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mixedBayes-package Bayesian Longitudinal Regularized Quantile Mixed Model

Description

In this package, we provide a set of Bayesian regularized variable selection methods under the
mixed effect models (random intercept and slope model, random intercept model) to dissect impor-
tant gene - environment interactions for longitudinal studies. A Bayesian quantile regression has
been adopted to accommodate data contamination and heavy-tailed distributions in the response/
phenotype. The default method (the proposed method) conducts variable selection by accounting
the group level selection on the interaction effects under random intercept and slope model. In
particular, the spike–and–slab priors are imposed on both individual and group levels to identify
important main and interaction effects. In addition to the default method, users can also choose
different selection structures for the interaction effects (group-level or individual-level), random
intercept model, methods without spike–and–slab priors and non-robust methods. In total, mixed-
Bayes provides 16 different methods (8 robust and 8 non-robust) under both mixed effects models.
Among them, robust methods with spike–and–slab priors and the robust method for both individual
level selection and group level selection under both mixed effects models have been developed for
the first time. Please read the Details below for how to configure the method used.

Details

The user friendly, integrated interface mixedBayes() allows users to flexibly choose the fitting meth-
ods by specifying the following parameter:

slope: whether to use random intercept and slope model.

robust: whether to use robust methods for modelling.
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quant: to specify different quantiles when using robust methods.

structure: structure for interaction effects.

sparse: whether to use the spike-and-slab priors to impose sparsity.

The function mixedBayes() returns a mixedBayes object that contains the posterior estimates of
each coefficients. S3 generic functions selection()and print() are implemented for mixedBayes ob-
jects. selection() takes a mixedBayes object and returns the variable selection results.
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for gene-environment interactions. Biometrics, (in press) doi:10.1111/biom.13670
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data simulated data for demonstrating the features of mixedBayes

Description

Simulated gene expression data for demonstrating the features of mixedBayes.

Format

The data object consists of seven components: y, e, X, g, w ,k and coeff. coeff contains the true
values of parameters used for generating Y.

Details

The data and model setting

Consider a longitudinal study on n subjects with k repeated measurement for each subject. Let Yij

be the measurement for the ith subject at each time point j(1 ≤ i ≤ n, 1 ≤ j ≤ k) .We use a
m-dimensional vector Gij to denote the genetics factors, where Gij = (Gij1, ..., Gijm)⊤. Also,
we use p-dimensional vector Eij to denote the environment factors, where Eij = (Eij1, ..., Eijp)

⊤.
Xij = (1, Tij)

⊤, where T⊤
ij is a vector of time effects . Zij is a h × 1 covariate associated with

random effects and αi is a h× 1 vector of random effects. At the beginning, the interaction effects
is modeled as the product of genomics features and environment factors with 4 different levels.
After representing the environment factors as three dummy variables, the identification of the gene
by environment interaction needs to be performed as group level. Combing the genetics factors,
environment factors and their interactions that associated with the longitudinal phenotype, we have
the following mixed-effects model:

Yij = X⊤
ijγ0 + E⊤

ijγ1 +G⊤
ijγ2 + (Gij

⊗
Eij)

⊤γ3 + Z⊤
ijαi + ϵij .

where γ1,γ2,γ3 are p,m and mp dimensional vectors that represent the coefficients of the environ-
ment effects, the genetics effects and interactions effects, respectively. Accommodating the Kro-
necker product of the m - dimensional vector Gij and the p-dimensional vector Eij , the interactions
between genetics and environment factors can be expressed as a mp-dimensional vector, denoted
as the following form:

Gij

⊗
Eij = [Eij1Eij1, Eij2Eij2, ..., Eij1Eijp, Eij2Eij1, ..., EijmEijp]

⊤.

For random intercept and slope model, Z⊤
ij = (1, j) and αi = (αi1, αi2)

⊤. For random intercept
model, Z⊤

ij = 1 and αi = αi1.

See Also
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Examples

data(data)
length(y)
dim(g)
dim(e)
dim(w)
print(k)
print(X)
print(coeff)

mixedBayes fit a Bayesian longitudinal regularized quantile mixed model

Description

fit a Bayesian longitudinal regularized quantile mixed model

Usage

mixedBayes(
y,
e,
X,
g,
w,
k,
iterations = 10000,
burn.in = NULL,
slope = TRUE,
robust = TRUE,
quant = 0.5,
sparse = TRUE,
structure = c("group", "individual")

)

Arguments

y the vector of response variable. The current version of mixedBayes only sup-
ports continuous response.

e the matrix of a group of dummy environmental factors variables.

X the matrix of the intercept and time effects (time effects are optional).

g the matrix of predictors (genetic factors) without intercept. Each row should be
an observation vector.

w the matrix of interactions between genetic factors and environmental factors.

k the total number of time points.
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iterations the number of MCMC iterations.

burn.in the number of iterations for burn-in.

slope logical flag. If TRUE, random intercept and slope model will be used.

robust logical flag. If TRUE, robust methods will be used.

quant specify different quantiles when applying robust methods.

sparse logical flag. If TRUE, spike-and-slab priors will be used to shrink coefficients
of irrelevant covariates to zero exactly.

structure structure for interaction effects, two choices are available. "group" for selection
on group-level only. "individual" for selection on individual-level only.

Details

Consider the data model described in "data":

Yij = X⊤
ijγ0 + E⊤

ijγ1 +

p∑
l=1

Gijlγ2l +

p∑
l=1

W⊤
ijlγ3l + Z⊤

ijαi + ϵij .

where γ2l is the main effect of the lth genetic variant. The interaction effects is corresponding to
the coefficient vector γ3l = (γ3l1, γ3l2, . . . , γ3lm)⊤.

When ‘structure="group"‘, group-level selection will be conducted on ||γ3l||2. If ‘structure="individual"‘,
individual-level selection will be conducted on each γ3lq, (q = 1, . . . ,m).

When ‘slope=TRUE‘ (default), random intercept and slope model will be used as the mixed effects
model.

When ‘sparse=TRUE‘ (default), spike-and-slab priors are imposed on individual and/or group levels
to identify important main and interaction effects. Otherwise, Laplacian shrinkage will be used.

When ‘robust=TRUE‘ (default), the distribution of ϵij is defined as a Laplace distribution with
density.

f(ϵij |θ, τ) = θ(1 − θ) exp {−τρθ(ϵij)}, (i = 1, . . . , n, j = 1, . . . , k), which leads to a Bayesian
formulation of quantile regression. If ‘robust=FALSE‘, ϵij follows a normal distribution.

Please check the references for more details about the prior distributions.

Value

an object of class ‘mixedBayes’ is returned, which is a list with component:

posterior the posteriors of coefficients.

coefficient the estimated coefficients.

burn.in the total number of burn-ins.

iterations the total number of iterations.

See Also

data
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Examples

data(data)

## default method
fit = mixedBayes(y,e,X,g,w,k,structure=c("group"))
fit$coefficient

## Compute TP and FP
b = selection(fit,sparse=TRUE)
index = which(coeff!=0)
pos = which(b != 0)
tp = length(intersect(index, pos))
fp = length(pos) - tp
list(tp=tp, fp=fp)

## alternative: robust individual selection
fit = mixedBayes(y,e,X,g,w,k,structure=c("individual"))
fit$coefficient

## alternative: non-robust group selection
fit = mixedBayes(y,e,X,g,w,k,robust=FALSE, structure=c("group"))
fit$coefficient

## alternative: robust group selection under random intercept model
fit = mixedBayes(y,e,X,g,w,k,slope=FALSE, structure=c("group"))
fit$coefficient

selection Variable selection for a mixedBayes object

Description

Variable selection for a mixedBayes object

Usage

selection(obj, sparse)

Arguments

obj mixedBayes object.

sparse logical flag. If TRUE, spike-and-slab priors will be used to shrink coefficients
of irrelevant covariates to zero exactly..
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Details

If sparse, the median probability model (MPM) (Barbieri and Berger, 2004) is used to identify
predictors that are significantly associated with the response variable. Otherwise, variable selection
is based on 95% credible interval. Please check the references for more details about the variable
selection.

Value

an object of class ‘selection’ is returned, which is a list with component:

inde a vector of indicators of selected effects.

References

Ren, J., Zhou, F., Li, X., Ma, S., Jiang, Y. and Wu, C. (2022). Robust Bayesian variable selection
for gene-environment interactions. Biometrics, (in press) doi:10.1111/biom.13670

Barbieri, M.M. and Berger, J.O. (2004). Optimal predictive model selection. Ann. Statist, 32(3):870–897
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Examples

data(data)
## sparse
fit = mixedBayes(y,e,X,g,w,k,structure=c("group"))
selected=selection(fit,sparse=TRUE)
selected

## non-sparse
fit = mixedBayes(y,e,X,g,w,k,sparse=FALSE,structure=c("group"))
selected=selection(fit,sparse=FALSE)
selected

https://doi.org/10.1111/biom.13670
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