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Abstract

This vignette is a tutorial for the mixedMem R package that allows users to fit and visualize results

for a broad class of mixed membership models as specified by Erosheva et al. [2004]. Relevant data

structures include multivariate outcome vectors. Mixed distribution types and replicate measurements

are supported. Version 1.0 allows for binary, multinomial or Plackett-Luce rank distribution types. This

tutorial provides an outline of functions available in the package and a step-by-step guide for fitting

mixed membership models. As an example, we carry out a mixed membership analysis to identify latent

ideology blocs using political survey data from the 1983 American National Election Survey Pilot.

1 Mixed Membership Modeling

1.1 Mixed Membership Background

Mixed membership models provide a useful framework for analyzing multivariate data from heterogeneous

populations [Airoldi et al., 2014]. Similar to mixture models, mixed membership models assume that the

overall population is comprised of several latent sub-populations or groups. Mixture models, however, assume

that each individual within the population belongs to a single group, whereas mixed membership models

allow for an individual to belong to multiple groups simultaneously and explicitly specify an individual’s

degree of membership in each group.

Mixed membership models have been used to analyze to a wide variety of data types. For example, mixed

membership analysis of text data [Blei et al., 2003, Erosheva et al., 2004] can illustrate the latent structure

of topics/subjects within a body of documents; analysis of genotype sequences [Pritchard et al., 2000] can

describe individuals sharing ancestry across various origin populations; analysis of survey data [Erosheva

et al., 2007, ?] can show how survey respondents belong to various sub-populations; and analysis of ranked

votes [Gormley and Murphy, 2009] can characterize latent voting blocs and voting tendencies. The mixedMem

package allows for fitting these specific cases of mixed membership models as well as their extensions, using
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a general framework described by Erosheva et al. [2004] with the estimation carried out via a variational

EM algorithm.

The remainder of section 1 introduces notation and formally defines the generative hierarchy assumed

for discrete mixed membership models. Section 2 outlines the variational EM method used by the mixedMem

package and discusses some of the benefits and drawbacks of the variational approach. Section 3 provides

a step-by-step guide for fitting mixed membership models using mixedMem. For illustration, we analyze

the results of the 1983 American National Election Studies Pilot Study. Finally, section 4 provides a brief

conclusion.

1.2 Illustration and Notation

For a hypothetical example, consider a survey of Total = 100 (the number of individuals) high school

students with J = 3 (the number of variables) questions. Each individual is asked to (1) rank their favorite

classes (rank data), (2) select their favorite TV channel (multinomial data) and (3) indicate whether or

not they are on the honor roll (Bernoulli data). Students within the same extracurricular activities/clubs

might give similar responses, so in a mixed membership analysis, the latent sub-populations might map

to extracurricular groupings. For concreteness, assume the following K = 4 sub-populations fully describe

the students’ extracurricular activities: athletics, math/science, fine arts and student government. Athletes

might be more likely to rank “Anatomy” and “Health” among their favorite classes, while students involved

in student government might be more likely to rank “Civics” or “History” highly. As is often the case,

students may be involved with multiple clubs/activities to varying degrees. If a student is involved in

student government and athletics, they might rank their favorite classes as (1. “Anatomy”, 2. “History”

and 3. “Health”). Thus, using a mixture model framework to classify the student solely as an athlete would

fail to represent her full profile. We use λi to denote the distribution of membership for individual i. λi is a

vector of K non-negative elements which sum to 1. The membership vector λ for the student above might be

(athletics = 0.7,math/science = 0.0,fine arts = 0.0, student government = 0.3). In this package, we assume

that memberships are drawn from a Dirichlet distribution; however, some other mixed membership models

assume more general distributions for the membership vectors [?].

We index each of the Total students by i = 1, 2, . . . T otal; in this case Total = 100. Each of the J

variables are indexed by j = 1, 2, . . . J and for each variable we index the Rj number of replicates by

r = 1, 2, . . . Rj . Note that each of the variables can have a different number of replications. For rank data,

we index the Ni,j,r ranking levels (ie the first preference, the second preference, ...) by n = 1, 2 . . . Ni,j,r;

for multinomial and binary data Ni,j,r = 1. For each individual i, variable j, replicate r, and ranking level

n we denote the observed response by Xi,j,r,n. For example, if student 10’s favorite classes (variable 1)

are (“Anatomy”, “History”, “Health”) and she is on the honor roll (variable 3), then Xi=10,j=1,r=1,n=2 =
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“History” and Xi=10,j=3,r=1,n=1 = 1.

1.3 Generative Process

More formally, for K sub-populations, we assume a mixed membership generative process as follows:

For each individual i = 1, . . . T otal: Draw λi from a Dirichlet(α). λi is a vector of length K which indicates

the degree of membership for individual i.

� For each variable j = 1, . . . , J , each replicate r = 1, . . . , Rj and each ranking level n = 1 . . . , Ni,j,r:

Draw Zi,j,r,n from a multinomial(1, λi). Zi,j,r,n determines the sub-population which governs the

response for observationXi,j,r,n. This is sometimes referred to as a context vector because it determines

the context from which the individual responds.

� For each variable j = 1, . . . , J , each replicate r = 1, . . . , Rj and each ranking level n = 1 . . . , Ni,j,r:

Draw Xi,j,r,n from the distribution parameterized by θj,Zi,j,r,n
. Here, θ is the set of parameters which

govern the observations for each sub-population. If variable j is a multinomial or rank distribution with

Vj categories/candidates, θj,k is a vector of length Vj which parameterizes the responses to variable j

for sub-population k. If variable j is a Bernoulli random variable, then θj,k is a value which determines

the probability of success.

In topic models, Blei et al. [2003], Erosheva et al. [2004] analyze individual articles; the latent sub-

populations are topics for each of the articles; the the observed words are draws from a multinomial distri-

bution determined by the topic; and we observe many replicates (words) for each article . In the analysis

of genotype sequences, Pritchard et al. [2000] analyze individuals; the latent sub-populations map to geneti-

cally similar groups; each observed genetic loci is a different variable; and there are two replicates (assuming

diploid individuals) for each variable. In the analysis of ranked votes, Gormley and Murphy [2009] analyze

individual voters; the latent sub-populations map to voting blocs; the observed data the a list of candi-

dates by preference for each individual; and the ranking levels (Nijr) for each individual is the number of

candidates they list.

2 Variational EM and the mixedMem Package

2.1 Fitting Mixed Membership Models

When using a mixed membership model, the interest is typically in estimating the sub-population parameters

θ, the Dirichlet parameter α and the latent memberships of individuals λ. Estimation of these quantities

through maximum likelihood or direct posterior inference is computationally intractable in a mixed member-

ship model, so Markov Chain Monte Carlo or variational inference techniques are used instead [Airoldi et al.,
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2009]. Most MCMC analyses typically require large amounts of human effort to tune and check the samplers

for convergence. Furthermore, in mixed membership models, we must sample a latent membership for each

individual and a context vector for each observed response; thus, a mixed membership MCMC analysis

becomes very computationally expensive as the number of individuals grows. mixedMem circumvents these

difficulties by employing a variational EM algorithm which is a deterministic and computationally attractive

alternative for fitting mixed membership models. Using a variational approach allows us to fit larger models

and avoids tedious human effort by approximating the true posterior and replacing the MCMC sampling

procedure with an optimization problem [Beal, 2003].

2.2 Variational EM

To fit a mixed membership model, the variational EM algorithm combines variational inference (inference on

an approximate posterior) to estimate the group memberships λ and a pseudo maximum likelihood procedure

to estimate the group parameters θ and Dirichlet parameter α.

Instead of working with the intractable true posterior, variational inference employs a more compu-

tationally tractable approximate variational distribution. This variational distribution, denoted by Q, is

parameterized by ϕ and δ as follows:

p(λ, Z|X) ≈ Q(λ, Z|ϕ, δ) =
T∏
i

Dirichlet(λi|ϕi)

J∏
j

Rj∏
r

Ni,j,r∏
n

multinomial(Zi,j,r,n|δi,j,r,n). (1)

The parameters ϕ and δ can be selected to minimize the Kullback-Leibler divergence between the true

posterior distribution and the variational distribution Q [Beal, 2003]. This provides an approximate distri-

bution which can be used to carry out posterior inference on the latent variables and posterior means which

can be used as point estimates for λ.

This variational distribution can also be used in an alternative pseudo-likelihood framework, to select

the global parameters θ and α. Using Jensen’s inequality, the variational distribution can be used to derive

a function of ϕ, δ, α and θ which is a lower bound on the log-likelihood of our observations:

log [p(X|α, θ)] ≥ EQ {log [p(X,Z,Λ)]} − EQ [log [Q(Z,Λ|ϕ, δ)]} . (2)

The lower bound on the RHS of equation (2) is often called the ELBO for Evidence Lower Bound.

Calculating the LHS of equation (2) is intractable, but for a fixed ϕ and δ, selecting α and θ to maximize

the lower bound on the RHS is a tractable alternative to maximum likelihood estimation.

It can be shown that minimizing the KL Divergence between Q and the true posterior is actually equiva-

lent to maximizing the lower bound in equation (2) with respect to ϕ and δ [Beal, 2003]. Thus, the tasks of
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finding an approximate posterior distribution with respect to ϕ and δ and picking pseudo-MLE’s θ and α are

both achieved by maximizing the lower bound in equation (2). In practice, we maximize this lower bound

through a variational EM procedure. In the E-step (variational inference), we fix θ and α and minimize

the KL divergence between Q and the true posterior (this is also equivalent to maximizing the lower bound

in equation (2) through iterative closed form updates to ϕ and δ. In the M-step (pseudo-MLE), we fix ϕ

and δ and select the θ and α which maximize the lower bound through gradient based methods. The entire

procedure iterates between the E-step and the M-step until reaching a local mode. A detailed exposition of

variational inference is provided by ?.

2.2.1 Label Switching in Mixed Membership Models

Mixed membership models are only identifiable up to permutations of the sub-population labels (ie simulta-

neously permuting the labels for all group memberships and distribution parameters). In an MCMC analysis

of mixed membership models, this can require special attention if label switching is present within a sam-

pler [Stephens, 2000]. Because variational EM is a deterministic approach, the final permutation of the

labels is only dependent on the initialization points and does not require special attention during the fitting

procedure. However matching group labels can still a concern for assessing model fit when comparing to

some other fitted model. mixedMem provides functions discussed in subsection 3.3 for dealing with the label

permutations to facilitate post-processing.

2.2.2 Variational EM Caveats

The computational benefits of variational EM, however, do not come for free. The lower bound in equation

(2), is generally not a strictly convex function, so only convergence to a local mode, not the global mode, is

guaranteed [Wainwright and Jordan, 2008]. If prior knowledge exists about a specific problem, initializing

θ and α near plausible values is helpful in ensuring that the EM algorithm reaches a reasonable mode. In

general though, starting from multiple initialization points and selecting the mode with the largest ELBO

is highly recommended. This is also an area where the post-processing tools discussed in subsection 3.3

can be useful for determining if candidate modes found from different initialization points are conceptually

different.

Variational inference also lacks any guarantees on the quality of our approximation. In some cases, we

anecdotally find that the estimates of α provide good estimates of relative frequency, but can inaccurately

estimate the rate of intra-individual dispersion (which is regulated by
∑

αi). However, Erosheva et al. [2007]

show that a mixed membership analysis of survey data using a MCMC and variational approach agree well,

and, in practice, we see that variational inference provides reasonable and interpretable results in mixed

membership models [Blei et al., 2003, Erosheva et al., 2004, Airoldi et al., 2009]. However, there are no
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theoretical guarantees on how good or bad our approximation ultimately is.

3 Example: Fitting Political Survey Data with mixedMem

For demonstration, we present a mixedMem analysis of political opinion survey data previously analyzed by

? as well as ?. Within this context, identified latent sub-populations might map to ideological blocs. Since

individuals often hold to political ideologies to varying degrees, a mixed membership model is particularly

appropriate. We utilize the mixed membership model as specified by Gross and Manrique-Vallier and

discussed more generally in section 1.3. The model assumes 3 latent sub-populations (K = 3) with 19

observed multinomial variables with 1 replicate each. Gross and Manrique-Vallier specify a fully Bayesian

approach, placing prior distributions on both θ and α and utilize MCMC to estimate the model. This allows

for posterior inference on both the latent memberships as well as on θ and α. Our analysis using mixedMem

will fit the model using the variational EM algorithm which allows for posterior inference on λ and Z, but

only yields point estimates for α and θ. Nonetheless, we will show that the two methods yield comparable

results with very similar interpretations.

In the 1983 American National Election Survey Pilot [?], each individual was prompted with various

opinion-based statements and was asked to report their agreement with the statement using the categories:

“strongly agree”, “agree but not strongly”, “can’t decide”, “disagree but not strongly”, and “strongly dis-

agree”. For example, one statement was “Any person who is willing to work hard has a good chance of

succeeding”. We specifically study 19 of the statements which were selected by ? and reanalyzed by [?].

The 19 statements can be grouped into 3 overarching themes: Equality (abbreviated “EQ” in the data set

variable names), Economic Individualism (abbreviated “IND”) and Free Enterprise (abbreviated “ENT”) [?].

Following the original analysis of ?, we include the 279 complete responses and combine categories “agree”

with “strongly agree” and “disagree” with “strongly disagree”, leaving the 3 possible responses “agree” =

0, “can’t decide” = 1, and “disagree” = 2 to avoid overparameterization. The data is included in mixedMem

as ANES; the full text statement for each variable can be accessed through help(ANES).

A brief exploratory analysis, shows that of the 279×19 = 5301 total responses, 3295 responses are “agree”

1907 are “disagree” and only 99 are “can’t decide”.

library(mixedMem)

data(ANES)

# Dimensions of the data set: 279 individuals with 19 responses each

dim(ANES)

## [1] 279 19

# The 19 variables and their categories

# The specific statements for each variable can be found using help(ANES)
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# Variables titled EQ are about Equality

# Variables titled IND are about Econonic Individualism

# Variables titled ENT are about Free Enterprise

colnames(ANES)

## [1] "EQ1" "EQ2" "EQ3" "EQ4" "EQ5" "EQ6" "EQ7" "IND1" "IND2" "IND3"

## [11] "IND4" "IND5" "IND6" "ENT1" "ENT2" "ENT3" "ENT4" "ENT5" "ENT6"

# Distribution of responses

table(unlist(ANES))

##

## 0 1 2

## 3295 99 1907

3.1 Step 1: Initializing the mixedMemModel Object

To fit a mixed membership model, we must first initialize a mixedMemModel object using the class constructor.

The mixedMemModel object contains the dimensions of our mixed membership model, the observed data and

initialization points for α and θ. Creating a mixedMemModel object provides a vehicle for passing this

information to the mmVarFit function in step 2. This is similar to how one might specify the formula for

an lm object. Although initialization points for ϕ and δ can be passed to the constructor as well, these by

default are initialized uniformly across the sub-populations, and unless there is very strong prior knowledge,

we recommend that the default values be used. For this particular model, all the variables are multinomials;

an example showing an initialization of mixed data types can be accessed through help(mixedMemModel).

As mentioned previously, because the lower bound function is not convex, different initializations may

result in convergence to different local modes. After initializing at various point, we found that the ini-

tialization of α = (.2, .2, .2) and θ ∼ Dirichlet(.8) using seed 123 resulted in the highest lower bound at

convergence.

# Sample Size

Total <- 279

# Number of variables

J <- 19

# we only have one replicate for each of the variables

Rj <- rep(1, J)

# Nijr indicates the number of ranking levels for each variable.

# Since all our data is multinomial it should be an array of all 1s

Nijr <- array(1, dim = c(Total, J, max(Rj)))

# Number of sub-populations

K <- 3

# There are 3 choices for each of the variables ranging from 0 to 2.

Vj <- rep(3, J)

# we initialize alpha to .2

alpha <- rep(.2, K)
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# All variables are multinomial

dist <- rep("multinomial", J)

# obs are the observed responses. it is a 4-d array indexed by i,j,r,n

# note that obs ranges from 0 to 2 for each response

obs <- array(0, dim = c(Total, J, max(Rj), max(Nijr)))

obs[, , 1, 1] <- as.matrix(ANES)

# Initialize theta randomly with Dirichlet distributions

set.seed(123)

theta <- array(0, dim = c(J, K, max(Vj)))

for (j in 1:J) {
theta[j, , ] <- gtools::rdirichlet(K, rep(.8, Vj[j]))

}

# Create the mixedMemModel

# This object encodes the initialization points for the variational EM algorithim

# and also encodes the observed parameters and responses

initial <- mixedMemModel(Total = Total, J = J, Rj = Rj,

Nijr = Nijr, K = K, Vj = Vj, alpha = alpha,

theta = theta, dist = dist, obs = obs)

3.2 Step 2: Fitting the Model

Now we can fit the model using the mmVarFit function. When we call mmVarFit, the function first checks for

internal consistency in the input model, initial (i.e., it checks whether the dimensions of the observation

match the specified number of variables, etc). If the model check passes, the function begins to iterate

through the E-step and M-step described in subsection 2.2. When the algorithm converges, mmVarFit prints

the value of the lower bound at convergence as well as the number of EM iterations needed for convergence.

computeELBO(initial)

## [1] -16810.18

st = proc.time()

#printStatus 1 indicates that status updates will be printed

# printMod 25 indicates that status updates will only be printed ever 25th step

out <- mmVarFit(initial, printStatus = 1, printMod = 25)

## [1] "Model Check: Ok!"

## [1] "<== Beginning Model Fit! ==>"

## Iter: 25 Elbo: -3138.87

## E-Step: -3138.28

## M-Step: -3137.71

## Iter: 50 Elbo: -3125.55

## E-Step: -3125.45

## M-Step: -3125.36

## Iter: 75 Elbo: -3123.26

## E-Step: -3123.24

## M-Step: -3123.22
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## Iter: 100 Elbo: -3122.9

## E-Step: -3122.9

## M-Step: -3122.9

## Fit Complete! Elbo: -3122.89 Iter: 103

end <- proc.time()

computeELBO(out)

## [1] -3122.886

time <- end - st

Notice that the lower bound (our objective function) is −1.681018 × 104 at the initialized points and is

-3122.89 at convergence. On a laptop (quad-core 2.4 GHZ with 12 GB of RAM), fitting the entire model

took only 10.078 seconds, significantly faster than a full MCMC analysis.

We can also view a quick summary of the fit model using the summary function.

summary(out)

## == Summary for Mixed Membership Model ==

## Total: 279 K: 3 ELBO: -3122.89

##

## Variable Variable Type Replicates Categories

## 1 multinomial 1 3

## 2 multinomial 1 3

## 3 multinomial 1 3

## 4 multinomial 1 3

## 5 multinomial 1 3

## 6 multinomial 1 3

## 7 multinomial 1 3

## 8 multinomial 1 3

## 9 multinomial 1 3

## 10 multinomial 1 3

## 11 multinomial 1 3

## 12 multinomial 1 3

## 13 multinomial 1 3

## 14 multinomial 1 3

## 15 multinomial 1 3

## 16 multinomial 1 3

## 17 multinomial 1 3

## 18 multinomial 1 3

## 19 multinomial 1 3

3.3 Step 3: Post-Processing

In many cases, we may be interested in comparing our fitted model to some ground truth or comparing various

runs with different starting values. Since the model is invariant to label permutations, we use the findLabels

function to match our sub-population labels to the ground truth labels to facilitate comparison. In this case,
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we are interested in comparing our fitted values with the posterior means from the original MCMC analysis

of ?. The findLabels function finds the permutation of labels which minimizes the weighted squared error

shown in equation (3). Once we have found the optimal permutation, we then permute the sub-population

labels using the permuteLabels function.

Loss =

T∑
i

J∑
j

α̂k

α̂0

Vj∑
v

(θ̂j,k,v − θj,k,v)
2 (3)

Where α̂0 =
∑

k αk.

#read in GM estimates

# Note that Gross and Manrique-Vallier do not report estimates for the third group, so they have been set to 0 in the data

data(gmv_theta)

#

optimal.perm <- findLabels(out, gmv_theta)

# display the permutation as well as the weighted squared error loss

optimal.perm

## $perm

## [1] 3 2 1

##

## $loss

## [1] 7.398825

# save object with permuted labels

out.permute <- permuteLabels(out, optimal.perm$perm)

3.4 Step 4: Model Evaluation

In order to evaluate the goodness of fit for our estimated values of θ and α, we can calculate a χ2 statistic

by comparing the expected responses from our fitted model to the observed counts. Since the total number

of responses for each variable is fixed, this yields a χ2 statistic with 3× (19− 1) degrees of freedom.

# calculate the expected value

model.exp <- matrix(0, nrow = J, ncol = max(Vj))

for(j in 1:J){
model.exp[j, ] <- (out.permute$alpha / sum(out.permute$alpha)) %*% out.permute$theta[j, , ]

}
model.exp <- model.exp*out.permute$Total

# aggregate the observed counts

obs.counts <- t(apply(obs[, , 1, 1] + 1, MARGIN = 2, tabulate))

chi.squared <- sum( (obs.counts - model.exp)^2 / model.exp)

Using this χ2 statistic, we calculate a p-value of 0.194, which would lead us to fail to reject the null

hypothesis that the observed data was generated by the fitted model.
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Exp Agree Obs Agree Exp Can’t Decide Obs Can’t Decide Exp Disagree Obs Disagree
EQ1 206.7 209.0 0.7 2.0 71.5 68.0
EQ2 61.1 60.0 10.9 13.0 207.0 206.0
EQ3 241.0 241.0 0.5 1.0 37.5 37.0
EQ4 234.4 234.0 2.2 3.0 42.4 42.0
EQ5 257.2 255.0 0.9 3.0 20.9 21.0
EQ6 250.4 249.0 0.8 2.0 27.8 28.0
EQ7 138.1 150.0 3.4 5.0 137.6 124.0
IND1 221.1 224.0 0.0 0.0 57.9 55.0
IND2 74.2 72.0 1.9 3.0 202.8 204.0
IND3 143.9 156.0 7.1 7.0 128.0 116.0
IND4 227.3 227.0 2.6 3.0 49.1 49.0
IND5 140.9 134.0 1.5 2.0 136.6 143.0
IND6 234.5 235.0 0.5 1.0 44.0 43.0
ENT1 185.2 188.0 5.8 9.0 88.0 82.0
ENT2 194.9 196.0 10.9 12.0 73.2 71.0
ENT3 72.1 69.0 3.3 7.0 203.6 203.0
ENT4 108.8 105.0 7.2 11.0 163.0 163.0
ENT5 228.3 227.0 1.1 5.0 49.6 47.0
ENT6 67.0 64.0 5.3 10.0 206.7 205.0

Table 1: Expected responses based on fitted parameters and Observed responses

# The chi squared statistic

chi.squared

## [1] 44.93294

# p-value

pchisq(chi.squared, df = (J-1) * max(Vj))

## [1] 0.1944583

3.5 Step 4: Interpretation

Visualizations of the fitted model can be highly context-specific and each of the estimated quantities can be

extracted from the output model for further analysis tailored to the scientific question of interest. In the

following subsections, we show a few visualizations and tools which may be of general interest.

# The estimated quantities can be exctracted from the output model

names(out)

## [1] "Total" "J" "Rj" "Nijr" "K" "Vj" "alpha" "theta" "phi"

## [10] "delta" "dist" "obs"

out$alpha

## Group 0 Group 1 Group 2

## 0.02921846 3.44769371 3.61722884
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3.5.1 Visual Representation of θ̂

We can now plot our estimated θ̂ values and compare them to the values found in the original analysis. In

Figure 1, each row of plots represents an individual question, the columns represent each of the identified

sub-populations and the plots show the sub-population’s response probability for each variable. The black

dots indicate the values estimated using mixedMem and the red X’s indicate the values reported by [?]. Note

that Gross and Manrique-Vallier do not report values for group 3 for reasons discussed in subsection 3.5.2.

Recall that 0 indicates “agree” and 2 indicates “disagree”.

plot(out.permute, type = "theta", compare = gmv_theta, varNames = colnames(ANES),

groupNames = c("Conservative", "Liberal", "Undecided"), nrow = 10, indices = c(1:10))

When examining the estimates of θ̂, we can see from Figure 2 that of the 19 variables, the statements

most likely to elicit agreement from sub-population 1 are statement IND1 (“Any person who is willing to

work hard has a good chance of succeeding”), IND3 (“Most people who don’t get ahead should not blame

the system; they really have only themselves to blame”) and ENT1 (“The less government gets involved with

business and the economy, the better off this country will be”). Using traditional political ideology labels,

sub-population 1 could be identified as the conservative bloc. In Figure 2, bars shown in green indicate

question to which sub-population 1 is more likely to agree (θj,1,1 ≥ .5) and bars shown in red indicate

questions to which the sub-population is not likely to agree.

pop1VarOrder <- colnames(ANES)[order(out.permute$theta[, 1, 1], decreasing = T)]

pop1VarAgree <- sort(out.permute$theta[, 1, 1], decreasing = T)

barplot(height = pop1VarAgree, names.arg = pop1VarOrder,

main = "Propensity to Agree",

cex.names = .7, las = 2, xlab = "Value Statements",

ylab = expression(paste(theta["j,1,1"])),

col = ifelse(pop1VarAgree > .5, "forestgreen", "darkred"))

We can see from Figure 3 that for sub-population 2, the statements most likely to elicit agreement are

statements EQ7 (“One of the big problems in this country is that we don’t give everyone an equal chance”),

IND6 (“Even if people try hard, they often cannot reach their goals ”) and EQ1 (“If people were treated more

equally in this country, we would have many fewer problems ”). Sub-population 2 could be identified as the

liberal bloc.

pop2VarOrder <- colnames(ANES)[order(out.permute$theta[, 2, 1], decreasing = T)]

pop2VarAgree <- sort(out.permute$theta[, 2, 1], decreasing = T)

barplot(height = pop2VarAgree,

names.arg = pop2VarOrder, main = "Propensity to Agree",

cex.names = .7, las = 2, xlab = "Value Statements",

ylab = expression(paste(theta["j,2,1"])),

col = ifelse(pop2VarAgree > .5, "forestgreen", "darkred"))
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Figure 1: Individuals were asked to indicate their level of agreement with 19 opinion based statements.
The fitted multinomial response probabilities for each ideology bloc to each of the first 10 statements are
displayed. On the horizontal axis, 0 indicates agree, 1 indicates can’t decide, and 2 indicates disagree. The
estimates from our variational analysis are denoted by the dots, the Gross and Manrique-Vallier results using
MCMC are shown by the red X’s. Since they do not report estimates for Group 3, the Can’t Decide group,
those estimates are shown as 0’s. The estimates for the first 10 questions are shown.
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Figure 2: Propensity to agree with each opinion-based statement for the conservative bloc
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Figure 3: Propensity to agree with each opinion-based statement for the liberal bloc

14



We also observe, that sub-population 3 has a much higher propensity to respond “can’t decide” then

sub-populations 1 or 2. The 5 individuals with particularly large membership in group 3 responded “can’t

decide” 42 times. This is particularly salient since there are only 99 “can’t decide” responses in the entire

sample. Thus, sub-population 3 could be identified as the “Can’t Decide” bloc.

# Point estimates for lambda

lambda.point <- out.permute$phi / rowSums(out.permute$phi)

# number of individuals which exhibit more than .3 degree of membership

# in the undecided group

sum(lambda.point[, 3] >= .3)

## [1] 5

# number of can not decide responses from those with high membership in undecided group

sum(ANES[which(lambda.point[, 3] >= .3),] == 1)

## [1] 42

3.5.2 Interpretation of α̂

When examining the fitted value of α̂, we see that the conservatives and liberals are the 2 dominant groups

with the undecided group comprising a much smaller portion of the population. Also, the large values of α̂1

and α̂2, indicate a high level of mixing between those sub-populations. Since the estimated relative frequency

of the undecided bloc is less than 1%, we focus our interpretation on the other two blocs dominant blocs.

relativeFrequency <- out.permute$alpha / sum(out.permute$alpha)

Conservatives Liberals Undecided
Estimated Alpha 3.617 3.448 0.029

Estimate Relative Frequency 0.510 0.486 0.004

Table 2: Variational Estimates of Alpha

3.5.3 Using Hellinger Distance to Determine Defining Characteristics for Each Bloc

We might also be interested in seeing which questions are the most polarizing (the questions to which a

conservative is most likely to respond differently than a liberal). These particular value statements provide

insight into defining what makes a conservative and what makes a liberal. We use the Hellinger distance, a

measure of the difference between distributions, to compare the conservative and liberal response probabilities

for each question. Hellinger distance is defined as

H(P,Q) =
1√
2

√∑
i

(
√
pi −

√
qi)

2
. (4)
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Figure 4: Using Hellinger distance indicates that the most polarizing statements are IND 5, IND 3, and EQ
7. These were all issues involving opportunity for advancement

A Hellinger distance close to 1 indicates that two probability distributions are dissimilar, while a Hellinger

distance close to 0 indicates that the two probaility distirbutions are similar. We can see in Figure 4 that

the three most polarizing questions, as measured by the Hellinger distance, are statements IND5 (“If people

work hard, they almost always get what they want”), IND3 (“Most people who don’t get ahead should not

blame the system; they really have only themselves to blame”) and EQ7 (“One of the big problems in this

country is that we don’t give everyone an equal chance”). Thus, it would seem that the most polarizing

issues in 1983 revolved around access and opportunity for advancement.

hellingerDist <- (1/sqrt(2)) * sqrt(rowSums( (sqrt(out.permute$theta[, 1, ])

- sqrt(out.permute$theta[, 2, ]))^2))

barplot(sort(hellingerDist, decreasing = T),

names.arg = colnames(ANES)[order(hellingerDist, decreasing = T)],

main = "Hellinger Distance",

cex.names = .7, las = 2, ylab = "Hellinger Distance",

ylim = c(0, 1))

mtext("Between Conservatives and Liberals")

colnames(ANES)[order(hellingerDist, decreasing = T)][1:3]

## [1] "IND5" "IND3" "EQ7"
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Figure 5: Estimated memberships for first 42 individuals

3.6 Visualizing Group Dispersion

For the groups memberships for individuals, we use the posterior mean, ϕ̂i∑
k ϕ̂i,k

as point estimates for λi.

Plotting the poster mean of each individual in Figure 5, we can see a fair amount of intra-individual mixing.

139 out of the 279 individuals have estimated memberships of at least 40% in both the conservative and

liberal blocs. This is not particularly uprising since we observed relatively large values of α̂1 and α̂2.

# number of individuals with at least 40% membership in

# both conservative and liberal blocs

sum( (lambda.point[, 1] > .4) & (lambda.point[, 2] > .4))

## [1] 139

plot(out.permute, type = "membership", indices = c(1:20), nrow = 5, ncol = 4, main = "Estimated Memberships",

groupNames = c("Cons", "Lib", "Cant Decide"), fitNames = c("mixedMem"))

We can also plot the “empirical CDF” of estimated membership in conservative bloc as shown in Figure

6. Since the marginal distribution of a Dirichlet distribution is a Beta distribution, we can also plot the

95% credible intervals for the posterior membership in the conservative bloc. We observe that there is still

a relatively large amount of uncertainty in the estimated membership of each individual.
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Figure 6: We observe a relatively high rate of intra-individual mixing

index <- order(lambda.point[, 1])

# variance of posterior membership in conservative bloc

var.Mem <- out.permute$phi[, 1] * (rowSums(out.permute$phi) -

out.permute$phi[, 1]) /

(rowSums(out.permute$phi)^2 * (rowSums(out.permute$phi) + 1))

# plot posterior means

plot(sort(lambda.point[, 1]), pch = 19,

main = "Posterior Membership in Conservative Bloc",

ylab = "Posterior Membership", xlab = "Individual",

cex = .8, ylim = c(0, 1))

# marginal distirbution of Dirichlet, is Beta distribution, so we can get posterior CI

# plot posterior 90% CI

ci_up <- qbeta(.975, out.permute$phi[index, 1], rowSums(out.permute$phi[index, c(2:3)]))

ci_low <- qbeta(.025, out.permute$phi[index, 1], rowSums(out.permute$phi[index, c(2:3)]))

segments(x0 = c(1:out$Total), y0 = ci_up, y1 = ci_low, col = "gray", lwd = .3, lty = 1)

legend("bottomright", legend = c("posterior mean", "95% CI"), pch = c(19, NA),

lty = c(NA, 1), col = c("black", "gray"))
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3.7 Comparison of MCMC and Variational Results

Comparing the results of the MCMC analysis by ? to the results from our variational analysis, we see they

are very similar. In both analyses, we identify two dominant profiles- a conservative bloc and a liberal bloc-

as well as a much smaller undecided faction. As can be seen in Figure 2, the variational estimates of θ agree

well with the MCMC estimates.

Since Gross and Manrique-Vallier utilize a fully Bayesian specification, they are able to utilize a hypothesis

testing framework with θ to find the most polarizing issues. Because the variational analysis only provides

point estimates of θ, we used Hellinger distances instead. However, both analyses agree that the three most

polarizing statements are IND5, IND3 and EQ7.

Although the broad interpretation and estimates of θ agree, we do see differences in the estimates of α.

Gross and Manrique-Vallier report a posterior mean of α = (0.462, 0.285, 0.018) yielding relative frequencies

of (60.4%, 37.3%, 2.3%) for the conservative, liberal and undecided bloc respectively. Although MCMC

ordering of the relative frequency matches the ordering of the variational estimates, this implies a much

lower level of intra-individual mixing and as well as a higher relative frequency for the conservative bloc.

4 Conclusion

In this tutorial, we only briefly introduced the ideas of mixed membership models. For more interested

readers, Airoldi et al. [2014] provide a much deeper exposition of mixed membership models as well as a

variety of different applications.

We also provide a step-by-step guide for using mixedMem as well as some sample visualizations/interpretations

which may be helpful to the user. From the political survey example, we see that the use of variational

inference largely agrees with the more complicated MCMC procedure, and still provides reasonable and

interpretable results.

By providing an R package for fitting mixed membership models, we aim to aid researchers who are

studying problems where a mixed membership analysis is compelling, but have been otherwise dissuaded by

the computational difficulties. We hope that this package extends the use of mixed membership models to

a variety of new disciplines and interesting scientific problems.
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