource_semichemostat(), 122, 207
RickerRDD, 12, 19, 20, 129, 170, 219
RickerRDD(), 12, 121, 197, 205

saveParams, 171
saveParams(), 231, 232
saveRDS(), 231, 232
scaleModel, 172
scaleModel(), 13–15, 116, 172, 192
search_vol (setSearchVolume), 210
search_vol<- (setSearchVolume), 210
selectivity (setFishing), 180
selectivity<- (setFishing), 180
set_community_model, 211
set_multispecies_model, 214
set_species_param_default, 215
set_trait_model, 216
setBevertonHolt, 173
setBevertonHolt(), 8, 125, 127, 222, 224
setColours, 175
setComponent, 176
setComponent(), 38, 54, 71, 90, 97, 184
setExtEncounter, 29, 177, 180, 183, 184,

186–188, 198, 200, 205, 211, 223
setExtEncounter(), 100, 119, 178, 190, 195
setExtMort, 29, 178, 179, 183, 184, 186–188,

190, 198, 200, 205, 211, 223
setExtMort(), 100, 119, 180, 190, 195, 222
setFishing, 29, 178, 180, 180, 184, 186–188,

190, 198, 200, 205, 211, 223
setFishing(), 13, 28, 29, 80, 96, 101, 190
setInitialValues, 29, 178, 180, 183, 183,

186–188, 198, 200, 205, 211, 223
setInteraction, 29, 178, 180, 183, 184, 185,

187, 188, 198, 200, 205, 211, 223
setInteraction(), 38, 90, 101, 190
setLinetypes (setColours), 175
setMaxIntakeRate, 29, 178, 180, 183, 184,

186, 186, 188, 190, 198, 200, 205,
211, 223

setMaxIntakeRate(), 41, 44, 93, 94, 100,
190, 222

setMetabolicRate, 29, 178, 180, 183, 184,
186, 187, 187, 190, 198, 200, 205,
211, 223

setMetabolicRate(), 41, 93, 100, 190, 222
setMetadata, 189
setMetadata(), 99, 171
setParams, 29, 178, 180, 183, 184, 186–188,

190, 200, 205, 211, 223
setParams(), 18, 223, 233
setPredKernel, 29, 178, 180, 183, 184,

186–188, 190, 198, 198, 205, 211,
223

setPredKernel(), 12, 38, 83, 84, 90, 100,
158, 190, 222, 228

setRateFunction, 200
setRateFunction(), 43, 62, 105
setReproduction, 29, 178, 180, 183, 184,

186–188, 190, 198, 200, 202, 211,
223

setReproduction(), 12, 39, 42, 62, 64, 91,
100, 106, 190, 222

setResource, 205
setResource(), 167, 168, 170, 190
setRmax, 208
setSearchVolume, 29, 178, 180, 183, 184,

186–188, 190, 198, 200, 205, 210,
223

setSearchVolume(), 38, 90, 100, 190, 222
SheperdRDD, 12, 19, 20, 129, 171, 218
SheperdRDD(), 12, 121, 197, 205
sigmoid_length, 26, 82, 219, 221
sigmoid_length(), 25
sigmoid_weight, 26, 82, 220, 220
species_params, 29, 178, 180, 183, 184,

186–188, 198, 200, 205, 211, 221
species_params(), 18, 101, 233
species_params<- (species_params), 221
steady, 224
steady(), 8
steadySingleSpecies, 225
steadySingleSpecies(), 85
summary,MizerParams-method, 226
summary,MizerSim-method, 226
summary_functions, 6, 77, 108, 152, 159, 227

truncated_lognormal_pred_kernel, 12, 84,
158, 228

upgradeSim(), 109

244 INDEX

valid_gears_arg, 234
valid_species_arg, 234
validEffortVector (initial_effort), 80
validGearParams, 229
validGearParams(), 18, 29, 233
validGivenSpeciesParams

(validSpeciesParams), 232
validParams, 230
validParams(), 18, 231–233
validSim, 231
validSim(), 18, 230, 233
validSpeciesParams, 232
validSpeciesParams(), 223

w, 235
w2l (l2w), 82
w_full (w), 235

	mizer-package
	addSpecies
	age_mat
	age_mat_vB
	animateSpectra
	BevertonHoltRDD
	box_pred_kernel
	calc_selectivity
	calibrateBiomass
	calibrateNumber
	calibrateYield
	compareParams
	completeSpeciesParams
	constantEggRDI
	constantRDD
	constant_other
	customFunction
	defaults_edition
	default_pred_kernel_params
	different
	distanceMaxRelRDI
	distanceSSLogN
	double_sigmoid_length
	emptyParams
	finalN
	finalNOther
	gear_params
	getBiomass
	getCommunitySlope
	getComponent
	getCriticalFeedingLevel
	getDiet
	getEffort
	getEGrowth
	getEncounter
	getERepro
	getEReproAndGrowth
	getESpawning
	getFeedingLevel
	getFMort
	getFMortGear
	getGrowthCurves
	getM2
	getM2Background
	getMeanMaxWeight
	getMeanWeight
	getMort
	getN
	getParams
	getPhiPrey
	getPredMort
	getPredRate
	getProportionOfLargeFish
	getRates
	getRDD
	getRDI
	getReproductionLevel
	getResourceMort
	getSSB
	getTimes
	getYield
	getYieldGear
	getZ
	get_f0_default
	get_gamma_default
	get_initial_n
	get_ks_default
	get_phi
	get_required_reproduction
	get_size_range_array
	get_time_elements
	indicator_functions
	initialN<-
	initialNOther<-
	initialNResource<-
	initial_effort
	inter
	knife_edge
	l2w
	lognormal_pred_kernel
	matchBiomasses
	matchGrowth
	matchNumbers
	matchYields
	mizerEGrowth
	mizerEncounter
	mizerERepro
	mizerEReproAndGrowth
	mizerFeedingLevel
	mizerFMort
	mizerFMortGear
	mizerMort
	MizerParams
	MizerParams-class
	mizerPredMort
	mizerPredRate
	mizerRates
	mizerRDI
	mizerResourceMort
	MizerSim
	MizerSim-class
	N
	needs_upgrading
	newCommunityParams
	newMultispeciesParams
	newSingleSpeciesParams
	newTraitParams
	noRDD
	NOther
	NS_interaction
	NS_params
	NS_sim
	NS_species_params
	NS_species_params_gears
	plot,MizerParams,missing-method
	plot,MizerSim,missing-method
	plotBiomass
	plotBiomassObservedVsModel
	plotDiet
	plotFeedingLevel
	plotFMort
	plotGrowthCurves
	plotM2
	plotPredMort
	plotSpectra
	plotting_functions
	plotYield
	plotYieldGear
	plotYieldObservedVsModel
	power_law_pred_kernel
	project
	projectToSteady
	project_simple
	removeSpecies
	renameSpecies
	resource_constant
	resource_logistic
	resource_params
	resource_semichemostat
	RickerRDD
	saveParams
	scaleModel
	setBevertonHolt
	setColours
	setComponent
	setExtEncounter
	setExtMort
	setFishing
	setInitialValues
	setInteraction
	setMaxIntakeRate
	setMetabolicRate
	setMetadata
	setParams
	setPredKernel
	setRateFunction
	setReproduction
	setResource
	setRmax
	setSearchVolume
	set_community_model
	set_multispecies_model
	set_species_param_default
	set_trait_model
	SheperdRDD
	sigmoid_length
	sigmoid_weight
	species_params
	steady
	steadySingleSpecies
	summary,MizerParams-method
	summary,MizerSim-method
	summary_functions
	truncated_lognormal_pred_kernel
	validGearParams
	validParams
	validSim
	validSpeciesParams
	valid_gears_arg
	valid_species_arg
	w
	Index

