
Package: misty (via r-universe)
June 30, 2024

Type Package

Title Miscellaneous Functions 'T. Yanagida'

Version 0.6.5

Date 2024-06-29

Author Takuya Yanagida [aut, cre]

Maintainer Takuya Yanagida <takuya.yanagida@univie.ac.at>

Description Miscellaneous functions for (1) data management (e.g.,
grand-mean and group-mean centering, coding variables and
reverse coding items, scale and cluster scores, reading and
writing Excel and SPSS files), (2) descriptive statistics
(e.g., frequency table, cross tabulation, effect size
measures), (3) missing data (e.g., descriptive statistics for
missing data, missing data pattern, Little's test of Missing
Completely at Random, and auxiliary variable analysis), (4)
multilevel data (e.g., multilevel descriptive statistics,
within-group and between-group correlation matrix, multilevel
confirmatory factor analysis, level-specific fit indices,
cross-level measurement equivalence evaluation, multilevel
composite reliability, and multilevel R-squared measures), (5)
item analysis (e.g., confirmatory factor analysis, coefficient
alpha and omega, between-group and longitudinal measurement
equivalence evaluation), and (6) statistical analysis (e.g.,
confidence intervals, collinearity and residual diagnostics,
dominance analysis, between- and within-subject analysis of
variance, latent class analysis, t-test, z-test, sample size
determination).

Depends R (>= 4.2.0)

License MIT + file LICENSE

Imports ggplot2, haven, lavaan, lme4, nlme, norm, readxl, rstudioapi,
writexl

Suggests Matrix, patchwork, plyr, mnormt

Encoding UTF-8

RoxygenNote 7.2.3

1

2 Contents

NeedsCompilation no

Repository CRAN

Date/Publication 2024-06-29 06:50:02 UTC

Contents
aov.b . 4
aov.w . 7
as.na . 13
center . 16
check.collin . 20
check.outlier . 24
check.resid . 25
chr.grep . 29
chr.gsub . 31
chr.omit . 32
chr.trim . 33
ci.mean . 34
ci.mean.diff . 38
ci.mean.w . 43
ci.prop . 46
ci.prop.diff . 49
ci.var . 53
cluster.scores . 56
coding . 58
cohens.d . 61
cor.matrix . 67
crosstab . 71
descript . 74
df.duplicated . 76
df.merge . 79
df.move . 81
df.rbind . 82
df.rename . 84
df.sort . 85
df.subset . 86
dominance . 89
dominance.manual . 92
effsize . 96
freq . 98
indirect . 101
item.alpha . 105
item.cfa . 108
item.invar . 117
item.omega . 125
item.reverse . 128
item.scores . 130

Contents 3

lagged . 133
libraries . 136
mplus . 137
mplus.lca . 140
mplus.print . 144
mplus.run . 150
mplus.update . 152
multilevel.cfa . 156
multilevel.cor . 163
multilevel.descript . 168
multilevel.fit . 173
multilevel.icc . 175
multilevel.indirect . 179
multilevel.invar . 183
multilevel.omega . 188
multilevel.r2 . 192
multilevel.r2.manual . 200
na.auxiliary . 204
na.coverage . 206
na.descript . 208
na.indicator . 210
na.pattern . 212
na.prop . 214
na.test . 215
print.misty.object . 218
read.dta . 219
read.mplus . 220
read.sav . 222
read.xlsx . 223
rec . 225
restart . 228
result.lca . 229
robust.coef . 233
rwg.lindell . 236
script.copy . 239
script.new . 240
script.open . 242
setsource . 243
size.cor . 244
size.mean . 246
size.prop . 248
skewness . 250
std.coef . 251
test.levene . 254
test.t . 257
test.welch . 265
test.z . 270
write.dta . 278

4 aov.b

write.mplus . 279
write.result . 280
write.sav . 282
write.xlsx . 284

Index 286

aov.b Between-Subject Analysis of Variance

Description

This function performs an one-way between-subject analysis of variance (ANOVA) including Tukey
HSD post hoc test for multiple comparison and provides descriptive statistics, effect size measures,
and a plot showing error bars for difference-adjusted confidence intervals with jittered data points.

Usage

aov.b(formula, data, posthoc = FALSE, conf.level = 0.95, hypo = TRUE,
descript = TRUE, effsize = FALSE, weighted = FALSE, correct = FALSE,
plot = FALSE, point.size = 4, adjust = TRUE, error.width = 0.1,
xlab = NULL, ylab = NULL, ylim = NULL, breaks = ggplot2::waiver(),
jitter = TRUE, jitter.size = 1.25, jitter.width = 0.05,
jitter.height = 0, jitter.alpha = 0.1, title = "",
subtitle = "Confidence Interval", digits = 2, p.digits = 4,
as.na = NULL, write = NULL, append = TRUE, check = TRUE,
output = TRUE, ...)

Arguments

formula a formula of the form y ~ group where y is a numeric variable giving the data
values and group a numeric variable, character variable or factor with more than
two values or factor levels giving the corresponding groups.

data a matrix or data frame containing the variables in the formula formula.

posthoc logical: if TRUE, Tukey HSD post hoc test for multiple comparison is conducted.

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

hypo logical: if TRUE (default), null and alternative hypothesis are shown on the con-
sole.

descript logical: if TRUE (default), descriptive statistics are shown on the console.

effsize logical: if TRUE, effect size measures η2 and ω2 for the ANOVA and Cohen’s d
for the post hoc tests are shown on the console.

weighted logical: if TRUE, the weighted pooled standard deviation is used to compute
Cohen’s d.

correct logical: if TRUE, correction factor to remove positive bias in small samples is
used.

aov.b 5

plot logical: if TRUE, a plot showing error bars for confidence intervals is drawn.

point.size a numeric value indicating the size aesthetic for the point representing the mean
value.

adjust logical: if TRUE (default), difference-adjustment for the confidence intervals is
applied.

error.width a numeric value indicating the horizontal bar width of the error bar.

xlab a character string specifying the labels for the x-axis.

ylab a character string specifying the labels for the y-axis.

ylim a numeric vector of length two specifying limits of the limits of the y-axis.

breaks a numeric vector specifying the points at which tick-marks are drawn at the y-
axis.

jitter logical: if TRUE (default), jittered data points are drawn.

jitter.size a numeric value indicating the size aesthetic for the jittered data points.

jitter.width a numeric value indicating the amount of horizontal jitter.

jitter.height a numeric value indicating the amount of vertical jitter.

jitter.alpha a numeric value indicating the opacity of the jittered data points.

title a character string specifying the text for the title for the plot.

subtitle a character string specifying the text for the subtitle for the plot.

digits an integer value indicating the number of decimal places to be used for display-
ing descriptive statistics and confidence interval.

p.digits an integer value indicating the number of decimal places to be used for display-
ing the p-value.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

write a character string naming a text file with file extension ".txt" (e.g., "Output.txt")
for writing the output into a text file.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console.

... further arguments to be passed to or from methods.

Details

Post Hoc Test Tukey HSD post hoc test reports Cohen’s d based on the non-weighted standard
deviation (i.e., weighted = FALSE) when requesting an effect size measure (i.e., effsize =
TRUE) following the recommendation by Delacre et al. (2021).

Confidence Intervals Cumming and Finch (2005) pointed out that when 95% confidence intervals
(CI) for two separately plotted means overlap, it is still possible that the CI for the difference
would not include zero. Baguley (2012) proposed to adjust the width of the CIs by the factor
of

√
2 to reflect the correct width of the CI for a mean difference:

6 aov.b

µ̂j ± tn−1,1−α/2

√
2

2
σ̂µ̂j

These difference-adjusted CIs around the individual means can be interpreted as if it were a
CI for their difference. Note that the width of these intervals is sensitive to differences in the
variance and sample size of each sample, i.e., unequal population variances and unequal n
alter the interpretation of difference-adjusted CIs.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data data frame with variables used in the current analysis

formula formula of the current analysis

plot ggplot2 object for plotting the results

args specification of function arguments

result list with result tables, i.e., descript for descriptive statistics, test for the
ANOVA table, posthoc for post hoc tests, and aov for the return object of the
aov function

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Baguley, T. S. (2012a). Serious stats: A guide to advanced statistics for the behavioral sciences.
Palgrave Macmillan.

Cumming, G., and Finch, S. (2005) Inference by eye: Confidence intervals, and how to read pictures
of data. American Psychologist, 60, 170–80.

Delacre, M., Lakens, D., Ley, C., Liu, L., & Leys, C. (2021). Why Hedges’ g*s based on the non-
pooled standard deviation should be reported with Welch’s t-test. https://doi.org/10.31234/osf.io/tu6mp

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

See Also

aov.w, test.t, test.z, test.levene, test.welch, cohens.d, ci.mean.diff, ci.mean

aov.w 7

Examples

dat <- data.frame(group = c(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3),
y = c(3, 1, 4, 2, 5, 3, 2, 3, 6, 6, 3, NA))

Example 1: Between-subject ANOVA
aov.b(y ~ group, data = dat)

Example 2: Between-subject ANOVA
print effect size measures
aov.b(y ~ group, data = dat, effsize = TRUE)

Example 3: Between-subject ANOVA
do not print hypotheses and descriptive statistics,
aov.b(y ~ group, data = dat, descript = FALSE, hypo = FALSE)

Not run:
Example 4: Write results into a text file
aov.b(y ~ group, data = dat, write = "ANOVA.txt")

Example 5: Between-subject ANOVA
plot results
aov.b(y ~ group, data = dat, plot = TRUE)

Load ggplot2 package
library(ggplot2)

Example 6: Save plot, ggsave() from the ggplot2 package
ggsave("Between-Subject_ANOVA.png", dpi = 600, width = 4.5, height = 6)

Example 7: Between-subject ANOVA
extract plot
p <- aov.b(y ~ group, data = dat, output = FALSE)$plot
p

Extract data
plotdat <- aov.b(y ~ group, data = dat, output = FALSE)$data

Draw plot in line with the default setting of aov.b()
ggplot(plotdat, aes(group, y)) +

geom_jitter(alpha = 0.1, width = 0.05, height = 0, size = 1.25) +
geom_point(stat = "summary", fun = "mean", size = 4) +
stat_summary(fun.data = "mean_cl_normal", geom = "errorbar", width = 0.20) +
scale_x_discrete(name = NULL) +
labs(subtitle = "Two-Sided 95
theme_bw() + theme(plot.subtitle = element_text(hjust = 0.5))

End(Not run)

aov.w Repeated Measures Analysis of Variance (Within-Subject ANOVA)

8 aov.w

Description

This function performs an one-way repeated measures analysis of variance (within subject ANOVA)
including paired-samples t-tests for multiple comparison and provides descriptive statistics, effect
size measures, and a plot showing error bars for difference-adjusted Cousineau-Morey within-
subject confidence intervals with jittered data points including subject-specific lines.

Usage

aov.w(formula, data, print = c("all", "none", "LB", "GG", "HF"),
posthoc = FALSE, conf.level = 0.95,

p.adj = c("none", "bonferroni", "holm", "hochberg", "hommel", "BH", "BY", "fdr"),
hypo = TRUE, descript = TRUE, epsilon = TRUE, effsize = FALSE,
na.omit = TRUE, plot = FALSE, point.size = 4, adjust = TRUE,
error.width = 0.1, xlab = NULL, ylab = NULL, ylim = NULL,
breaks = ggplot2::waiver(), jitter = TRUE, line = TRUE,
jitter.size = 1.25, jitter.width = 0.05, jitter.height = 0,
jitter.alpha = 0.1, title = "", subtitle = "Confidence Interval",
digits = 2, p.digits = 4, as.na = NULL, write = NULL, append = TRUE,
check = TRUE, output = TRUE, ...)

Arguments

formula a formula of the form cbind(time1, time2, time3) ~ 1 where time1, time2,
and time3 are numeric variables representing the levels of the within-subject
factor, i.e., data are specified in wide-format (i.e., multivariate person level for-
mat).

data a matrix or data frame containing the variables in the formula formula.

print a character vector indicating which sphericity correction to use, i.e., all for
all corrections, none for no correction, LB for lower bound correction, GG for
Greenhouse-Geisser correction, and HF, for Huynh-Feldt correction.

posthoc logical: if TRUE, paired-samples t-tests for multiple comparison are conducted.

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

p.adj a character string indicating an adjustment method for multiple testing based on
p.adjust, i.e., none, bonferroni, holm (default), h ochberg, hommel, BH, BY,
or fdr.

hypo logical: if TRUE (default), null and alternative hypothesis are shown on the con-
sole.

descript logical: if TRUE (default), descriptive statistics are shown on the console.

epsilon logical: if TRUE (default), box indices of sphericity (epsilon) are shown on the
console, i.e., lower bound, Greenhouse and Geiser (GG), Huynh and Feldt (HF)
and average of GG and HF.

effsize logical: if TRUE, effect size measures eta-squared (η2), partial eta-squared (η2p),
omega-squared (ω2), and partial omega-squared (ω2

p) for the repeated measures
ANOVA and Cohen’s d for the post hoc tests are shown on the console.

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion).

aov.w 9

plot logical: if TRUE, a plot showing error bars for confidence intervals is drawn.

point.size a numeric value indicating the size aesthetic for the point representing the mean
value.

adjust logical: if TRUE (default), difference-adjustment for the Cousineau-Morey within-
subject confidence intervals is applied.

error.width a numeric value indicating the horizontal bar width of the error bar.

xlab a character string specifying the labels for the x-axis.

ylab a character string specifying the labels for the y-axis.

ylim a numeric vector of length two specifying limits of the limits of the y-axis.

breaks a numeric vector specifying the points at which tick-marks are drawn at the y-
axis.

jitter logical: if TRUE (default), jittered data points are drawn.

line logical: if TRUE (default), subject-specific lines are drawn.

jitter.size a numeric value indicating the size aesthetic for the jittered data points.

jitter.width a numeric value indicating the amount of horizontal jitter.

jitter.height a numeric value indicating the amount of vertical jitter.

jitter.alpha a numeric value indicating the opacity of the jittered data points.

title a character string specifying the text for the title for the plot.

subtitle a character string specifying the text for the subtitle for the plot.

digits an integer value indicating the number of decimal places to be used for display-
ing descriptive statistics and confidence interval.

p.digits an integer value indicating the number of decimal places to be used for display-
ing the p-value.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

write a character string naming a text file with file extension ".txt" (e.g., "Output.txt")
for writing the output into a text file.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console.

... further arguments to be passed to or from methods.

Details

Sphericity The F-Test of the repeated measures ANOVA is based on the assumption of sphericity,
which is defined as the assumption that the variance of differences between repeated measures
are equal in the population. The Mauchly’s test is commonly used to test this hypothesis.
However, test of assumptions addresses an irrelevant hypothesis because what matters is the
degree of violation rather than its presence (Baguley, 2012a). Moreover, the test is not recom-
mended because it lacks statistical power (Abdi, 2010). Instead, the Box index of sphericity

10 aov.w

(ε) should be used to assess the degree of violation of the sphericity assumption. The ε param-
eter indicates the degree to which the population departs from sphericity with ε = 1 indicating
that sphericity holds. As the departure becomes more extreme, ε approaches its lower bound
ε̂lb:

ε̂lb =
1

J − 1

where J is the number of levels of the within-subject factor. Box (1954a, 1954b) suggested
a measure for sphericity, which applies to a population covariance matrix. Greenhouse and
Geisser (1959) proposed an estimate for ε known as ε̂gg that can be computed from the sample
covariance matrix, whereas Huynh and Feldt (1976) proposed an alternative estimate ε̂hf .
These estimates can be used to correct the effect and error df of the F-test. Simulation studies
showed that ε̂gg ≤ ε̂hf and that ε̂gg tends to be conservative underestimating ε, whereas
ε̂hf tends to be liberal overestimating ε and occasionally exceeding one. Baguley (2012a)
recommended to compute the average of the conservative estimate ε̂gg and the liberal estimate
ε̂hf to assess the sphericity assumption. By default, the function prints results depending on
the average ε̂gg and ε̂hf :

• If the average is less than 0.75 results of the F-Test based on Greenhouse-Geiser correc-
tion factor (ε̂gg) is printed.

• If the average is less greater or equal 0.75, but less than 0.95 results of the F-Test based
on Huynh-Feldt correction factor (ε̂hf) is printed.

• If the average is greater or equal 0.95 results of the F-Test without any corrections are
printed.

Missing Data The function uses listwise deletion by default to deal with missing data. However,
the function also allows to use all available observations by conducting the repeated measures
ANOVA in long data format when specifying na.omit = FALSE. Note that in the presence of
missing data, the F-Test without any sphericity corrections may be reliable, but it is not clear
whether results based on Greenhouse-Geiser or Huynh-Feldt correction are trustworthy given
that pairwise deletion is used for estimating the variance-covariance matrix when computing
ε̂gg and the total number of subjects regardless of missing values (i.e., complete and incom-
plete cases) are used for computing ε̂hf .

Within-Subject Confidence Intervals The function provides a plot showing error bars for difference-
adjusted Cousineau-Morey confidence intervals (Baguley, 2012b). The intervals matches that
of a CI for a difference, i.e., non-overlapping CIs corresponds to an inferences of no statis-
tically significant difference. The Cousineau-Morey confidence intervals without adjustment
can be used by specifying adjust = FALSE.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data list with the data (data) in wide-format (wide), reshaped data in long-format
(long), and within-subject confidence intervals (ci)

formula formula of the current analysis

plot ggplot2 object for plotting the results

aov.w 11

args specification of function arguments

result list with result tables, i.e., descript for descriptive statistics, epsilon for a ta-
ble with indices of sphericity, test for the ANOVA table (none for no sphericity
correction, lb for lower bound correction, gg for Greenhouse and Geiser correc-
tion, and hf for Huynh and Feldt correction), posthoc for post hoc tests, and
aov for the return object of the aov function

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Abdi, H. (2010). The Greenhouse-Geisser correction. In N. J. Salkind (Ed.) Encyclopedia of
Research Design (pp. 630-634), Sage. https://dx.doi.org/10.4135/9781412961288

Baguley, T. S. (2012a). Serious stats: A guide to advanced statistics for the behavioral sciences.
Palgrave Macmillan.

Baguley, T. (2012b). Calculating and graphing within-subject confidence intervals for ANOVA.
Behavior Research Methods, 44, 158-175. https://doi.org/10.3758/s13428-011-0123-7

Bakerman, R. (2005). Recommended effect size statistics for repeated measures designs. Behavior
Research Methods, 37, 179-384. https://doi.org/10.3758/BF03192707

Box, G. E. P. (1954a) Some Theorems on Quadratic Forms Applied in the Study of Analysis of
Variance Problems, I. Effects of Inequality of Variance in the One-way Classification. Annals of
Mathematical Statistics, 25, 290–302.

Box, G. E. P. (1954b) Some Theorems on Quadratic Forms Applied in the Study of Analysis of
Variance Problems, II. Effects of Inequality of Variance and of Correlation between Errors in the
Two-way Classification. Annals of Mathematical Statistics, 25, 484–98.

Greenhouse, S. W., and Geisser, S. (1959). On methods in the analysis of profile data.Psychometrika,
24, 95-112. https://doi.org/10.1007/BF02289823

Huynh, H., and Feldt, L. S. (1976). Estimation of the box correction for degrees of freedom from
sample data in randomized block and splitplot designs. Journal of Educational Statistics, 1, 69-82.
https://doi.org/10.2307/1164736

Olejnik, S., & Algina, J. (2000). Measures of effect size for comparative studies: Applications, in-
terpretations, and limitations. Contemporary Educational Psychology, 25, 241-286. https://doi.org/10.1006/ceps.2000.1040

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

See Also

aov.b, test.t, test.z, cohens.d, ci.mean.diff, ci.mean

Examples

dat <- data.frame(time1 = c(3, 2, 1, 4, 5, 2, 3, 5, 6, 7),
time2 = c(4, 3, 6, 5, 8, 6, 7, 3, 4, 5),
time3 = c(1, 2, 2, 3, 6, 5, 1, 2, 4, 6))

12 aov.w

Example 1: Repeated measures ANOVA
aov.w(cbind(time1, time2, time3) ~ 1, data = dat)

Example 2: Repeated measures ANOVA
print results based on all sphericity corrections
aov.w(cbind(time1, time2, time3) ~ 1, data = dat, print = "all")

Example 3: Repeated measures ANOVA
print effect size measures
aov.w(cbind(time1, time2, time3) ~ 1, data = dat, effsize = TRUE)

Example 4: Repeated measures ANOVA
do not print hypotheses and descriptive statistics,
aov.w(cbind(time1, time2, time3) ~ 1, data = dat, descript = FALSE, hypo = FALSE)

Not run:
Example 5: Write results into a text file
aov.w(cbind(time1, time2, time3) ~ 1, data = dat, write = "RM-ANOVA.txt")

Example 6: Repeated measures ANOVA
plot results
aov.w(cbind(time1, time2, time3) ~ 1, data = dat, plot = TRUE)

Load ggplot2 package
library(ggplot2)

Save plot, ggsave() from the ggplot2 package
ggsave("Repeated_measures_ANOVA.png", dpi = 600, width = 4.5, height = 4)

Example 7: Repeated measures ANOVA
extract plot
p <- aov.w(cbind(time1, time2, time3) ~ 1, data = dat, output = FALSE)$plot
p

Extract data
plotdat <- aov.w(cbind(time1, time2, time3) ~ 1, data = dat, output = FALSE)$data

Draw plot in line with the default setting of aov.w()
ggplot(plotdat$long, aes(time, y, group = 1L)) +
geom_point(aes(time, y, group = id),

alpha = 0.1, position = position_dodge(0.05)) +
geom_line(aes(time, y, group = id),

alpha = 0.1, position = position_dodge(0.05)) +
geom_point(data = plotdat$ci, aes(variable, m), stat = "identity", size = 4) +
stat_summary(aes(time, y), fun = mean, geom = "line") +
geom_errorbar(data = plotdat$ci, aes(variable, m, ymin = low, ymax = upp), width = 0.1) +
theme_bw() + xlab(NULL) +
labs(subtitle = "Two-Sided 95
theme(plot.subtitle = element_text(hjust = 0.5),

plot.title = element_text(hjust = 0.5))

End(Not run)

as.na 13

as.na Replace User-Specified Values With Missing Values or Missing Values
With User-Specified Values

Description

The function as.na replaces user-specified values in the argument na in a vector, factor, matrix,
array, list, or data frame with NA, while the function na.as replaces NA in a vector, factor, matrix or
data frame with user-specified values in the argument na.

Usage

as.na(..., data = NULL, na, replace = TRUE, check = TRUE)

na.as(..., data = NULL, na, replace = TRUE, as.na = NULL, check = TRUE)

Arguments

... a vector, factor, matrix, array, data frame, or list. Alternatively, an expression
indicating the variable names in data e.g., as.na(x1, x2, data = dat). Note
that the operators ., +, -, ~, :, ::, and ! can be used to select variables, see
’Details’ in the df.subset function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a vector, factor, matrix, array, data
frame, or list for the argument

na a vector indicating values or characters to replace with NA, or which NA is re-
placed.

replace logical: if TRUE (default), variable(s) specified in ... are replaced in the argu-
ment data.

check logical: if TRUE (default), argument specification is checked.

as.na a numeric vector or character vector indicating user-defined missing values, i.e.
these values are converted to NA before conducting the analysis.

Value

Returns a vector, factor, matrix, array, data frame, or list specified in the argument ... or a data
frame specified in data with variables specified in ... replaced.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

14 as.na

See Also

na.auxiliary, na.coverage, na.descript, na.indicator, na.pattern, na.prop, na.test

Examples

#---
Numeric vector
num <- c(1, 3, 2, 4, 5)

Example 1: Replace 2 with NA
as.na(num, na = 2)

Example 2: Replace 2, 3, and 4 with NA
as.na(num, na = c(2, 3, 4))

Example 3: Replace NA with 2
na.as(c(1, 3, NA, 4, 5), na = 2)

#---
Character vector
chr <- c("a", "b", "c", "d", "e")

Example 4: Replace "b" with NA
as.na(chr, na = "b")

Example 5: Replace "b", "c", and "d" with NA
as.na(chr, na = c("b", "c", "d"))

Example 6: Replace NA with "b"
na.as(c("a", NA, "c", "d", "e"), na = "b")

#---
Factor
fac <- factor(c("a", "a", "b", "b", "c", "c"))

Example 7: Replace "b" with NA
as.na(fac, na = "b")

Example 8: Replace "b" and "c" with NA
as.na(fac, na = c("b", "c"))

Example 9: Replace NA with "b"
na.as(factor(c("a", "a", NA, NA, "c", "c")), na = "b")

#---
Matrix
mat <- matrix(1:20, ncol = 4)

Example 10: Replace 8 with NA
as.na(mat, na = 8)

Example 11: Replace 8, 14, and 20 with NA

as.na 15

as.na(mat, na = c(8, 14, 20))

Example 12: Replace NA with 2
na.as(matrix(c(1, NA, 3, 4, 5, 6), ncol = 2), na = 2)

#---
Array

Example 13: Replace 1 and 10 with NA
as.na(array(1:20, dim = c(2, 3, 2)), na = c(1, 10))

#---
List

Example 14: Replace 1 with NA
as.na(list(x1 = c(1, 2, 3, 1, 2, 3),

x2 = c(2, 1, 3, 2, 1),
x3 = c(3, 1, 2, 3)), na = 1)

#---
Data frame
df <- data.frame(x1 = c(1, 2, 3),

x2 = c(2, 1, 3),
x3 = c(3, 1, 2))

Example 15a: Replace 1 with NA
as.na(df, na = 1)

Example 15b: Alternative specification using the 'data' argument
as.na(., data = df, na = 1)

Example 16: Replace 1 and 3 with NA
as.na(df, na = c(1, 3))

Example 17a: Replace 1 with NA in 'x2'
as.na(df$x2, na = 1)

Example 17b: Alternative specification using the 'data' argument
as.na(x2, data = df, na = 1)

Example 18: Replace 1 with NA in 'x2' and 'x3'
as.na(x2, x3, data = df, na = 1)

Example 19: Replace 1 with NA in 'x1', 'x2', and 'x3'
as.na(x1:x3, data = df, na = 1)

Example 20: Replace NA with -99
na.as(data.frame(x1 = c(NA, 2, 3),

x2 = c(2, NA, 3),
x3 = c(3, NA, 2)), na = -99)

Example 2: Recode by replacing 30 with NA and then replacing NA with 3
na.as(data.frame(x1 = c(1, 2, 30),

16 center

x2 = c(2, 1, 30),
x3 = c(30, 1, 2)), na = 3, as.na = 30)

center Centering Predictor Variables in Single-Level and Multilevel Data

Description

This function centers predictor variables in single-level data, two-level data, and three-level data
at the grand mean (CGM, i.e., grand mean centering) or within cluster (CWC, i.e., group mean
centering).

Usage

center(..., data = NULL, cluster = NULL, type = c("CGM", "CWC"),
cwc.mean = c("L2", "L3"), value = NULL, name = ".c",
append = TRUE, as.na = NULL, check = TRUE)

Arguments

... a numeric vector for centering a predictor variable, or a data frame for centering
more than one predictor. Alternatively, an expression indicating the variable
names in data e.g., center(x1, x2, data = dat). Note that the operators .,
+, -, ~, :, ::, and ! can also be used to select variables, see ’Details’ in the
df.subset function.

data a data frame when specifying one or more predictor variables in the argument
.... Note that the argument is NULL when specifying a numeric vector or data
frame for the argument

cluster a character string indicating the name of the cluster variable in ... or data for
two-level data, a character vector indicating the names of the cluster variables in
... for three-level data, or a vector or data frame representing the nested group-
ing structure (i.e., group or cluster variables). Alternatively, a character string
or character vector indicating the variable name(s) of the cluster variable(s) in
data. Note that the cluster variable at Level 3 come first in a three-level model,
i.e., cluster = c("level3", "level2").

type a character string indicating the type of centering, i.e., "CGM" for centering at the
grand mean (i.e., grand mean centering, default when cluster = NULL) or "CWC"
for centering within cluster (i.e., group mean centering, default when specifying
the argument cluster).

cwc.mean a character string indicating the type of centering of a level-1 predictor variable
in a three-level model, i.e., L2 (default) for centering the predictor variable at the
level-2 cluster means, and L2 for centering the predictor variable at the level-3
cluster means.

value a numeric value for centering on a specific user-defined value. Note that this
option is only available when specifying a single-level predictor variable, i.e.,
cluster = NULL.

center 17

name a character string or character vector indicating the names of the centered pre-
dictor variables. By default, centered predictor variables are named with the
ending ".c" resulting in e.g. "x1.c" and "x2.c". Variable names can also be
specified by using a character vector matching the number of variables specified
in ... (e.g., name = c("center.x1", "center.x2")).

append logical: if TRUE (default), centered variable(s) are appended to the data frame
specified in the argument data.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to ... but not to cluster.

check logical: if TRUE (default), argument specification is checked.

Details

Single-Level Data Predictor variables in single-level data can only be centered at the grand
mean (CGM) by specifying type = "CGM":

xi − x̄.

where xi is the predictor value of observation i and x̄. is the average x score. Note that
predictor variables can be centered on any meaningful value specifying the argument value,
e.g., a predictor variable centered at 5 by applying following formula:

xi − x̄. + 5

resulting in a mean of the centered predictor variable of 5.

Two-Level Data Level-1 (L1) predictor variables in two-level data can be centered at the grand
mean (CGM) by specifying type = "CGM":

xij − x̄..

where xij is the predictor value of observation i in L2 cluster j and x̄.. is the average x score.
L1 predictor variables are centered at the group mean (CWC) by specifying type = "CWC"
(Default):

xij − x̄.j

where x̄.j is the average x score in cluster j.
Level-2 (L1) predictor variables in two-level data can only be centered at the grand mean:

x.j − x̄..

where x.j is the predictor value of Level 2 cluster j and x̄.. is the average Level-2 cluster
score. Note that the cluster membership variable needs to be specified when centering a L2
predictor variable in two-level data. Otherwise the average xij individual score instead of the
average x.j cluster score is used to center the predictor variable.

18 center

Three-Level Data Level-1 (L1) predictor variables in three-level data can be centered at the
grand mean (CGM) by specifying type = "CGM":

xijk − x̄...

where xijk is the predictor value of observation i in Level-2 cluster j within Level-3 cluster k
and x̄... is the average x score.
L1 predictor variables are centered within cluster (CWC) by specifying type = "CWC" (De-
fault). However, L1 predictor variables can be either centered within Level-2 cluster (cwc.mean
= "L2", Default, see Brincks et al., 2017):

xijk − x̄.jk

or within Level-3 cluster (cwc.mean = "L3", see Enders, 2013):

xijk − x̄..k

where x̄.jk is the average x score in Level-2 cluster j within Level-3 cluster k and x̄..k is the
average x score in Level-3 cluster k.
Level-2 (L2) predictor variables in three-level data can be centered at the grand mean (CGM)
by specifying type = "CGM":

x.jk − x̄...

where x.jk is the predictor value of Level-2 cluster j within Level-3 cluster k and x̄... is the
average Level-2 cluster score.
L2 predictor variables are centered within cluster (CWC) by specifying type = "CWC" (De-
fault):

x.jk − x̄..k

where x̄..k is the average x score in Level-3 cluster k.
Level-3 (L3) predictor variables in three-level data can only be centered at the grand mean:

x..k − x̄...

where x..k is the predictor value of Level-3 cluster k and x̄... is the average Level-3 cluster
score. Note that the cluster membership variable needs to be specified when centering a L3
predictor variable in three-level data.

Value

Returns a numeric vector or data frame with the same length or same number of rows as ...
containing the centered variable(s).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

center 19

References

Brincks, A. M., Enders, C. K., Llabre, M. M., Bulotsky-Shearer, R. J., Prado, G., & Feaster, D.
J. (2017). Centering predictor variables in three-level contextual models. Multivariate Behavioral
Research, 52(2), 149–163. https://doi.org/10.1080/00273171.2016.1256753

Chang, C.-N., & Kwok, O.-M. (2022) Partitioning Variance for a Within-Level Predictor in Multi-
level Models. Structural Equation Modeling: A Multidisciplinary Journal. Advance online publi-
cation. https://doi.org/10.1080/10705511.2022.2051175

Enders, C. K. (2013). Centering predictors and contextual effects. In M. A. Scott, J. S. Si-
monoff, & B. D. Marx (Eds.), The Sage handbook of multilevel modeling (pp. 89-109). Sage.
https://dx.doi.org/10.4135/9781446247600

Enders, C. K., & Tofighi, D. (2007). Centering predictor variables in cross-sectional multilevel
models: A new look at an old issue. Psychological Methods, 12, 121-138. https://doi.org/10.1037/1082-
989X.12.2.121

Rights, J. D., Preacher, K. J., & Cole, D. A. (2020). The danger of conflating level-specific effects
of control variables when primary interest lies in level-2 effects. British Journal of Mathematical &
Statistical Psychology, 73, 194-211. https://doi.org/10.1111/bmsp.12194

Yaremych, H. E., Preacher, K. J., & Hedeker, D. (2021). Centering categorical predictors in multi-
level models: Best practices and interpretation. Psychological Methods. Advance online publica-
tion. https://doi.org/10.1037/met0000434

See Also

coding, cluster.scores, rec, item.reverse, rwg.lindell, item.scores.

Examples

#--
Predictor Variables in Single-Level Data

Example 1a: Center predictor 'disp' at the grand mean
center(mtcars$disp)

Example 1b: Alternative specification using the 'data' argument
center(disp, data = mtcars)

Example 2a: Center predictors 'disp' and 'hp' at the grand mean and append to 'mtcars'
cbind(mtcars, center(mtcars[, c("disp", "hp")]))

Example 2b: Alternative specification using the 'data' argument
center(disp, hp, data = mtcars)

Example 3: Center predictor 'disp' at the value 3
center(disp, data = mtcars, value = 3)

Example 4: Center predictors 'disp' and 'hp' and label with the suffix ".v"
center(disp, hp, data = mtcars, name = ".v")

#--
Predictor Variables in Two-Level Data

20 check.collin

Load data set "Demo.twolevel" in the lavaan package
data("Demo.twolevel", package = "lavaan")

Example 5a: Center L1 predictor 'y1' within cluster
center(Demo.twolevel$y1, cluster = Demo.twolevel$cluster)

Example 5b: Alternative specification using the 'data' argument
center(y1, data = Demo.twolevel, cluster = "cluster")

Example 6: Center L2 predictor 'w2' at the grand mean
center(w1, data = Demo.twolevel, cluster = "cluster")

Example 6: Center L1 predictor 'y1' within cluster and L2 predictor 'w1' at the grand mean
center(y1, w1, data = Demo.twolevel, cluster = "cluster")

#--
Predictor Variables in Three-Level Data

Create arbitrary three-level data
Demo.threelevel <- data.frame(Demo.twolevel, cluster2 = Demo.twolevel$cluster,

cluster3 = rep(1:10, each = 250))

Example 7a: Center L1 predictor 'y1' within L2 cluster
center(y1, data = Demo.threelevel, cluster = c("cluster3", "cluster2"))

Example 7b: Center L1 predictor 'y1' within L3 cluster
center(y1, data = Demo.threelevel, cluster = c("cluster3", "cluster2"), cwc.mean = "L3")

Example 7b: Center L1 predictor 'y1' within L2 cluster and L2 predictor 'w1' within L3 cluster
center(y1, w1, data = Demo.threelevel, cluster = c("cluster3", "cluster2"))

check.collin Collinearity Diagnostics

Description

This function computes tolerance, standard error inflation factor, variance inflation factor, eigen-
values, condition index, and variance proportions for linear, generalized linear, and mixed-effects
models.

Usage

check.collin(model, print = c("all", "vif", "eigen"), digits = 3, p.digits = 3,
write = NULL, append = TRUE, check = TRUE, output = TRUE)

Arguments

model a fitted model of class "lm", "glm", "lmerMod", "lmerModLmerTest", "glmerMod",
"lme", or "glmmTMB".

check.collin 21

print a character vector indicating which results to show, i.e. "all", for all results,
"vif" for tolerance, std. error inflation factor, and variance inflation factor, or
eigen for eigenvalue, condition index, and variance proportions.

digits an integer value indicating the number of decimal places to be used for display-
ing results.

p.digits an integer value indicating the number of decimal places to be used for display-
ing the p-value.

write a character string naming a text file with file extension ".txt" (e.g., "Output.txt")
for writing the output into a text file.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console.

Details

Collinearity diagnostics can be conducted for objects returned from the lm() and glm() function,
but also from objects returned from the lmer() and glmer() function from the lme4 package,
lme() function from the nlme package, and the glmmTMB() function from the glmmTMB package.

The generalized variance inflation factor (Fox & Monette, 1992) is computed for terms with more
than 1 df resulting from factors with more than two levels. The generalized VIF (GVIF) is inter-
pretable as the inflation in size of the confidence ellipse or ellipsoid for the coefficients of the term
in comparison with what would be obtained for orthogonal data. GVIF is invariant to the coding of
the terms in the model. In order to adjust for the dimension of the confidence ellipsoid, GVIF

1
2df is

computed. Note that the adjusted GVIF (aGVIF) is actually a generalized standard error inflation
factor (GSIF). Thus, the aGIF needs to be squared before applying a common cutoff threshold for
the VIF (e.g., VIF > 10). Note that the output of check.collin() function reports either the vari-
ance inflation factor or the squared generalized variance inflation factor in the column VIF, while
the standard error inflation factor or the adjusted generalized variance inflation factor is reported in
the column SIF.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

model model specified in the model argument

args specification of function arguments

result list with result tables, i.e., coef for the regression table including tolerance, std.
error inflation factor and variance inflation factors, vif for the tolerance, std.
error inflation factor, and variance inflation factor, and eigen for eigenvalue
condition index, and variance proportion

22 check.collin

Note

The computation of the VIF and the GVIF is based on the vif() function in the car package by
John Fox, Sanford Weisberg and Brad Price (2020), and the computation of eigenvalues, condition
index, and variance proportions is based on the ols_eigen_cindex() function in the olsrr package
by Aravind Hebbali (2020).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Fox, J., & Monette, G. (1992). Generalized collinearity diagnostics. Journal of the American
Statistical Association, 87, 178-183.

Fox, J., Weisberg, S., & Price, B. (2020). car: Companion to Applied Regression. R package
version 3.0-8. https://cran.r-project.org/web/packages/car/

Hebbali, A. (2020). olsrr: Tools for building OLS regression models. R package version 0.5.3.
https://cran.r-project.org/web/packages/olsrr/

See Also

check.outlier, lm

Examples

dat <- data.frame(group = c(1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4),
x1 = c(3, 2, 4, 9, 5, 3, 6, 4, 5, 6, 3, 5),
x2 = c(1, 4, 3, 1, 2, 4, 3, 5, 1, 7, 8, 7),
x3 = c(7, 3, 4, 2, 5, 6, 4, 2, 3, 5, 2, 8),
x4 = c("a", "b", "a", "c", "c", "c", "a", "b", "b", "c", "a", "c"),
y1 = c(2, 7, 4, 4, 7, 8, 4, 2, 5, 1, 3, 8),
y2 = c(0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1),
stringsAsFactors = TRUE)

#---
Linear model

Estimate linear model with continuous predictors
mod.lm1 <- lm(y1 ~ x1 + x2 + x3, data = dat)

Example 1: Tolerance, std. error, and variance inflation factor
check.collin(mod.lm1)

Example 2: Tolerance, std. error, and variance inflation factor
Eigenvalue, Condition index, and variance proportions
check.collin(mod.lm1, print = "all")

Estimate model with continuous and categorical predictors
mod.lm2 <- lm(y1 ~ x1 + x2 + x3 + x4, data = dat)

check.collin 23

Example 3: Tolerance, generalized std. error, and variance inflation factor
check.collin(mod.lm2)

#---
Generalized linear model

Estimate logistic regression model with continuous predictors
mod.glm <- glm(y2 ~ x1 + x2 + x3, data = dat, family = "binomial")

Example 4: Tolerance, std. error, and variance inflation factor
check.collin(mod.glm)

Not run:
#---
Linear mixed-effects model

Estimate linear mixed-effects model with continuous predictors using lme4 package
mod.lmer <- lme4::lmer(y1 ~ x1 + x2 + x3 + (1|group), data = dat)

Example 5: Tolerance, std. error, and variance inflation factor
check.collin(mod.lmer)

Estimate linear mixed-effects model with continuous predictors using nlme package
mod.lme <- nlme::lme(y1 ~ x1 + x2 + x3, random = ~ 1 | group, data = dat)

Example 6: Tolerance, std. error, and variance inflation factor
check.collin(mod.lme)

Estimate linear mixed-effects model with continuous predictors using glmmTMB package
mod.glmmTMB1 <- glmmTMB::glmmTMB(y1 ~ x1 + x2 + x3 + (1|group), data = dat)

Example 7: Tolerance, std. error, and variance inflation factor
check.collin(mod.glmmTMB1)

#---
Generalized linear mixed-effects model

Estimate mixed-effects logistic regression model with continuous predictors using lme4 package
mod.glmer <- lme4::glmer(y2 ~ x1 + x2 + x3 + (1|group), data = dat, family = "binomial")

Example 8: Tolerance, std. error, and variance inflation factor
check.collin(mod.glmer)

Estimate mixed-effects logistic regression model with continuous predictors using glmmTMB package
mod.glmmTMB2 <- glmmTMB::glmmTMB(y2 ~ x1 + x2 + x3 + (1|group), data = dat, family = "binomial")

Example 9: Tolerance, std. error, and variance inflation factor
check.collin(mod.glmmTMB2)

#--
Write Results

Example 10: Write results into a text file

24 check.outlier

check.collin(mod.lm1, write = "Diagnostics.txt")

End(Not run)

check.outlier Statistical Measures for Leverage, Distance, and Influence

Description

This function computes statistical measures for leverage, distance, and influence for linear mod-
els estimated by using the lm() function. Mahalanobis distance and hat values are computed for
quantifying leverage, standardized leverage-corrected residuals and studentized leverage-corrected
residuals are computed for quantifying distance, and Cook‘s distance and DfBetas are computed
for quantifying influence.

Usage

check.outlier(model, check = TRUE, ...)

Arguments

model a fitted model of class "lm".

check logical: if TRUE (default), argument specification is checked.

... further arguments to be passed to or from methods.

Details

In regression analysis, an observation can be extreme in three major ways (see Darlington & Hayes,
p. 484): (1) An observation has high leverage if it has a atypical pattern of values on the predictors,
(2) an observation has high distance if its observed outcome value Yi has a large deviation from the
predicted value Ŷi, and (3) an observation has high influence if its inclusion substantially changes
the estimates for the intercept and/or slopes.

Value

Returns a data frame with following entries:

idout ID variable

mahal Mahalanobis distance

hat hat values

rstand standardized leverage-corrected residuals

rstud studentized leverage-corrected residuals

cook Cook‘s distance

Intercept.dfb DFBetas for the intercept

pred1.dfb DFBetas for the slope of the predictor pred1

....dfb DFBetas for the slope of the predictor ...

check.resid 25

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Darlington, R. B., &, Hayes, A. F. (2017). Regression analysis and linear models: Concepts,
applications, and implementation. The Guilford Press.

See Also

check.collin, lm

Examples

Example 1: Regression model and measures for leverage, distance, and influence
mod.lm <- lm(mpg ~ cyl + disp + hp, data = mtcars)
check.outlier(mod.lm)

Merge result table with the data
dat1 <- cbind(mtcars, check.outlier(mod.lm))

check.resid Residual Diagnostics

Description

This function performs residual diagnostics for linear models estimated by using the lm() func-
tion for detecting nonlinearity (partial residual or component-plus-residual plots), nonconstant er-
ror variance (predicted values vs. residuals plot), and non-normality of residuals (Q-Q plot and
histogram with density plot).

Usage

check.resid(model, type = c("linear", "homo", "normal"),
resid = c("unstand", "stand", "student"),
point.shape = 21, point.fill = "gray80", point.size = 1,
line1 = TRUE, line2 = TRUE,
line.type1 = "solid", line.type2 = "dashed",
line.width1 = 1, line.width2 = 1,
line.color1 = "#0072B2", line.color2 = "#D55E00",
bar.width = NULL, bar.n = 30, bar.color = "black",
bar.fill = "gray95", strip.size = 11,
label.size = 10, axis.size = 10,
xlimits = NULL, ylimits = NULL,
xbreaks = ggplot2::waiver(), ybreaks = ggplot2::waiver(),
check = TRUE, plot = TRUE)

26 check.resid

Arguments

model a fitted model of class lm.

type a character string specifying the type of the plot, i.e., "linear" for partial
(component-plus-residual) plots, "homo" (default) for predicted values vs. resid-
uals plot, and "normal" for Q-Q plot and histogram with a density plot. Note
that partial plots are not available for models with interaction terms.

resid a character string specifying the type of residual used for the partial (component-
plus-residual) plots or Q-Q plot and histogram, i.e., "unstand" for unstandard-
ized residuals "stand" for standardized residuals, and "student" for studen-
tized residual. By default, studentized residuals are used for predicted values vs.
residuals plot and unstandardized residuals are used for Q-Q plot and histogram.

point.shape a numeric value for specifying the argument shape in the geom_point function.

point.fill a numeric value for specifying the argument fill in the geom_point function.

point.size a numeric value for specifying the argument size in the geom_point function.

line1 logical: if TRUE (default), regression line is drawn in the partial (component-
plus-residual) plots, horizontal line is drawn in the predicted values vs. residuals
plot, and t-distribution or normal distribution curve is drawn in the histogram.

line2 logical: if TRUE (default), Loess smooth line is drawn in the partial (component-
plus-residual) plots, loess mooth lines are drawn in the predicted values vs.
residuals plot, and density curve is drawn in the histogram.

line.type1 a character string or numeric value for specifying the argument linetype in the
geom_smooth, geom_hline, or stat_function function.

line.type2 a character string or numeric value for specifying the argument linetype in the
geom_smooth or geom_density function.

line.width1 a numeric value for specifying the argument linewidth in the geom_smooth,
geom_hline, or stat_function function.

line.width2 a numeric value for specifying the argument linewidth in the geom_smooth or
geom_density function.

line.color1 a character string or numeric value for specifying the argument color in the
geom_smooth, geom_hline, or stat_function function.

line.color2 a character string or numeric value for specifying the argument color in the
geom_smooth or geom_density function.

bar.width a numeric value for specifying the argument bins in the geom_bar function.

bar.n a numeric value for specifying the argument bins in the geom_bar function.

bar.color a character string or numeric value for specifying the argument color in the
geom_bar function.

bar.fill a character string or numeric value for specifying the argument fill in the
geom_bar function.

strip.size a numeric value for specifying the argument size in the element_text function
of the strip.text argument within the theme function.

label.size a numeric value for specifying the argument size in the element_text function
of the axis.title argument within the theme function.

check.resid 27

axis.size a numeric value for specifying the argument size in the element_text function
of the axis.text argument within the theme function.

xlimits a numeric value for specifying the argument limits in the scale_x_continuous
function.

ylimits a numeric value for specifying the argument limits in the scale_y_continuous
function.

xbreaks a numeric value for specifying the argument breaks in the scale_x_continuous
function.

ybreaks a numeric value for specifying the argument breaks in the scale_y_continuous
function.

check logical: if TRUE (default), argument specification is checked.

plot logical: if TRUE (default), a plot is drawn.

Details

Nonlinearity The violation of the assumption of linearity implies that the model cannot accurately
capture the systematic pattern of the relationship between the outcome and predictor variables.
In other words, the specified regression surface does not accurately represent the relationship
between the conditional mean values of Y and the Xs. That means the average error E(ε) is
not 0 at every point on the regression surface (Fox, 2015).
In multiple regression, plotting the outcome variable Y against each predictor variable X
can be misleading because it does not reflect the partial relationship between Y and X (i.e.,
statistically controlling for the other Xs), but rather the marginal relationship between Y and
X (i.e., ignoring the other Xs). Partial residual plots or component-plus-residual plots should
be used to detect nonlinearity in multiple regression. The partial residual for the jth predictor
variable is defined as

e
(j)
i = bjXij + ei

The linear component of the partial relationship between Y and Xj is added back to the least-
squares residuals, which may include an unmodeled nonlinear component. Then, the partial
residual e(j)i is plotted against the predictor variable Xj . Nonlinearity may become apparent
when a non-parametric regression smoother is applied.
By default, the function plots each predictor against the partial residuals, and draws the linear
regression and the loess smooth line to the partial residual plots.

Nonconstant Error Variance The violation of the assumption of constant error variance, often
referred to as heteroscedasticity, implies that the variance of the outcome variable around the
regression surface is not the same at every point on the regression surface (Fox, 2015).
Plotting residuals against the outcome variable Y instead of the predicted values Ŷ is not
recommended because Y = Ŷ + e. Consequently, the linear correlation between the outcome
variable Y and the residuals e is

√
1−R2 where R is the multiple correlation coefficient.

In contrast, plotting residuals against the predicted values Ŷ is much easier to examine for
evidence of nonconstant error variance as the correlation between Ŷ and e is 0. Note that
the least-squares residuals generally have unequal variance V ar(ei) = σ2/(1 − hi) where
h is the leverage of observation i, even if errors have constant variance σ2. The studentized
residuals e∗i , however, have a constant variance under the assumption of the regression model.

28 check.resid

Residuals are studentized by dividing them by σ2
i (
√

(1− hi) where σ2
i is the estimate of σ2

obtained after deleting the ith observation, and hi is the leverage of observation i (Meuleman
et al, 2015).
By default, the function plots the predicted values against the studentized residuals. It also
draws a horizontal line at 0, a loess smooth lines for all residuals as well as separate loess
smooth lines for positive and negative residuals.

Non-normality of Residuals Statistical inference under the violation of the assumption of nor-
mally distributed errors is approximately valid in all but small samples. However, the effi-
ciency of least squares is not robust because the least-squares estimator is the most efficient
and unbiased estimator only when the errors are normally distributed. For instance, when error
distributions have heavy tails, the least-squares estimator becomes much less efficient com-
pared to robust estimators. In addition, error distributions with heavy-tails result in outliers
and compromise the interpretation of conditional means because the mean is not an accurate
measure of central tendency in a highly skewed distribution. Moreover, a multimodal error
distribution suggests the omission of one or more discrete explanatory variables that naturally
divide the data into groups (Fox, 2016).
By default, the function plots a Q-Q plot of the unstandardized residuals, and a histogram
of the unstandardized residuals and a density plot. Note that studentized residuals follow a
t-distribution with n − k − 2 degrees of freedom where n is the sample size and k is the
number of predictors. However, the normal and t-distribution are nearly identical unless the
sample size is small. Moreover, even if the model is correct, the studentized residuals are
not an independent random sample from tn−k−2. Residuals are correlated with each other
depending on the configuration of the predictor values. The correlation is generally negligible
unless the sample size is small.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

model model specified in model

plotdat data frame used for the plot

args specification of function arguments

plot ggplot2 object for plotting the residuals

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Fox, J. (2016). Applied regression analysis and generalized linear models (3rd ed.). Sage Publica-
tions, Inc.

Meuleman, B., Loosveldt, G., & Emonds, V. (2015). Regression analysis: Assumptions and di-
agnostics. In H. Best & C. Wolf (Eds.), The SAGE handbook of regression analysis and causal
inference (pp. 83-110). Sage.

chr.grep 29

See Also

check.collin, check.outlier

Examples

Not run:
#---
Residual diagnostics for a linear model

mod <- lm(Ozone ~ Solar.R + Wind + Temp, data = airquality)

Example 1: Partial (component-plus-residual) plots
check.resid(mod, type = "linear")

Example 2: Predicted values vs. residuals plot
check.resid(mod, type = "homo")

Example 3: Q-Q plot and histogram with density plot
check.resid(mod, type = "normal")

#---
Extract data and ggplot2 object

object <- check.resid(mod, type = "linear", plot = FALSE)

Data frame
object$plotdat

ggplot object
object$plot

End(Not run)

chr.grep Multiple Pattern Matching

Description

This function searches for matches to the character vector specified in pattern within each element
of the character vector x.

Usage

chr.grep(pattern, x, ignore.case = FALSE, perl = FALSE, value = FALSE,
fixed = FALSE, useBytes = FALSE, invert = FALSE, check = TRUE)

chr.grepl(pattern, x, ignore.case = FALSE, perl = FALSE, fixed = FALSE,
useBytes = FALSE, check = TRUE)

30 chr.grep

Arguments

pattern a character vector with character strings to be matched.
x a character vector where matches are sought.
ignore.case logical: if FALSE (default), the pattern matching is case sensitive and if TRUE,

case is ignored during matching.
perl logical: if TRUE Perl-compatible regexps are used.
value logical: if FALSE (default), a vector containing the (integer) indices of the matches

determined by grep is returned, and if TRUE, a vector containing the matching
elements themselves is returned.

fixed logical: if TRUE, pattern is a string to be matched as is. Overrides all conflicting
arguments.

useBytes logical: if TRUE, the matching is done byte-by-byte rather than character-by-
character. See ‘Details’.

invert logical: if TRUE, function returns indices or values for elements that do not
match.

check logical: if TRUE (default), argument specification is checked.

Value

Returns a integer vector with the indices of the mathces when value = FALSE, character vector con-
taining the matching elements when value = TRUE, or a logical vector when using the chr.grepl
function.

Author(s)

Takuya Yanagida

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole

See Also

chr.gsub, chr.omit, chr.trim

Examples

chr.vector <- c("James", "Mary", "Michael", "Patricia", "Robert", "Jennifer")

Example 1: Indices of matching elements
chr.grep(c("am", "er"), chr.vector)

Example 2: Values of matching elements
chr.grep(c("am", "er"), chr.vector, value = TRUE)

Example 3: Matching element?
chr.grepl(c("am", "er"), chr.vector)

chr.gsub 31

chr.gsub Multiple Pattern Matching And Replacements

Description

This function is a multiple global string replacement wrapper that allows access to multiple methods
of specifying matches and replacements.

Usage

chr.gsub(pattern, replacement, x, recycle = FALSE, ...)

Arguments

pattern a character vector with character strings to be matched.

replacement a character vector equal in length to pattern or of length one which are a re-
placement for matched patterns.

x a character vector where matches and replacements are sought.

recycle logical: if TRUE, replacement is recycled if lengths differ.

... additional arguments to pass to the regexpr or sub function.

Value

Return a character vector of the same length and with the same attributes as x (after possible coer-
cion to character).

Note

This function was adapted from the mgsub() function in the mgsub package by Mark Ewing (2019).

Author(s)

Mark Ewing

References

Mark Ewing (2019). mgsub: Safe, Multiple, Simultaneous String Substitution. R package version
1.7.1. https://CRAN.R-project.org/package=mgsub

See Also

chr.grep, chr.grepl, chr.omit, chr.trim

32 chr.omit

Examples

Example 1: Replace 'the' and 'they' with 'a' and 'we'
chr.vector <- "they don't understand the value of what they seek."
chr.gsub(c("the", "they"), c("a", "we"), chr.vector)

Example 2: Replace 'heyy' and 'ho' with 'yo'
chr.vector <- c("hey ho, let's go!")
chr.gsub(c("hey", "ho"), "yo", chr.vector, recycle = TRUE)

Example 3: Replace with regular expressions
chr.vector <- "Dopazamine is not the same as dopachloride or dopastriamine, yet is still fake."
chr.gsub(c("[Dd]opa([^]*?mine)","fake"), c("Meta\1","real"), chr.vector)

chr.omit Omit Strings

Description

This function omits user-specified values or strings from a numeric vector, character vector or factor.

Usage

chr.omit(x, omit = "", na.omit = FALSE, check = TRUE)

Arguments

x a numeric vector, character vector or factor.

omit a numeric vector or character vector indicating values or strings to be omitted
from the vector x, the default setting is the empty strings "".

na.omit logical: if TRUE, missing values (NA) are also omitted from the vector.

check logical: if TRUE (default), argument specification is checked.

Value

Returns a numeric vector, character vector or factor with values or strings specified in omit omitted
from the vector specified in x.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

See Also

chr.grep, chr.grepl, chr.gsub, chr.trim

chr.trim 33

Examples

#---
Charater vector
x.chr <- c("a", "", "c", NA, "", "d", "e", NA)

Example 1: Omit character string ""
chr.omit(x.chr)

Example 2: Omit character string "" and missing values (NA)
chr.omit(x.chr, na.omit = TRUE)

Example 3: Omit character string "c" and "e"
chr.omit(x.chr, omit = c("c", "e"))

Example 4: Omit character string "c", "e", and missing values (NA)
chr.omit(x.chr, omit = c("c", "e"), na.omit = TRUE)

#---
Numeric vector
x.num <- c(1, 2, NA, 3, 4, 5, NA)

Example 5: Omit values 2 and 4
chr.omit(x.num, omit = c(2, 4))

Example 6: Omit values 2, 4, and missing values (NA)
chr.omit(x.num, omit = c(2, 4), na.omit = TRUE)

#---
Factor
x.factor <- factor(letters[1:10])

Example 7: Omit factor levels "a", "c", "e", and "g"
chr.omit(x.factor, omit = c("a", "c", "e", "g"))

chr.trim Trim Whitespace from String

Description

This function removes whitespace from start and/or end of a string

Usage

chr.trim(x, side = c("both", "left", "right"), check = TRUE)

Arguments

x a character vector.

34 ci.mean

side a character string indicating the side on which to remove whitespace, i.e., "both"
(default), "left" or "right".

check logical: if TRUE (default), argument specification is checked.

Value

Returns a character vector with whitespaces removed from the vector specified in x.

Note

This function is based on the str_trim() function from the stringr package by Hadley Wickham.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Wickham, H. (2019). stringr: Simple, consistent wrappers for common string operations. R pack-
age version 1.4.0.

See Also

chr.grep, chr.grepl, chr.gsub, chr.omit

Examples

x <- " string "

Example 1: Remove whitespace at both sides
chr.trim(x)

Example 2: Remove whitespace at the left side
chr.trim(x, side = "left")

Example 3: Remove whitespace at the right side
chr.trim(x, side = "right")

ci.mean Confidence Interval for the Arithmetic Mean and Median

Description

The function ci.mean computes a confidence interval for the arithmetic mean with known or un-
known population standard deviation or population variance and the function ci.median computes
the confidence interval for the median for one or more variables, optionally by a grouping and/or
split variable.

ci.mean 35

Usage

ci.mean(..., data = NULL, sigma = NULL, sigma2 = NULL, adjust = FALSE,
alternative = c("two.sided", "less", "greater"), conf.level = 0.95,
group = NULL, split = NULL, sort.var = FALSE, na.omit = FALSE,
digits = 2, as.na = NULL, write = NULL, append = TRUE,
check = TRUE, output = TRUE)

ci.median(..., data = NULL, alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, group = NULL, split = NULL, sort.var = FALSE,
na.omit = FALSE, digits = 2, as.na = NULL, write = NULL, append = TRUE,
check = TRUE, output = TRUE)

Arguments

... a numeric vector, matrix or data frame with numeric variables, i.e., factors and
character variables are excluded from x before conducting the analysis. Alter-
natively, an expression indicating the variable names in data e.g., ci.mean(x1,
x2, data = dat). Note that the operators ., +, -, ~, :, ::, and ! can also be used
to select variables, see ’Details’ in the df.subset function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a numeric vector, matrix or data
frame for the argument

sigma a numeric vector indicating the population standard deviation when computing
confidence intervals for the arithmetic mean with known standard deviation Note
that either argument sigma or argument sigma2 is specified and it is only possi-
ble to specify one value for the argument sigma even though multiple variables
are specified in x.

sigma2 a numeric vector indicating the population variance when computing confidence
intervals for the arithmetic mean with known variance. Note that either argument
sigma or argument sigma2 is specified and it is only possible to specify one
value for the argument sigma2 even though multiple variables are specified in
x.

adjust logical: if TRUE (default), difference-adjustment for the confidence intervals for
the arithmetic means is applied.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

group either a character string indicating the variable name of the grouping variable in
... or data, or a vector representing the grouping variable. Note that a grouping
variable can only be used when computing confidence intervals with unknown
population standard deviation and population variance.

split either a character string indicating the variable name of the split variable in ...
or data, or a vector representing the split variable. Note that a grouping variable
can only be used when computing confidence intervals with unknown population
standard deviation and population variance.

sort.var logical: if TRUE, output table is sorted by variables when specifying group.

36 ci.mean

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion) when specifying more than one outcome variable.

digits an integer value indicating the number of decimal places to be used.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x, but not to group or split.

check logical: if TRUE (default), argument specification is checked.

write a character string naming a text file with file extension ".txt" (e.g., "Output.txt")
for writing the output into a text file.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

output logical: if TRUE (default), output is shown on the console.

Details

A difference-adjusted confidence interval (Baguley, 2012) for the arithmetic mean can be computed
by specifying adjust = TRUE.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data list with the input specified in ..., data, group, and split

args specification of function arguments

result result table

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Baguley, T. S. (2012). Serious stats: A guide to advanced statistics for the behavioral sciences.
Palgrave Macmillan.

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

See Also

test.z, test.t, ci.mean.diff, ci.prop, ci.var, ci.sd, descript

ci.mean 37

Examples

Example 1a: Two-Sided 95% Confidence Interval for the Arithmetic Mean for 'mpg'
ci.mean(mtcars$mpg)

Example 1b: Alternative specification using the 'data' argument
ci.mean(mpg, data = mtcars)

Example 2: Two-Sided 95% Confidence Interval for the Median
ci.median(mtcars$mpg)

Example 3: Two-Sided 95% Difference-Adjusted Confidence Interval
ci.mean(mtcars$mpg, adjust = TRUE)

Example 4: Two-Sided 95% Confidence Interval with known standard deviation
ci.mean(mtcars$mpg, sigma = 1.2)

Example 5: Two-Sided 95% Confidence Interval with known variance
ci.mean(mtcars$mpg, sigma2 = 2.5)

Example 6: One-Sided 95% Confidence Interval
ci.mean(mtcars$mpg, alternative = "less")

Example 7: Two-Sided 99% Confidence Interval
ci.mean(mtcars$mpg, conf.level = 0.99)

Example 8: Two-Sided 95% Confidence Interval, print results with 3 digits
ci.mean(mtcars$mpg, digits = 3)

Example 9a: Two-Sided 95% Confidence Interval for 'mpg', 'cyl', and 'disp',
listwise deletion for missing data
ci.mean(mtcars[, c("mpg", "cyl", "disp")], na.omit = TRUE)
#
Example 9b: Alternative specification using the 'data' argument
ci.mean(mpg:disp, data = mtcars, na.omit = TRUE)

Example 10a: Two-Sided 95% Confidence Interval, analysis by 'vs' separately
ci.mean(mtcars[, c("mpg", "cyl", "disp")], group = mtcars$vs)

Example 10b: Alternative specification using the 'data' argument
ci.mean(mpg:disp, data = mtcars, group = "vs")

Example 11: Two-Sided 95% Confidence Interval, analysis by 'vs' separately,
sort by variables
ci.mean(mtcars[, c("mpg", "cyl", "disp")], group = mtcars$vs, sort.var = TRUE)

Example 12: Two-Sided 95% Confidence Interval, split analysis by 'am'
ci.mean(mtcars[, c("mpg", "cyl", "disp")], split = mtcars$am)

Example 13a: Two-Sided 95% Confidence Interval for 'mpg', 'cyl', and 'disp'
analysis by 'vs' separately, split analysis by 'am'
ci.mean(mtcars[, c("mpg", "cyl", "disp")], group = mtcars$vs, split = mtcars$am)

38 ci.mean.diff

Example 13b: Alternative specification using the 'data' argument
ci.mean(mpg:disp, data = mtcars, group = "vs", split = "am")

Not run:
Example 14: Write results into a text file
ci.mean(mpg:disp, data = mtcars, group = "vs", split = "am", write = "Means.txt")

End(Not run)

ci.mean.diff Confidence Interval for the Difference in Arithmetic Means

Description

This function computes a confidence interval for the difference in arithmetic means in a one-sample,
two-sample and paired-sample design with known or unknown population standard deviation or
population variance for one or more variables, optionally by a grouping and/or split variable.

Usage

ci.mean.diff(x, ...)

Default S3 method:
ci.mean.diff(x, y, mu = 0, sigma = NULL, sigma2 = NULL,

var.equal = FALSE, paired = FALSE,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, group = NULL, split = NULL, sort.var = FALSE,
digits = 2, as.na = NULL, write = NULL, append = TRUE,
check = TRUE, output = TRUE, ...)

S3 method for class 'formula'
ci.mean.diff(formula, data, sigma = NULL, sigma2 = NULL,

var.equal = FALSE, alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, group = NULL, split = NULL, sort.var = FALSE,

na.omit = FALSE, digits = 2, as.na = NULL, write = NULL, append = TRUE,
check = TRUE, output = TRUE, ...)

Arguments

x a numeric vector of data values.

... further arguments to be passed to or from methods.

y a numeric vector of data values.

mu a numeric value indicating the population mean under the null hypothesis. Note
that the argument mu is only used when y = NULL.

ci.mean.diff 39

sigma a numeric vector indicating the population standard deviation(s) when comput-
ing confidence intervals for the difference in arithmetic means with known stan-
dard deviation(s). In case of independent samples, equal standard deviations are
assumed when specifying one value for the argument sigma; when specifying
two values for the argument sigma, unequal standard deviations are assumed.
Note that either argument sigma or argument sigma2 is specified and it is only
possible to specify one value (i.e., equal variance assumption) or two values
(i.e., unequal variance assumption) for the argument sigma even though multi-
ple variables are specified in x.

sigma2 a numeric vector indicating the population variance(s) when computing confi-
dence intervals for the difference in arithmetic means with known variance(s).
In case of independent samples, equal variances are assumed when specifying
one value for the argument sigma2; when specifying two values for the argu-
ment sigma, unequal variances are assumed. Note that either argument sigma
or argument sigma2 is specified and it is only possible to specify one value (i.e.,
equal variance assumption) or two values (i.e., unequal variance assumption) for
the argument sigma even though multiple variables are specified in x.

var.equal logical: if TRUE, the population variance in the independent samples are assumed
to be equal.

paired logical: if TRUE, confidence interval for the difference of arithmetic means in
paired samples is computed.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

group a numeric vector, character vector or factor as grouping variable. Note that a
grouping variable can only be used when computing confidence intervals with
unknown population standard deviation and population variance.

split a numeric vector, character vector or factor as split variable. Note that a split
variable can only be used when computing confidence intervals with unknown
population

sort.var logical: if TRUE, output table is sorted by variables when specifying group.

digits an integer value indicating the number of decimal places to be used.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x, but not to group or split.

write a character string naming a text file with file extension ".txt" (e.g., "Output.txt")
for writing the output into a text file.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console.

formula a formula of the form y ~ group for one outcome variable or cbind(y1, y2,
y3) ~ group for more than one outcome variable where y is a numeric variable
giving the data values and group a numeric variable, character variable or factor
with two values or factor levels giving the corresponding groups.

40 ci.mean.diff

data a matrix or data frame containing the variables in the formula formula.

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion) when specifying more than one outcome variable.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data list with the input specified in x, group, and split

args specification of function arguments

result result table

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

See Also

test.z, test.t, ci.mean, ci.median, ci.prop, ci.var, ci.sd, descript

Examples

dat1 <- data.frame(group1 = c(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2),

group2 = c(1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2,
1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2),

group3 = c(1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2,
1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2),

x1 = c(3, 1, 4, 2, 5, 3, 2, 3, 6, 4, 3, NA, 5, 3,
3, 2, 6, 3, 1, 4, 3, 5, 6, 7, 4, 3, 6, 4),

x2 = c(4, NA, 3, 6, 3, 7, 2, 7, 3, 3, 3, 1, 3, 6,
3, 5, 2, 6, 8, 3, 4, 5, 2, 1, 3, 1, 2, NA),

x3 = c(7, 8, 5, 6, 4, 2, 8, 3, 6, 1, 2, 5, 8, 6,
2, 5, 3, 1, 6, 4, 5, 5, 3, 6, 3, 2, 2, 4))

#---
One-sample design

Example 1: Two-Sided 95% CI for x1
population mean = 3
ci.mean.diff(dat1$x1, mu = 3)

#---

ci.mean.diff 41

Two-sample design

Example 2: Two-Sided 95% CI for y1 by group1
unknown population variances, unequal variance assumption
ci.mean.diff(x1 ~ group1, data = dat1)

Example 3: Two-Sided 95% CI for y1 by group1
unknown population variances, equal variance assumption
ci.mean.diff(x1 ~ group1, data = dat1, var.equal = TRUE)

Example 4: Two-Sided 95% CI with known standard deviations for x1 by group1
known population standard deviations, equal standard deviation assumption
ci.mean.diff(x1 ~ group1, data = dat1, sigma = 1.2)

Example 5: Two-Sided 95% CI with known standard deviations for x1 by group1
known population standard deviations, unequal standard deviation assumption
ci.mean.diff(x1 ~ group1, data = dat1, sigma = c(1.5, 1.2))

Example 6: Two-Sided 95% CI with known variance for x1 by group1
known population variances, equal variance assumption
ci.mean.diff(x1 ~ group1, data = dat1, sigma2 = 1.44)

Example 7: Two-Sided 95% CI with known variance for x1 by group1
known population variances, unequal variance assumption
ci.mean.diff(x1 ~ group1, data = dat1, sigma2 = c(2.25, 1.44))

Example 8: One-Sided 95% CI for y1 by group1
unknown population variances, unequal variance assumption
ci.mean.diff(x1 ~ group1, data = dat1, alternative = "less")

Example 9: Two-Sided 99% CI for y1 by group1
unknown population variances, unequal variance assumption
ci.mean.diff(x1 ~ group1, data = dat1, conf.level = 0.99)

Example 10: Two-Sided 95% CI for y1 by group1
unknown population variances, unequal variance assumption
print results with 3 digits
ci.mean.diff(x1 ~ group1, data = dat1, digits = 3)

Example 11: Two-Sided 95% CI for y1 by group1
unknown population variances, unequal variance assumption
convert value 4 to NA
ci.mean.diff(x1 ~ group1, data = dat1, as.na = 4)

Example 12: Two-Sided 95% CI for y1, y2, and y3 by group1
unknown population variances, unequal variance assumption
ci.mean.diff(cbind(x1, x2, x3) ~ group1, data = dat1)

Example 13: Two-Sided 95% CI for y1, y2, and y3 by group1
unknown population variances, unequal variance assumption,
listwise deletion for missing data
ci.mean.diff(cbind(x1, x2, x3) ~ group1, data = dat1, na.omit = TRUE)

42 ci.mean.diff

Example 14: Two-Sided 95% CI for y1, y2, and y3 by group1
unknown population variances, unequal variance assumption,
analysis by group2 separately
ci.mean.diff(cbind(x1, x2, x3) ~ group1, data = dat1, group = dat1$group2)

Example 15: Two-Sided 95% CI for y1, y2, and y3 by group1
unknown population variances, unequal variance assumption,
analysis by group2 separately, sort by variables
ci.mean.diff(cbind(x1, x2, x3) ~ group1, data = dat1, group = dat1$group2,

sort.var = TRUE)# Check if input 'y' is NULL

Example 16: Two-Sided 95% CI for y1, y2, and y3 by group1
unknown population variances, unequal variance assumption,
split analysis by group2
ci.mean.diff(cbind(x1, x2, x3) ~ group1, data = dat1, split = dat1$group2)

Example 17: Two-Sided 95% CI for y1, y2, and y3 by group1
unknown population variances, unequal variance assumption,
analysis by group2 separately, split analysis by group3
ci.mean.diff(cbind(x1, x2, x3) ~ group1, data = dat1,

group = dat1$group2, split = dat1$group3)

#-----------------

group1 <- c(3, 1, 4, 2, 5, 3, 6, 7)
group2 <- c(5, 2, 4, 3, 1)

Example 18: Two-Sided 95% CI for the mean difference between group1 and group2
unknown population variances, unequal variance assumption
ci.mean.diff(group1, group2)

Example 19: Two-Sided 95% CI for the mean difference between group1 and group2
unknown population variances, equal variance assumption
ci.mean.diff(group1, group2, var.equal = TRUE)

#---
Paired-sample design

dat2 <- data.frame(pre = c(1, 3, 2, 5, 7, 6),
post = c(2, 2, 1, 6, 8, 9),
group = c(1, 1, 1, 2, 2, 2), stringsAsFactors = FALSE)

Example 20: Two-Sided 95% CI for the mean difference in pre and post
unknown poulation variance of difference scores
ci.mean.diff(dat2$pre, dat2$post, paired = TRUE)

Example 21: Two-Sided 95% CI for the mean difference in pre and post
unknown poulation variance of difference scores
analysis by group separately
ci.mean.diff(dat2$pre, dat2$post, paired = TRUE, group = dat2$group)

Example 22: Two-Sided 95% CI for the mean difference in pre and post
unknown poulation variance of difference scores

ci.mean.w 43

analysis by group separately
ci.mean.diff(dat2$pre, dat2$post, paired = TRUE, split = dat2$group)

Example 23: Two-Sided 95% CI for the mean difference in pre and post
known population standard deviation of difference scores
ci.mean.diff(dat2$pre, dat2$post, sigma = 2, paired = TRUE)

Example 24: Two-Sided 95% CI for the mean difference in pre and post
known population variance of difference scores
ci.mean.diff(dat2$pre, dat2$post, sigma2 = 4, paired = TRUE)

Example 25: One-Sided 95% CI for the mean difference in pre and post
unknown poulation variance of difference scores
ci.mean.diff(dat2$pre, dat2$post, alternative = "less", paired = TRUE)

Example 26: Two-Sided 99% CI for the mean difference in pre and post
unknown poulation variance of difference scores
ci.mean.diff(dat2$pre, dat2$post, conf.level = 0.99, paired = TRUE)

Example 27: Two-Sided 95% CI for for the mean difference in pre and post
unknown poulation variance of difference scores
print results with 3 digits
ci.mean.diff(dat2$pre, dat2$post, paired = TRUE, digits = 3)

Example 28: Two-Sided 95% CI for for the mean difference in pre and post
unknown poulation variance of difference scores
convert value 1 to NA
ci.mean.diff(dat2$pre, dat2$post, as.na = 1, paired = TRUE)

ci.mean.w Within-Subject Confidence Interval for the Arithmetic Mean

Description

This function computes difference-adjusted Cousineau-Morey within-subject confidence interval
for the arithmetic mean.

Usage

ci.mean.w(..., data = NULL, adjust = TRUE,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, na.omit = TRUE, digits = 2,
as.na = NULL, write = NULL, append = TRUE, check = TRUE,
output = TRUE)

Arguments

... a matrix or data frame with numeric variables representing the levels of the
within-subject factor, i.e., data are specified in wide-format (i.e., multivariate

44 ci.mean.w

person level format). Alternatively, an expression indicating the variable names
in data e.g., ci.mean.w(x1, x2, x3, data = dat). Note that the operators .,
+, -, ~, :, ::, and ! can also be used to select variables, see ’Details’ in the
df.subset function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a matrix or data frame for the argu-
ment

adjust logical: if TRUE (default), difference-adjustment for the Cousineau-Morey within-
subject confidence intervals is applied.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

na.omit logical: if TRUE (default), incomplete cases are removed before conducting the
analysis (i.e., listwise deletion).

digits an integer value indicating the number of decimal places to be used.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

write a character string naming a text file with file extension ".txt" (e.g., "Output.txt")
for writing the output into a text file.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console.

Details

The Cousineau within-subject confidence interval (CI, Cousineau, 2005) is an alternative to the
Loftus-Masson within-subject CI (Loftus & Masson, 1994) that does not assume sphericity or ho-
mogeneity of covariances. This approach removes individual differences by normalizing the raw
scores using participant-mean centering and adding the grand mean back to every score:

Y
′

ij = Yij − µ̂i + µ̂grand

where Y
′

ij is the score of the ith participant in condition j (for i = 1 to n), µ̂i is the mean of
participant i across all J levels (for j = 1 to J), and µ̂grand is the grand mean.

Morey (2008) pointed out that Cousineau’s (2005) approach produces intervals that are consistently
too narrow due to inducing a positive covariance between normalized scores within a condition
introducing bias into the estimate of the sample variances. The degree of bias is proportional to the
number of means and can be removed by rescaling the confidence interval by a factor of

√
J − 1/J :

µ̂j ± tn−1,1−α/2

√
J

J − 1
σ̂

′

µ̂j

where σ̂
′

µj
is the standard error of the mean computed from the normalized scores of he jth factor

level.

ci.mean.w 45

Baguley (2012) pointed out that the Cousineau-Morey interval is larger than that for a difference
in means by a factor of

√
2 leading to a misinterpretation of these intervals that overlap of 95%

confidence intervals around individual means is indicates that a 95% confidence interval for the
difference in means would include zero. Hence, following adjustment to the Cousineau-Morey
interval was proposed:

µ̂j ±
√
2

2
(tn−1,1−α/2

√
J

J − 1
σ̂

′

µ̂j
)

The adjusted Cousineau-Morey interval is informative about the pattern of differences between
means and is computed by default (i.e., adjust = TRUE).

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data data frame used for the current analysis

args specification of function arguments

result result table

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Baguley, T. (2012). Calculating and graphing within-subject confidence intervals for ANOVA.
Behavior Research Methods, 44, 158-175. https://doi.org/10.3758/s13428-011-0123-7

Cousineau, D. (2005) Confidence intervals in within-subject designs: A simpler solution to Loftus
and Masson’s Method. Tutorials in Quantitative Methods for Psychology, 1, 42–45. https://doi.org/10.20982/tqmp.01.1.p042

Loftus, G. R., and Masson, M. E. J. (1994). Using confidence intervals in within-subject designs.
Psychonomic Bulletin and Review, 1, 476–90. https://doi.org/10.3758/BF03210951

Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau. Tuto-
rials in Quantitative Methods for Psychology, 4, 61–4. https://doi.org/10.20982/tqmp.01.1.p042

See Also

aov.w, test.z, test.t, ci.mean.diff,’ ci.median, ci.prop, ci.var, ci.sd, descript

Examples

dat <- data.frame(time1 = c(3, 2, 1, 4, 5, 2, 3, 5, 6, 7),
time2 = c(4, 3, 6, 5, 8, 6, 7, 3, 4, 5),
time3 = c(1, 2, 2, 3, 6, 5, 1, 2, 4, 6))

Example 1: Difference-adjusted Cousineau-Morey confidence intervals

46 ci.prop

ci.mean.w(dat)

Example 1: Alternative specification using the 'data' argument
ci.mean.w(., data = dat)

Example 2: Cousineau-Morey confidence intervals
ci.mean.w(dat, adjust = FALSE)

Not run:
Example 3: Write results into a text file
ci.mean.w(dat, write = "WS_Confidence_Interval.txt")

End(Not run)

ci.prop Confidence Interval for Proportions

Description

This function computes a confidence interval for proportions for one or more variables, optionally
by a grouping and/or split variable.

Usage

ci.prop(..., data = NULL, method = c("wald", "wilson"),
alternative = c("two.sided", "less", "greater"), conf.level = 0.95,
group = NULL, split = NULL, sort.var = FALSE, na.omit = FALSE,
digits = 3, as.na = NULL, write = NULL, append = TRUE, check = TRUE,
output = TRUE)

Arguments

... a numeric vector, matrix or data frame with numeric variables with 0 and 1 val-
ues, i.e., factors and character variables are excluded from x before conducting
the analysis. Alternatively, an expression indicating the variable names in data
e.g., ci.prop(x1, x2, x3, data = dat). Note that the operators ., +, -, ~, :,
::, and ! can also be used to select variables, see ’Details’ in the df.subset
function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a numeric vector, matrix or data
frame for the argument

method a character string specifying the method for computing the confidence interval,
must be one of "wald", or "wilson" (default).

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

ci.prop 47

group either a character string indicating the variable name of the grouping variable in
... or data, or a vector representing the grouping variable.

split either a character string indicating the variable name of the split variable in ...
or data, or a vector representing the split variable.

sort.var logical: if TRUE, output table is sorted by variables when specifying group.

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion) when specifying more than one outcome variable.

digits an integer value indicating the number of decimal places to be used.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x, but not to group or split.

write a character string naming a text file with file extension ".txt" (e.g., "Output.txt")
for writing the output into a text file.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console.

Details

The Wald confidence interval which is based on the normal approximation to the binomial distri-
bution are computed by specifying method = "wald", while the Wilson (1927) confidence interval
(aka Wilson score interval) is requested by specifying method = "wilson". By default, Wilson con-
fidence interval is computed which have been shown to be reliable in small samples of n = 40 or
less, and larger samples of n > 40 (Brown, Cai & DasGupta, 2001), while the Wald confidence
intervals is inadequate in small samples and when p is near 0 or 1 (Agresti & Coull, 1998).

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data list with the input specified in ..., data, group, and split

args specification of function arguments

result result table

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

48 ci.prop

References

Agresti, A. & Coull, B.A. (1998). Approximate is better than "exact" for interval estimation of
binomial proportions. American Statistician, 52, 119-126.

Brown, L. D., Cai, T. T., & DasGupta, A., (2001). Interval estimation for a binomial proportion.
Statistical Science, 16, 101-133.

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

Wilson, E. B. (1927). Probable inference, the law of succession, and statistical inference. Journal
of the American Statistical Association, 22, 209-212.

See Also

ci.mean, ci.mean.diff, ci.median, ci.prop.diff, ci.var, ci.sd, descript

Examples

Example 1a: Two-Sided 95% CI for 'vs'
ci.prop(mtcars$vs)
#
Example 1b: Alternative specification using the 'data' argument
ci.prop(vs, data = mtcars)

Example 2: Two-Sided 95% CI using Wald method
ci.prop(mtcars$vs, method = "wald")

Example 3: One-Sided 95% CI
ci.prop(mtcars$vs, alternative = "less")

Example 4: Two-Sided 99% CI
ci.prop(mtcars$vs, conf.level = 0.99)

Example 5: Two-Sided 95% CI, print results with 4 digits
ci.prop(mtcars$vs, digits = 4)

Example 6a: Two-Sided 95% CI for 'vs' and 'am',
listwise deletion for missing data
ci.prop(mtcars[, c("vs", "am")], na.omit = TRUE)

Example 6b: Alternative specification using the 'data' argument
listwise deletion for missing data
ci.prop(vs, am, data = mtcars, na.omit = TRUE)

Example 7a: Two-Sided 95% CI, analysis by 'gear' separately
ci.prop(mtcars[, c("vs", "am")], group = mtcars$gear)

Example 7b: Alternative specification using the 'data' argument
ci.prop(vs, am, data = mtcars, group = "gear")

Example 8: Two-Sided 95% CI, analysis by 'gear' separately, sort by variables
ci.prop(mtcars[, c("vs", "am")], group = mtcars$gear, sort.var = TRUE)

ci.prop.diff 49

Example 9: Two-Sided 95% CI, split analysis by 'cyl'
ci.prop(mtcars[, c("vs", "am")], split = mtcars$cyl)

Example 10a: Two-Sided 95% CI, analysis by 'gear' separately, split by 'cyl'
ci.prop(mtcars[, c("vs", "am")], group = mtcars$gear, split = mtcars$cyl)

Example 10b: Alternative specification using the 'data' argument
ci.prop(vs, am, data = mtcars, group = "gear", split = "cyl")

Not run:
Example 11: Write results into a text file
ci.prop(vs, am, data = mtcars, group = "gear", split = "cyl", write = "Prop.txt")

End(Not run)

ci.prop.diff Confidence Interval for the Difference in Proportions

Description

This function computes a confidence interval for the difference in proportions in a two-sample and
paired-sample design for one or more variables, optionally by a grouping and/or split variable.

Usage

ci.prop.diff(x, ...)

Default S3 method:
ci.prop.diff(x, y, method = c("wald", "newcombe"), paired = FALSE,

alternative = c("two.sided", "less", "greater"), conf.level = 0.95,
group = NULL, split = NULL, sort.var = FALSE, digits = 2,
as.na = NULL, write = NULL, append = TRUE,
check = TRUE, output = TRUE, ...)

S3 method for class 'formula'
ci.prop.diff(formula, data, method = c("wald", "newcombe"),

alternative = c("two.sided", "less", "greater"), conf.level = 0.95,
group = NULL, split = NULL, sort.var = FALSE, na.omit = FALSE,
digits = 2, as.na = NULL, write = NULL, append = TRUE,
check = TRUE, output = TRUE, ...)

Arguments

x a numeric vector with 0 and 1 values.

... further arguments to be passed to or from methods.

y a numeric vector with 0 and 1 values.

50 ci.prop.diff

method a character string specifying the method for computing the confidence interval,
must be one of "wald", or "newcombe" (default).

paired logical: if TRUE, confidence interval for the difference of proportions in paired
samples is computed.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

group a numeric vector, character vector or factor as grouping variable. Note that a
grouping variable can only be used when computing confidence intervals with
unknown population standard deviation and population variance.

split a numeric vector, character vector or factor as split variable. Note that a split
variable can only be used when computing confidence intervals with unknown
population standard deviation and population variance.

sort.var logical: if TRUE, output table is sorted by variables when specifying group.

digits an integer value indicating the number of decimal places to be used.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x, but not to group or split.

write a character string naming a text file with file extension ".txt" (e.g., "Output.txt")
for writing the output into a text file.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console.

formula a formula of the form y ~ group for one outcome variable or cbind(y1, y2,
y3) ~ group for more than one outcome variable where y is a numeric variable
with 0 and 1 values and group a numeric variable, character variable or factor
with two values or factor levels giving the corresponding group.

data a matrix or data frame containing the variables in the formula formula.

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion) when specifying more than one outcome variable.

Details

The Wald confidence interval which is based on the normal approximation to the binomial distri-
bution are computed by specifying method = "wald", while the Newcombe Hybrid Score interval
(Newcombe, 1998a; Newcombe, 1998b) is requested by specifying method = "newcombe". By de-
fault, Newcombe Hybrid Score interval is computed which have been shown to be reliable in small
samples (less than n = 30 in each sample) as well as moderate to larger samples(n > 30 in each
sample) and with proportions close to 0 or 1, while the Wald confidence intervals does not perform
well unless the sample size is large (Fagerland, Lydersen & Laake, 2011).

ci.prop.diff 51

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data list with the input specified in x, group, and split

args specification of function arguments

result result table

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Fagerland, M. W., Lydersen S., & Laake, P. (2011) Recommended confidence intervals for two
independent binomial proportions. Statistical Methods in Medical Research, 24, 224-254.

Newcombe, R. G. (1998a). Interval estimation for the difference between independent proportions:
Comparison of eleven methods. Statistics in Medicine, 17, 873-890.

Newcombe, R. G. (1998b). Improved confidence intervals for the difference between binomial
proportions based on paired data. Statistics in Medicine, 17, 2635-2650.

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

See Also

ci.prop, ci.mean, ci.mean.diff, ci.median, ci.var, ci.sd, descript

Examples

dat1 <- data.frame(group1 = c(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2),

group2 = c(1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2,
1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2),

group3 = c(1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2,
1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2),

x1 = c(0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, NA, 0, 0,
1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0),

x2 = c(0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1,
1, 0, 1, 0, 1, 1, 1, NA, 1, 0, 0, 1, 1, 1),

x3 = c(1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0,
1, 0, 1, 1, 0, 1, 1, 1, 0, 1, NA, 1, 0, 1))

#---
Two-sample design

Example 1: Two-Sided 95% CI for x1 by group1
Newcombes Hybrid Score interval

52 ci.prop.diff

ci.prop.diff(x1 ~ group1, data = dat1)

Example 2: Two-Sided 95% CI for x1 by group1
Wald CI
ci.prop.diff(x1 ~ group1, data = dat1, method = "wald")

Example 3: One-Sided 95% CI for x1 by group1
Newcombes Hybrid Score interval
ci.prop.diff(x1 ~ group1, data = dat1, alternative = "less")

Example 4: Two-Sided 99% CI for x1 by group1
Newcombes Hybrid Score interval
ci.prop.diff(x1 ~ group1, data = dat1, conf.level = 0.99)

Example 5: Two-Sided 95% CI for y1 by group1
Newcombes Hybrid Score interval, print results with 3 digits
ci.prop.diff(x1 ~ group1, data = dat1, digits = 3)

Example 6: Two-Sided 95% CI for y1 by group1
Newcombes Hybrid Score interval, convert value 0 to NA
ci.prop.diff(x1 ~ group1, data = dat1, as.na = 0)

Example 7: Two-Sided 95% CI for y1, y2, and y3 by group1
Newcombes Hybrid Score interval
ci.prop.diff(cbind(x1, x2, x3) ~ group1, data = dat1)

Example 8: Two-Sided 95% CI for y1, y2, and y3 by group1
Newcombes Hybrid Score interval, listwise deletion for missing data
ci.prop.diff(cbind(x1, x2, x3) ~ group1, data = dat1, na.omit = TRUE)

Example 9: Two-Sided 95% CI for y1, y2, and y3 by group1
Newcombes Hybrid Score interval, analysis by group2 separately
ci.prop.diff(cbind(x1, x2, x3) ~ group1, data = dat1, group = dat1$group2)

Example 10: Two-Sided 95% CI for y1, y2, and y3 by group1
Newcombes Hybrid Score interval, analysis by group2 separately, sort by variables
ci.prop.diff(cbind(x1, x2, x3) ~ group1, data = dat1, group = dat1$group2,

sort.var = TRUE)

Example 11: Two-Sided 95% CI for y1, y2, and y3 by group1
split analysis by group2
ci.prop.diff(cbind(x1, x2, x3) ~ group1, data = dat1, split = dat1$group2)

Example 12: Two-Sided 95% CI for y1, y2, and y3 by group1
Newcombes Hybrid Score interval, analysis by group2 separately, split analysis by group3
ci.prop.diff(cbind(x1, x2, x3) ~ group1, data = dat1,

group = dat1$group2, split = dat1$group3)

#-----------------

group1 <- c(0, 1, 1, 0, 0, 1, 0, 1)
group2 <- c(1, 1, 1, 0, 0)

ci.var 53

Example 13: Two-Sided 95% CI for the mean difference between group1 amd group2
Newcombes Hybrid Score interval
ci.prop.diff(group1, group2)

#---
Paires-sample design

dat2 <- data.frame(pre = c(0, 1, 1, 0, 1),
post = c(1, 1, 0, 1, 1))

Example 14: Two-Sided 95% CI for the mean difference in x1 and x2
Newcombes Hybrid Score interval
ci.prop.diff(dat2$pre, dat2$post, paired = TRUE)

Example 15: Two-Sided 95% CI for the mean difference in x1 and x2
Wald CI
ci.prop.diff(dat2$pre, dat2$post, method = "wald", paired = TRUE)

Example 16: One-Sided 95% CI for the mean difference in x1 and x2
Newcombes Hybrid Score interval
ci.prop.diff(dat2$pre, dat2$post, alternative = "less", paired = TRUE)

Example 17: Two-Sided 99% CI for the mean difference in x1 and x2
Newcombes Hybrid Score interval
ci.prop.diff(dat2$pre, dat2$post, conf.level = 0.99, paired = TRUE)

Example 18: Two-Sided 95% CI for for the mean difference in x1 and x2
Newcombes Hybrid Score interval, print results with 3 digits
ci.prop.diff(dat2$pre, dat2$post, paired = TRUE, digits = 3)

ci.var Confidence Interval for the Variance and Standard Deviation

Description

The function ci.var computes the confidence interval for the variance, and the function ci.sd
computes the confidence interval for the standard deviation for one or more variables, optionally by
a grouping and/or split variable.

Usage

ci.var(..., data = NULL, method = c("chisq", "bonett"),
alternative = c("two.sided", "less", "greater"), conf.level = 0.95,
group = NULL, split = NULL, sort.var = FALSE, na.omit = FALSE,
digits = 2, as.na = NULL, write = NULL, append = TRUE,
check = TRUE, output = TRUE)

ci.sd(..., data = NULL, method = c("chisq", "bonett"),
alternative = c("two.sided", "less", "greater"), conf.level = 0.95,

54 ci.var

group = NULL, split = NULL, sort.var = FALSE, na.omit = FALSE, digits = 2,
as.na = NULL, write = NULL, append = TRUE,
check = TRUE, output = TRUE)

Arguments

... a numeric vector, matrix or data frame with numeric variables, i.e., factors and
character variables are excluded from x before conducting the analysis. Alter-
natively, an expression indicating the variable names in data e.g., ci.var(x1,
x2, x3, data = dat). Note that the operators ., +, -, ~, :, ::, and ! can also be
used to select variables, see ’Details’ in the df.subset function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a numeric vector, matrix or data
frame for the argument

method a character string specifying the method for computing the confidence interval,
must be one of "chisq", or "bonett" (default).

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.
group either a character string indicating the variable name of the grouping variable in

... or data, or a vector representing the grouping variable.
split either a character string indicating the variable name of the split variable in ...

or data, or a vector representing the split variable.
sort.var logical: if TRUE, output table is sorted by variables when specifying group.
na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis

(i.e., listwise deletion) when specifying more than one outcome variable.
digits an integer value indicating the number of decimal places to be used.
as.na a numeric vector indicating user-defined missing values, i.e. these values are

converted to NA before conducting the analysis. Note that as.na() function is
only applied to x, but not to group or split.

write a character string naming a text file with file extension ".txt" (e.g., "Output.txt")
for writing the output into a text file.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.
output logical: if TRUE (default), output is shown on the console.

Details

The confidence interval based on the chi-square distribution is computed by specifying method =
"chisq", while the Bonett (2006) confidence interval is requested by specifying method = "bonett".
By default, the Bonett confidence interval interval is computed which performs well under moder-
ate departure from normality, while the confidence interval based on the chi-square distribution is
highly sensitive to minor violations of the normality assumption and its performance does not im-
prove with increasing sample size. Note that at least four valid observations are needed to compute
the Bonett confidence interval.

ci.var 55

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data list with the input specified in ..., data, group, and split

args specification of function arguments

result result table

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

Bonett, D. G. (2006). Approximate confidence interval for standard deviation of nonnormal distri-
butions. Computational Statistics and Data Analysis, 50, 775-782. https://doi.org/10.1016/j.csda.2004.10.003

See Also

ci.mean, ci.mean.diff, ci.median, ci.prop, ci.prop.diff, descript

Examples

Example 1a: Two-Sided 95% CI for the variance for 'mpg'
ci.var(mtcars$mpg)

Example 1b: Alternative specification using the 'data' argument
ci.var(mpg, data = mtcars)

Example 2a: Two-Sided 95% CI for the standard deviation for 'mpg'
ci.sd(mtcars$mpg)

Example 2b: Alternative specification using the 'data' argument
ci.sd(mpg, data = mtcars)

Example 3: Two-Sided 95% CI using chi square distribution
ci.var(mtcars$mpg, method = "chisq")

Example 4: One-Sided 95% CI
ci.var(mtcars$mpg, alternative = "less")

Example 5: Two-Sided 99% CI
ci.var(mtcars$mpg, conf.level = 0.99)

Example 6: Two-Sided 95% CI, print results with 3 digits
ci.var(mtcars$mpg, digits = 3)

56 cluster.scores

Example 7a: Two-Sided 95% CI for 'mpg', 'disp', and 'hp',
listwise deletion for missing data
ci.var(mtcars[, c("mpg", "disp", "hp")])

Example 7b: Alternative specification using the 'data' argument
ci.var(mpg:hp, data = mtcars)

Example 8a: Two-Sided 95% CI, analysis by 'vs' separately
ci.var(mtcars[, c("mpg", "disp", "hp")], group = mtcars$vs)

Example 8b: Alternative specification using the 'data' argument
ci.var(mpg:hp, data = mtcars, group = "vs")

Example 9: Two-Sided 95% CI for, analysis by 'vs' separately, sort by variables
ci.var(mtcars[, c("mpg", "disp", "hp")], group = mtcars$vs, sort.var = TRUE)

Example 10: Two-Sided 95% CI, split analysis by 'vs'
ci.var(mtcars[, c("mpg", "disp", "hp")], split = mtcars$vs)

Example 11a: Two-Sided 95% CI, analysis by 'vs' separately, split analysis by 'am'
ci.var(mtcars[, c("mpg", "disp", "hp")], group = mtcars$vs, split = mtcars$am)

Example 11b: Alternative specification using the 'data' argument
ci.var(mpg:hp, data = mtcars, group = "vs", split = "am")

Not run:
Example 12: Write results into a text file
ci.var(mpg:hp, data = mtcars, group = "vs", split = "am", write = "Variance.txt")

End(Not run)

cluster.scores Cluster Scores

Description

This function computes group means by default.

Usage

cluster.scores(..., data = NULL, cluster,
fun = c("mean", "sum", "median", "var", "sd", "min", "max"),
expand = TRUE, append = TRUE, name = ".a", as.na = NULL,
check = TRUE)

Arguments

... a numeric vector for computing cluster scores for a variable, matrix or data
frame for computing cluster scores for more than one variable. Alternatively, an
expression indicating the variable names in data e.g., ci.mean(x1, x2, data =

cluster.scores 57

dat). Note that the operators ., +, -, ~, :, ::, and ! can also be used to select
variables, see ’Details’ in the df.subset function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a numeric vector, matrix, or data
frame for the argument

cluster either a character string indicating the variable name of the cluster variable in
... or data, or a vector representing the nested grouping structure (i.e., group
or cluster variable).

fun character string indicating the function used to compute group scores, default:
"mean".

expand logical: if TRUE (default), vector of cluster scores is expanded to match the input
vector x.

append logical: if TRUE (default), cluster scores are appended to the data frame specified
in the argument data.

name a character string or character vector indicating the names of the computed vari-
ables. By default, variables are named with the ending ".a" resulting in e.g.
"x1.a" and "x2.a". Variable names can also be specified using a character vec-
tor matching the number of variables specified in x (e.g., name = c("cluster.x1",
"cluster.x2")).

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to the argument x, but not to cluster.

check logical: if TRUE (default), argument specification is checked.

Value

Returns a numeric vector or data frame containing cluster scores with the same length or same num-
ber of rows as x if expand = TRUE or with the length or number of rows as length(unique(cluster))
if expand = FALSE.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Hox, J., Moerbeek, M., & van de Schoot, R. (2018). Multilevel analysis: Techniques and applica-
tions (3rd. ed.). Routledge.

Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and ad-
vanced multilevel modeling (2nd ed.). Sage Publishers.

See Also

item.scores, multilevel.descript, multilevel.icc

58 coding

Examples

Load data set "Demo.twolevel" in the lavaan package
data("Demo.twolevel", package = "lavaan")

Example 1a: Compute cluster means for 'y1' and expand to match the input 'y1'
cluster.scores(Demo.twolevel$y1, cluster = Demo.twolevel$cluster)

Example 1b: Alternative specification using the 'data' argument
cluster.scores(y1, data = Demo.twolevel, cluster = "cluster")

Example 2: Compute standard deviation for each cluster
and expand to match the input x
cluster.scores(Demo.twolevel$y1, cluster = Demo.twolevel$cluster, fun = "sd")

Example 3: Compute cluster means without expanding the vector
cluster.scores(Demo.twolevel$y1, cluster = Demo.twolevel$cluster, expand = FALSE)

Example 4a: Compute cluster means for 'y1' and 'y2' and append to 'Demo.twolevel'
cbind(Demo.twolevel,

cluster.scores(Demo.twolevel[, c("y1", "y2")], cluster = Demo.twolevel$cluster))

Example 4b: Alternative specification using the 'data' argument
cluster.scores(y1, y2, data = Demo.twolevel, cluster = "cluster")

coding Coding Categorical Variables

Description

This function creates k − 1 variables for a categorical variable with k distinct levels. The coding
system available in this function are dummy coding, simple coding, unweighted effect coding,
weighted effect coding, repeated coding, forward Helmert coding, reverse Helmert coding, and
orthogonal polynomial coding.

Usage

coding(..., data = NULL,
type = c("dummy", "simple", "effect", "weffect", "repeat",

"fhelm", "rhelm", "poly"), base = NULL,
name = c("dum.", "sim.", "eff.", "weff.", "rep.", "fhelm.", "rhelm.", "poly."),

append = TRUE, as.na = NULL, check = TRUE)

Arguments

... a numeric vector with integer values, character vector or factor Alternatively, an
expression indicating the variable name in data. Note that the function can only
deal with one categorical variable.

coding 59

data a data frame when specifying a variable in the argument Note that the ar-
gument is NULL when specifying a numeric vector with integer values, character
vector or factor numeric vector for the argument

type a character string indicating the type of coding, i.e., dummy (default) for dummy
coding, simple for simple coding, effect for unweighted effect coding, weffect
for weighted effect coding, repeat for repeated coding, fhelm for forward
Helmert coding, rhelm for reverse Helmert coding, and poly for orthogonal
polynomial coding (see ’Details’).

base a numeric value or character string indicating the baseline group for dummy and
simple coding and the omitted group in effect coding. By default, the first group
or factor level is selected as baseline or omitted group.

name a character string or character vector indicating the names of the coded variables.
By default, variables are named "dum.", "sim.", "eff.", "weff.", "rep.",
"fhelm.", "rhelm.",or "poly." depending on the type of coding with the cat-
egory used in the comparison (e.g., "dum.2" and "dum.3"). Variable names can
be specified using a character string (e.g., name = "dummy_" leads to dummy_2
and dummy_3) or a character vector matching the number of coded variables
(e.g. name = c("x1_2", "x1_3")) which is the number of unique categories
minus one.

append logical: if TRUE (default), coded variables are appended to the data frame speci-
fied in the argument data.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE (default), argument specification is checked.

Details

Dummy Coding Dummy or treatment coding compares the mean of each level of the categorical
variable to the mean of a baseline group. By default, the first group or factor level is selected
as baseline group. The intercept in the regression model represents the mean of the baseline
group. For example, dummy coding based on a categorical variable with four groups A, B, C,
D makes following comparisons: B vs A, C vs A, and D vs A with A being the baseline group.

Simple Coding Simple coding compares each level of the categorical variable to the mean of a
baseline level. By default, the first group or factor level is selected as baseline group. The
intercept in the regression model represents the unweighted grand mean, i.e., mean of group
means. For example, simple coding based on a categorical variable with four groups A, B, C, D
makes following comparisons: B vs A, C vs A, and D vs A with A being the baseline group.

Unweighted Effect Coding Unweighted effect or sum coding compares the mean of a given level
to the unweighed grand mean, i.e., mean of group means. By default, the first group or factor
level is selected as omitted group. For example, effect coding based on a categorical variable
with four groups A, B, C, D makes following comparisons: B vs (A, B, C, D), C vs (A, B, C,
D), and D vs (A, B, C, D) with A being the omitted group.

Weighted Effect Coding Weighted effect or sum coding compares the mean of a given level to the
weighed grand mean, i.e., sample mean. By default, the first group or factor level is selected
as omitted group. For example, effect coding based on a categorical variable with four groups
A, B, C, D makes following comparisons: B vs (A, B, C, D), C vs (A, B, C, D), and D vs (A,
B, C, D) with A being the omitted group.

60 coding

Repeated Coding Repeated or difference coding compares the mean of each level of the categor-
ical variable to the mean of the previous adjacent level. For example, repeated coding based
on a categorical variable with four groups A, B, C, D makes following comparisons: B vs A, C
vs B, and D vs C.

Foward Helmert Coding Forward Helmert coding compares the mean of each level of the cate-
gorical variable to the unweighted mean of all subsequent level(s) of the categorical variable.
For example, forward Helmert coding based on a categorical variable with four groups A, B, C,
D makes following comparisons: (B, C, D) vs A, (C, D) vs B, and D vs C.

Reverse Helmert Coding Reverse Helmert coding compares the mean of each level of the cate-
gorical variable to the unweighted mean of all prior level(s) of the categorical variable. For
example, reverse Helmert coding based on a categorical variable with four groups A, B, C, D
makes following comparisons: B vs A, C vs (A, B), and D vs (A, B, C).

Orthogonal Polynomial Coding Orthogonal polynomial coding is a form of trend analysis based
on polynomials of order k − 1, where k is the number of levels of the categorical variable.
This coding scheme assumes an ordered-categorical variable with equally spaced levels. For
example, orthogonal polynomial coding based on a categorical variable with four groups A, B,
C, D investigates a linear, quadratic, and cubic trends in the categorical variable.

Value

Returns a data frame with k − 1 coded variables or a data frame with the same length or same
number of rows as ... containing the coded variables.

Note

This function uses the contr.treatment function from the stats package for dummy coding and
simple coding, a modified copy of the contr.sum function from the stats package for effect cod-
ing, a modified copy of the contr.wec function from the wec package for weighted effect coding,
a modified copy of the contr.sdif function from the MASS package for repeated coding, a mod-
ified copy of the code_helmert_forward function from the codingMatrices for forward Helmert
coding, a modified copy of the contr_code_helmert function from the faux package for reverse
Helmert coding, and the contr.poly function from the stats package for orthogonal polynomial
coding.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

See Also

rec, item.reverse

Examples

Example 1a: Dummy coding for 'gear', baseline group = 3
coding(gear, data = mtcars)

Example 1b: Alterantive specification without using the 'data' argument
coding(mtcars$gear)

cohens.d 61

Example 2: Dummy coding for 'gear', baseline group = 4
coding(gear, data = mtcars, base = 4)

Example 3: Effect coding for 'gear', omitted group = 3
coding(gear, data = mtcars, type = "effect")

Example 3: Effect coding for 'gear', omitted group = 4
coding(gear, data = mtcars, type = "effect", base = 4)

Example 4a: Dummy-coded variable names with prefix "gear3."
coding(gear, data = mtcars, name = "gear3.")

Example 4b: Dummy-coded variables named "gear_4vs3" and "gear_5vs3"
coding(gear, data = mtcars, name = c("gear_4vs3", "gear_5vs3"))

cohens.d Cohen’s d

Description

This function computes Cohen’s d for one-sample, two-sample (i.e., between-subject design), and
paired-sample designs (i.e., within-subject design) for one or more variables, optionally by a group-
ing and/or split variable. In a two-sample design, the function computes the standardized mean
difference by dividing the difference between means of the two groups of observations by the
weighted pooled standard deviation (i.e., Cohen’s ds according to Lakens, 2013) by default. In
a paired-sample design, the function computes the standardized mean difference by dividing the
mean of the difference scores by the standard deviation of the difference scores (i.e., Cohen’s dz ac-
cording to Lakens, 2013) by default. Note that by default Cohen’s d is computed without applying
the correction factor for removing the small sample bias (i.e., Hedges’ g).

Usage

cohens.d(x, ...)

Default S3 method:
cohens.d(x, y = NULL, mu = 0, paired = FALSE, weighted = TRUE, cor = TRUE,

ref = NULL, correct = FALSE, alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, group = NULL, split = NULL, sort.var = FALSE,
digits = 2, as.na = NULL, write = NULL, append = TRUE,
check = TRUE, output = TRUE, ...)

S3 method for class 'formula'
cohens.d(formula, data, weighted = TRUE, cor = TRUE, ref = NULL,

correct = FALSE, alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, group = NULL, split = NULL, sort.var = FALSE,
na.omit = FALSE, digits = 2, as.na = NULL, write = NULL, append = TRUE,
check = TRUE, output = TRUE, ...)

62 cohens.d

Arguments

x a numeric vector or data frame.

... further arguments to be passed to or from methods.

y a numeric vector.

mu a numeric value indicating the reference mean.

paired logical: if TRUE, Cohen’s d for a paired-sample design is computed.

weighted logical: if TRUE (default), the weighted pooled standard deviation is used to
compute the standardized mean difference between two groups of a two-sample
design (i.e., paired = FALSE), while standard deviation of the difference scores
is used to compute the standardized mean difference in a paired-sample design
(i.e., paired = TRUE).

cor logical: if TRUE (default), paired = TRUE, and weighted = FALSE, Cohen’s d for
a paired-sample design while controlling for the correlation between the two sets
of measurement is computed. Note that this argument is only used in a paired-
sample design (i.e., paired = TRUE) when specifying weighted = FALSE.

ref character string "x" or "y" for specifying the reference reference group when
using the default cohens.d() function or a numeric value or character string
indicating the reference group in a two-sample design when using the formula
cohens.d() function. The standard deviation of the reference variable or refer-
ence group is used to standardized the mean difference. Note that this argument
is only used in a two-sample design (i.e., paired = FALSE).

correct logical: if TRUE, correction factor to remove positive bias in small samples is
used.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

group a numeric vector, character vector or factor as grouping variable.

split a numeric vector, character vector or factor as split variable.

sort.var logical: if TRUE, output table is sorted by variables when specifying group.

digits an integer value indicating the number of decimal places to be used for display-
ing results.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function
is only applied to y but not to group in a two-sample design, while as.na()
function is applied to pre and post in a paired-sample design.

write a character string naming a text file with file extension ".txt" (e.g., "Output.txt")
for writing the output into a text file.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console.

cohens.d 63

formula a formula of the form y ~ group for one outcome variable or cbind(y1, y2,
y3) ~ group for more than one outcome variable where y is a numeric variable
giving the data values and group a numeric variable, character variable or factor
with two values or factor levels giving the corresponding groups.

data a matrix or data frame containing the variables in the formula formula.

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion) when specifying more than one outcome variable.

Details

Cohen (1988, p.67) proposed to compute the standardized mean difference in a two-sample design
by dividing the mean difference by the unweighted pooled standard deviation (i.e., weighted =
FALSE).

Glass et al. (1981, p. 29) suggested to use the standard deviation of the control group (e.g., ref
= 0 if the control group is coded with 0) to compute the standardized mean difference in a two-
sample design (i.e., Glass’s ∆) since the standard deviation of the control group is unaffected by
the treatment and will therefore more closely reflect the population standard deviation.

Hedges (1981, p. 110) recommended to weight each group’s standard deviation by its sample size
resulting in a weighted and pooled standard deviation (i.e., weighted = TRUE, default). According
to Hedges and Olkin (1985, p. 81), the standardized mean difference based on the weighted and
pooled standard deviation has a positive small sample bias, i.e., standardized mean difference is
overestimated in small samples (i.e., sample size less than 20 or less than 10 in each group). How-
ever, a correction factor can be applied to remove the small sample bias (i.e., correct = TRUE). Note
that the function uses a gamma function for computing the correction factor, while a approximation
method is used if computation based on the gamma function fails.

Note that the terminology is inconsistent because the standardized mean difference based on the
weighted and pooled standard deviation is usually called Cohen’s d, but sometimes called Hedges’
g. Oftentimes, Cohen’s d is called Hedges’ d as soon as the small sample correction factor is
applied. Cumming and Calin-Jageman (2017, p.171) recommended to avoid the term Hedges’ g
, but to report which standard deviation was used to standardized the mean difference (e.g., un-
weighted/weighted pooled standard deviation, or the standard deviation of the control group) and
whether a small sample correction factor was applied.

As for the terminology according to Lakens (2013), in a two-sample design (i.e., paired = FALSE)
Cohen’s ds is computed when using weighted = TRUE (default) and Hedges’s gs is computed when
using correct = TRUE in addition. In a paired-sample design (i.e., paired = TRUE), Cohen’s dz is
computed when using weighted = TRUE, default, while Cohen’s drm is computed when using
weighted = FALSE and cor = TRUE, default and Cohen’s dav is computed when using weighted
= FALSE and cor = FALSE. Corresponding Hedges’ gz , grm, and gav are computed when using
correct = TRUE in addition.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

sample type of sample, i.e., one-, two-, or, paired-sample

64 cohens.d

data list with the input specified in x, group, and split

args specification of function arguments

result result table

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Academic Press.

Cumming, G., & Calin-Jageman, R. (2017). Introduction to the new statistics: Estimation, open
science, & beyond. Routledge.

Glass. G. V., McGaw, B., & Smith, M. L. (1981). Meta-analysis in social research. Sage Publica-
tion.

Goulet-Pelletier, J.-C., & Cousineau, D. (2018) A review of effect sizes and their confidence in-
tervals, Part I: The Cohen’s d family. The Quantitative Methods for Psychology, 14, 242-265.
https://doi.org/10.20982/tqmp.14.4.p242

Hedges, L. V. (1981). Distribution theory for Glass’s estimator of effect size and related estimators.
Journal of Educational Statistics, 6(3), 106-128.

Hedges, L. V. & Olkin, I. (1985). Statistical methods for meta-analysis. Academic Press.

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practi-
cal primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 1-12. https://doi.org/10.3389/fpsyg.2013.00863

See Also

test.t, test.z, effsize, cor.matrix, na.auxiliary

Examples

dat1 <- data.frame(group1 = c(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1),

group2 = c(1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2,
1, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2),

group3 = c(1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1,
1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1),

x1 = c(3, 2, 5, 3, 6, 3, 2, 4, 6, 5, 3, 3, 5, 4,
4, 3, 5, 3, 2, 3, 3, 6, 6, 7, 5, 6, 6, 4),

x2 = c(4, 4, 3, 6, 4, 7, 3, 5, 3, 3, 4, 2, 3, 6,
3, 5, 2, 6, 8, 3, 2, 5, 4, 5, 3, 2, 2, 4),

x3 = c(7, 6, 5, 6, 4, 2, 8, 3, 6, 1, 2, 5, 8, 6,
2, 5, 3, 1, 6, 4, 5, 5, 3, 6, 3, 2, 2, 4))

#---
One-sample design

Example 1: Cohen's d.z with two-sided 95% CI
population mean = 3

cohens.d 65

cohens.d(dat1$x1, mu = 3)

Example 2: Cohen's d.z (aka Hedges' g.z) with two-sided 95% CI
population mean = 3, with small sample correction factor
cohens.d(dat1$x1, mu = 3, correct = TRUE)

Example 3: Cohen's d.z for more than one variable with two-sided 95% CI
population mean = 3
cohens.d(dat1[, c("x1", "x2", "x3")], mu = 3)

Example 4: Cohen's d.z with two-sided 95% CI
population mean = 3, by group1 separately
cohens.d(dat1$x1, mu = 3, group = dat1$group1)

Example 5: Cohen's d.z for more than one variable with two-sided 95% CI
population mean = 3, by group1 separately
cohens.d(dat1[, c("x1", "x2", "x3")], mu = 3, group = dat1$group1)

Example 6: Cohen's d.z with two-sided 95% CI
population mean = 3, split analysis by group1
cohens.d(dat1$x1, mu = 3, split = dat1$group1)

Example 7: Cohen's d.z for more than one variable with two-sided 95% CI
population mean = 3, split analysis by group1
cohens.d(dat1[, c("x1", "x2", "x3")], mu = 3, split = dat1$group1)

Example 8: Cohen's d.z with two-sided 95% CI
population mean = 3, by group1 separately1, split by group2
cohens.d(dat1$x1, mu = 3, group = dat1$group1, split = dat1$group2)

Example 9: Cohen's d.z for more than one variable with two-sided 95% CI
population mean = 3, by group1 separately1, split by group2
cohens.d(dat1[, c("x1", "x2", "x3")], mu = 3, group = dat1$group1,

split = dat1$group2)

#---
Two-sample design

Example 10: Cohen's d.s with two-sided 95% CI
weighted pooled SD
cohens.d(x1 ~ group1, data = dat1)

Example 11: Cohen's d.s with two-sided 99% CI
weighted pooled SD
cohens.d(x1 ~ group1, data = dat1, conf.level = 0.99)

Example 12: Cohen's d.s with one-sided 99% CI
weighted pooled SD
cohens.d(x1 ~ group1, data = dat1, alternative = "greater")

Example 13: Cohen's d.s with two-sided 99% CI
weighted pooled SD
cohens.d(x1 ~ group1, data = dat1, conf.level = 0.99)

66 cohens.d

Example 14: Cohen's d.s with one-sided 95%% CI
weighted pooled SD
cohens.d(x1 ~ group1, data = dat1, alternative = "greater")

Example 15: Cohen's d.s for more than one variable with two-sided 95% CI
weighted pooled SD
cohens.d(cbind(x1, x2, x3) ~ group1, data = dat1)

Example 16: Cohen's d with two-sided 95% CI
unweighted SD
cohens.d(x1 ~ group1, data = dat1, weighted = FALSE)

Example 17: Cohen's d.s (aka Hedges' g.s) with two-sided 95% CI
weighted pooled SD, with small sample correction factor
cohens.d(x1 ~ group1, data = dat1, correct = TRUE)

Example 18: Cohen's d (aka Hedges' g) with two-sided 95% CI
Unweighted SD, with small sample correction factor
cohens.d(x1 ~ group1, data = dat1, weighted = FALSE, correct = TRUE)

Example 19: Cohen's d (aka Glass's delta) with two-sided 95% CI
SD of reference group 1
cohens.d(x1 ~ group1, data = dat1, ref = 1)

Example 20: Cohen's d.s with two-sided 95% CI
weighted pooled SD, by group2 separately
cohens.d(x1 ~ group1, data = dat1, group = dat1$group2)

Example 21: Cohen's d.s for more than one variable with two-sided 95% CI
weighted pooled SD, by group2 separately
cohens.d(cbind(x1, x2, x3) ~ group1, data = dat1, group = dat1$group2)

Example 22: Cohen's d.s with two-sided 95% CI
weighted pooled SD, split analysis by group2
cohens.d(x1 ~ group1, data = dat1, split = dat1$group2)

Example 23: Cohen's d.s for more than one variable with two-sided 95% CI
weighted pooled SD, split analysis by group2
cohens.d(cbind(x1, x2, x3) ~ group1, data = dat1, split = dat1$group2)

Example 24: Cohen's d.s with two-sided 95% CI
weighted pooled SD, by group2 separately, split analysis by group3
cohens.d(x1 ~ group1, data = dat1,

group = dat1$group2, split = dat1$group3)

Example 25: Cohen's d.s for more than one variable with two-sided 95% CI
weighted pooled SD, by group2 separately, split analysis by group3
cohens.d(cbind(x1, x2, x3) ~ group1, data = dat1,

group = dat1$group2, split = dat1$group3)

#---
Paired-sample design

cor.matrix 67

Example 26: Cohen's d.z with two-sided 95% CI
SD of the difference scores
cohens.d(dat1$x1, dat1$x2, paired = TRUE)

Example 27: Cohen's d.z with two-sided 99% CI
SD of the difference scores
cohens.d(dat1$x1, dat1$x2, paired = TRUE, conf.level = 0.99)

Example 28: Cohen's d.z with one-sided 95% CI
SD of the difference scores
cohens.d(dat1$x1, dat1$x2, paired = TRUE, alternative = "greater")

Example 29: Cohen's d.rm with two-sided 95% CI
controlling for the correlation between measures
cohens.d(dat1$x1, dat1$x2, paired = TRUE, weighted = FALSE)

Example 30: Cohen's d.av with two-sided 95% CI
without controlling for the correlation between measures
cohens.d(dat1$x1, dat1$x2, paired = TRUE, weighted = FALSE, cor = FALSE)

Example 31: Cohen's d.z (aka Hedges' g.z) with two-sided 95% CI
SD of the differnece scores
cohens.d(dat1$x1, dat1$x2, paired = TRUE, correct = TRUE)

Example 32: Cohen's d.rm (aka Hedges' g.rm) with two-sided 95% CI
controlling for the correlation between measures
cohens.d(dat1$x1, dat1$x2, paired = TRUE, weighted = FALSE, correct = TRUE)

Example 33: Cohen's d.av (aka Hedges' g.av) with two-sided 95% CI
without controlling for the correlation between measures
cohens.d(dat1$x1, dat1$x2, paired = TRUE, weighted = FALSE, cor = FALSE,

correct = TRUE)

Example 34: Cohen's d.z with two-sided 95% CI
SD of the difference scores, by group1 separately
cohens.d(dat1$x1, dat1$x2, paired = TRUE, group = dat1$group1)

Example 35: Cohen's d.z with two-sided 95% CI
SD of the difference scores, split analysis by group1
cohens.d(dat1$x1, dat1$x2, paired = TRUE, split = dat1$group1)

Example 36: Cohen's d.z with two-sided 95% CI
SD of the difference scores, by group1 separately, split analysis by group2
cohens.d(dat1$x1, dat1$x2, paired = TRUE,

group = dat1$group1, split = dat1$group2)

cor.matrix Correlation Matrix

68 cor.matrix

Description

This function computes a correlation matrix based on Pearson product-moment correlation co-
efficient, Spearman’s rank-order correlation coefficient, Kendall’s Tau-b correlation coefficient,
Kendall-Stuart’s Tau-c correlation coefficient, tetrachoric correlation coefficient, or polychoric cor-
relation coefficient and computes significance values (p-values) for testing the hypothesis H0: ρ =
0 for all pairs of variables.

Usage

cor.matrix(..., data = NULL,
method = c("pearson", "spearman", "kendall-b", "kendall-c", "tetra", "poly"),

na.omit = FALSE, group = NULL, sig = FALSE, alpha = 0.05,
print = c("all", "cor", "n", "stat", "df", "p"),
tri = c("both", "lower", "upper"),
p.adj = c("none", "bonferroni", "holm", "hochberg", "hommel",

"BH", "BY", "fdr"), continuity = TRUE,
digits = 2, p.digits = 3, as.na = NULL,
write = NULL, append = TRUE, check = TRUE, output = TRUE)

Arguments

... a matrix or data frame. Alternatively, an expression indicating the variable
names in data e.g., cor.matrix(x1, x2, x3, data = dat). Note that the oper-
ators ., +, -, ~, :, ::, and ! can also be used to select variables, see ’Details’ in
the df.subset function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a matrix or data frame for the argu-
ment

method a character vector indicating which correlation coefficient is to be computed,
i.e. "pearson" for Pearson product-moment correlation coefficient (default),
"spearman" for Spearman’s rank-order correlation coefficient, "kendall-b"
for Kendall’s Tau-b correlation coefficient, "kendall-c" for Kendall-Stuart’s
Tau-c correlation coefficient, "tetra" for tetrachoric correlation coefficient, and
"poly" for polychoric correlation coefficient.

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion); if FALSE (default), pairwise deletion is used.

group either a character string indicating the variable name of the grouping variable
in ... or data, or a vector representing the grouping variable. Note that the
grouping variable is limited to two groups.

sig logical: if TRUE, statistically significant correlation coefficients are shown in
boldface on the console. Note that this function does not provide statistical
significance testing for tetrachoric or polychoric correlation coefficients.

alpha a numeric value between 0 and 1 indicating the significance level at which cor-
relation coefficients are printed boldface when sig = TRUE.

print a character string or character vector indicating which results to show on the
console, i.e. "all" for all results, "cor" for correlation coefficients, "n" for the

cor.matrix 69

sample sizes, "stat" for the test statistic, "df" for the degrees of freedom, and
"p" for p-values. Note that the function does not provide p-values for tetrachoric
or polychoric correlation coefficients.

tri a character string indicating which triangular of the matrix to show on the con-
sole, i.e., both for upper and lower triangular, lower (default) for the lower
triangular, and upper for the upper triangular.

p.adj a character string indicating an adjustment method for multiple testing based on
p.adjust, i.e., none , bonferroni, holm (default), hochberg, hommel, BH, BY,
or fdr.

continuity logical: if TRUE (default), continuity correction is used for testing Spearman’s
rank-order correlation coefficient and Kendall’s Tau-b correlation.

digits an integer value indicating the number of decimal places to be used for display-
ing correlation coefficients.

p.digits an integer value indicating the number of decimal places to be used for display-
ing p-values.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

write a character string naming a file for writing the output into either a text file
with file extension ".txt" (e.g., "Output.txt") or Excel file with file exten-
tion ".xlsx" (e.g., "Output.xlsx"). If the file name does not contain any file
extension, an Excel file will be written.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.
output logical: if TRUE (default), output is shown on the console.

Details

Note that unlike the cor.test function, this function does not compute an exact p-value for Spear-
man’s rank-order correlation coefficient or Kendall’s Tau-b correlation coefficient, but uses the
asymptotic t approximation.

Statistically significant correlation coefficients can be shown in boldface on the console when speci-
fying sig = TRUE. However, this option is not supported when using R Markdown, i.e., the argument
sig will switch to FALSE.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call
type type of analysis
data data frame used for the current analysis
args specification of function arguments
result list with result tables, i.e., cor for the correlation matrix, n for a matrix with

the sample sizes, stat for a matrix with the test statistics, df for a matrix with
the degrees of freedom, and p-value for the matrix with the significance values
(p-values)

70 cor.matrix

Note

This function uses the polychoric() function in the psych package by William Revelle to estimate
tetrachoric and polychoric correlation coefficients.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

Revelle, W. (2018) psych: Procedures for personality and psychological research. Northwestern
University, Evanston, Illinois, USA, https://CRAN.R-project.org/package=psych Version = 1.8.12.

See Also

write.result, cohens.d, effsize, multilevel.icc, na.auxiliary, size.cor.

Examples

Example 1a: Pearson product-moment correlation coefficient between 'Ozone' and 'Solar.R#
cor.matrix(airquality[, c("Ozone", "Solar.R")])

Example 1b: Alternative specification using the 'data' argument
cor.matrix(Ozone, Solar.R, data = airquality)

Example 2a: Pearson product-moment correlation matrix using pairwise deletion
cor.matrix(airquality[, c("Ozone", "Solar.R", "Wind")])

Example 2b: Alternative specification using the 'data' argument
cor.matrix(Ozone:Wind, data = airquality)

Example 3: Spearman's rank-order correlation matrix
cor.matrix(airquality[, c("Ozone", "Solar.R", "Wind")], method = "spearman")

Example 4: Pearson product-moment correlation matrix
highlight statistically significant result at alpha = 0.05
cor.matrix(airquality[, c("Ozone", "Solar.R", "Wind")], sig = TRUE)

Example 5: Pearson product-moment correlation matrix
highlight statistically significant result at alpha = 0.05
cor.matrix(airquality[, c("Ozone", "Solar.R", "Wind")], sig = TRUE, alpha = 0.10)

Example 6: Pearson product-moment correlation matrix
print sample size and significance values
cor.matrix(airquality[, c("Ozone", "Solar.R", "Wind")], print = "all")

Example 7: Pearson product-moment correlation matrix using listwise deletion,
print sample size and significance values
cor.matrix(airquality[, c("Ozone", "Solar.R", "Wind")], na.omit = TRUE, print = "all")

crosstab 71

Example 8: Pearson product-moment correlation matrix
print sample size and significance values with Bonferroni correction
cor.matrix(airquality[, c("Ozone", "Solar.R", "Wind")], na.omit = TRUE,

print = "all", p.adj = "bonferroni")

Example 9a: Pearson product-moment correlation matrix for 'mpg', 'cyl', and 'disp'
results for group "0" and "1" separately
cor.matrix(mtcars[, c("mpg", "cyl", "disp")], group = mtcars$vs)

Example 9b: Alternative specification using the 'data' argument
cor.matrix(mpg:disp, data = mtcars, group = "vs")

Not run:
Example 10a: Write results into a text file
cor.matrix(airquality[, c("Ozone", "Solar.R", "Wind")], print = "all", write = "Correlation.txt")

Example 10b: Write results into an Excel file
cor.matrix(airquality[, c("Ozone", "Solar.R", "Wind")], print = "all", write = "Correlation.xlsx")

result <- cor.matrix(airquality[, c("Ozone", "Solar.R", "Wind")], print = "all", output = FALSE)
write.result(result, "Correlation.xlsx")

End(Not run)

crosstab Cross Tabulation

Description

This function creates a two-way and three-way cross tabulation with absolute frequencies and row-
wise, column-wise and total percentages.

Usage

crosstab(..., data = NULL, print = c("no", "all", "row", "col", "total"),
freq = TRUE, split = FALSE, na.omit = TRUE, digits = 2, as.na = NULL,
write = NULL, append = TRUE, check = TRUE, output = TRUE)

Arguments

... a matrix or data frame with two or three columns. Alternatively, an expression
indicating the variable names in data. Note, variable names are specified with-
out quotes '' or double quotes "", e.g., crosstab(x1, x2, data = dat). Note
that the operators ., +, -, ~, :, ::, and ! can also be used to select variables, see
’Details’ in the df.subset function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a matrix or data frame for the argu-
ment

72 crosstab

print a character string or character vector indicating which percentage(s) to be printed
on the console, i.e., no percentages ("no") (default), all percentages ("all"),
row-wise percentages ("row"), column-wise percentages ("col"), and total per-
centages ("total").

freq logical: if TRUE (default), absolute frequencies will be included in the cross
tabulation.

split logical: if TRUE, output table is split in absolute frequencies and percentage(s).

na.omit logical: if TRUE (default), incomplete cases are removed before conducting the
analysis (i.e., listwise deletion).

digits an integer indicating the number of decimal places digits to be used for display-
ing percentages.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

write a character string naming a file for writing the output into either a text file
with file extension ".txt" (e.g., "Output.txt") or Excel file with file exten-
tion ".xlsx" (e.g., "Output.xlsx"). If the file name does not contain any file
extension, an Excel file will be written.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is printed on the console.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data matrix or data frame specified in ...

args specification of function arguments

result list with result tables, i.e., crosstab for the cross tabulation, freq.a for the ab-
solute frequencies, perc.r for the row-wise percentages, perc.c for the column-
wise percentages, perc.t for the total percentages

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

write.result, freq, descript, multilevel.descript, na.descript.

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

crosstab 73

Examples

#--
Two-Dimensional Table

Example 1a: Cross Tabulation for 'vs' and 'am'
crosstab(mtcars[, c("vs", "am")])

Example 1b: Alternative specification using the 'data' argument
crosstab(vs, am, data = mtcars)

Example 2: Cross Tabulation, print all percentages
crosstab(mtcars[, c("vs", "am")], print = "all")

Example 3: Cross Tabulation, print row-wise percentages
crosstab(mtcars[, c("vs", "am")], print = "row")

Example 4: Cross Tabulation, print col-wise percentages
crosstab(mtcars[, c("vs", "am")], print = "col")

Example 5: Cross Tabulation, print total percentages
crosstab(mtcars[, c("vs", "am")], print = "total")

Example 6: Cross Tabulation, print all percentages, split output table
crosstab(mtcars[, c("vs", "am")], print = "all", split = TRUE)

#--
Three-Dimensional Table

Example 7a: Cross Tabulation for 'vs', 'am', ane 'gear'
crosstab(mtcars[, c("vs", "am", "gear")])

Example 7b: Alternative specification using the 'data' argument
crosstab(vs:gear, data = mtcars)

Example 8: Cross Tabulation, print all percentages
crosstab(mtcars[, c("vs", "am", "gear")], print = "all")

Example 9: Cross Tabulation, print all percentages, split output table
crosstab(mtcars[, c("vs", "am", "gear")], print = "all", split = TRUE)

Not run:
Example 10a: Write results into a text file
crosstab(mtcars[, c("vs", "am")], print = "all", write = "Crosstab.txt")

Example 10b: Write results into an Excel file
crosstab(mtcars[, c("vs", "am")], print = "all", write = "Crosstab.xlsx")

result <- crosstab(mtcars[, c("vs", "am")], print = "all", output = FALSE)
write.result(result, "Crosstab.xlsx")

End(Not run)

74 descript

descript Descriptive Statistics

Description

This function computes summary statistics for one or more than one variables, optionally by a
grouping and/or split variable.

Usage

descript(..., data = NULL,
print = c("all", "n", "nNA", "pNA", "m", "se.m", "var", "sd", "min",

"p25", "med", "p75", "max", "range", "iqr", "skew", "kurt"),
group = NULL, split = NULL, sort.var = FALSE, na.omit = FALSE, digits = 2,
as.na = NULL, write = NULL, append = TRUE, check = TRUE, output = TRUE)

Arguments

... a numeric vector, matrix or data frame with numeric variables, i.e., factors
and character variables are excluded from ... before conducting the analy-
sis. Alternatively, an expression indicating the variable names in data e.g.,
descript(x1, x2, x3, data = dat). Note that the operators ., +, -, ~, :, ::,
and ! can also be used to select variables, see ’Details’ in the df.subset func-
tion.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a numeric vector, matrix, or data
frame for the argument

print a character vector indicating which statistical measures to be printed on the con-
sole, i.e. n (number of observations), nNA (number of missing values), pNA
(percentage of missing values), m (arithmetic mean), se.m (standard error of
the arithmetic mean), var (variance), sd (standard deviation), med (median),min
(minimum), p25 (25th percentile, first quartile), p75 (75th percentile, third quar-
tile), max (maximum), range (range), iqr (interquartile range), skew (skew-
ness), and kurt (excess kurtosis). The default setting is print = ("n", "nNA",
"pNA", "m", "sd", "min", "max", "skew", "kurt").

group a numeric vector, character vector or factor as grouping variable. Alternatively,
a character string indicating the variable name of the grouping variable in data
can be specified.

split a numeric vector, character vector or factor as split variable. Alternatively, a
character string indicating the variable name of the split variable in data can be
specified.

sort.var logical: if TRUE, output table is sorted by variables when specifying group.

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion).

digits an integer value indicating the number of decimal places to be used.

descript 75

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to ..., but not to group or split.

write a character string naming a file for writing the output into either a text file
with file extension ".txt" (e.g., "Output.txt") or Excel file with file exten-
tion ".xlsx" (e.g., "Output.xlsx"). If the file name does not contain any file
extension, an Excel file will be written.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data list with the input specified in ..., group, and split

args specification of function arguments

result result table(s)

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

See Also

ci.mean, ci.mean.diff, ci.median, ci.prop, ci.prop.diff, ci.var, ci.sd, freq, crosstab,
multilevel.descript, na.descript.

Examples

Example 1a: Descriptive statistics for 'mpg'
descript(mtcars$mpg)

Example 1b: Alternative specification using the 'data' argument
descript(mpg, data = mtcars)

Example 2: Descriptive statistics, print results with 3 digits
descript(mtcars$mpg, digits = 3)

Example 3: Descriptive statistics for x1, print all available statistical measures

76 df.duplicated

descript(mtcars$mpg, print = "all")

Example 4a: Descriptive statistics for 'mpg', 'cyl', and 'disp'
descript(mtcars[, c("mpg", "cyl", "disp")])

Example 4b: Alternative specification using the 'data' argument
descript(mpg:disp, data = mtcars)

Example 5a: Descriptive statistics, analysis by 'vs' separately
descript(mtcars[, c("mpg", "cyl", "disp")], group = mtcars$vs)

Example 5b: Alternative specification using the 'data' argument
descript(mpg:disp, data = mtcars, group = "vs")

Example 6: Descriptive statistics, analysis by 'vs' separately, sort by variables
descript(mtcars[, c("mpg", "cyl", "disp")], group = mtcars$vs, sort.var = TRUE)

Example 7: Descriptive statistics, split analysis by 'am'
descript(mtcars[, c("mpg", "cyl", "disp")], split = mtcars$am)

Example 8a: Descriptive statistics,analysis by 'vs' separately, split analysis by 'am'
descript(mtcars[, c("mpg", "cyl", "disp")], group = mtcars$vs, split = mtcars$am)

Example 8b: Alternative specification using the 'data' argument
descript(mpg:disp, data = mtcars, group = "vs", split = "am")

Not run:
Example 11a: Write results into a text file
descript(mtcars[, c("mpg", "cyl", "disp")], write = "Descript.txt")

Example 11b: Write results into an Excel file
descript(mtcars[, c("mpg", "cyl", "disp")], write = "Descript.xlsx")

result <- descript(mtcars[, c("mpg", "cyl", "disp")], output = FALSE)
write.result(result, "Descript.xlsx")

End(Not run)

df.duplicated Extract Duplicated or Unique Rows

Description

The function df.duplicated extracts duplicated rows and the function df.unique extracts unique
rows from a matrix or data frame.

Usage

df.duplicated(..., data, first = TRUE, keep.all = TRUE, from.last = FALSE,
keep.row.names = TRUE, check = TRUE)

df.duplicated 77

df.unique(..., data, keep.all = TRUE, from.last = FALSE,
keep.row.names = TRUE, check = TRUE)

Arguments

... an expression indicating the variable names in data used to determine dupli-
cated or unique rows.e.g., df.duplicated(x1, x2, data = dat). Note that the
operators ., +, -, ~, :, ::, and ! can also be used to select variables, see Details
in the df.subset function.

data a data frame.

first logical: if TRUE (default), the df.duplicated() function will return duplicated
rows including the first of identical rows.

keep.all logical: if TRUE (default), the function will return all variables in x after extract-
ing duplicated or unique rows based on the variables specified in the argument
....

from.last logical: if TRUE, duplication will be considered from the reversed side, i.e., the
last of identical rows would correspond to duplicated = FALSE. Note that this
argument is only used when first = FALSE.

keep.row.names logical: if TRUE (default), the row names from x are kept, otherwise they are set
to NULL.

check logical: if TRUE (default), argument specification is checked.

Details

Note that df.unique(x) is equivalent to unique(x). That is, the main difference between the
df.unique() and the unique() function is that the df.unique() function provides the ... argu-
ment to specify a variable or multiple variables which are used to determine unique rows.

Value

Returns duplicated or unique rows of the data frame in ... or data.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

df.merge, df.move, df.rbind, df.rename, df.sort, df.subset

78 df.duplicated

Examples

dat <- data.frame(x1 = c(1, 1, 2, 1, 4),
x2 = c(1, 1, 2, 1, 6),
x3 = c(2, 2, 3, 2, 6),
x4 = c(1, 1, 2, 2, 4),
x5 = c(1, 1, 4, 4, 3))

#---
df.duplicated() function

Example 1: Extract duplicated rows based on all variables
df.duplicated(., data = dat)

Example 2: Extract duplicated rows based on x4
df.duplicated(x4, data = dat)

Example 3: Extract duplicated rows based on x2 and x3
df.duplicated(x2, x3, data = dat)

Example 4: Extract duplicated rows based on all variables
exclude first of identical rows
df.duplicated(., data = dat, first = FALSE)

Example 5: Extract duplicated rows based on x2 and x3
do not return all variables
df.duplicated(x2, x3, data = dat, keep.all = FALSE)

Example 6: Extract duplicated rows based on x4
consider duplication from the reversed side
df.duplicated(x4, data = dat, first = FALSE, from.last = TRUE)

Example 7: Extract duplicated rows based on x2 and x3
set row names to NULL
df.duplicated(x2, x3, data = dat, keep.row.names = FALSE)

#---
df.unique() function

Example 8: Extract unique rows based on all variables
df.unique(., data = dat)

Example 9: Extract unique rows based on x4
df.unique(x4, data = dat)

Example 10: Extract unique rows based on x1, x2, and x3
df.unique(x1, x2, x3, data = dat)

Example 11: Extract unique rows based on x2 and x3
do not return all variables
df.unique(x2, x3, data = dat, keep.all = FALSE)

Example 12: Extract unique rows based on x4

df.merge 79

consider duplication from the reversed side
df.unique(x4, data = dat, from.last = TRUE)

Example 13: Extract unique rows based on x2 and x3
set row names to NULL
df.unique(x2, x3, data = dat, keep.row.names = FALSE)

df.merge Merge Multiple Data Frames

Description

This function merges data frames by a common column (i.e., matching variable).

Usage

df.merge(..., by, all = TRUE, check = TRUE, output = TRUE)

Arguments

... a sequence of matrices or data frames and/or matrices to be merged to one.

by a character string indicating the column used for merging (i.e., matching vari-
able), see ’Details’.

all logical: if TRUE (default), then extra rows with NAs will be added to the output
for each row in a data frame that has no matching row in another data frame.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console.

Details

There are following requirements for merging multiple data frames: First, each data frame has the
same matching variable specified in the by argument. Second, matching variable in the data frames
have all the same class. Third, there are no duplicated values in the matching variable in each data
frame. Fourth, there are no missing values in the matching variables. Last, there are no duplicated
variable names across the data frames except for the matching variable.

Note that it is possible to specify data frames matrices and/or in the argument However, the
function always returns a data frame.

Value

Returns a merged data frame.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

80 df.merge

See Also

df.duplicated, df.move, df.rbind, df.rename, df.sort, df.subset

Examples

adat <- data.frame(id = c(1, 2, 3),
x1 = c(7, 3, 8))

bdat <- data.frame(id = c(1, 2),
x2 = c(5, 1))

cdat <- data.frame(id = c(2, 3),
y3 = c(7, 9))

ddat <- data.frame(id = 4,
y4 = 6)

Merge adat, bdat, cdat, and data by the variable id
df.merge(adat, bdat, cdat, ddat, by = "id")

Do not show output on the console
df.merge(adat, bdat, cdat, ddat, by = "id", output = FALSE)

adat <- data.frame(id = c(1, 2, 3),
x1 = c(7, 3, 8))

bdat <- data.frame(id = c(1, 2),
x2 = c(5, 1))

cdat <- data.frame(id = c(2, 3),
y3 = c(7, 9))

ddat <- data.frame(id = 4,
y4 = 6)

Example 1: Merge adat, bdat, cdat, and data by the variable id
df.merge(adat, bdat, cdat, ddat, by = "id")

Example 2: Do not show output on the console
df.merge(adat, bdat, cdat, ddat, by = "id", output = FALSE)

Not run:
#---
Error messages

adat <- data.frame(id = c(1, 2, 3),
x1 = c(7, 3, 8))

bdat <- data.frame(code = c(1, 2, 3),
x2 = c(5, 1, 3))

cdat <- data.frame(id = factor(c(1, 2, 3)),

df.move 81

x3 = c(5, 1, 3))

ddat <- data.frame(id = c(1, 2, 2),
x2 = c(5, 1, 3))

edat <- data.frame(id = c(1, NA, 3),
x2 = c(5, 1, 3))

fdat <- data.frame(id = c(1, 2, 3),
x1 = c(5, 1, 3))

Error 1: Data frames do not have the same matching variable specified in 'by'.
df.merge(adat, bdat, by = "id")

Error 2: Matching variable in the data frames do not all have the same class.
df.merge(adat, cdat, by = "id")

Error 3: There are duplicated values in the matching variable specified in 'by'.
df.merge(adat, ddat, by = "id")

Error 4: There are missing values in the matching variable specified in 'by'.
df.merge(adat, edat, by = "id")

Error 5: There are duplicated variable names across data frames.
df.merge(adat, fdat, by = "id")

End(Not run)

df.move Move Variable(s) in a Data Frame

Description

This function moves variables to a different position in the data frame, i.e., changes the column
positions in the data frame. By default, variables specified in the first argument ... are moved to
the first position in the data frame specified in the argument data.

Usage

df.move(..., data = NULL, before = NULL, after = NULL, first = TRUE, check = FALSE)

Arguments

... an expression indicating the variable names in data to move. Note that the
operators ., +, -, ~, :, ::, and ! can also be used to select variables, see Details
in the df.subset function.

data a data frame.

before a character string indicating a variable in data. Variable(s) specified in ... are
moved to the left-hand side of this variable.

82 df.rbind

after a character string indicating a variable in data. Variable(s) specified in ... are
moved to the right-hand side of this variable.

first logical: if TRUE (default), variable(s) specified in ... will be moved to the first
position in ’data’, if FALSE, variable(s) specified in ... will be moved to the last
position in ’data’.

check logical: if TRUE (default), argument specification is checked.

Value

Returns the data frame in data with columns in a different place.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

df.duplicated, df.merge, df.rbind, df.rename, df.sort, df.subset

Examples

Example 1: Move variables 'hp' and 'am' to the first position
df.move(hp, am, data = mtcars)

Example 2: Move variables 'hp' and 'am' to the last position
df.move(hp, am, data = mtcars, first = FALSE)

Example 3: Move variables 'hp' and 'am' to the left-hand side of 'disp'
df.move(hp, am, data = mtcars, before = "disp")

Example 4: Move variables 'hp' and 'am' to the right-hand side of 'disp'
df.move(hp, am, data = mtcars, after = "disp")

df.rbind Combine Data Frames by Rows, Filling in Missing Columns

Description

This function takes a sequence of data frames and combines them by rows, while filling in missing
columns with NAs.

Usage

df.rbind(...)

df.rbind 83

Arguments

... a sequence of data frame to be row bind together. This argument can be a list of
data frames, in which case all other arguments are ignored. Any NULL inputs are
silently dropped. If all inputs are NULL, the output is also NULL.

Details

This is an enhancement to rbind that adds in columns that are not present in all inputs, accepts a
sequence of data frames, and operates substantially faster.

Column names and types in the output will appear in the order in which they were encountered.

Unordered factor columns will have their levels unified and character data bound with factors will
be converted to character. POSIXct data will be converted to be in the same time zone. Array and
matrix columns must have identical dimensions after the row count. Aside from these there are no
general checks that each column is of consistent data type.

Value

Returns a single data frame

Note

This function is a copy of the rbind.fill() function in the plyr package by Hadley Wickham.

Author(s)

Hadley Wickham

References

Wickham, H. (2011). The split-apply-combine strategy for data analysis. Journal of Statistical
Software, 40, 1-29. https://doi.org/10.18637/jss.v040.i01

Wickham, H. (2019). plyr: Tools for Splitting, Applying and Combining Data. R package version
1.8.5.

See Also

df.duplicated, df.merge, df.move, df.rename, df.sort, df.subset

Examples

adat <- data.frame(id = c(1, 2, 3),
a = c(7, 3, 8),
b = c(4, 2, 7))

bdat <- data.frame(id = c(4, 5, 6),
a = c(2, 4, 6),
c = c(4, 2, 7))

cdat <- data.frame(id = c(7, 8, 9),

84 df.rename

a = c(1, 4, 6),
d = c(9, 5, 4))

Example 1
df.rbind(adat, bdat, cdat)

df.rename Rename Columns in a Matrix or Variables in a Data Frame

Description

This function renames columns in a matrix or variables in a data frame by specifying a character
string or character vector indicating the columns or variables to be renamed and a character string
or character vector indicating the corresponding replacement values.

Usage

df.rename(x, from, to, check = TRUE)

Arguments

x a matrix or data frame.

from a character string or character vector indicating the column(s) or variable(s) to
be renamed.

to a character string or character vector indicating the corresponding replacement
values for the column(s) or variable(s) specified in the argument name.

check logical: if TRUE (default), argument specification is checked.

Value

Returns a matrix or data frame with renamed columns or variables.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

See Also

df.duplicated, df.merge, df.move, df.rbind, df.sort, df.subset

df.sort 85

Examples

dat <- data.frame(a = c(3, 1, 6),
b = c(4, 2, 5),
c = c(7, 3, 1))

Example 1: Rename variable b in the data frame 'dat' to y
df.rename(dat, from = "b", to = "y")

Example 2: Rename variable a, b, and c in the data frame 'dat' to x, y, and z
df.rename(dat, from = c("a", "b", "c"), to = c("x", "y", "z"))

df.sort Data Frame Sorting

Description

This function arranges a data frame in increasing or decreasing order according to one or more
variables.

Usage

df.sort(x, ..., decreasing = FALSE, check = TRUE)

Arguments

x a data frame.

... a sorting variable or a sequence of sorting variables which are specified without
quotes '' or double quotes "".

decreasing logical: if TRUE, the sort is decreasing.

check logical: if TRUE (default), argument specification is checked.

Value

Returns data frame x sorted according to the variables specified in ..., a matrix will be coerced to
a data frame.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Knuth, D. E. (1998) The Art of Computer Programming, Volume 3: Sorting and Searching (2nd
ed.). Addison-Wesley.

86 df.subset

See Also

df.duplicated, df.merge, df.move, df.rbind, df.rename, df.subset

Examples

dat <- data.frame(x = c(5, 2, 5, 5, 7, 2),
y = c(1, 6, 2, 3, 2, 3),
z = c(2, 1, 6, 3, 7, 4))

Example 1: Sort data frame 'dat' by "x" in increasing order
df.sort(dat, x)

Example 2: Sort data frame 'dat' by "x" in decreasing order
df.sort(dat, x, decreasing = TRUE)

Example 3: Sort data frame 'dat' by "x" and "y" in increasing order
df.sort(dat, x, y)

Example 4: Sort data frame 'dat' by "x" and "y" in decreasing order
df.sort(dat, x, y, decreasing = TRUE)

df.subset Subsetting Data Frames

Description

This function returns subsets of data frames which meet conditions.

Usage

df.subset(..., data, subset = NULL, drop = TRUE, check = TRUE)

Arguments

... an expression indicating variables to select from the data frame specified in
data. See Details for the list of operators used in this function, i.e., ., +, -,
~, :, ::, and !.

data a data frame that contains the variables specified in the argument Note that
if data = NULL, only the variables specified in ... are returned.

subset character string with a logical expression indicating rows to keep, e.g., "x == 1",
"x1 == 1 & x2 == 3", or "gender == 'female'". By default, all rows of the data
frame specified in data are kept. Note that logical queries for rows resulting in
missing values are not select.

drop logical: if TRUE (default), data frame with a single column is converted into a
vector.

check logical: if TRUE (default), argument specification is checked.

df.subset 87

Details

The argument ... is used to specify an epxression indicating the variables to select from the data
frame specified in data, e.g., df.subset(x1, x2, x3, data = dat). There are seven operators
which can be used in the expression ...:

Dot (.) Operator The dot operator is used to select all variables from the data frame specified in
data. For example, df.subset(., data = dat) selects all variables in dat. Note that this
operator is similar to the function everything() from the tidyselect package.

Plus (+) Operator The plus operator is used to select variables matching a prefix from the data
frame specified in data. For example, df.subset(+x, data = dat) selects all variables with
the prefix x. Note that this operator is equivalent to the function starts_with() from the
tidyselect package.

Minus (-) Operator The minus operator is used to select variables matching a suffix from the
data frame specified in data. For example, df.subset(-y, data = dat) selects all variables
with the suffix y. Note that this operator is equivalent to the function ends_with() from the
tidyselect package.

Tilde (~) Operator The tilde operator is used to select variables containg a word from the data
frame specified in data. For example, df.subset(?al, data = dat) selects all variables
with the word al. Note that this operator is equivalent to the function contains() from the
tidyselect package.

Colon (:) operator The colon operator is used to select a range of consecutive variables from the
data frame specified in data. For example, df.subset(x:z, data = dat) selects all variables
from x to z. Note that this operator is equivalent to the : operator from the select function
in the dplyr package.

Double Colon (::) Operator The double colon operator is used to select numbered variables from
the data frame specified in data. For example, df.subset(x1::x3, data = dat) selects the
variables x1, x2, and x3. Note that this operator is similar to the function num_range() from
the tidyselect package.

Exclamation Point (!) Operator The exclamation point operator is used to drop variables from
the data frame specified in data or for taking the complement of a set of variables. For
example, df.subset(., !x, data = dat) selects all variables but x in dat., df.subset(.,
!~x, data = dat) selects all variables but variables with the prefix x, or df.subset(x:z,
!x1:x3, data = dat) selects all variables from x to z but excludes all variables from x1 to x3.
Note that this operator is equivalent to the ! operator from the select function in the dplyr
package.

Note that operators can be combined within the same function call. For example, df.subset(+x,
-y, !x2:x4, z, data = dat) selects all variables with the prefix x and with the suffix y but excludes
variables from x2 to x4 and select variable z.

Value

Returns a data frame containing the variables and rows selected in the argument ... and rows
selected in the argument subset.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

88 df.subset

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

df.duplicated, df.merge, df.move, df.rbind, df.rename, df.sort

Examples

Not run:
#---
Select single variables

Example 1: Select 'Sepal.Length' and 'Petal.Width'
df.subset(Sepal.Length, Petal.Width, data = iris)

#---
Select all variables using the . operator

Example 2a: Select all variables, select rows with 'Species' equal 'setosa'
Note that single quotation marks ('') are needed to specify 'setosa'
df.subset(., data = iris, subset = "Species == 'setosa'")

Example 2b: Select all variables, select rows with 'Petal.Length' smaller 1.2
df.subset(., data = iris, subset = "Petal.Length < 1.2")

#---
Select variables matching a prefix using the + operator

Example 3: Select variables with prefix 'Petal'
df.subset(+Petal, data = iris)

#---
Select variables matching a suffix using the - operator

Example 4: Select variables with suffix 'Width'
df.subset(-Width, data = iris)

#---
Select variables containing a word using the ~ operator
Example 5: Select variables containing 'al'
df.subset(~al, data = iris)

#---
Select consecutive variables using the : operator

Example 6: Select all variables from 'Sepal.Width' to 'Petal.Width'
df.subset(Sepal.Width:Petal.Width, data = iris)

#---
Select numbered variables using the :: operator

dominance 89

Example 7: Select all variables from 'x1' to 'x3' and 'y1' to 'y3'
df.subset(x1::x3, y1::y3, data = anscombe)

#---
Drop variables using the ! operator

Example 8a: Select all variables but 'Sepal.Width'
df.subset(., !Sepal.Width, data = iris)

Example 8b: Select all variables but 'Sepal.Width' to 'Petal.Width'
df.subset(., !Sepal.Width:Petal.Width, data = iris)

#--
Combine +, - , !, and : operators

Example 9: Select variables with prefix 'x' and suffix '3', but exclude
variables from 'x2' to 'x3'
df.subset(+x, -3, !x2:x3, data = anscombe)

End(Not run)

dominance Dominance Analysis

Description

This function conducts dominance analysis (Budescu, 1993; Azen & Budescu, 2003) for linear
models estimated by using the lm() function to determine the relative importance of predictor vari-
ables. By default, the function reports general dominance, but conditional and complete dominance
can be requested by specifying the argument print.

Usage

dominance(model, print = c("all", "gen", "cond", "comp"), digits = 3,
write = NULL, append = TRUE, check = TRUE, output = TRUE)

Arguments

model a fitted model of class lm.

print a character string or character vector indicating which results to show on the
console, i.e. "all" for all results, "gen" for general dominance, "cond" for
conditional dominance, and "comp" for complete dominance.

digits an integer value indicating the number of decimal places to be used for display-
ing results. Note that the percentage relative importance of predictors are printed
with digits minus 1 decimal places.

90 dominance

write a character string naming a file for writing the output into either a text file
with file extension ".txt" (e.g., "Output.txt") or Excel file with file exten-
tion ".xlsx" (e.g., "Output.xlsx"). If the file name does not contain any file
extension, an Excel file will be written.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.
output logical: if TRUE (default), output is shown.

Details

Dominance analysis (Budescu, 1993; Azen & Budescu, 2003) is used to determine the relative
importance of predictor variables in a statistical model by examining the additional contribution
of predictors in R-squared relative to each other in all of the possible 2(p−2) subset models with
p being the number of predictors. Three levels of dominance can be established through pairwise
comparison of all predictors in a regression model:

Complete Dominance A predictor completely dominates another predictor if its additional contri-
bution in R-Squared is higher than that of the other predictor across all possible subset models
that do not include both predictors. For example, in a regression model with four predic-
tors, X1 completely dominates X2 if the additional contribution in R-squared for X1 is higher
compared to X2 in (1) the null model without any predictors, (2) the model including X3, (3)
the model including X4, and (4) the model including both X3 and X4. Note that complete
dominance cannot be established if one predictor’s additional contribution is greater than the
other’s for some, but not all of the subset models. In this case, dominance is undetermined
and the result will be NA

Conditional Dominance A predictor conditionally dominates another predictor if its average ad-
ditional contribution in R-squared is higher within each model size than that of the other pre-
dictor. For example, in a regression model with four predictors, X1 conditionally dominates
X2 if the average additional contribution in R-squared is higher compared to X2 in (1) the null
model without any predictors, (2) the four models including one predictor, (3) the six models
including two predictors, and (4) the four models including three predictors.

General Dominance A predictor generally dominates another predictor if its overall averaged ad-
ditional contribution in R-squared is higher than that of the other predictor. For example, in
a regression model with four predictors, X1 generally dominates X2 if the average across the
four conditional values (i.e., null model, model with one predictor, model with two predictors,
and model with three predictors) is higher than that of X2. Note that the general dominance
measures represent the proportional contribution that each predictor makes to the R-squared
since their sum across all predictors equals the R-squared of the full model.

The three levels of dominance are related to each other in a hierarchical fashion: Complete dom-
inance implies conditional dominance, which in turn implies general dominance. However, the
converse may not hold for more than three predictors. That is, general dominance does not im-
ply conditional dominance, and conditional dominance does not necessarily imply complete domi-
nance.

Value

Returns an object of class misty.object, which is a list with following entries:

dominance 91

call function call

type type of analysis

model model specified in model

args specification of function arguments

result list with results, i.e., gen for general dominance, cond for conditional dom-
inance, comp for complete dominance, and condtsat for the statistics of the
conditional dominance

Note

This function is based on the domir function from the domir package (Luchman, 2023).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Azen, R., & Budescu, D. V. (2003). The dominance analysis approach for comparing predic-
tors in multiple regression. Psychological Methods, 8(2), 129–148. https://doi.org/10.1037/1082-
989X.8.2.129

Budescu, D. V. (1993). Dominance analysis: A new approach to the problem of relative importance
of predictors in multiple regression. Psychological Bulletin, 114(3), 542–551. https://doi.org/10.1037/0033-
2909.114.3.542

Luchman J (2023). domir: Tools to support relative importance analysis. R package version 1.0.1,
https://CRAN.R-project.org/package=domir.

See Also

dominance.manual, std.coef, write.result

Examples

#--
Example 1: Dominance analysis for a linear model

mod <- lm(mpg ~ cyl + disp + hp, data = mtcars)
dominance(mod)

Print all results
dominance(mod, print = "all")

Not run:
#--
Example 2: Write results into a text file

dominance(mod, write = "Dominance.txt", output = FALSE)

#--

92 dominance.manual

Example 3: Write results into an Excel file

dominance(mod, write = "Dominance.xlsx", output = FALSE)

result <- dominance(mod, print = "all", output = FALSE)
write.result(result, "Dominance.xlsx")

End(Not run)

dominance.manual Dominance Analysis, Manually Inputting a Correlation Matrix

Description

This function conducts dominance analysis (Budescu, 1993; Azen & Budescu, 2003) based on a
(model-implied) correlation matrix of the manifest or latent variables. Note that the function only
provides general dominance.

Usage

dominance.manual(x, out = NULL, digits = 3, write = NULL, append = TRUE,
check = TRUE, output = TRUE)

Arguments

x a matrix or data frame with the (model-implied) correlation matrix of the mani-
fest or latent variables. Note that column names need to represent the variables
names in x.

out a character string representing the outcome variable. By default, the first row
and column represents the outcome variable.

digits an integer value indicating the number of decimal places to be used for display-
ing results. Note that the percentage relative importance of predictors are printed
with digits minus 1 decimal places.

write a character string naming a file for writing the output into either a text file
with file extension ".txt" (e.g., "Output.txt") or Excel file with file exten-
tion ".xlsx" (e.g., "Output.xlsx"). If the file name does not contain any file
extension, an Excel file will be written.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown.

dominance.manual 93

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

x correlation matrix specified in x

args specification of function arguments

result results table for the general dominance

Note

This function implements the function provided in Appendix 1 of Gu (2022) and copied the function
combinations() from the gtools package (Bolker, Warnes, & Lumley, 2022).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Azen, R., & Budescu, D. V. (2003). The dominance analysis approach for comparing predic-
tors in multiple regression. Psychological Methods, 8(2), 129–148. https://doi.org/10.1037/1082-
989X.8.2.129

Bolker, B., Warnes, G., & Lumley, T. (2022). gtools: Various R Programming Tools. R package
version 3.9.4, https://CRAN.R-project.org/package=gtools

Budescu, D. V. (1993). Dominance analysis: A new approach to the problem of relative importance
of predictors in multiple regression. Psychological Bulletin, 114(3), 542–551. https://doi.org/10.1037/0033-
2909.114.3.542

Gu, X. (2022). Assessing the relative importance of predictors in latent regression models. Struc-
tural Equation Modeling: A Multidisciplinary Journal, 4, 569-583. https://doi.org/10.1080/10705511.2021.2025377

See Also

dominance, std.coef, write.result

Examples

Not run:
#--
Linear model

Example 1a: Dominance analysis, 'mpg' predicted by 'cyl', 'disp', and 'hp'
dominance.manual(cor(mtcars[, c("mpg", "cyl", "disp", "hp")]))

Example 1b: Equivalent results using the dominance() function
mod <- lm(mpg ~ cyl + disp + hp, data = mtcars)
dominance(mod)

94 dominance.manual

Example 1c: Dominance analysis, 'hp' predicted by 'mpg', 'cyl', and 'disp'
dominance.manual(cor(mtcars[, c("mpg", "cyl", "disp", "hp")]), out = "hp")

Example 1d: Write results into a text file
dominance.manual(cor(mtcars[, c("mpg", "cyl", "disp", "hp")]),

write = "Dominance_Manual.txt")

#--
Example 2: Structural equation modeling

library(lavaan)

#.............
Latent variables

Model specification
model <- '# Measurement model

ind60 =~ x1 + x2 + x3
dem60 =~ y1 + y2 + y3 + y4
dem65 =~ y5 + y6 + y7 + y8
regressions
ind60 ~ dem60 + dem65'

Model estimation
fit <- sem(model, data = PoliticalDemocracy)

Model-implied correlation matrix of the latent variables
fit.cor <- lavInspect(fit, what = "cor.lv")

Dominance analysis
dominance.manual(fit.cor)

#.............
Example 3: Latent and manifest variables

Model specification, convert manifest to latent variable
model <- '# Measurement model

ind60 =~ x1 + x2 + x3
dem60 =~ y1 + y2 + y3 + y4
Manifest as latent variable
ly5 =~ 1*y5
y5 ~~ 0*y5
Regressions
ind60 ~ dem60 + ly5'

Model estimation
fit <- sem(model, data = PoliticalDemocracy)

Model-implied correlation matrix of the latent variables
fit.cor <- lavInspect(fit, what = "cor.lv")

Dominance analysis
dominance.manual(fit.cor)

dominance.manual 95

#--
Example 4: Multilevel modeling

Model specification
model <- 'level: 1

fw =~ y1 + y2 + y3
Manifest as latent variables
lx1 =~ 1*x1
lx2 =~ 1*x2
lx3 =~ 1*x3
x1 ~~ 0*x1
x2 ~~ 0*x2
x3 ~~ 0*x3
Regression
fw ~ lx1 + lx2 + lx3

level: 2
fb =~ y1 + y2 + y3
Manifest as latent variables
lw1 =~ 1*w1
lw2 =~ 1*w2
Regression
fb ~ lw1 + lw2'

Model estimation
fit <- sem(model, data = Demo.twolevel, cluster = "cluster")

Model-implied correlation matrix of the latent variables
fit.cor <- lavInspect(fit, what = "cor.lv")

Dominance analysis Within
dominance.manual(fit.cor$within)

Dominance analysis Between
dominance.manual(fit.cor$cluster)

#--
Example 5: Mplus
#
In Mplus, the model-impied correlation matrix of the latent variables
can be requested by OUTPUT: TECH4 and imported into R by using the
MplusAuomtation package, for example:

library(MplusAutomation)

Read Mplus output
output <- readModels()

Extract model-implied correlation matrix of the latent variables
fit.cor <- output$tech4$latCorEst

End(Not run)

96 effsize

effsize Effect Sizes for Categorical Variables

Description

This function computes effect sizes for one or more than one categorical variable, i.e., (adjusted)
phi coefficient, (bias-corrected) Cramer’s V, (bias-corrected) Tschuprow’s T, (adjusted) Pearson’s
contingency coefficient, Cohen’s w), and Fei. By default, the function computes Fei based on a
chi-square goodness-of-fit test for one categorical variable, phi coefficient based on a chi-square
test of independence for two dichotomous variables, and Cramer’s V based on a chi-square test of
independence for two variables with at least one polytomous variable.

Usage

effsize(..., data = NULL, type = c("phi", "cramer", "tschuprow", "cont", "w", "fei"),
alternative = c("two.sided", "less", "greater"), conf.level = 0.95,
adjust = TRUE, indep = TRUE, p = NULL, digits = 3, as.na = NULL,
write = NULL, append = TRUE, check = TRUE, output = TRUE)

Arguments

... a vector, factor, matrix or data frame. Alternatively, an expression indicating
the variable names in data e.g., as.na(x1, x2, data = dat). When specify-
ing more than one variable, the first variable is always the focal variable in the
Chi-square test of independence which association with all other variables is in-
vestigated. Note that the operators ., +, -, ~, :, ::, and ! can also be used to
select variables, see ’Details’ in the df.subset function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a vector, factor, matrix, array, data
frame, or list for the argument

type a chracter string indicating the type of effect size, i.e., phi for phi coefficient,
cramer for Cramer’s V, tschuprow for Tschuprow’s T, cont for Pearson’s con-
tingency coefficient, w for Cohen’s w, and Fei for Fei.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.
adjust logical: if TRUE (default), phi coefficient and Pearson’s contingency coefficient

are adjusted by relating the coefficient to the possible maximum, or Cramer’s V
and Tschuprow’s T are corrected for small-sample bias.

indep logical: if TRUE, effect size computation is based on a chi-square test of inde-
pendence (default when specifying two variable in ...), if FALSE effect size
computation is based on a chi-square goodness-of-fit test (default when specify-
ing one variable in ...).

p a numeric vector specifying the expected proportions in each category of the cat-
egorical variable when conduting a chi-square goodness-of-fit test. By default,
the expected proportions in each category are assumed to be equal.

effsize 97

digits an integer value indicating the number of decimal places digits to be used for
displaying the results.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

write a character string naming a file for writing the output into either a text file
with file extension ".txt" (e.g., "Output.txt") or Excel file with file exten-
tion ".xlsx" (e.g., "Output.xlsx"). If the file name does not contain any file
extension, an Excel file will be written.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console.

Note

This function is based on modified copies of the functions chisq_to_phi, chisq_to_cramers_v,
chisq_to_tschuprows_t, chisq_to_pearsons_c, chisq_to_cohens_w, and chisq_to_fei from
the effectsize package (Ben-Shachar, Lüdecke & Makowski, 2020).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Bergsma, W. (2013). A bias correction for Cramer’s V and Tschuprow’s T. Journal of the Korean
Statistical Society, 42, 323-328. https://doi.org/10.1016/j.jkss.2012.10.002

Ben-Shachar M. S., Lüdecke D., Makowski D. (2020). effectsize: Estimation of Effect Size Indices
and Standardized Parameters. Journal of Open Source Software, 5 (56), 2815. https://doi.org/10.21105/joss.02815

Ben-Shachar, M. S., Patil, I., Theriault, R., Wiernik, B. M., Lüdecke, D. (2023). Phi, Fei, Fo,
Fum: Effect sizes for categorical data that use the chi-squared statistic. Mathematics, 11, 1982.
https://doi.org/10.3390/math11091982

Cureton, E. E. (1959). Note on Phi/Phi max. Psychometrika, 24, 89-91.

Davenport, E. C., & El-Sanhurry, N. A. (1991). Phi/Phimax: Review and synthesis. Educational
and Psychological Measurement, 51, 821-828. https://doi.org/10.1177/001316449105100403

Sakoda, J.M. (1977). Measures of association for multivariate contingency tables. Proceedings of
the Social Statistics Section of the American Statistical Association (Part III), 777-780.

See Also

cor.matrix, cohens.d

98 freq

Examples

Example 1a: Phi coefficient for 'vs' and 'am'
effsize(mtcars[, c("vs", "am")])

Example 1a: Alternative specification using the 'data' argument
effsize(vs, am, data = mtcars)

Example 2: Bias-corrected Cramer's V for 'gear' and 'carb'
effsize(gear, carb, data = mtcars)

Example 3: Cramer's V (without bias-correction) for 'gear' and 'carb'
effsize(gear, carb, data = mtcars, adjust = FALSE)

Example 4: Adjusted Pearson's contingency coefficient for 'gear' and 'carb'
effsize(gear, carb, data = mtcars, type = "cont")

Example 5: Fei for 'gear'
effsize(gear, data = mtcars)

Example 6a: Bias-corrected Cramer's V for 'cyl' and 'vs', 'am', 'gear', and 'carb'
effsize(mtcars[, c("cyl", "vs", "am", "gear", "carb")])

Example 6b: Alternative specification using the 'data' argument
effsize(cyl, vs:carb, data = mtcars)

Not run:
Example 7b: Write Results into a text file
effsize(cyl, vs:carb, data = mtcars, write = "Cramer.txt")

Example 7b: Write Results into a Excel file
effsize(cyl, vs:carb, data = mtcars, write = "Cramer.xlsx")

End(Not run)

freq Frequency Table

Description

This function computes a frequency table with absolute and percentage frequencies for one or more
than one variable.

Usage

freq(..., data = NULL, print = c("no", "all", "perc", "v.perc"), freq = TRUE,
split = FALSE, labels = TRUE, val.col = FALSE, round = 3, exclude = 15,
digits = 2, as.na = NULL, write = NULL, append = TRUE, check = TRUE,
output = TRUE)

freq 99

Arguments

... a vector, factor, matrix or data frame. Alternatively, an expression indicating
the variable names in data e.g., freq(x1, x2, x3, data = dat). Note that the
operators ., +, -, ~, :, ::, and ! can also be used to select variables, see ’Details’
in the df.subset function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a vector, factor, matrix or data frame
for the argument

print a character string indicating which percentage(s) to be printed on the console,
i.e., no percentages ("no"), all percentages ("all"), percentage frequencies
("print"), and valid percentage frequencies ("v.perc"). Default setting when
specifying one variable in ... is print = "all", while default setting when
specifying more than one variable in ... is print = "no" unless split = TRUE.

freq logical: if TRUE (default), absolute frequencies will be shown on the console.

split logical: if TRUE, output table is split by variables when specifying more than one
variable in

labels logical: if TRUE (default), labels for the factor levels will be used.

val.col logical: if TRUE, values are shown in the columns, variables in the rows.

round an integer value indicating the number of decimal places to be used for rounding
numeric variables.

exclude an integer value indicating the maximum number of unique values for variables
to be included in the analysis when specifying more than one variable in ... i.e.,
variables with the number of unique values exceeding exclude will be excluded
from the analysis. It is also possible to specify exclude = FALSE to include all
variables in the analysis.

digits an integer value indicating the number of decimal places to be used for display-
ing percentages.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

write a character string naming a file for writing the output into either a text file
with file extension ".txt" (e.g., "Output.txt") or Excel file with file exten-
tion ".xlsx" (e.g., "Output.xlsx"). If the file name does not contain any file
extension, an Excel file will be written.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console.

Details

By default, the function displays the absolute and percentage frequencies when specifying one vari-
able in the argument ..., while the function displays only the absolute frequencies when more than
one variable is specified. The function displays valid percentage frequencies only in the presence
of missing values and excludes variables with all values missing from the analysis. Note that it is

100 freq

possible to mix numeric variables, factors, and character variables in the data frame specified in
the argument By default, numeric variables are rounded to three digits before computing the
frequency table.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data data frame used for the current analysis

args specification of function arguments

result list with result tables, i.e., freq for absolute frequencies, perc for percentages,
and v.perc for valid percentages

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Becker, R. A., Chambers, J. M., & Wilks, A. R. (1988). The New S Language. Wadsworth &
Brooks/Cole.

See Also

write.result, crosstab, descript, multilevel.descript, na.descript.

Examples

Example 1a: Frequency table for 'cyl'
freq(mtcars$cyl)

Example 1b: Alternative specification using the 'data' argument
freq(cyl, data = mtcars)

Example 2: Frequency table, values shown in columns
freq(mtcars$cyl, val.col = TRUE)

Example 3: Frequency table, use 3 digit for displaying percentages
freq(mtcars$cyl, digits = 3)

Example 4a: Frequency table for 'cyl', 'gear', and 'carb'
freq(mtcars[, c("cyl", "gear", "carb")])

Example 4b: Alternative specification using the 'data' argument
freq(cyl, gear, carb, data = mtcars)

Example 5: Frequency table, with percentage frequencies
freq(mtcars[, c("cyl", "gear", "carb")], print = "all")

indirect 101

Example 6: Frequency table, split output table
freq(mtcars[, c("cyl", "gear", "carb")], split = TRUE)

Example 7: Frequency table, exclude variables with more than 5 unique values
freq(mtcars, exclude = 5)

Not run:
Example 8a: Write results into a text file
freq(mtcars[, c("cyl", "gear", "carb")], split = TRUE, write = "Frequencies.txt")

Example 8b: Write results into an Excel file
freq(mtcars[, c("cyl", "gear", "carb")], split = TRUE, write = "Frequencies.xlsx")

result <- freq(mtcars[, c("cyl", "gear", "carb")], split = TRUE, output = FALSE)
write.result(result, "Frequencies.xlsx")

End(Not run)

indirect Confidence Intervals for the Indirect Effect

Description

This function computes confidence intervals for the indirect effect based on the asymptotic normal
method, distribution of the product method and the Monte Carlo method. By default, the function
uses the distribution of the product method for computing the two-sided 95% asymmetric confi-
dence intervals for the indirect effect product of coefficient estimator âb̂.

Usage

indirect(a, b, se.a, se.b, print = c("all", "asymp", "dop", "mc"),
se = c("sobel", "aroian", "goodman"), nrep = 100000,
alternative = c("two.sided", "less", "greater"), seed = NULL,
conf.level = 0.95, digits = 3, write = NULL, append = TRUE,
check = TRUE, output = TRUE)

Arguments

a a numeric value indicating the coefficient a, i.e., effect of X on M .

b a numeric value indicating the coefficient b, i.e., effect of M on Y adjusted for
X .

se.a a positive numeric value indicating the standard error of a.

se.b a positive numeric value indicating the standard error of b.

print a character string or character vector indicating which confidence intervals (CI)
to show on the console, i.e. "all" for all CIs, "asymp" for the CI based on the
asymptotic normal method, "dop" (default) for the CI based on the distribution
of the product method, and "mc" for the CI based on the Monte Carlo method.

102 indirect

se a character string indicating which standard error (SE) to compute for the asymp-
totic normal method, i.e., "sobel" for the approximate standard error by Sobel
(1982) using the multivariate delta method based on a first order Taylor series
approximation, "aroian" (default) for the exact standard error by Aroian (1947)
based on a first and second order Taylor series approximation, and "goodman"
for the unbiased standard error by Goodman (1960).

nrep an integer value indicating the number of Monte Carlo repetitions.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

seed a numeric value specifying the seed of the random number generator when using
the Monte Carlo method.

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

digits an integer value indicating the number of decimal places to be used for display-
ing

write a character string naming a text file with file extension ".txt" (e.g., "Output.txt")
for writing the output into a text file.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console.

Details

In statistical mediation analysis (MacKinnon & Tofighi, 2013), the indirect effect refers to the effect
of the independent variable X on the outcome variable Y transmitted by the mediator variable M .
The magnitude of the indirect effect ab is quantified by the product of the the coefficient a (i.e.,
effect of X on M) and the coefficient b (i.e., effect of M on Y adjusted for X). In practice,
researchers are often interested in confidence limit estimation for the indirect effect. This function
offers three different methods for computing the confidence interval for the product of coefficient
estimator âb̂:

(1) Asymptotic normal method

In the asymptotic normal method, the standard error for the product of the coefficient estimator âb̂
is computed which is used to create a symmetrical confidence interval based on the z-value of the
standard normal (z) distribution assuming that the indirect effect is normally distributed. Note that
the function provides three formulas for computing the standard error by specifying the argument
se:

"sobel" Approximate standard error by Sobel (1982) using the multivariate delta method based
on a first order Taylor series approximation:√

(a2σ2
a + b2σ2

b)

"aroian" Exact standard error by Aroian (1947) based on a first and second order Taylor series
approximation: √

(a2σ2
a + b2σ2

b + σ2
aσ

2
b)

indirect 103

"goodman" Unbiased standard error by Goodman (1960):√
(a2σ2

a + b2σ2
b − σ2

aσ
2
b)

Note that the unbiased standard error is often negative and is hence undefined for zero or small
effects or small sample sizes.

The asymptotic normal method is known to have low statistical power because the distribution of
the product âb̂ is not normally distributed. (Kisbu-Sakarya, MacKinnon, & Miocevic, 2014). In
the null case, where both random variables have mean equal to zero, the distribution is symmetric
with kurtosis of six. When the product of the means of the two random variables is nonzero, the
distribution is skewed (up to a maximum value of ± 1.5) and has a excess kurtosis (up to a maximum
value of 6). However, the product approaches a normal distribution as one or both of the ratios of
the means to standard errors of each random variable get large in absolute value (MacKinnon,
Lockwood & Williams, 2004).

(2) Distribution of the product method
The distribution of the product method (MacKinnon et al., 2002) relies on an analytical approxima-
tion of the distribution of the product of two normally distributed variables. The method uses the
standardized a and b coefficients to compute ab and then uses the critical values for the distribution
of the product (Meeker, Cornwell, & Aroian, 1981) to create asymmetric confidence intervals. The
distribution of the product approaches the gamma distribution (Aroian, 1947). The analytical so-
lution for the distribution of the product is provided by the Bessel function used to the solution of
differential equations and is approximately proportional to the Bessel function of the second kind
with a purely imaginary argument (Craig, 1936).

(3) Monte Carlo method
The Monte Carlo (MC) method (MacKinnon et al., 2004) relies on the assumption that the pa-
rameters a and b have a joint normal sampling distribution. Based on the parametric assumption,
a sampling distribution of the product ab using random samples with population values equal to
the sample estimates â, b̂, σ̂a, and σ̂b is generated. Percentiles of the sampling distribution are
identified to serve as limits for a 100(1 − α)% asymmetric confidence interval about the sample
âb̂ (Preacher & Selig, 2012). Note that parametric assumptions are invoked for â and b̂, but no
parametric assumptions are made about the distribution of âb̂.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call
type type of analysis
data list with the input specified in a b, se.a, and se.b

args specification of function arguments
result list with result tables, i.e., asymp with CI based on the asymptotic normal method,

dop with CI based on the distribution of the product method, and mc for CI based
on the Monte Carlo method

Note

The function was adapted from the medci() function in the RMediation package by Davood
Tofighi and David P. MacKinnon (2016).

104 indirect

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Aroian, L. A. (1947). The probability function of the product of two normally distributed variables.
Annals of Mathematical Statistics, 18, 265-271. https://doi.org/10.1214/aoms/1177730442

Craig,C.C. (1936). On the frequency function of xy. Annals of Mathematical Statistics, 7, 1–15.
https://doi.org/10.1214/aoms/1177732541

Goodman, L. A. (1960). On the exact variance of products. Journal of the American Statistical
Association, 55, 708-713. https://doi.org/10.1080/01621459.1960.10483369

Kisbu-Sakarya, Y., MacKinnon, D. P., & Miocevic M. (2014). The distribution of the product ex-
plains normal theory mediation confidence interval estimation. Multivariate Behavioral Research,
49, 261–268. https://doi.org/10.1080/00273171.2014.903162

MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). Comparison
of methods to test mediation and other intervening variable effects. Psychological Methods, 7,
83–104. https://doi.org/10.1037/1082-989x.7.1.83

MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect
effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39,
99-128. https://doi.org/10.1207/s15327906mbr3901_4

MacKinnon, D. P., & Tofighi, D. (2013). Statistical mediation analysis. In J. A. Schinka, W. F.
Velicer, & I. B. Weiner (Eds.), Handbook of psychology: Research methods in psychology (pp.
717-735). John Wiley & Sons, Inc..

Meeker, W. Q., Jr., Cornwell, L. W., & Aroian, L. A. (1981). The product of two normally dis-
tributed random variables. In W. J. Kennedy & R. E. Odeh (Eds.), Selected tables in mathematical
statistics (Vol. 7, pp. 1–256). Providence, RI: American Mathematical Society.

Preacher, K. J., & Selig, J. P. (2012). Advantages of Monte Carlo confidence intervals for indirect
effects. Communication Methods and Measures, 6, 77–98. http://dx.doi.org/10.1080/19312458.2012.679848

Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation
models. In S. Leinhardt (Ed.), Sociological methodology 1982 (pp. 290-312). Washington, DC:
American Sociological Association.

Tofighi, D. & MacKinnon, D. P. (2011). RMediation: An R package for mediation analysis con-
fidence intervals. Behavior Research Methods, 43, 692-700. https://doi.org/10.3758/s13428-011-
0076-x

See Also

multilevel.indirect

Examples

Example 1: Distribution of the Product Method
indirect(a = 0.35, b = 0.27, se.a = 0.12, se.b = 0.18)

Example 2: Monte Carlo Method
indirect(a = 0.35, b = 0.27, se.a = 0.12, se.b = 0.18, print = "mc")

item.alpha 105

Example 3: Asymptotic Normal Method
indirect(a = 0.35, b = 0.27, se.a = 0.12, se.b = 0.18, print = "asymp")

Not run:
Example 4: Write results into a text file
indirect(a = 0.35, b = 0.27, se.a = 0.12, se.b = 0.18, write = "Indirect.txt")

End(Not run)

item.alpha Coefficient Alpha and Item Statistics

Description

This function computes point estimate and confidence interval for the (ordinal) coefficient alpha
(aka Cronbach’s alpha) along with the corrected item-total correlation and coefficient alpha if item
deleted.

Usage

item.alpha(..., data = NULL, exclude = NULL, std = FALSE, ordered = FALSE,
na.omit = FALSE, print = c("all", "alpha", "item"), digits = 2,
conf.level = 0.95, as.na = NULL, write = NULL, append = TRUE,
check = TRUE, output = TRUE)

Arguments

... a matrix, data frame, variance-covariance or correlation matrix. Note that raw
data is needed to compute ordinal coefficient alpha, i.e., ordered = TRUE. Alter-
natively, an expression indicating the variable names in data e.g., item.alpha(x1,
x2, x3, data = dat). Note that the operators ., +, -, ~, :, ::, and ! can also be
used to select variables, see ’Details’ in the df.subset function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a matrix, data frame, variance-covariance
or correlation matrix for the argument

exclude a character vector indicating items to be excluded from the analysis.

std logical: if TRUE, the standardized coefficient alpha is computed.

ordered logical: if TRUE, variables are treated as ordered (ordinal) variables to compute
ordinal coefficient alpha.

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion); if FALSE (default), pairwise deletion is used.

print a character vector indicating which results to show, i.e. "all" (default), for all
results "alpha" for the coefficient alpha, and "item" for item statistics.

digits an integer value indicating the number of decimal places to be used for display-
ing coefficient alpha and item-total correlations.

106 item.alpha

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

write a character string naming a file for writing the output into either a text file
with file extension ".txt" (e.g., "Output.txt") or Excel file with file exten-
tion ".xlsx" (e.g., "Output.xlsx"). If the file name does not contain any file
extension, an Excel file will be written.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown.

Details

Ordinal coefficient alpha was introduced by Zumbo, Gadermann and Zeisser (2007) which is ob-
tained by applying the formula for computing coefficient alpha to the polychoric correlation ma-
trix instead of the variance-covariance or product-moment correlation matrix. Note that Chalmers
(2018) highlighted that the ordinal coefficient alpha should be interpreted only as a hypothetical
estimate of an alternative reliability, whereby a test’s ordinal categorical response options have be
modified to include an infinite number of ordinal response options and concludes that coefficient
alpha should not be reported as a measure of a test’s reliability. However, Zumbo and Kroc (2019)
argued that Chalmers’ critique of ordinal coefficient alpha is unfounded and that ordinal coefficient
alpha may be the most appropriate quantifier of reliability when using Likert-type measurement to
study a latent continuous random variable. Confidence intervals are computed using the procedure
by Feldt, Woodruff and Salih (1987). When computing confidence intervals using pairwise deletion,
the average sample size from all pairwise samples is used. Note that there are at least 10 other pro-
cedures for computing the confidence interval (see Kelley and Pornprasertmanit, 2016), which are
implemented in the ci.reliability() function in the MBESSS package by Ken Kelley (2019).

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data data frame used for the current analysis

args specification of function arguments

result list with result tables, i.e., alpha for a table with coefficient alpha and itemstat
for a table with item statistics

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

item.alpha 107

References

Chalmers, R. P. (2018). On misconceptions and the limited usefulness of ordinal alpha. Educational
and Psychological Measurement, 78, 1056-1071. https://doi.org/10.1177/0013164417727036

Cronbach, L.J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16,
297-334. https://doi.org/10.1007/BF02310555

Cronbach, L.J. (2004). My current thoughts on coefficient alpha and successor procedures. Educa-
tional and Psychological Measurement, 64, 391-418. https://doi.org/10.1177/0013164404266386

Feldt, L. S., Woodruff, D. J., & Salih, F. A. (1987). Statistical inference for coefficient alpha.
Applied Psychological Measurement, 11 93-103. https://doi.org/10.1177/014662168701100107

Kelley, K., & Pornprasertmanit, S. (2016). Confidence intervals for population reliability coeffi-
cients: Evaluation of methods, recommendations, and software for composite measures. Psycho-
logical Methods, 21, 69-92. https://doi.org/10.1037/a0040086.

Ken Kelley (2019). MBESS: The MBESS R Package. R package version 4.6.0. https://CRAN.R-
project.org/package=MBESS

Zumbo, B. D., & Kroc, E. (2019). A measurement is a choice and Stevens’ scales of measurement
do not help make it: A response to Chalmers. Educational and Psychological Measurement, 79,
1184-1197. https://doi.org/10.1177/0013164419844305

Zumbo, B. D., Gadermann, A. M., & Zeisser, C. (2007). Ordinal versions of coefficients al-
pha and theta for Likert rating scales. Journal of Modern Applied Statistical Methods, 6, 21-29.
https://doi.org/10.22237/jmasm/1177992180

See Also

write.result, item.cfa, item.omega, item.reverse, item.scores

Examples

dat <- data.frame(item1 = c(4, 2, 3, 4, 1, 2, 4, 2),
item2 = c(4, 3, 3, 3, 2, 2, 4, 1),
item3 = c(3, 2, 4, 2, 1, 3, 4, 1),
item4 = c(4, 1, 2, 3, 2, 3, 4, 2))

Example 1a: Compute unstandardized coefficient alpha and item statistics
item.alpha(dat)

Example 1b: Alternative specification using the 'data' argument
item.alpha(., data = dat)

Example 2: Compute standardized coefficient alpha and item statistics
item.alpha(dat, std = TRUE)

Example 3: Compute unstandardized coefficient alpha
item.alpha(dat, print = "alpha")

Example 4: Compute item statistics
item.alpha(dat, print = "item")

Example 5: Compute unstandardized coefficient alpha and item statistics while excluding item3

108 item.cfa

item.alpha(dat, exclude = "item3")

Example 6: Compute variance-covariance matrix
dat.cov <- cov(dat)
Compute unstandardized coefficient alpha based on the variance-covariance matrix
item.alpha(dat.cov)

Compute correlation matrix
dat.cor <- cor(dat)
Example 7: Compute standardized coefficient alpha based on the correlation matrix
item.alpha(dat.cor)

Example 8: Compute ordinal coefficient alpha
item.alpha(dat, ordered = TRUE)

Not run:
Example 9a: Write results into a text file
result <- item.alpha(dat, write = "Alpha.txt")

Example 9b: Write results into a Excel file
result <- item.alpha(dat, write = "Alpha.xlsx")

result <- item.alpha(dat, output = FALSE)
write.result(result, "Alpha.xlsx")

End(Not run)

item.cfa Confirmatory Factor Analysis

Description

This function is a wrapper function for conducting confirmatory factor analysis with continuous
and/or ordered-categorical indicators by calling the cfa function in the R package lavaan.

Usage

item.cfa(..., data = NULL, model = NULL, rescov = NULL, hierarch = FALSE,
meanstructure = TRUE, ident = c("marker", "var", "effect"),
parameterization = c("delta", "theta"), ordered = NULL, cluster = NULL,
estimator = c("ML", "MLM", "MLMV", "MLMVS", "MLF", "MLR",

"GLS", "WLS", "DWLS", "WLSM", "WLSMV",
"ULS", "ULSM", "ULSMV", "DLS", "PML"),

missing = c("listwise", "pairwise", "fiml",
"two.stage", "robust.two.stage", "doubly.robust"),

print = c("all", "summary", "coverage", "descript", "fit", "est",
"modind", "resid"),

mod.minval = 6.63, resid.minval = 0.1, digits = 3, p.digits = 3,
as.na = NULL, write = NULL, append = TRUE, check = TRUE, output = TRUE)

item.cfa 109

Arguments

... a matrix or data frame. If model = NULL, confirmatory factor analysis based on
a measurement model with one factor labeled f comprising all variables in the
matrix or data frame is conducted. Note that the cluster variable is excluded from
x when specifying cluster. If model is specified, the matrix or data frame needs
to contain all variables used in the argument model and the cluster variable when
specifying cluster. Alternatively, an expression indicating the variable names
in data e.g., item.cfa(x1, x2, x3, data = dat). Note that the operators .,
+, -, ~, :, ::, and ! can also be used to select variables, see ’Details’ in the
df.subset function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a vector, factor, matrix, array, data
frame, or list for the argument

model a character vector specifying a measurement model with one factor, or a list of
character vectors for specifying a measurement model with more than one factor,
e.g., model = c("x1", "x2", "x3", "x4") for specifying a measurement model
with one factor labeled f comprising four indicators, or model = list(factor1
= c("x1", "x2", "x3", "x4"),factor2 = c("x5", "x6", "x7", "x8")) for spec-
ifying a measurement model with two latent factors labeled factor1 and factor2
each comprising four indicators. Note that the name of each list element is used
to label factors, i.e., all list elements need to be named, otherwise factors are
labeled with "f1", "f2", "f3" and so on.

rescov a character vector or a list of character vectors for specifying residual covari-
ances, e.g. rescov = c("x1", "x2") for specifying a residual covariance be-
tween items x1 and x2, or rescov = list(c("x1", "x2"), c("x3", "x4"))
for specifying residual covariances between items x1 and x2, and items x3 and
x4.

hierarch logical: if TRUE, a second-order factor model is specified given at least three
first-order factors were specified in model. Note that it is not possible to specify
more than one second-order factor.

meanstructure logical: if TRUE (default), intercept/means of observed variables means of latent
variables will be added to the model. Note that meanstructure = FALSE is only
applicable when the missing is listwise, pairwise, or doubly-robust.

ident a character string indicating the method used for identifying and scaling latent
variables, i.e., "marker" for the marker variable method fixing the first factor
loading of each latent variable to 1, "var" for the fixed variance method fixing
the variance of each latent variable to 1, or "effect" for the effects-coding
method using equality constraints so that the average of the factor loading for
each latent variable equals 1. By default, fixed variance method is used when
hierarch = FALSE, whereas marker variable method is used when hierarch =
TRUE.

parameterization

a character string indicating the method used for identifying and scaling latent
variables when indicators are ordered, i.e., "delta" (default) for delta parame-
terization and "theta" for theta parameterization.

110 item.cfa

ordered if NULL (default), all indicators of the measurement model are treated as contin-
uous. If TRUE, all indicators of the measurement model are treated as ordered
(ordinal). Alternatively, a character vector indicating which variables to treat as
ordered (ordinal) variables can be specified.

cluster either a character string indicating the variable name of the cluster variable in
... or data, or a vector representing the nested grouping structure (i.e., group or
cluster variable) for computing cluster-robust standard errors. Note that cluster-
robust standard errors are not available when treating indicators of the measure-
ment model as ordered (ordinal).

estimator a character string indicating the estimator to be used (see ’Details’). By de-
fault, "MLR" is used for CFA models with continuous indicators (i.e., ordered =
FALSE) and "WLSMV" is used for CFA model with ordered-categorical indicators
(i.e., ordered = TRUE).

missing a character string indicating how to deal with missing data, i.e., "listwise"
for listwise deletion, "pairwise" for pairwise deletion, "fiml" for full in-
formation maximum likelihood method, two.stage for two-stage maximum
likelihood method, robust.two.stage for robust two-stage maximum likeli-
hood method, and doubly-robust for doubly-robust method (see ’Details’).
By default, "fiml" is used for CFA models with continuous indicators which
are estimated by using estimator = "MLR", and "pairwise" for CFA models
with ordered-categorical indicators which are estimated by using estimator =
"pairwise" by default.

print a character string or character vector indicating which results to show on the con-
sole, i.e. "all" for all results, "summary" for a summary of the specification of
the estimation method and missing data handling in lavaan, "coverage" for the
variance-covariance coverage of the data, "descript" for descriptive statistics,
"fit" for model fit, "est" for parameter estimates, "modind" for modification
indices and "resid" for the residual correlation matrix and standardized resid-
ual means By default, a summary of the specification, model fit, and parameter
estimates are printed.. By default, a summary of the specification, model fit, and
parameter estimates are printed.

mod.minval numeric value to filter modification indices and only show modifications with a
modification index value equal or higher than this minimum value. By default,
modification indices equal or higher 6.63 are printed. Note that a modification
index value of 6.63 is equivalent to a significance level of α = .01.

resid.minval numeric value indicating the minimum absolute residual correlation coefficients
and standardized means to highlight in boldface. By default, absolute residual
correlation coefficients and standardized means equal or higher 0.1 are high-
lighted. Note that highlighting can be disabled by setting the minimum value to
1.

digits an integer value indicating the number of decimal places to be used for display-
ing results.

p.digits an integer value indicating the number of decimal places to be used for display-
ing the p-value.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x but not to cluster.

item.cfa 111

write a character string naming a file for writing the output into either a text file
with file extension ".txt" (e.g., "Output.txt") or Excel file with file exten-
tion ".xlsx" (e.g., "Output.xlsx"). If the file name does not contain any file
extension, an Excel file will be written.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown.

Details

Estimator The R package lavaan provides seven estimators that affect the estimation, namely
"ML", "GLS", "WLS", "DWLS", "ULS", "DLS", and "PML". All other options for the argument
estimator combine these estimators with various standard error and chi-square test statistic
computation. Note that the estimators also differ in how missing values can be dealt with (e.g.,
listwise deletion, pairwise deletion, or full information maximum likelihood, FIML).

• "ML": Maximum likelihood with conventional standard errors and conventional test statis-
tic. For both complete and incomplete data using pairwise deletion or FIML.

• "MLM": Maximum likelihood parameter estimates with conventional robust standard er-
rors and a Satorra-Bentler scaled test statistic that are robust to non-normality. For com-
plete data only.

• "MLMV": Maximum likelihood parameter estimates with conventional robust standard er-
rors and a mean and a variance adjusted test statistic using a scale-shifted approach that
are robust to non-normality. For complete data only.

• "MLMVS": Maximum likelihood parameter estimates with conventional robust standard
errors and a mean and a variance adjusted test statistic using the Satterthwaite approach
that are robust to non-normality. For complete data only.

• "MLF": Maximum likelihood parameter estimates with standard errors approximated by
first-order derivatives and conventional test statistic. For both complete and incomplete
data using pairwise deletion or FIML.

• "MLR": Maximum likelihood parameter estimates with Huber-White robust standard er-
rors a test statistic which is asymptotically equivalent to the Yuan-Bentler T2* test statis-
tic that are robust to non-normality and non-independence of observed when specifying
a cluster variable using the argument cluster. For both complete and incomplete data
using pairwise deletion or FIML.

• "GLS": Generalized least squares parameter estimates with conventional standard errors
and conventional test statistic that uses a normal-theory based weight matrix. For com-
plete data only. and conventional chi-square test. For both complete and incomplete data.

• "WLS": Weighted least squares parameter estimates (sometimes called ADF estimation)
with conventional standard errors and conventional test statistic that uses a full weight
matrix. For complete data only.

• "DWLS": Diagonally weighted least squares parameter estimates which uses the diagonal
of the weight matrix for estimation with conventional standard errors and conventional
test statistic. For both complete and incomplete data using pairwise deletion.

• "WLSM": Diagonally weighted least squares parameter estimates which uses the diagonal
of the weight matrix for estimation, but uses the full weight matrix for computing the

112 item.cfa

conventional robust standard errors and a Satorra-Bentler scaled test statistic. For both
complete and incomplete data using pairwise deletion.

• "WLSMV": Diagonally weighted least squares parameter estimates which uses the diagonal
of the weight matrix for estimation, but uses the full weight matrix for computing the
conventional robust standard errors and a mean and a variance adjusted test statistic using
a scale-shifted approach. For both complete and incomplete data using pairwise deletion.

• "ULS": Unweighted least squares parameter estimates with conventional standard errors
and conventional test statistic. For both complete and incomplete data using pairwise
deletion.

• "ULSM": Unweighted least squares parameter estimates with conventional robust standard
errors and a Satorra-Bentler scaled test statistic. For both complete and incomplete data
using pairwise deletion.

• "ULSMV": Unweighted least squares parameter estimates with conventional robust stan-
dard errors and a mean and a variance adjusted test statistic using a scale-shifted approach.
For both complete and incomplete data using pairwise deletion.

• "DLS": Distributionally-weighted least squares parameter estimates with conventional
robust standard errors and a Satorra-Bentler scaled test statistic. For complete data only.

• "PML": Pairwise maximum likelihood parameter estimates with Huber-White robust stan-
dard errors and a mean and a variance adjusted test statistic using the Satterthwaite ap-
proach. For both complete and incomplete data using pairwise deletion.

Missing Data The R package lavaan provides six methods for dealing with missing data:

• "listwise": Listwise deletion, i.e., all cases with missing values are removed from the
data before conducting the analysis. This is only valid if the data are missing completely
at random (MCAR).

• "pairwise": Pairwise deletion, i.e., each element of a variance-covariance matrix is
computed using cases that have data needed for estimating that element. This is only
valid if the data are missing completely at random (MCAR).

• "fiml": Full information maximum likelihood (FIML) method, i.e., likelihood is com-
puted case by case using all available data from that case. FIML method is only applicable
for following estimators: "ML", "MLF", and "MLR".

• "two.stage": Two-stage maximum likelihood estimation, i.e., sample statistics is es-
timated using EM algorithm in the first step. Then, these estimated sample statistics
are used as input for a regular analysis. Standard errors and test statistics are adjusted
correctly to reflect the two-step procedure. Two-stage method is only applicable for fol-
lowing estimators: "ML", "MLF", and "MLR".

• "robust.two.stage": Robust two-stage maximum likelihood estimation, i.e., two-stage
maximum likelihood estimation with standard errors and a test statistic that are robust
against non-normality. Robust two-stage method is only applicable for following estima-
tors: "ML", "MLF", and "MLR".

• "doubly.robust": Doubly-robust method only applicable for pairwise maximum likeli-
hood estimation (i.e., estimator = "PML".

Convergence and model idenfitification checks In line with the R package lavaan, this functions
provides several checks for model convergence and model identification:

• Degrees of freedom: An error message is printed if the number of degrees of freedom
is negative, i.e., the model is not identified.

item.cfa 113

• Model convergence: An error message is printed if the optimizer has not converged, i.e.,
results are most likely unreliable.

• Standard errors: An error message is printed if the standard errors could not be com-
puted, i.e., the model might not be identified.

• Variance-covariance matrix of the estimated parameters: A warning message is
printed if the variance-covariance matrix of the estimated parameters is not positive defi-
nite, i.e., the smallest eigenvalue of the matrix is smaller than zero or very close to zero.

• Negative variances of observed variables: A warning message is printed if the es-
timated variances of the observed variables are negative.

• Variance-covariance matrix of observed variables: A warning message is printed
if the estimated variance-covariance matrix of the observed variables is not positive defi-
nite, i.e., the smallest eigenvalue of the matrix is smaller than zero or very close to zero.

• Negative variances of latent variables: A warning message is printed if the esti-
mated variances of the latent variables are negative.

• Variance-covariance matrix of latent variables: A warning message is printed if
the estimated variance-covariance matrix of the latent variables is not positive definite,
i.e., the smallest eigenvalue of the matrix is smaller than zero or very close to zero.

Note that unlike the R package lavaan, the item.cfa function does not provide any results
when the degrees of freedom is negative, the model has not converged, or standard errors
could not be computed.

Model Fit The item.cfa function provides the chi-square test, incremental fit indices (i.e., CFI
and TLI), and absolute fit indices (i.e., RMSEA, and SRMR) to evaluate overall model fit.
However, different versions of the CFI, TLI, and RMSEA are provided depending on the
estimator. Unlike the R package lavaan, the different versions are labeled with Standard,
Scaled, and Robust in the output:

• "Standard": CFI, TLI, and RMSEA without any non-normality corrections. These fit
measures based on the normal theory maximum likelihood test statistic are sensitive to
deviations from multivariate normality of endogenous variables. Simulation studies by
Brosseau-Liard et al. (2012), and Brosseau-Liard and Savalei (2014) showed that the
uncorrected fit indices are affected by non-normality, especially at small and medium
sample sizes (e.g., n < 500).

• "Scaled": Population-corrected robust CFI, TLI, and RMSEA with ad hoc non-normality
corrections that simply replace the maximum likelihood test statistic with a robust test
statistic (e.g., mean-adjusted chi-square). These fit indices change the population value
being estimated depending on the degree of non-normality present in the data. Brosseau-
Liard et al. (2012) demonstrated that the ad hoc corrected RMSEA increasingly accepts
poorly fitting models as non-normality in the data increases, while the effect of the ad hoc
correction on the CFI and TLI is less predictable with non-normality making fit appear
worse, better, or nearly unchanged (Brosseau-Liard & Savalei, 2014).

• "Robust": Sample-corrected robust CFI, TLI, and RMSEA with non-normality correc-
tions based on formula provided by Li and Bentler (2006) and Brosseau-Liard and Savalei
(2014). These fit indices do not change the population value being estimated and can be
interpreted the same way as the uncorrected fit indices when the data would have been
normal.

In conclusion, the use of sample-corrected fit indices (Robust) instead of population-corrected
fit indices (Scaled) is recommended. Note that when sample size is very small (e.g., n < 200),

114 item.cfa

non-normality correction does not appear to adjust fit indices sufficiently to counteract the
effect of non-normality (Brosseau-Liard & Savalei, 2014).

Modification Indices and Residual Correlation Matrix The item.cfa function provides modi-
fication indices and the residual correlation matrix when requested by using the print argu-
ment. Modification indices (aka score tests) are univariate Lagrange Multipliers (LM) repre-
senting a chi-square statistic with a single degree of freedom. LM approximates the amount
by which the chi-square test statistic would decrease if a fixed or constrained parameter is
freely estimated (Kline, 2023). However, (standardized) expected parameter change (EPC)
values should also be inspected since modification indices are sensitive to sample size. EPC
values are an estimate of how much the parameter would be expected to change if it were
freely estimated (Brown, 2023). The residual correlation matrix is computed by separately
converting the sample covariance and model-implied covariance matrices to correlation ma-
trices before calculation differences between observed and predicted covariances (i.e., type =
"cor.bollen"). As a rule of thumb, absolute correlation residuals greater than .10 indicate
possible evidence for poor local fit, whereas smaller correlation residuals than 0.05 indicate
negligible degree of model misfit (Maydeu-Olivares, 2017). There is no reliable connection
between the size of diagnostic statistics (i.e., modification indices and residuals) and the type
or amount of model misspecification since (1) diagnostic statistics are themselves affected by
misspecification, (2) misspecification in one part of the model distorts estimates in other parts
of the model (i.e., error propagation), and (3) equivalent models have identical residuals but
contradict the pattern of causal effects (Kline, 2023). Note that according to Kline’ (2023)
"any report of the results without information about the residuals is deficient" (p. 172).

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data matrix or data frame specified in x

args specification of function arguments

model specified model

model.fit fitted lavaan object (mod.fit)

check results of the convergence and model identification check

result list with result tables, i.e., summary for the specification of the estimation method
and missing data handling in lavaan, "coverage" for the variance-covariance
coverage of the data, "descript" for descriptive statistics, itemfreq for ab-
solute frequencies (freq), percentages (perc), and (v.perc) valid percentages,
"fit" for model fit, "param" for parameter estimates, and "modind" for modi-
fication indices.

Note

The function uses the functions cfa, lavInspect, lavTech, modindices, parameterEstimates,
and standardizedsolution provided in the R package lavaan by Yves Rosseel (2012).

item.cfa 115

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Brosseau-Liard, P. E., Savalei, V., & Li. L. (2012). An investigation of the sample performance
of two nonnormality corrections for RMSEA, Multivariate Behavioral Research, 47, 904-930.
https://doi.org/10.1080/00273171.2014.933697

Brosseau-Liard, P. E., & Savalei, V. (2014) Adjusting incremental fit indices for nonnormality.
Multivariate Behavioral Research, 49, 460-470. https://doi.org/10.1080/00273171.2014.933697

Brown, T. A. (2023). Confirmatory factor analysis. In R. H. Hoyle (Ed.), Handbook of structural
equation modeling (2nd ed.) (pp. 361–379). The Guilford Press.

Kline, R. B. (2023). Principles and practice of structural equation modeling (5th ed.). Guilford
Press.

Li, L., & Bentler, P. M. (2006). Robust statistical tests for evaluating the hypothesis of close fit of
misspecified mean and covariance structural models. UCLA Statistics Preprint #506. University of
California.

Maydeu-Olivares, A. (2017). Assessing the size of model misfit in structural equation models.
Psychometrika, 82(3), 533–558. https://doi.org/10.1007/s11336-016-9552-7

Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical
Software, 48, 1-36. https://doi.org/10.18637/jss.v048.i02

See Also

item.alpha, item.omega, item.scores

Examples

Not run:
Load data set "HolzingerSwineford1939" in the lavaan package
data("HolzingerSwineford1939", package = "lavaan")

#--
Measurement model with one factor

Example 1a: Specification using the argument 'x'
item.cfa(HolzingerSwineford1939[, c("x1", "x2", "x3")])

Example 1b: Alternative specification using the 'data' argument
item.cfa(x1:x3, data = HolzingerSwineford1939)

Example 1c: Alternative specification using the argument 'model'
item.cfa(HolzingerSwineford1939, model = c("x1", "x2", "x3"))

Example 1d: Alternative specification using the 'data' and 'model' argument
item.cfa(., data = HolzingerSwineford1939, model = c("x1", "x2", "x3"))

Example 1e: Alternative specification using the argument 'model'

116 item.cfa

item.cfa(HolzingerSwineford1939, model = list(visual = c("x1", "x2", "x3")))

Example 1f: Alternative specification using the 'data' and 'model' argument
item.cfa(., data = HolzingerSwineford1939, model = list(visual = c("x1", "x2", "x3")))

#--
Measurement model with three factors

Example 2: Specification using the argument 'model'
item.cfa(HolzingerSwineford1939,

model = list(visual = c("x1", "x2", "x3"),
textual = c("x4", "x5", "x6"),
speed = c("x7", "x8", "x9")))

#--
Residual covariances

Example 3a: One residual covariance
item.cfa(HolzingerSwineford1939,

model = list(visual = c("x1", "x2", "x3"),
textual = c("x4", "x5", "x6"),
speed = c("x7", "x8", "x9")),

rescov = c("x1", "x2"))

Example 3b: Two residual covariances
item.cfa(HolzingerSwineford1939,

model = list(visual = c("x1", "x2", "x3"),
textual = c("x4", "x5", "x6"),
speed = c("x7", "x8", "x9")),

rescov = list(c("x1", "x2"), c("x4", "x5")))

#--
Second-order factor model based on three first-order factors

Example 4
item.cfa(HolzingerSwineford1939,

model = list(visual = c("x1", "x2", "x3"),
textual = c("x4", "x5", "x6"),
speed = c("x7", "x8", "x9")),

hierarch = TRUE)

#--
Measurement model with ordered-categorical indicators

Example 5
item.cfa(round(HolzingerSwineford1939[, c("x4", "x5", "x6")]), ordered = TRUE)

#--
Cluster-robust standard errors

Load data set "Demo.twolevel" in the lavaan package
data("Demo.twolevel", package = "lavaan")

item.invar 117

Example 6a: Specification using a variable in 'x'
item.cfa(Demo.twolevel[, c("y4", "y5", "y6", "cluster")], cluster = "cluster")

Example 6b: Specification of the cluster variable in 'cluster'
item.cfa(Demo.twolevel[, c("y4", "y5", "y6")], cluster = Demo.twolevel$cluster)

Example 6c: Alternative specification using the 'data' argument
item.cfa(y4:y6, data = Demo.twolevel, cluster = "cluster")

#--
Print argument

Example 7a: Request all results
item.cfa(HolzingerSwineford1939[, c("x1", "x2", "x3")], print = "all")

Example 7b: Request modification indices with value equal or higher than 5
item.cfa(HolzingerSwineford1939[, c("x1", "x2", "x3", "x4")],

print = "modind", mod.minval = 5)

#--
lavaan summary of the estimated model

Example 8
mod <- item.cfa(HolzingerSwineford1939[, c("x1", "x2", "x3")], output = FALSE)

lavaan::summary(mod$model.fit, standardized = TRUE, fit.measures = TRUE)

#--
Write Results

Example 9a: Write results into a text file
item.cfa(HolzingerSwineford1939[, c("x1", "x2", "x3")], write = "CFA.txt")

Example 9b: Write results into an Excel file
item.cfa(HolzingerSwineford1939[, c("x1", "x2", "x3")], write = "CFA.xlsx")

result <- item.cfa(HolzingerSwineford1939[, c("x1", "x2", "x3")], output = FALSE)
write.result(result, "CFA.xlsx")

End(Not run)

item.invar Between-Group and Longitudinal Measurement Invariance Evalua-
tion

Description

This function is a wrapper function for evaluating configural, metric, scalar, and strict between-
group or longitudinal (partial) measurement invariance using confirmatory factor analysis with con-
tinuous indicators by calling the cfa function in the R package lavaan. By default, the function

118 item.invar

evaluates configural, metric, and scalar measurement invariance by providing a table with model
fit information (i.e., chi-square test, fit indices based on a proper null model, and information cri-
teria) and model comparison (i.e., chi-square difference test, change in fit indices, and change in
information criteria). Additionally, variance-covariance coverage of the data, descriptive statistics,
parameter estimates, modification indices, and residual correlation matrix can be requested by spec-
ifying the argument print.

Usage

item.invar(..., data = NULL, model = NULL, rescov = NULL, rescov.long = TRUE,
group = NULL, long = FALSE, cluster = NULL,
invar = c("config", "metric", "scalar", "strict"),
partial = NULL, ident = c("marker", "var", "effect"),
estimator = c("ML", "MLM", "MLMV", "MLMVS", "MLF", "MLR",

"GLS", "WLS", "DWLS", "WLSM", "WLSMV",
"ULS", "ULSM", "ULSMV", "DLS", "PML"),

missing = c("listwise", "pairwise", "fiml", "two.stage",
"robust.two.stage", "doubly.robust"), null.model = TRUE,

print = c("all", "summary", "coverage", "descript", "fit", "est",
"modind", "resid"),

print.fit = c("all", "standard", "scaled", "robust"),
mod.minval = 6.63, resid.minval = 0.1, digits = 3, p.digits = 3,

as.na = NULL, write = NULL, append = TRUE, check = TRUE, output = TRUE)

Arguments

... a matrix or data frame. If model = NULL, confirmatory factor analysis based on
a measurement model with one factor labeled f comprising all variables in the
matrix or data frame specified in x for evaluating between-group measurement
invariance for the grouping variable specified in the argument group is con-
ducted. Longitudinal measurement invariance evaluation can only be conducted
by specifying the model using the argument model. Note that the cluster vari-
able is excluded from x when specifying cluster. If model is specified, the
matrix or data frame needs to contain all variables used in the argument model
and the cluster variable when specifying the name of the cluster variable in the
argument cluster. Alternatively, an expression indicating the variable names
in data e.g., item.invar(x1, x2, x2, data = dat). Note that the operators .,
+, -, ~, :, ::, and ! can also be used to select variables, see ’Details’ in the
df.subset function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a vector, factor, matrix, array, data
frame, or list for the argument

model a character vector specifying a measurement model with one factor, or a list of
character vectors for specifying a measurement model with more than one fac-
tor for evaluating between-group measurement invariance when long = FALSE
or a list of character vectors for specifying a measurement model with one fac-
tor for each time of measurement for evaluating longitudinal measurement in-
variance when specifying long = TRUE. For example, model = c("x1", "x2",

item.invar 119

"x3", "x4") for specifying a measurement model with one factor labeled f
comprising four indicators, or model = list(factor1 = c("x1", "x2", "x3",
"x4"),factor2 = c("x5", "x6", "x7", "x8")) for specifying a measurement
model with two latent factors labeled factor1 and factor2 each comprising
four indicators for evaluating between-group measurement invariance, or model
= list(time1 = c("ax1", "ax2", "ax3", "ax4"),time2 = c("bx1", "bx2", "bx3",
"bx4"),time3 = c("cx1", "cx2", "cx3", "cx4")) for specifying a longitudi-
nal measurement model with three time points comprising four indicators at
each time point. This function cannot evaluate longitudinal measurement in-
variance for a measurement model with more than one factor. Note that the
name of each list element is used to label factors, i.e., all list elements need to
be named, otherwise factors are labeled with "f1", "f2", "f3" when long =
FALSE and with "t1", "t2", "t3" when long = TRUE and so on.

rescov a character vector or a list of character vectors for specifying residual covari-
ances, e.g., rescov = c("x1", "x2") for specifying a residual covariance be-
tween items x1 and x2, or rescov = list(c("x1", "x2"), c("x3", "x4"))
for specifying residual covariances between items x1 and x2, and items x3 and
x4.

rescov.long logical: if TRUE (default), residual covariances between parallel indicators are
estimated across time when evaluating longitudinal measurement invariance (long
= TRUE), i.e., residual variances of the same indicators that are measured at dif-
ferent time points are correlated across all possible time points. Note that resid-
ual covariances should be estimated even if the parameter estimates are statis-
tically not significant since indicator-specific systematic variance is likely to
correlate with itself over time (Little, 2013, p. 164).

group either a character string indicating the variable name of the grouping variable
in the matrix or data frame specified in x or a vector representing the groups
for conducting multiple-group analysis to evaluate between-group measurement
invariance.

long logical: if TRUE, longitudinal measurement invariance evaluation is conducted.
The longitudinal measurement model is specified by using the argument model.
Note that this function can only evaluate either between-group or longitudinal
measurement invariance, but not both at the same time.

cluster either a character string indicating the variable name of the cluster variable in
... or data, or a vector representing the nested grouping structure (i.e., group or
cluster variable) for computing cluster-robust standard errors. Note that cluster-
robust standard errors are not available when treating indicators of the measure-
ment model as ordered (ordinal).

invar a character string indicating the level of measurement invariance to be eval-
uated, i.e., config to evaluate configural measurement invariance (i.e., same
factor structure across groups or time), metric to evaluate configural and met-
ric measurement invariance (i.e., equal factor loadings across groups or time),
scalar (default) to evaluate configural, metric and scalar measurement invari-
ance (i.e., equal intercepts or thresholds across groups or time), and strict to
evaluate configural, metric, scalar, and strict measurement invariance (i.e., equal
residual variances across groups or time).

120 item.invar

partial a character string or character vector containing the labels of the parameters
which should be free in all groups or across time to specify a partial measure-
ment invariance model. Note that the labels of the parameters need to match the
labels shown in the output, i.e., "L" with a number for factor loadings, "T" with
a number for intercepts, and "E" with a number for factor residual variances.
The number attached to the "L", "T", or "E" label corresponds to the number
of the indicator in the measurement model (e.g., "T3" for the intercept of the
third indicator). When specifying the model using the argument model, how-
ever, the number for the factor loading is a combination of the number of the
factor and the number of the indicator (e.g., "L23" is the third indicator of the
second factor). Note that at least two invariant indicators are needed for a par-
tial measurement invariance model. Otherwise there might be issues with model
non-identification.

ident a character string indicating the method used for identifying and scaling latent
variables, i.e., "marker" for the marker variable method fixing the first factor
loading of each latent variable to 1, "var" (default) for the fixed variance method
fixing the variance of each latent variable to 1, or "effect" for the effects-
coding method using equality constraints so that the average of the factor loading
for each latent variable equals 1.

estimator a character string indicating the estimator to be used (see ’Details’ in the help
page of the item.cfa() function). By default, "MLR" is used for CFA models
with continuous indicators.

missing a character string indicating how to deal with missing data, i.e., "listwise" for
listwise deletion, "pairwise" for pairwise deletion, "fiml" for full information
maximum likelihood method, two.stage for two-stage maximum likelihood
method, robust.two.stage for robust two-stage maximum likelihood method,
and doubly-robust for doubly-robust method (see ’Details’ in the help page of
theitem.cfa() function). By default, "fiml" is used for CFA models with con-
tinuous indicators which are estimated by using estimator = "MLR". However,
argument missing switches to listwise when the data set is complete, i.e., it
is not possible to use FIML in complete data. Note that the robust CFI, TLI, and
RMSEA are different in complete data depending on whether FIML or listwise
deletion was specified when estimating the model in lavaan.

null.model logical: if TRUE (default), the proper null model for computing incremental fit
indices (i.e., CFI and TLI) is used, i.e., means and variances of the indicators
are constrained to be equal across group or time in the null model (Little, 2013,
p. 112).

print a character string or character vector indicating which results to show on the
console, i.e. "all" for all results, "summary" for a summary of the specification
of the estimation method and missing data handling in lavaan, "coverage" for
the variance-covariance coverage of the data, "descript" for descriptive statis-
tics, "fit" for model fit and model comparison, "est" for parameter estimates,
"modind" for modification indices, and "resid" for the residual correlation ma-
trix and standardized residual means. By default, a summary of the specification,
model fit, and parameter estimates are printed. Note that parameter estimates,
modification indices, and residual correlation matrix is only provided for the
model investigating the level of measurement invariance specified in the argu-
ment "invar".

item.invar 121

print.fit a character string or character vector indicating which version of the CFI, TLI,
and RMSEA to show on the console when using a robust estimation method in-
volving a scaling correction factor, i.e., "all" for all versions of the CFI, TLI,
and RMSEA, "standard" (default when estimator is one of "ML", "MLF",
"GLS", "WLS", "DWLS", "ULS", "PML") for fit indices without any non-normality
correction, "scaled" for population-corrected robust fit indices with ad hoc
non-normality correction, and robust (default when estimator is one of "MLM",
"MLMV", "MLMVS", "MLR", "WLSM", "WLSMV", "ULSM", "ULSMV", "DLS") for sample-
corrected robust fit indices based on formula provided by Li and Bentler (2006)
and Brosseau-Liard and Savalei (2014).

mod.minval numeric value to filter modification indices and only show modifications with a
modification index value equal or higher than this minimum value. By default,
modification indices equal or higher 6.63 are printed. Note that a modification
index value of 6.63 is equivalent to a significance level of α = .01.

resid.minval numeric value indicating the minimum absolute residual correlation coefficients
and standardized means to highlight in boldface. By default, absolute residual
correlation coefficients and standardized means equal or higher 0.1 are high-
lighted. Note that highlighting can be disabled by setting the minimum value to
1.

digits an integer value indicating the number of decimal places to be used for display-
ing results. Note that information criteria and chi-square test statistic are printed
with digits minus 1 decimal places.

p.digits an integer value indicating the number of decimal places to be used for display-
ing p-values, covariance coverage (i.e., p.digits - 1), and residual correlation
coefficients.

as.na a numeric vector indicating user-defined missing values, i.e., these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x but not to group or cluster.

write a character string naming a file for writing the output into either a text file
with file extension ".txt" (e.g., "Output.txt") or Excel file with file exten-
tion ".xlsx" (e.g., "Output.xlsx"). If the file name does not contain any file
extension, an Excel file will be written.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked and convergence
and model identification checks are conducted for all estimated models.

output logical: if TRUE (default), output is shown.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data data frame including all variables used in the analysis, i.e., indicators for the
factor, grouping variable and cluster variable

122 item.invar

args specification of function arguments

model list with specified model for the configural, metric, scalar, and strict invariance
model

model.fit list with fitted lavaan object of the configural, metric, scalar, and strict invariance
model

check list with the results of the convergence and model identification check for the
configural, metric, scalar, and strict invariance model

result list with result tables, i.e., summary for the summary of the specification of
the estimation method and missing data handling in lavaan, coverage for the
variance-covariance coverage of the data, descript for descriptive statistics,
fit for a list with model fit based on standard, scaled, and robust fit indices, est
for a list with parameter estimates for the configural, metric, scalar, and strict
invariance model, modind for the list with modification indices for the configu-
ral, metric, scalar, and strict invariance model, score for the list with result of
the score tests for constrained parameters for the configural, metric, scalar, and
strict invariance model, and resid for the list with residual correlation matri-
ces and standardized residual means for the configural, metric, scalar, and strict
invariance model

Note

The function uses the functions cfa, fitmeasures ,lavInspect, lavTech, lavTestLRT, lavTestScore,
modindices, parameterEstimates, parTable, and standardizedsolution provided in the R
package lavaan by Yves Rosseel (2012).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Brosseau-Liard, P. E., & Savalei, V. (2014) Adjusting incremental fit indices for nonnormality.
Multivariate Behavioral Research, 49, 460-470. https://doi.org/10.1080/00273171.2014.933697

Li, L., & Bentler, P. M. (2006). Robust statistical tests for evaluating the hypothesis of close fit of
misspecified mean and covariance structural models. UCLA Statistics Preprint #506. University of
California.

Little, T. D. (2013). Longitudinal structural equation modeling. Guilford Press.

Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical
Software, 48, 1-36. https://doi.org/10.18637/jss.v048.i02

See Also

item.cfa, multilevel.invar, write.result

item.invar 123

Examples

Not run:
Load data set "HolzingerSwineford1939" in the lavaan package
data("HolzingerSwineford1939", package = "lavaan")

#---
Between-Group Measurement Invariance Evaluation

#..................
Measurement model with one factor

Example 1a: Specification of the grouping variable in 'x'
item.invar(HolzingerSwineford1939[, c("x1", "x2", "x3", "x4", "sex")], group = "sex")

Example 1b: Specification of the grouping variable in 'group'
item.invar(HolzingerSwineford1939[, c("x1", "x2", "x3", "x4")],

group = HolzingerSwineford1939$sex)

Example 1c: Alternative specification using the 'data' argument
item.invar(x1:x4, data = HolzingerSwineford1939, group = "sex")

Example 1d: Alternative specification using the argument 'model'
item.invar(HolzingerSwineford1939, model = c("x1", "x2", "x3", "x4"), group = "sex")

Example 1e: Alternative specification using the 'data' and 'model' argument
item.invar(., data = HolzingerSwineford1939, model = c("x1", "x2", "x3", "x4"), group = "sex")

#..................
Measurement model with two factors

item.invar(HolzingerSwineford1939,
model = list(c("x1", "x2", "x3", "x4"),

c("x5", "x6", "x7", "x8")), group = "sex")

#..................
Configural, metric, scalar, and strict measurement invariance

Example 2: Evaluate configural, metric, scalar, and strict measurement invariance
item.invar(HolzingerSwineford1939, model = c("x1", "x2", "x3", "x4"),

group = "sex", invar = "strict")

#..................
Partial measurement invariance

Example 3: Free second factor loading (L2) and third intercept (T3)
item.invar(HolzingerSwineford1939, model = c("x1", "x2", "x3", "x4"),

group = "sex", partial = c("L2", "T3"), print = c("fit", "est"))

#..................
Residual covariances

Example 4a: One residual covariance

124 item.invar

item.invar(HolzingerSwineford1939, model = c("x1", "x2", "x3", "x4"),
rescov = c("x3", "x4"), group = "sex")

Example 4b: Two residual covariances
item.invar(HolzingerSwineford1939, model = c("x1", "x2", "x3", "x4"),

rescov = list(c("x1", "x2"), c("x3", "x4")), group = "sex")

#..................
Scaled test statistic and cluster-robust standard errors

Example 5a: Specify cluster variable using a variable name in 'x'
item.invar(HolzingerSwineford1939, model = c("x1", "x2", "x3", "x4"),

group = "sex", cluster = "agemo")

Example 5b: Specify vector of the cluster variable in the argument 'cluster'
item.invar(HolzingerSwineford1939, model = c("x1", "x2", "x3", "x4"),

group = "sex", cluster = HolzingerSwineford1939$agemo)

#..................
Default Null model

Example 6: Specify default null model for computing incremental fit indices
item.invar(HolzingerSwineford1939, model = c("x1", "x2", "x3", "x4"),

group = "sex", null.model = FALSE)

#..................
Print argument

Example 7a: Request all results
item.invar(HolzingerSwineford1939, model = c("x1", "x2", "x3", "x4"),

group = "sex", print = "all")

Example 7b: Request fit indices with ad hoc non-normality correction
item.invar(HolzingerSwineford1939, model = c("x1", "x2", "x3", "x4"),

group = "sex", print.fit = "scaled")

Example 7c: Request modification indices with value equal or higher than 10
and highlight residual correlations equal or higher than 0.3
item.invar(HolzingerSwineford1939, model = c("x1", "x2", "x3", "x4"),

group = "sex", print = c("modind", "resid"),
mod.minval = 10, resid.minval = 0.3)

#..................
Model syntax and lavaan summary of the estimated model

Example 8
mod <- item.invar(HolzingerSwineford1939, model = c("x1", "x2", "x3", "x4"),

group = "sex", output = FALSE)

lavaan model syntax scalar invariance model
cat(mod$model$scalar)

lavaan summary of the scalar invariance model

item.omega 125

lavaan::summary(mod$model.fit$scalar, standardized = TRUE, fit.measures = TRUE)

#---
Longitudinal Measurement Invariance Evaluation

Example 9: Two time points with three indicators at each time point
item.invar(HolzingerSwineford1939,

model = list(c("x1", "x2", "x3"),
c("x5", "x6", "x7")), long = TRUE)

#--
Write Results

Example 10a: Write results into a text file
item.invar(HolzingerSwineford1939, model = c("x1", "x2", "x3", "x4"),

group = "sex", print = "all", write = "Invariance.txt", output = FALSE)

Example 10b: Write results into an Excel file
item.invar(HolzingerSwineford1939, model = c("x1", "x2", "x3", "x4"),

group = "sex", print = "all", write = "Invariance.xlsx", output = FALSE)

result <- item.invar(HolzingerSwineford1939, model = c("x1", "x2", "x3", "x4"),
group = "sex", print = "all", output = FALSE)

write.result(result, "Invariance.xlsx")

End(Not run)

item.omega Coefficient Omega, Hierarchical Omega, and Categorical Omega

Description

This function computes point estimate and confidence interval for the coefficient omega (McDonald,
1978), hierarchical omega (Kelley & Pornprasertmanit, 2016), and categorical omega (Green &
Yang, 2009) along with standardized factor loadings and omega if item deleted.

Usage

item.omega(..., data = NULL, rescov = NULL, type = c("omega", "hierarch", "categ"),
exclude = NULL, std = FALSE, na.omit = FALSE,
print = c("all", "omega", "item"), digits = 2, conf.level = 0.95,
as.na = NULL, write = NULL, append = TRUE, check = TRUE,
output = TRUE)

Arguments

... a matrix or data frame. Note that at least three items are needed for computing
omega. Alternatively, an expression indicating the variable names in data e.g.,
item.omega(x1, x2, x3, data = dat). Note that the operators ., +, -, ~, :,

126 item.omega

::, and ! can also be used to select variables, see ’Details’ in the df.subset
function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a matrix or data frame for the argu-
ment

rescov a character vector or a list of character vectors for specifying residual covari-
ances when computing coefficient omega, e.g. rescov = c("x1", "x2") for
specifying a residual covariance between items x1 and x2 or rescov = list(c("x1",
"x2"), c("x3", "x4")) for specifying residual covariances between items x1
and x2, and items x3 and x4.

type a character string indicating the type of omega to be computed, i.e., omega (de-
fault) for coefficient omega, hierarch for hierarchical omega, and categ for
categorical omega.

exclude a character vector indicating items to be excluded from the analysis.

std logical: if TRUE, the standardized coefficient omega is computed.

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion); if FALSE, full information maximum likelihood (FIML)
is used for computing coefficient omega or hierarchical omega, while pairwise
deletion is used for computing categorical omega.

print a character vector indicating which results to show, i.e. "all" (default), for all
results "omega" for omega, and "item" for item statistics.

digits an integer value indicating the number of decimal places to be used for display-
ing omega and standardized factor loadings.

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

write a character string naming a file for writing the output into either a text file
with file extension ".txt" (e.g., "Output.txt") or Excel file with file exten-
tion ".xlsx" (e.g., "Output.xlsx"). If the file name does not contain any file
extension, an Excel file will be written.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown.

Details

Omega is computed by estimating a confirmatory factor analysis model using the cfa() function
in the lavaan package by Yves Rosseel (2019). Maximum likelihood ("ML") estimator is used
for computing coefficient omega and hierarchical omega, while diagonally weighted least squares
estimator ("DWLS") is used for computing categorical omega.

Approximate confidence intervals are computed using the procedure by Feldt, Woodruff and Salih
(1987). Note that there are at least 10 other procedures for computing the confidence interval (see
Kelley and Pornprasertmanit, 2016), which are implemented in the ci.reliability() function in
the MBESSS package by Ken Kelley (2019).

item.omega 127

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data data frame used for the current analysis

args specification of function arguments

model.fit fitted lavaan object (mod.fit)

result list with result tables, i.e., alpha for a table with coefficient omega and itemstat
for a table with item statistics

Note

Computation of the hierarchical and categorical omega is based on the ci.reliability() function
in the MBESS package by Ken Kelley (2019).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Feldt, L. S., Woodruff, D. J., & Salih, F. A. (1987). Statistical inference for coefficient alpha.
Applied Psychological Measurement, 11 93-103.

Green, S. B., & Yang, Y. (2009). Reliability of summed item scores using structural equation model-
ing: An alternative to coefficient alpha. Psychometrika, 74, 155-167. https://doi.org/10.1007/s11336-
008-9099-3

Kelley, K., & Pornprasertmanit, S. (2016). Confidence intervals for population reliability coeffi-
cients: Evaluation of methods, recommendations, and software for composite measures. Psycho-
logical Methods, 21, 69-92. http://dx.doi.org/10.1037/a0040086

Ken Kelley (2019). MBESS: The MBESS R Package. R package version 4.6.0. https://CRAN.R-
project.org/package=MBESS

McDonald, R. P. (1978). Generalizability in factorable domains: Domain validity and generaliz-
ability. Educational and Psychological Measurement, 38, 75-79.

See Also

write.result, item.alpha, item.cfa, item.reverse, item.scores

Examples

Not run:
dat <- data.frame(item1 = c(5, 2, 3, 4, 1, 2, 4, 2),

item2 = c(5, 3, 3, 5, 2, 2, 5, 1),
item3 = c(4, 2, 4, 5, 1, 3, 5, 1),
item4 = c(5, 1, 2, 5, 2, 3, 4, 2))

128 item.reverse

Example 1a: Compute unstandardized coefficient omega and item statistics
item.omega(dat)

Example 1b: Alternative specification using the 'data' argument
item.omega(., data = dat)

Example 2: Compute unstandardized coefficient omega with a residual covariance
and item statistics
item.omega(dat, rescov = c("item1", "item2"))

Example 3: Compute unstandardized coefficient omega with residual covariances
and item statistics
item.omega(dat, rescov = list(c("item1", "item2"), c("item1", "item3")))

Example 4: Compute unstandardized hierarchical omega and item statistics
item.omega(dat, type = "hierarch")

Example 5: Compute categorical omega and item statistics
item.omega(dat, type = "categ")

Example 6: Compute standardized coefficient omega and item statistics
item.omega(dat, std = TRUE)

Example 7: Compute unstandardized coefficient omega
item.omega(dat, print = "omega")

Example 8: Compute item statistics
item.omega(dat, print = "item")

Example 9: Compute unstandardized coefficient omega and item statistics while excluding item3
item.omega(dat, exclude = "item3")

Example 10: Summary of the CFA model used to compute coefficient omega
lavaan::summary(item.omega(dat, output = FALSE)$model.fit,

fit.measures = TRUE, standardized = TRUE)

Example 11a: Write results into a text file
item.omega(dat, write = "Omega.txt")

Example 11b: Write results into a Excel file
item.omega(dat, write = "Omega.xlsx")

result <- item.omega(dat, output = FALSE)
write.result(result, "Omega.xlsx")

End(Not run)

item.reverse Reverse Code Scale Item

item.reverse 129

Description

This function reverse codes inverted items, i.e., items that are negatively worded.

Usage

item.reverse(..., data = NULL, min = NULL, max = NULL, keep = NULL, append = TRUE,
name = ".r", as.na = NULL, table = FALSE, check = TRUE)

Arguments

... a numeric vector for reverse coding an item, matrix or data frame for reverse
coding more than one item. Alternatively, an expression indicating the variable
names in data e.g., item.reverse(x1, x2, x3, data = dat). Note that the
operators ., +, -, ~, :, ::, and ! can also be used to select variables, see ’Details’
in the df.subset function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a numeric vector or data frame for
the argument

min an integer indicating the minimum of the item (i.e., lowest possible scale value).

max an integer indicating the maximum of the item (i.e., highest possible scale value).

keep a numeric vector indicating values not to be reverse coded.

append logical: if TRUE (default), recoded variable(s) are appended to the data frame
specified in the argument data.

name a character string or character vector indicating the names of the reverse coded
item. By default, variables are named with the ending ".r" resulting in e.g.
"x1.r" and "x2.r". Variable names can also be specified using a character vec-
tor matching the number of variables specified in ... (e.g., name = c("reverse.x1",
"reverse.x2")).

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

table logical: if TRUE, a cross table item x reverse coded item is printed on the console
if only one variable is specified in

check logical: if TRUE (default), argument specification is checked.

Details

If arguments min and/or max are not specified, empirical minimum and/or maximum is computed
from the data Note, however, that reverse coding might fail if the lowest or highest possible scale
value is not represented in the data That is, it is always preferable to specify the arguments min and
max.

Value

Returns a numeric vector or data frame with the same length or same number of rows as ...
containing the reverse coded scale item(s).

130 item.scores

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
New York: John Wiley & Sons.

See Also

item.alpha, item.omega, rec, item.scores

Examples

dat <- data.frame(item1 = c(1, 5, 3, 1, 4, 4, 1, 5),
item2 = c(1, 1.3, 1.7, 2, 2.7, 3.3, 4.7, 5),
item3 = c(4, 2, 4, 5, 1, 3, 5, -99))

Example 1a: Reverse code item1 and append to 'dat'
dat$item1r <- item.reverse(dat$item1, min = 1, max = 5)

Example 1b: Alternative specification using the 'data' argument
item.reverse(item1, data = dat, min = 1, max = 5)

Example 2: Reverse code item3 while keeping the value -99
dat$item3r <- item.reverse(dat$item3, min = 1, max = 5, keep = -99)

Example 3: Reverse code item3 while keeping the value -99 and check recoding
dat$item3r <- item.reverse(dat$item3, min = 1, max = 5, keep = -99, table = TRUE)

Example 4a: Reverse code item1, item2, and item 3 and attach to 'dat'
dat <- cbind(dat,

item.reverse(dat[, c("item1", "item2", "item3")],
min = 1, max = 5, keep = -99))

Example 4b: Alternative specification using the 'data' argument
item.reverse(item1:item3, data = dat, min = 1, max = 5, keep = -99)

item.scores Compute Scale Scores

Description

This function computes (prorated) scale scores by averaging the (available) items that measure a
single construct by default.

item.scores 131

Usage

item.scores(..., data = NULL, fun = c("mean", "sum", "median", "var", "sd", "min", "max"),
prorated = TRUE, p.avail = NULL, n.avail = NULL, append = TRUE,
name = "scores", as.na = NULL, check = TRUE)

Arguments

... a matrix or data frame with numeric vectors. Alternatively, an expression indi-
cating the variable names in data e.g., item.scores(x1, x2, x3, data = dat).
Note that the operators ., +, -, ~, :, ::, and ! can also be used to select variables,
see ’Details’ in the df.subset function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a matrix or data frame for the argu-
ment

fun a character string indicating the function used to compute scale scores, default:
"mean".

prorated logical: if TRUE (default), prorated scale scores are computed (see ’Details’); if
FALSE, scale scores of only complete cases are computed.

p.avail a numeric value indicating the minimum proportion of available item responses
needed for computing a prorated scale score for each case, e.g. p.avail = 0.8
indicates that scale scores are only computed for cases with at least 80% of item
responses available. By default prorated scale scores are computed for all cases
with at least one item response. Note that either argument p.avail or n.avail
is used to specify the proration criterion.

n.avail an integer indicating the minimum number of available item responses needed
for computing a prorated scale score for each case, e.g. n.avail = 2 indicates
that scale scores are only computed for cases with item responses on at least 2
items. By default prorated scale scores are computed for all cases with at least
one item response. Note that either argument p.avail or n.avail is used to
specify the proration criterion.

append logical: if TRUE (default), a variable with scale scores is appended to the data
frame specified in the argument data.

name a character string indicating the names of the variable appended to the data frame
specified in the arguement data when append = TRUE. By default, the variable
is named scores.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE (default), argument specification is checked.

Details

Prorated mean scale scores are computed by averaging the available items, e.g., if a participant
answers 4 out of 8 items, the prorated scale score is the average of the 4 responses. Averaging the
available items is equivalent to substituting the mean of a participant’s own observed items for each
of the participant’s missing items, i.e., person mean imputation (Mazza, Enders & Ruehlman, 2015)
or ipsative mean imputation (Schafer & Graham, 2002).

132 item.scores

Proration may be reasonable when (1) a relatively high proportion of the items (e.g., 0.8) and never
fewer than half are used to form the scale score, (2) means of the items comprising a scale are similar
and (3) the item-total correlations are similar (Enders, 2010; Graham, 2009; Graham, 2012). Results
of simulation studies indicate that proration is prone to substantial bias when either the item means
or the inter-item correlation vary (Lee, Bartholow, McCarthy, Pederson & Sher, 2014; Mazza et al.,
2015).

Value

Returns a numeric vector with the same length as nrow(x) containing (prorated) scale scores.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford Press.

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of
Psychology, 60, 549-576. https://doi.org/10.1146/annurev.psych.58.110405.085530

Graham, J. W. (2012). Missing data: Analysis and design. New York, NY: Springer

Lee, M. R., Bartholow, B. D., McCarhy, D. M., Pederson, S. L., & Sher, K. J. (2014). Two alter-
native approaches to conventional person-mean imputation scoring of the self-rating of the effects of
alcohol scale (SRE). Psychology of Addictive Behaviors, 29, 231-236. https://doi.org/10.1037/adb0000015

Mazza, G. L., Enders, C. G., & Ruehlman, L. S. (2015). Addressing item-level missing data: A
comparison of proration and full information maximum likelihood estimation. Multivariate Behav-
ioral Research, 50, 504-519. https://doi.org/10.1080/00273171.2015.1068157

Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological
Methods, 7, 147-177.’ https://doi.org/10.1037/1082-989X.7.2.147

See Also

cluster.scores, item.alpha, item.cfa, item.omega,

Examples

dat <- data.frame(item1 = c(3, 2, 4, 1, 5, 1, 3, NA),
item2 = c(2, 2, NA, 2, 4, 2, NA, 1),
item3 = c(1, 1, 2, 2, 4, 3, NA, NA),
item4 = c(4, 2, 4, 4, NA, 2, NA, NA),
item5 = c(3, NA, NA, 2, 4, 3, NA, 3))

Example 1a: Prorated mean scale scores
item.scores(dat)

Example 1b: Alternative specification using the 'data' argument
item.scores(., data = dat)

Example 2: Prorated standard deviation scale scores

lagged 133

item.scores(dat, fun = "sd")

Example 3: Sum scale scores without proration
item.scores(dat, fun = "sum", prorated = FALSE)

Example 4: Prorated mean scale scores,
minimum proportion of available item responses = 0.8
item.scores(dat, p.avail = 0.8)

Example 5: Prorated mean scale scores,
minimum number of available item responses = 3
item.scores(dat, n.avail = 3)

lagged Create Lagged Variables

Description

This function computes lagged values of variables by a specified number of observations. By de-
fault, the function returns lag-1 values of the vector, matrix, or data frame specified in the first
argument.

Usage

lagged(..., data = NULL, id = NULL, obs = NULL, day = NULL, lag = 1, time = NULL,
units = c("secs", "mins", "hours", "days", "weeks"), append = TRUE,
name = ".lag", name.td = ".td", as.na = NULL, check = TRUE)

Arguments

... a vector for computing a lagged values for a variable, matrix or data frame for
computing lagged values for more than one variable. Note that the subject ID
variable (id), observation number variable (obs), day number variable (day),
and the date and time variable (time) are excluded from ... when specifying
the argument the using the names of the variables. Alternatively, an expression
indicating the variable names in data. Note that the operators ., +, -, ~, :,
::, and ! can also be used to select variables, see ’Details’ in the df.subset
function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a vector, matrix, or data frame for the
argument

id either a character string indicating the variable name of the subject ID variable
in ’...’ or a vector representing the subject IDs, see ’Details’.

obs either a character string indicating the variable name of the observation number
variable in ’...’ or a vector representing the observations. Note that duplicaed
values within the same subject ID are not allowed, see ’Details’.

134 lagged

day either a character string indicating the variable name of the day number variable
in ’...’ or a vector representing the days, see ’Details’.

lag a numeric value specifying the lag, e.g. lag = 1 (default) returns lag-1 values.
time a variable of class POSIXct or POSIXlt representing the date and time of the

observation used to compute time differences beween observations.
units a character string indicating the units in which the time difference is repre-

sented, i.e., "secs" for seconds, "mins" (default) for minutes, "hours" for
hours, "days" for days, and "weeks" for weeks.

append logical: if TRUE (default), lagged variable(s) are appended to the data frame
specified in the argument data.

name a character string or character vector indicating the names of the lagged vari-
ables. By default, lagged variables are named with the ending ".lag" resulting
in e.g. "x1.lag" and "x2.lag" when specifying two variables. Variable names
can also be specified using a character vector matching the number of variables
specified in ..., e.g. name = c("lag.x1", "lag.x2")).

name.td a character string or character vector indicating the names of the time difference
variables when specifying a date and time variables for the argument time. By
default, time difference variables are named with the ending ".td" resulting
in e.g. "x1.td" and "x2.td" when specifying two variables. Variable names
can also be specified using a character vector matching the number of variables
specified in ..., e.g. name = c("td.x1", "td.x2")).

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to the argument x, but not to cluster.

check logical: if TRUE (default), argument specification is checked.

Details

The function is used to create lagged verions of the variable(s) specified via the ... argument:

If the id argument is not specified i.e., id = NULL, all observations are assumed to come
from the same subject. If the dataset includes multiple subjects, then this variable needs to be
specified so that observations are not lagged across subjects

Optional argument idOptional argument day If the day argument is not specified i.e., day = NULL,
values of the variable to be lagged are allowed to be lagged across days in case there are mul-
tiple observation days.

Optional argument obs If the obs argument is not specified i.e., obs = NULL, consecutive ob-
servations from the same subjects are assumed to be one lag apart.

Value

Returns a numeric vector or data frame with the same length or same number of rows as ...
containing the lagged variable(s).

Note

This function is a based on the lagvar() function in the esmpack package by Wolfgang Viecht-
bauer and Mihail Constantin (2023).

lagged 135

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Viechtbauer W, Constantin M (2023). esmpack: Functions that facilitate preparation and manage-
ment of ESM/EMA data. R package version 0.1-20.

See Also

center, rec, coding, item.reverse.

Examples

dat <- data.frame(subject = rep(1:2, each = 6),
day = rep(1:2, each = 3),
obs = rep(1:6, times = 2),
time = as.POSIXct(c("2024-01-01 09:01:00", "2024-01-01 12:05:00",

"2024-01-01 15:14:00", "2024-01-02 09:03:00",
"2024-01-02 12:21:00", "2024-01-02 15:03:00",
"2024-01-01 09:02:00", "2024-01-01 12:09:00",
"2024-01-01 15:06:00", "2024-01-02 09:02:00",
"2024-01-02 12:15:00", "2024-01-02 15:06:00")),

pos = c(6, 7, 5, 8, NA, 7, 4, NA, 5, 4, 5, 3),
neg = c(2, 3, 2, 5, 3, 4, 6, 4, 6, 4, NA, 8))

Example 1a: Lagged variable for 'pos'
lagged(dat$pos, id = dat$subject, day = dat$day)

Example 1b: Alternative specification
lagged(dat[, c("pos", "subject", "day")], id = "subject", day = "day")

Example 1c: Alternative specification using the 'data' argument
lagged(pos, data = dat, id = "subject", day = "day")

Example 2a: Lagged variable for 'pos' and 'neg'
lagged(dat[, c("pos", "neg")], id = dat$subject, day = dat$day)

Example 2b: Alternative specification using the 'data' argument
lagged(pos, neg, data = dat, id = "subject", day = "day")

Example 3: Lag-2 variables for 'pos' and 'neg'
lagged(pos, neg, data = dat, id = "subject", day = "day", lag = 2)

Example 4: Lagged variable and time difference variable
lagged(pos, neg, data = dat, id = "subject", day = "day", time = "time")

Example 5: Lagged variables and time difference variables,
name variables
lagged(pos, neg, data = dat, id = "subject", day = "day", time = "time",

name = c("p.lag1", "n.lag1"), name.td = c("p.diff", "n.diff"))

136 libraries

Example 6: NA observations excluded from the data frame
dat.excl <- dat[!is.na(dat$pos),]

Number of observation not taken into account, i.e.,
- observation 4 used as lagged value for observation 6 for subject 1
- observation 1 used as lagged value for observation 3 for subject 2
lagged(pos, data = dat.excl, id = "subject", day = "day")

Number of observation taken into account by specifying the 'ob' argument
lagged(pos, data = dat.excl, id = "subject", day = "day", obs = "obs")

libraries Load and Attach Multiple Packages

Description

This function loads and attaches multiple add-on packages at once.

Usage

libraries(..., install = FALSE, quiet = TRUE, check = TRUE, output = TRUE)

Arguments

... the names of the packages to be loaded, given as names (e.g., misty, lavaan,
lme4), or literal character strings (e.g., "misty", "lavaan", "lme4"), or char-
acter vector (e.g., c("misty", "lavaan", "lme4")).

install logical: if TRUE, missing packages and dependencies are installed.

quiet logical: if TRUE (default), startup messages when loading package are disabled.

check logical: if TRUE, argument specification is checked.

output logical: logical: if TRUE, output is shown on the console.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

library, require

mplus 137

Examples

Not run:
Example 1: Load packages using the names of the packages
misty::libraries(misty, lme4, lmerTest)

Example 2: Load packages using literal character strings
misty::libraries("misty", "lme4", "lmerTest")

Example 3: Load packages using a character vector
misty::libraries(c("misty", "lme4", "lmerTest"))

Example 4: Check packages, i.e., TRUE = all depends/imports/suggests installed
misty::libraries(misty, lme4, lmerTest, output = FALSE)$result$restab

Example 5: Depends, FALSE = not installed, TRUE = installed
misty::libraries(misty, lme4, lmerTest, output = FALSE)$result$depends

Example 6: Imports, FALSE = not installed, TRUE = installed
misty::libraries(misty, lme4, lmerTest, output = FALSE)$result$imports

Example 6: Suggests, FALSE = not installed, TRUE = installed
misty::libraries(misty, lme4, lmerTest, output = FALSE)$result$suggests

End(Not run)

mplus Create, Run, and Print Mplus Models

Description

This wrapper function creates a Mplus input file, runs the input file by using the mplus.run()
function, and prints the Mplus output file by using the mplus.print() function.

Usage

mplus(x, file = "Mplus_Input.inp", replace.inp = TRUE, data = NULL, mplus.run = TRUE,
show.out = FALSE, replace.out = c("always", "never", "modified"),
print = c("all", "input", "result"),
input = c("all", "default", "data", "variable", "define", "analysis",

"model", "montecarlo", "mod.pop", "mod.cov", "mod.miss",
"message"),

result = c("all", "default", "summary.analysis.short",
"summary.data.short", "random.starts", "summary.fit",
"mod.est", "fit", "class.count", "classif", "mod.result",
"total.indirect"),

exclude = NULL, variable = FALSE, not.input = TRUE, not.result = TRUE,
write = NULL, append = TRUE, check = TRUE, output = TRUE)

138 mplus

Arguments

x a character string containing the Mplus input text.

file a character string indicating the name of the Mplus input file with or without the
file extension .inp, e.g., "Mplus_Input.inp" or "Mplus_Input".

replace.inp logical: if TRUE (default), an existing input file will be replaced.

data a matrix or data frame from which the variables names for the subsection NAMES
are extracted when using the ... specification in the VARIABLE section.

mplus.run logical: if TRUE, the input file specified in the argument file containing the
input text specified in the argument x is run using the mplus.run() function.

show.out logical: if TRUE, estimation output (TECH8) is show on the R console. Note that
if run within Rgui, output will display within R, but if run via Rterm, a separate
window will appear during estimation.

replace.out a character string for specifying three settings: "always" (default), which runs
all models, regardless of whether an output file for the model exists, "never",
which does not run any model that has an existing output file, and "modified",
which only runs a model if the modified date for the input file is more recent
than the output file modified date.

print a character vector indicating which results to show, i.e. "all" (default) for all
results "input" for input command sections, and "result" for result sections.

input a character vector specifiying Mplus input command sections included in the
output (see ’Details’ in the mplus.print function).

result a character vector specifiying Mplus result sections included in the output (see
’Details’ in the mplus.print function).

exclude a character vector specifiying Mplus input command or result sections excluded
from the output (see ’Details’ in the mplus.print function).

variable logical: if TRUE, names of the variables in the data set (NAMES ARE) specified in
the VARIABLE: command section are shown. By default, names of the variables
in the data set are excluded from the output unless all variables are used in the
analysis (i.e., no USEVARIABLES option specified in the Mplus input file).

not.input logical: if TRUE (default), character vector indicating the input commands not
requested are shown on the console.

not.result logical: if TRUE (default), character vector indicating the result sections not re-
quested are shown on the console.

write a character string naming a file for writing the output into a text file with file
extension ".txt" (e.g., "Output.txt").

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console by using the function
mplus.print().

mplus 139

Details

The NAMES Option in the VARIABLE section used to assign names to the variables in the data set
can be specified by using ... and the data argument:

• Write Mplus Data File: In the first step, the Mplus data file is written by using the
write.mplus() function, e.g. write.mplus(ex3_1, file = "ex3_1.dat").

• Specify Mplus Input: In the second step, the Mplus input is specified as a character
string. The NAMES option can be specified by using ..., e.g., input <- 'DATA: FILE IS
ex3_1.dat;\nVARIABLE: ...\nMODEL: y1 ON x1 x3;'.

• Run Mplus Input: In the third step, the Mplus input is run by using the mplus() func-
tion. Note that the argument data needs to be specified given that the NAMES option was
specified by using ... in the previous step, e.g., mplus(input, file = "ex3_1.inp",
data = ex3_1)

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

x a character vector containing the Mplus input text

args specification of function arguments

input list with input command sections

write write command sections

result list with input command sections (input) and result sections (input)

Author(s)

Takuya Yanagida

References

Muthen, L. K., & Muthen, B. O. (1998-2017). Mplus User’s Guide (8th ed.). Muthen & Muthen.

See Also

read.mplus, write.mplus, mplus.print, mplus.update, mplus.run, mplus.lca

Examples

Not run:
#--
Example 1: Write data, specify input, and run input

Write Mplus Data File
write.mplus(ex3_1, file = "ex3_1.dat")

Specify Mplus input, specify NAMES option

140 mplus.lca

input1 <- '
DATA: FILE IS ex3_1.dat;
VARIABLE: NAMES ARE y1 x1 x3;
MODEL: y1 ON x1 x3;
OUTPUT: SAMPSTAT;
'

Run Mplus input
mplus(input1, file = "ex3_1.inp")

#--
Example 2: Alterantive specification using ... and the data argument

Specify Mplus input, specify NAMES option by using ...
input2 <- '
DATA: FILE IS ex3_1.dat;
VARIABLE: ...
MODEL: y1 ON x1 x3;
OUTPUT: SAMPSTAT;
'

Run Mplus input
mplus(input2, file = "ex3_1.inp", data = ex3_1)

End(Not run)

mplus.lca Mplus Model Specification for Latent Class Analysis

Description

This function writes Mplus input files for conducting latent class analysis (LCA) for continuous,
count, ordered categorical, and unordered categorical variables. LCA with continuous indicator
variables are based on six different variance-covariance structures, while LCA for all other variable
types assume local independence. By default, the function conducts LCA with continuous variables
and creates folders in the current working directory for each of the six sets of analysis, writes Mplus
input files for conducting LCA with k = 1 to k = 6 classes into these folders, and writes the matrix
or data frame specified in x into a Mplus data file in the current working directory. Optionally, all
models can be estimated by setting the argument run.mplus to TRUE.

Usage

mplus.lca(x, ind = NULL,
type = c("continuous", "count", "categorical", "nominal"), cluster = NULL,

folder = c("A_Invariant-Theta_Diagonal-Sigma",
"B_Varying-Theta_Diagonal-Sigma",
"C_Invariant-Theta_Invariant-Unrestrictred-Sigma",
"D_Invariant-Theta_Varying-Unrestricted-Sigma",
"E_Varying-Theta_Invariant-Unrestricted-Sigma",

mplus.lca 141

"F_Varying-Theta_Varying-Unrestricted-Sigma"),
file = "Data_LCA.dat", write = c("all", "folder", "data", "input"),
useobservations = NULL, missing = -99, classes = 6, estimator = "MLR",
starts = c(100, 50), stiterations = 10, lrtbootstrap = 1000,
lrtstarts = c(0, 0, 100, 50), processors = c(8, 8),

output = c("all", "SVALUES", "CINTERVAL", "TECH7", "TECH8", "TECH11", "TECH14"),
replace.inp = FALSE, run.mplus = FALSE, Mplus = "Mplus",
replace.out = c("always", "never", "modified"), check = TRUE)

Arguments

x a matrix or data frame. Note that all variable names must be no longer than 8
character.

ind a character vector indicating the variables names of the latent class indicators in
x.

type a character string indicating the variable type of the latent class indicators, i.e.,
"continuous" (default) for continuous variables, "count" for count variables,
"categorical" for binary or ordered categorical variables, and "nominal" for
unordered categorical variables. Note that it is not possible to mix different
variable types in the analysis.

cluster a character string indicating the cluster variable in the matrix or data frame spec-
ified in x representing the nested grouping structure for computing cluster-robust
standard errors. Note that specifying a cluster variables does not have any effect
on the information criteria, but on the Vuong-Lo-Mendell-Rubin likelihood ratio
test of model fit.

folder a character vector with six character strings for specifying the names of the six
folder representing different variance-covariance structures for conducting LCA
with continuous indicator variables. There is only one folder for LCA with
all other variable types which is called "LCA_1-x_Classes" with x being the
maximum number of classes specified in the argument classes.

file a character string naming the Mplus data file with or without the file extension
’.dat’, e.g., "Data_LCA.dat" (default) or "Data_LCA".

write a character string or character vector indicating whether to create the six folders
specified in the argument folder ("folder"), to write the matrix or data frame
specified in x into a Mplus data file ("data"), and write the Mplus input files
into the six folders specified in the argument folder ("input"). By default,
the function creates the folders, writes the Mplus data file, and writes the Mplus
input files into the folders.

useobservations

a character string indicating the conditional statement to select observations.
missing a numeric value or character string representing missing values (NA) in the Mplus

data set. This values or character string will be specified in the Mplus input file
as MISSING IS ALL(missing). By default, -99 is used to represent missing
values.

classes an integer value specifying the maximum number of classes for the latent class
analysis. By default, LCA with a maximum of 6 classes isspecified (i.e., k = 1
to k = 6).

142 mplus.lca

estimator a character string for specifying the ESTIMATOR option in Mplus. By default, the
estimator "MLR" is used.

starts a vector with two integer values for specifying the STARTS option in Mplus. The
first number represents the number of random sets of starting values to generate
in the initial stage and the second number represents the optimizations to use in
the final stage. By default, 500 random sets of starting values are generated and
100 optimizations are carried out in the final stage.

stiterations an integer value specifying the STITERATIONS option in Mplus. The numeric
value represents the maximum number of iterations allowed in the initial stage.
By default, 50 iterations are requested.

lrtbootstrap an integer value for specifying the LRTBOOTSTRAP option in Mplus when request-
ing a parametric bootstrapped likelihood ratio test (i.e., output = "TECH14").
The value represents the number of bootstrap draws to be used in estimating the
p-value of the parametric bootstrapped likelihood ratio test. By default, 1000
bootstrap draws are requested.

lrtstarts a vector with four integer values for specifying the LRTSTARTS option in Mplus
when requesting a parametric bootstrapped likelihood ratio test (i.e., output =
"TECH14"). The values specify the number of starting values to use in the initial
stage and the number of optimizations to use in the final stage for the k - 1 and
k classes model when the data generated by bootstrap draws are analyzed. By
default, 0 random sets of starting values in the initial stage and 0 optimizations
in the final stage are used for the k - 1 classes model and 100 random sets of
starting values in the initial stage and 50 optimizations in the final stage are used
for the k class model.

processors a vector of two integer values for specifying the PROCESSORS option in Mplus.
The values specifies the number of processors and threads to be used for par-
allel computing to increase computational speed. By default, 8 processors and
threads are used for parallel computing.

output a character string or character vector specifying the TECH options in the OUTPUT
section in Mplus, i.e., SVALUES to request input statements that contain param-
eter estimates from the analysis, CINTERVAL to request confidence intervals,
TECH7 to request sample statistics for each class using raw data weighted by
the estimated posterior probabilities for each class, TECH8 to request the op-
timization history in estimating the model, TECH11 to request the Lo-Mendell-
Rubin likelihood ratio test of model fit, and TECH14 to request a parametric boot-
strapped likelihood ratio test. By default, SVALUES and TECH11 are requested.
Note that TECH11 is only available for the MLR estimator.

replace.inp logical: if TRUE, all existing input files in the folder specified in the argument
folder are replaced.

run.mplus logical: if TRUE, all models in the folders specified in the argument folder are
estimated by using the run.mplus function in the R package misty.

Mplus a character string for specifying the name or path of the Mplus executable to be
used for running models. This covers situations where Mplus is not in the sys-
tem’s path, or where one wants to test different versions of the Mplus program.
Note that there is no need to specify this argument for most users since it has
intelligent defaults.

mplus.lca 143

replace.out a character string for specifying three settings, i.e., "always" to run all models
regardless of whether an output file for the model exists, "never" (default) to
not run any model that has an existing output file, and "modified" to only runs
a model if the modified date for the input file is more recent than the output file
modified date.

check logical: if TRUE (default), argument specification is checked.

Details

Latent class analysis (LCA) is a model-based clustering and classification method used to iden-
tify qualitatively different classes of observations which are unknown and must be inferred from the
data. LCA can accommodate continuous, count, binary, ordered categorical, and unordered categor-
ical indicators. LCA with continuous indicator variables are also known as latent profile analysis
(LPA). In LPA, the within-profile variance-covariance structures represent different assumptions
regarding the variance and covariance of the indicator variables both within and between latent
profiles. As the best within-profile variance-covariance structure is not known a priori, all of the
different structures must be investigated to identify the best model (Masyn, 2013). This function
specifies six different variance-covariance structures labeled A to F (see Table 1 in Patterer et al,
2023):

Model A The within-profile variance is constrained to be profile-invariant and covariances are con-
strained to be 0 in all profiles (i.e., equal variances across profiles and no covariances among
indicator variables). This is the default setting in Mplus.

Model B The within-profile variance is profile-varying and covariances are constrained to be 0 in
all profiles (i.e., unequal variances across profiles and no covariances among indicator vari-
ables).

Model C The within-profile variance is constrained to be profile-invariant and covariances are con-
strained to be equal in all profiles (i.e., equal variances and covariances across profiles).

Model D The within-profile variance is constrained to be profile-invariant and covariances are
profile-varying (i.e., equal variances across profiles and unequal covariances across profiles).

Model E The within-profile variances are profile-varying and covariances are constrained to be
equal in all profiles (i.e., unequal variances across profiles and equal covariances across pro-
files).

Model F The within-class variance and covariances are both profile-varying (i.e., unequal vari-
ances and covariances across profiles).

Value

Returns an object of class misty.object, which is a list with following entries:

call function call
type type of analysis
x matrix or data frame specified in the argument x
args specification of function arguments
result list with six entries for each of the variance-covariance structures and Mplus

inputs based on different number of profiles in case of continuous indicators
or list of Mplus inputs based on different number of classes in case of count,
ordered or unordered categorical indicators.

144 mplus.print

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Masyn, K. E. (2013). Latent class analysis and finite mixture modeling. In T. D. Little (Ed.), The
Oxford handbook of quantitative methods: Statistical analysis (pp. 551–611). Oxford University
Press.

Muthen, L. K., & Muthen, B. O. (1998-2017). Mplus User’s Guide (8th ed.). Muthen & Muthen.

Patterer, A. S., Yanagida, T., Kühnel, J., & Korunka, C. (2023). Daily receiving and providing of
social support at work: Identifying support exchange patterns in hierarchical data. Journal of Work
and Organizational Psychology, 32(4), 489-505. https://doi.org/10.1080/1359432X.2023.2177537

See Also

read.mplus, write.mplus, mplus.print, mplus, mplus.update, mplus.run,

Examples

Not run:
Load data set "HolzingerSwineford1939" in the lavaan package
data("HolzingerSwineford1939", package = "lavaan")

#---
Example 1: LCA with k = 1 to k = 8 profiles, continuous indicators
Input statements that contain parameter estimates
Vuong-Lo-Mendell-Rubin LRT and bootstrapped LRT
mplus.lca(HolzingerSwineford1939, ind = c("x1", "x2", "x3", "x4"),

classes = 8, output = c("SVALUES", "TECH11", "TECH14"))

#---
Example 22: LCA with k = 1 to k = 6 profiles, ordered categorical indicators
Select observations with ageyr <= 13
Estimate all models in Mplus
mplus.lca(round(HolzingerSwineford1939[, -5]), ind = c("x1", "x2", "x3", "x4"),

type = "categorical", useobservations = "ageyr <= 13",
run.mplus = TRUE)

End(Not run)

mplus.print Print Mplus Output

mplus.print 145

Description

This function prints the input command sections and the result sections of a Mplus output file
(.out) on the R console. By default, the function prints (1) the input command section excluding
the TITLE section, the OUTPUT section, and the names of the variables in the data set (NAMES option),
and (2) selected result sections, e.g., short Summary of Analysis, short Summary of Data, Model
Fit Information, and Model Results.

Usage

mplus.print(x, print = c("all", "input", "result"),
input = c("all", "default", "data", "variable", "define",

"analysis", "model", "montecarlo", "mod.pop", "mod.cov",
"mod.miss", "message"),

result = c("all", "default", "summary.analysis.short",
"summary.data.short", "random.starts", "summary.fit",
"mod.est", "fit", "class.count", "classif",
"mod.result", "total.indirect"),

exclude = NULL, variable = FALSE, not.input = TRUE, not.result = TRUE,
write = NULL, append = TRUE, check = TRUE, output = TRUE)

Arguments

x a character string indicating the name of the Mplus output file with or without
the file extension .out, e.g., "Mplus_Output.out" or "Mplus_Output". Alter-
natively, a misty.object of type mplus can be specified, i.e., result object of
the mplus.print(), mplus() or mplus.update() function.

print a character vector indicating which results to show, i.e. "all" (default) for all
results "input" for input command sections, and "result" for result sections.

input a character vector specifiying Mplus input command sections
result a character vector specifiying Mplus result sections included in the output (see

’Details’).
exclude a character vector specifiying Mplus input command or result sections excluded

from the output (see ’Details’).
variable logical: if TRUE, names of the variables in the data set (NAMES option) specified in

the VARIABLE: command section are shown. By default, names of the variables
in the data set are excluded from the output unless all variables are used in the
analysis (i.e., no USEVARIABLES option specified in the Mplus input file).

not.input logical: if TRUE (default), character vector indicating the input commands not
requested are shown on the console.

not.result logical: if TRUE (default), character vector indicating the result sections not re-
quested are shown on the console.

write a character string naming a file for writing the output into a text file with file
extension ".txt" (e.g., "Output.txt").

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.
output logical: if TRUE (default), output is shown on the console.

146 mplus.print

Details

Input Command Sections Following input command sections can be selected by using the input
argument or excluded by using the exclude argument:

• "title" for the TITLE command used to provide a title for the analysis.
• "data" for the DATA command used to provide information about the data set to be ana-

lyzed.
• "data.imp" for the DATA IMPUTATION command used to create a set of imputed data sets

using multiple imputation methodology.
• "data.wl" for the DATA WIDETOLONG command used to rearrange data from a multivariate

wide format to a univariate long format.
• "data.lw" for the DATA LONGTOWIDE command used to rearrange a univariate long format

to a multivariate wide format.
• "data.tp" for the DATA TWOPART command used to create a binary and a continuous

variable from a continuous variable with a floor effect for use in two-part moding.
• "data.miss" for the DATA MISSING command used to create a set of binary variables that

are indicators of missing data or dropout for another set of variables.
• "data.surv" for the DATA SURVIVAL command used to create variables for discrete-time

survival modeling.
• "data.coh" for the DATA COHORT command used to rearrange longitudinal data from a

format where time points represent measurement occasions to a format where time points
represent age or another time-related variable,

• "variable" for the VARIABLE command used to provide information about the variables
in the data set to be analyzed.

• "define" for the DEFINE command used to transform existing variables and to create
new variables.

• "analysis" for the ANALYSIS command used to describe the technical details for the
analysis.

• "model" MODEL for the command used to destribe the model to be estimated.
• "mod.ind" for the MODEL INDIRECT command used to request indirect and directd effects

and their standard errors.
• "mod.test" for the MODEL TEST command used to test restrictions on the parameters in

the MODEL and MODEL CONSTRAINT commands using the Wald chi-square test.
• "mod.prior" for the MODEL PRIORS command used with ESTIMATOR IS BAYES to specify

the prior distribution for each parameter.
• "montecarlo" for the MONTECARLO command used to set up and carry out a Monte Carlo

simulation study.
• "mod.pop" for the MODEL POPULATION command used to provivde the population param-

eter values to be used in data generation using the options of the MODEL command.
• "mod.cov" for the MODEL COVERAGE used to provide the population parameter values to

be used for computing coverage.
• "mod.miss" for the MODEL MISSING command used to provide information about the pop-

ulation parameter values for the missing data model to be used in the generation of data.
• "output" for the for the OUTPUT command used to request additional output beyond that

included as the default.

mplus.print 147

• "savedata" for the SAVEDATA command used to save the analysis data and/or a variety
of model results in an ASCII file for future use.

• "plot" for the PLOT command used to requested graphical displays of observed data and
analysis results.

• "message" for warning and error messsages that have been generated by the program
after the input command sections.

Note that all input command sections are requested by specifying input = "all". The input
argument is also used to select one (e.g., input = "model") or more than one input command
sections (e.g., input = c("analysis", "model")), or to request input command sections in
addition to the default setting (e.g., input = c("default", "output")). The exclude argu-
ment is used to exclude input command sections from the output (e.g., exclude = "variable").

Result Sections Following result sections can be selected by using the input argument or excluded
by using the exclude argument:

• "summary.analysis" for the SUMMARY OF ANALYSIS section..
• "summary.analysis.short" for a short SUMMARY OF ANALYSIS section including the

number of observations, nuber of groups, estimator, and optimization algorithm.
• "summary.data" for the SUMMARY OF DATA section indicating.
• "summary.data.short" for a short SUMMARY OF DATA section including number of clus-

ters, average cluster size, and estimated intraclass correlations.
• "prop.count" for the UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES

section.
• "summary.censor" for the SUMMARY OF CENSORED LIMITS section.
• "prop.zero" for the COUNT PROPORTION OF ZERO, MINIMUM AND MAXIMUM VALUES sec-

tion.
• "crosstab" for the CROSSTABS FOR CATEGORICAL VARIABLES section.
• "summary.miss" for the SUMMARY OF MISSING DATA PATTERNS section.
• "coverage" for the COVARIANCE COVERAGE OF DATA section.
• "basic" for the RESULTS FOR BASIC ANALYSIS section.
• "sample.stat" for the SAMPLE STATISTICS section.
• "uni.sample.stat" for the UNIVARIATE SAMPLE STATISTICS section.
• "random.starts" for the RANDOM STARTS RESULTS section.
• "summary.fit" for the SUMMARY OF MODEL FIT INFORMATION section.
• "mod.est" for the THE MODEL ESTIMATION TERMINATED NORMALLY message and warning

messages from the model estimation.
• "fit" for the MODEL FIT INFORMATION section.
• "class.count" for the FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES

section.
• "ind.means" for the LATENT CLASS INDICATOR MEANS AND PROBABILITIES section.
• "trans.prob" for the LATENT TRANSITION PROBABILITIES BASED ON THE ESTIMATED MODEL

section.
• "classif" for the CLASSIFICATION QUALITY section.
• "mod.result" for the MODEL RESULTS and RESULTS FOR EXPLORATORY FACTOR ANALYSIS

section.
• "odds.ratio" for the LOGISTIC REGRESSION ODDS RATIO RESULTS section.

148 mplus.print

• "prob.scale" for the RESULTS IN PROBABILITY SCALE section.
• "ind.odds.ratio" for the LATENT CLASS INDICATOR ODDS RATIOS FOR THE LATENT CLASSES

section.
• "alt.param" for the ALTERNATIVE PARAMETERIZATIONS FOR THE CATEGORICAL LATENT
VARIABLE REGRESSION section.

• "irt.param" for the IRT PARAMETERIZATION section.
• "brant.wald" for the BRANT WALD TEST FOR PROPORTIONAL ODDS section.
• "std.mod.result" for the STANDARDIZED MODEL RESULTS section.
• "rsquare" for the R-SQUARE section.
• "total.indirect" for the TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT
EFFECTS section.

• "std.total.indirect" for the STANDARDIZED TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT,
AND DIRECT EFFECTS section.

• "std.mod.result.cluster" for the WITHIN-LEVEL STANDARDIZED MODEL RESULTS FOR
CLUSTER section.

• "fs.comparison" for the BETWEEN-LEVEL FACTOR SCORE COMPARISONS section.
• "conf.mod.result" for the CONFIDENCE INTERVALS OF MODEL RESULTS section.
• "conf.std.conf" for the CONFIDENCE INTERVALS OF STANDARDIZED MODEL RESULTS sec-

tion.
• "conf.total.indirect" for the CONFIDENCE INTERVALS OF TOTAL, TOTAL INDIRECT,
SPECIFIC INDIRECT, AND DIRECT EFFECTS section.

• "conf.odds.ratio" for the CONFIDENCE INTERVALS FOR THE LOGISTIC REGRESSION ODDS
RATIO RESULTS section.

• "modind" for the MODEL MODIFICATION INDICES section.
• "resid" for the RESIDUAL OUTPUT section.
• "logrank" for the LOGRANK OUTPUT section.
• "tech1" for the TECHNICAL 1 OUTPUT section.
• "tech2" for the TECHNICAL 2 OUTPUT section.
• "tech3" for the TECHNICAL 3 OUTPUT section.
• "h1.tech3" for the H1 TECHNICAL 3 OUTPUT section.
• "tech4" for the TECHNICAL 4 OUTPUT section.
• "tech5" for the TECHNICAL 5 OUTPUT section.
• "tech6" for the TECHNICAL 6 OUTPUT section.
• "tech7" for the TECHNICAL 7 OUTPUT section.
• "tech8" for the TECHNICAL 8 OUTPUT section.
• "tech9" for the TECHNICAL 9 OUTPUT section.
• "tech10" for the TECHNICAL 10 OUTPUT section.
• "tech11" for the TECHNICAL 11 OUTPUT section.
• "tech12" for the TECHNICAL 12 OUTPUT section.
• "tech13" for the TECHNICAL 13 OUTPUT section.
• "tech14" for the TECHNICAL 14 OUTPUT section.
• "tech15" for the TECHNICAL 15 OUTPUT section.
• "tech16" for the TECHNICAL 16 OUTPUT section.

mplus.print 149

• "svalues" for the MODEL COMMAND WITH FINAL ESTIMATES USED AS STARTING VALUES sec-
tion.

• "stat.fscores" for the SAMPLE STATISTICS FOR ESTIMATED FACTOR SCORES section.
• "summary.fscores" for the SUMMARY OF FACTOR SCORES section.
• "pv" for the SUMMARIES OF PLAUSIBLE VALUES section.
• "plotinfo" for the PLOT INFORMATION section.
• "saveinfo" for the SAVEDATA INFORMATION section.

Note that all result sections are requested by specifying result = "all". The result argu-
ment is also used to select one (e.g., result = "mod.result") or more than one result sections
(e.g., result = c("mod.result", "std.mod.result")), or to request result sections in ad-
dition to the default setting (e.g., result = c("default", "odds.ratio")). The exclude
argument is used to exclude result sections from the output (e.g., exclude = "mod.result").

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

x chracter string or misty object

args specification of function arguments

print print objects

notprint character vectors indicating the input commands and result sections not re-
quested

result list with input command sections (input) and result sections (input)

Author(s)

Takuya Yanagida

References

Muthen, L. K., & Muthen, B. O. (1998-2017). Mplus User’s Guide (8th ed.). Muthen & Muthen.

See Also

read.mplus, write.mplus, mplus, mplus.update, mplus.run, mplus.lca

Examples

Not run:
#--
Mplus Example 3.1: Linear Regression

Example 1a: Default setting
mplus.print("ex3.1.out")

150 mplus.run

Example 1b: Print result section only
mplus.print("ex3.1.out", print = "result")

Example 1c: Print MODEL RESULTS only
mplus.print("ex3.1.out", print = "result", result = "mod.result")

Example 1d: Print UNIVARIATE SAMPLE STATISTICS in addition to the default setting
mplus.print("ex3.1.out", result = c("default", "uni.sample.stat"))

Example 1e: Exclude MODEL FIT INFORMATION section
mplus.print("ex3.1.out", exclude = "fit")

Example 1f: Print all result sections, but exclude MODEL FIT INFORMATION section
mplus.print("ex3.1.out", result = "all", exclude = "fit")

Example 1g: Print result section in a different order
mplus.print("ex3.1.out", result = c("mod.result", "fit", "summary.analysis"))

#--
misty.object of type 'mplus.print'

Example 2
Create misty.object
object <- mplus.print("ex3.1.out", output = FALSE)

Print misty.object
mplus.print(object)

#--
Write Results

Example 3: Write Results into a text file
mplus.print("ex3.1.out", write = "Output_3-1.txt")

End(Not run)

mplus.run Run Mplus Models

Description

This function runs a group of Mplus models (.inp files) located within a single directory or nested
within subdirectories.

Usage

mplus.run(target = getwd(), recursive = FALSE, filefilter = NULL, show.out = FALSE,
replace.out = c("always", "never", "modified"), message = TRUE,
logFile = NULL, Mplus = detectMplus(), killOnFail = TRUE,
local_tmpdir = FALSE)

mplus.run 151

Arguments

target a character string indicating the directory containing Mplus input files (.inp)
to run or the single .inp file to be run. May be a full path, relative path, or a
filename within the working directory.

recursive logical: if TRUE, run all models nested in subdirectories within directory. Not
relevant if target is a single file.

filefilter a Perl regular expression (PCRE-compatible) specifying particular input files to
be run within directory. See regex or http://www.pcre.org/pcre.txt for details
about regular expression syntax. Not relevant if target is a single file.

show.out logical: if TRUE, estimation output (TECH8) is show on the R console. Note that
if run within Rgui, output will display within R, but if run via Rterm, a separate
window will appear during estimation.

replace.out a character string for specifying three settings: "always" (default), which runs
all models, regardless of whether an output file for the model exists, "never",
which does not run any model that has an existing output file, and "modified",
which only runs a model if the modified date for the input file is more recent
than the output file modified date.

message logical: if TRUE, message Running model: and System command: is pringted on
the console.

logFile a character string specifying a file that records the settings passed into the func-
tion and the models run (or skipped) during the run.

Mplus a character string for specifying the name or path of the Mplus executable to be
used for running models. This covers situations where Mplus is not in the sys-
tem’s path, or where one wants to test different versions of the Mplus program.
Note that there is no need to specify this argument for most users since it has
intelligent defaults.

killOnFail logical: if TRUE (default), all processes named mplus.exe when mplus.run()
does not terminate normally are killed. Windows only.

local_tmpdir logical: if TRUE, the TMPDIR environment variable is set to the location of
the .inp file prior to execution. This is useful in Monte Carlo studies where
many instances of Mplus may run in parallel and we wish to avoid collisions in
temporary files among processes. Linux/Mac only.

Value

None.

Note

This function is a copy of the runModels() function in the MplusAutomation package by Michael
Hallquist and Joshua Wiley (2018).

Author(s)

Michael Hallquist and Joshua Wiley

152 mplus.update

References

Hallquist, M. N. & Wiley, J. F. (2018). MplusAutomation: An R package for facilitating large-scale
latent variable analyses in Mplus. Structural Equation Modeling: A Multidisciplinary Journal, 25,
621-638. https://doi.org/10.1080/10705511.2017.1402334.

Muthen, L. K., & Muthen, B. O. (1998-2017). Mplus User’s Guide (8th ed.). Muthen & Muthen.

See Also

read.mplus, write.mplus, mplus.print, mplus, mplus.update, mplus.lca

Examples

Not run:
Example 1: Run Mplus models located within a single directory
run.mplus(Mplus = "C:/Program Files/Mplus/Mplus.exe")

Example 2: Run Mplus models located nested within subdirectories
run.mplus(recursive = TRUE,

Mplus = "C:/Program Files/Mplus/Mplus.exe")

End(Not run)

mplus.update Mplus Input Updating

Description

This function updates specific input command sections of a misty.object of type mplus to create
an updated Mplus input file, run the updated input file by using the mplus.run() function, and print
the updated Mplus output file by using the mplus.print() function.

Usage

mplus.update(x, update, file = "Mplus_Input_Update.inp",
replace.inp = TRUE, mplus.run = TRUE,
show.out = FALSE, replace.out = c("always", "never", "modified"),
print = c("all", "input", "result"),
input = c("all", "default", "data", "variable", "define",

"analysis", "model", "montecarlo", "mod.pop", "mod.cov",
"mod.miss", "message"),

result = c("all", "default", "summary.analysis.short",
"summary.data.short", "random.starts", "summary.fit",
"mod.est", "fit", "class.count", "classif",
"mod.result", "total.indirect"),

exclude = NULL, variable = FALSE, not.input = TRUE, not.result = TRUE,
write = NULL, append = TRUE, check = TRUE, output = TRUE)

mplus.update 153

Arguments

x misty.object object of type mplus.

update a character vector containing the updated input command sections.

file a character string indicating the name of the updated Mplus input file with or
without the file extension .inp, e.g., "Mplus_Input_Update.inp" or "Mplus_Input_Update".

replace.inp logical: if TRUE (default), an existing input file will be replaced.

mplus.run logical: if TRUE, the input file specified in the argument file containing the
input text specified in the argument x is run using the mplus.run function.

show.out logical: if TRUE, estimation output (TECH8) is show on the R console. Note that
if run within Rgui, output will display within R, but if run via Rterm, a separate
window will appear during estimation.

replace.out a character string for specifying three settings: "always" (default), which runs
all models, regardless of whether an output file for the model exists, "never",
which does not run any model that has an existing output file, and "modified",
which only runs a model if the modified date for the input file is more recent
than the output file modified date.

print a character vector indicating which results to show, i.e. "all" (default) for all
results "input" for input command sections, and "result" for result sections.

input a character vector specifiying Mplus input command sections included in the
output (see ’Details’ in the mplus.print function).

result a character vector specifiying Mplus result sections included in the output (see
’Details’ in the mplus.print function).

exclude a character vector specifiying Mplus input command or result sections excluded
from the output (see ’Details’ in the mplus.print function).

variable logical: if TRUE, names of the variables in the data set (NAMES ARE) specified in
the VARIABLE: command section are shown. By default, names of the variables
in the data set are excluded from the output unless all variables are used in the
analysis (i.e., no USEVARIABLES command specified in the Mplus input file).

not.input logical: if TRUE (default), character vector indicating the input commands not
requested are shown on the console.

not.result logical: if TRUE (default), character vector indicating the result sections not re-
quested are shown on the console.

write a character string naming a file for writing the output into a text file with file
extension ".txt" (e.g., "Output.txt").

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console by using the function
mplus.print.

154 mplus.update

Details

The ... Specification The ... Specification can be used to update specific options in the VARIABLE
and ANALYSIS section, while keeping all other options in the misty.object of type mplus
specified in the argument x. Note that the ... specification is only available for the VARIABLE
and ANALYSIS section.

The —; Specification can be used to remove entire sections (e.g., OUTPUT: ---;) or options within
the VARIABLE: and ANALYSIS: section (e.g., ANALYSIS: ESTIMATOR IS ---;) from the Mplus
input.

Comments in the Mplus Input Comments in the Mplus Input can cause problems when following
keywords in uppercase, lower case, or mixed upper and lower case letters are involved in the
comments of the VARIABLE and ANALYSIS section:

• VARIABLE section: "NAMES", "USEOBSERVATIONS", "USEVARIABLES", "MISSING", "CENSORED",
"CATEGORICAL", "NOMINAL", "COUNT", "DSURVIVAL", "GROUPING", "IDVARIABLE", "FREQWEIGHT",
"TSCORES", "AUXILIARY", "CONSTRAINT", "PATTERN", "STRATIFICATION", "CLUSTER",
"WEIGHT", "WTSCALE", "BWEIGHT", "B2WEIGHT", "B3WEIGHT", "BWTSCALE", "REPWEIGHTS",
"SUBPOPULATION", "FINITE", "CLASSES", "KNOWNCLASS", "TRAINING", "WITHIN", "BETWEEN",
"SURVIVAL", "TIMECENSORED", "LAGGED", or "TINTERVAL".

• ANALYSIS section: "TYPE", "ESTIMATOR", "MODEL", "ALIGNMENT", "DISTRIBUTION",
"PARAMETERIZATION", "LINK", "ROTATION", "ROWSTANDARDIZATION", "PARALLEL",
"REPSE", "BASEHAZARD", "CHOLESKY", "ALGORITHM", "INTEGRATION", "MCSEED", "ADAPTIVE",
"INFORMATION", "BOOTSTRAP", "LRTBOOTSTRAP", "STARTS", "STITERATIONS", "STCONVERGENCE",
"STSCALE", "STSEED", "OPTSEED", "K-1STARTS", "LRTSTARTS", "RSTARTS", "ASTARTS",
"H1STARTS", "DIFFTEST", "MULTIPLIER", "COVERAGE", "ADDFREQUENCY", "ITERATIONS",
"SDITERATIONS", "H1ITERATIONS", "MITERATIONS", "MCITERATIONS", "MUITERATIONS",
"RITERATIONS", "AITERATIONS", "CONVERGENCE", "H1CONVERGENCE", "LOGCRITERION",
"RLOGCRITERION", "MCONVERGENCE", "MCCONVERGENCE", "MUCONVERGENCE", "RCONVERGENCE",
"ACONVERGENCE", "MIXC", "MIXU", "LOGHIGH", "LOGLOW", "UCELLSIZE", "VARIANCE",
"SIMPLICITY", "TOLERANCE", "METRIC", "MATRIX", "POINT", "CHAINS", "BSEED",
"STVALUES", "PREDICTOR", "ALGORITHM", "BCONVERGENCE", "BITERATIONS", "FBITERATIONS",
"THIN", "MDITERATIONS", "KOLMOGOROV", "PRIOR", "INTERACTIVE", or "PROCESSORS".

Note that it is recommended to remove all comments in the VARIABLE and VARIABLE section
when the function crashes.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

x a character vector containing the Mplus input text

args specification of function arguments

input list with input command sections

write write command sections

result list with input command sections (input) and result sections (input)

mplus.update 155

Author(s)

Takuya Yanagida

References

Muthen, L. K., & Muthen, B. O. (1998-2017). Mplus User’s Guide (8th ed.). Muthen & Muthen.

See Also

read.mplus, write.mplus, mplus.print, mplus, mplus.run, mplus.lca

Examples

Not run:
#--
Example 1: Update VARIABLE and MODEL section

Write Mplus Data File
write.mplus(ex3_1, file = "ex3_1.dat")

Specify Mplus input
input <- '
DATA: FILE IS ex3_1.dat;
VARIABLE: NAMES ARE y1 x1 x3;
MODEL: y1 ON x1 x3;
OUTPUT: SAMPSTAT;
'

Run Mplus input
mod0 <- mplus(input, file = "ex3_1.inp")

Update VARIABLE and MODEL section
update1 <- '
VARIABLE: ...

USEVARIABLES ARE y1 x1;
MODEL: y1 ON x1;
'

Run updated Mplus input
mod1 <- mplus.update(mod1, update1, file = "ex3_1_update1.inp")

#--
Example 2: Update ANALYSIS section

Update ANALYSIS section
update2 <- '
ANALYSIS: ESTIMATOR IS MLR;
'

Run updated Mplus input
mod2 <- mplus.update(mod2, update2, file = "ex3_1_update2.inp")

156 multilevel.cfa

#--
Example 3: Remove OUTPUT section

Remove OUTPUT section
update3 <- '
OUTPUT: ---;
'

Run updated Mplus input
mod3 <- mplus.update(mod3, update3, file = "ex3_1_update3.inp")

End(Not run)

multilevel.cfa Multilevel Confirmatory Factor Analysis

Description

This function is a wrapper function for conducting multilevel confirmatory factor analysis to in-
vestigate four types of constructs, i.e., within-cluster constructs, shared cluster-level constructs,
configural cluster constructs, and simultaneous shared and configural cluster constructs by calling
the cfa function in the R package lavaan.

Usage

multilevel.cfa(..., data = NULL, cluster, model = NULL, rescov = NULL,
model.w = NULL, model.b = NULL, rescov.w = NULL, rescov.b = NULL,
const = c("within", "shared", "config", "shareconf"),
fix.resid = NULL, ident = c("marker", "var", "effect"),
ls.fit = TRUE, estimator = c("ML", "MLR"),

optim.method = c("nlminb", "em"), missing = c("listwise", "fiml"),
print = c("all", "summary", "coverage", "descript", "fit", "est",

"modind", "resid"),
mod.minval = 6.63, resid.minval = 0.1, digits = 3, p.digits = 3,

as.na = NULL, write = NULL, append = TRUE, check = TRUE, output = TRUE)

Arguments

... a matrix or data frame. If model, model.w, and model.b are NULL, multilevel
confirmatory factor analysis based on a measurement model with one factor
labeled wf at the Within level and one factor labeled bf at the Between level
comprising all variables in the matrix or data frame is conducted. Note that the
cluster variable specified in cluster is excluded from ... when specifying the
argument cluster using the variable name of the cluster variable. If model or
mode.w and model.b is specified, the matrix or data frame needs to contain all
variables used in the model argument(s). Alternatively, an expression indicating
the variable names in data. Note that the operators ., +, -, ~, :, ::, and ! can
also be used to select variables, see ’Details’ in the df.subset function.

multilevel.cfa 157

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a matrix or data frame for the argu-
ment

cluster either a character string indicating the variable name of the cluster variable in
... or data, or a vector representing the nested grouping structure (i.e., group
or cluster variable).

model a character vector for specifying the same factor structure with one factor at
the Within and Between Level, or a list of character vectors for specifying the
same measurement model with more than one factor at the Within and Between
Level, e.g.,model = c("x1", "x2", "x3", "x4") for specifying a measurement
model with one factor labeled wf at the Within level and a measurement model
with one factor labeled bf at the Between level each comprising four indicators,
or model = list(factor1 = c("x1", "x2", "x3", "x4"),factor2 = c("x5",
"x6", "x7", "x8")) for specifying a measurement model with two latent fac-
tors labeled wfactor1 and wfactor2 at the Within level and a measurement
model with two latent factors labeled bfactor1 and bfactor2 at the Between
level each comprising four indicators. Note that the name of each list element is
used to label factors, where prefixes w and b are added the labels to distinguish
factor labels at the Within and Between level, i.e., all list elements need to be
named, otherwise factors are labeled with "wf1", "wf2", "wf3" for labels at
the Within level and "bf1", "bf2", "bf3" for labels at the Between level and
so on.

rescov a character vector or a list of character vectors for specifying residual covari-
ances at the Within level, e.g. rescov = c("x1", "x2") for specifying a resid-
ual covariance between indicators x1 and x2 at the Within level or rescov =
list(c("x1", "x2"), c("x3", "x4")) for specifying residual covariances be-
tween indicators x1 and x2, and indicators x3 and x4 at the Within level. Note
that residual covariances at the Between level can only be specified by using the
arguments model.w, model.b, and model.b.

model.w a character vector specifying a measurement model with one factor at the Within
level, or a list of character vectors for specifying a measurement model with
more than one factor at the Within level.

model.b a character vector specifying a measurement model with one factor at the Be-
tween level, or a list of character vectors for specifying a measurement model
with more than one factor at the Between level.

rescov.w a character vector or a list of character vectors for specifying residual covari-
ances at the Within level.

rescov.b a character vector or a list of character vectors for specifying residual covari-
ances at the Between level.

const a character string indicating the type of construct(s), i.e., "within" for within-
cluster constructs, "shared" for shared cluster-level constructs, "config" (de-
fault) for configural cluster constructs, and "shareconf" for simultaneous shared
and configural cluster constructs.

fix.resid a character vector for specifying residual variances to be fixed at 0 at the Be-
tween level, e.g., fix.resid = c("x1", "x3") to fix residual variances of indi-
cators x1 and x2 at the Between level at 0. Note that it is also possible to specify

158 multilevel.cfa

fix.resid = "all" which fixes all residual variances at the Between level at
0 in line with the strong factorial measurement invariance assumption across
cluster.

ident a character string indicating the method used for identifying and scaling latent
variables, i.e., "marker" for the marker variable method fixing the first factor
loading of each latent variable to 1, "var" for the fixed variance method fixing
the variance of each latent variable to 1, or "effect" for the effects-coding
method using equality constraints so that the average of the factor loading for
each latent variable equals 1.

ls.fit logical: if TRUE (default) level-specific fit indices are computed when specifying
a model using the arguments model.w and model.b given the model does not
contain any cross-level equality constraints.

estimator a character string indicating the estimator to be used: "ML" for maximum likeli-
hood with conventional standard errors and "MLR" (default) for maximum like-
lihood with Huber-White robust standard errors and a scaled test statistic that
is asymptotically equal to the Yuan-Bentler test statistic. Note that by default,
full information maximum likelihood (FIML) method is used to deal with miss-
ing data when using "ML" (missing = "fiml"), whereas incomplete cases are
removed listwise (i.e., missing = "listwise") when using "MLR".

optim.method a character string indicating the optimizer, i.e., "nlminb" (default) for the un-
constrained and bounds-constrained quasi-Newton method optimizer and "em"
for the Expectation Maximization (EM) algorithm.

missing a character string indicating how to deal with missing data, i.e., "listwise" (de-
fault) for listwise deletion or "fiml" for full information maximum likelihood
(FIML) method. Note that FIML method is only available when estimator =
"ML", that it takes longer to estimate the model using FIML, and that FIML is
prone to convergence issues which might be resolved by switching to listwise
deletion.

print a character string or character vector indicating which results to show on the
console, i.e. "all" for all results, "summary" for a summary of the specifica-
tion of the estimation method and missing data handling in lavaan, "coverage"
for the variance-covariance coverage of the data, "descript" for descriptive
statistics, "fit" for model fit, "est" for parameter estimates, and "modind" for
modification indices. By default, a summary of the specification, descriptive
statistics, model fit, and parameter estimates are printed.

mod.minval numeric value to filter modification indices and only show modifications with a
modification index value equal or higher than this minimum value. By default,
modification indices equal or higher 6.63 are printed. Note that a modification
index value of 6.63 is equivalent to a significance level of α = .01.

resid.minval numeric value indicating the minimum absolute residual correlation coefficients
and standardized means to highlight in boldface. By default, absolute residual
correlation coefficients and standardized means equal or higher 0.1 are high-
lighted. Note that highlighting can be disabled by setting the minimum value to
1.

digits an integer value indicating the number of decimal places to be used for dis-
playing results. Note that loglikelihood, information criteria and chi-square test
statistic is printed with digits minus 1 decimal places.

multilevel.cfa 159

p.digits an integer value indicating the number of decimal places to be used for display-
ing the p-value.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x but not to cluster.

write a character string naming a file for writing the output into either a text file
with file extension ".txt" (e.g., "Output.txt") or Excel file with file exten-
tion ".xlsx" (e.g., "Output.xlsx"). If the file name does not contain any file
extension, an Excel file will be written.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification, convergence and model iden-
tification is checked.

output logical: if TRUE (default), output is shown.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data data frame used for the current analysis

args specification of function arguments

model specified model

model.fit fitted lavaan object (mod.fit)

check results of the convergence and model identification check

result list with result tables, i.e., summary for the summary of the specification of
the estimation method and missing data handling in lavaan, coverage for the
variance-covariance coverage of the data, descript for descriptive statistics,
fit for model fit, est for parameter estimates, and modind for modification
indices.

Note

The function uses the functions cfa, lavInspect, lavTech, modindices, parameterEstimates,
and standardizedsolution provided in the R package lavaan by Yves Rosseel (2012).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical
Software, 48, 1-36. https://doi.org/10.18637/jss.v048.i02

160 multilevel.cfa

See Also

item.cfa, multilevel.fit, multilevel.invar, multilevel.omega, multilevel.cor, multilevel.descript

Examples

Not run:
Load data set "Demo.twolevel" in the lavaan package
data("Demo.twolevel", package = "lavaan")

#--
Model specification using 'x' for a one-factor model
with the same factor structure with one factor at the Within and Between Level

#..........
Cluster variable specification

Example 1a: Cluster variable 'cluster' in 'x'
multilevel.cfa(Demo.twolevel[, c("y1", "y2", "y3", "y4", "cluster")], cluster = "cluster")

Example 1b: Cluster variable 'cluster' not in 'x'
multilevel.cfa(Demo.twolevel[, c("y1", "y2", "y3", "y4")], cluster = Demo.twolevel$cluster)

Example 1c: Alternative specification using the 'data' argument
multilevel.cfa(y1:y4, data = Demo.twolevel, cluster = "cluster")

#..........
Type of construct

Example 2a: Within-cluster constructs
multilevel.cfa(Demo.twolevel[, c("y1", "y2", "y3", "y4")], cluster = Demo.twolevel$cluster,

const = "within")

Example 2b: Shared cluster-level construct
multilevel.cfa(Demo.twolevel[, c("y1", "y2", "y3", "y4")], cluster = Demo.twolevel$cluster,

const = "shared")

Example 2c: Configural cluster construct (default)
multilevel.cfa(Demo.twolevel[, c("y1", "y2", "y3", "y4")], cluster = Demo.twolevel$cluster,

const = "config")

Example 2d: Simultaneous shared and configural cluster construct
multilevel.cfa(Demo.twolevel[, c("y1", "y2", "y3", "y4")], cluster = Demo.twolevel$cluster,

const = "shareconf")

#..........
Residual covariances at the Within level

Example 3a: Residual covariance between 'y1' and 'y3'
multilevel.cfa(Demo.twolevel[, c("y1", "y2", "y3", "y4")], cluster = Demo.twolevel$cluster,

rescov = c("y1", "y3"))

Example 3b: Residual covariance between 'y1' and 'y3', and 'y2' and 'y4'

multilevel.cfa 161

multilevel.cfa(Demo.twolevel[, c("y1", "y2", "y3", "y4")], cluster = Demo.twolevel$cluster,
rescov = list(c("y1", "y3"), c("y2", "y4")))

#..........
Residual variances at the Between level fixed at 0

Example 4a: All residual variances fixed at 0
i.e., strong factorial invariance across clusters
multilevel.cfa(Demo.twolevel[, c("y1", "y2", "y3", "y4")], cluster = Demo.twolevel$cluster,

fix.resid = "all")

Example 4b: Fesidual variances of 'y1', 'y2', and 'y4' fixed at 0
i.e., partial strong factorial invariance across clusters
multilevel.cfa(Demo.twolevel[, c("y1", "y2", "y3", "y4")], cluster = Demo.twolevel$cluster,

fix.resid = c("y1", "y2", "y4"))

#..........
Print all results

Example 5: Set minimum value for modification indices to 1
multilevel.cfa(Demo.twolevel[, c("y1", "y2", "y3", "y4")], cluster = Demo.twolevel$cluster,

print = "all", mod.minval = 1)

#..........
Example 6: lavaan model and summary of the estimated model

mod <- multilevel.cfa(Demo.twolevel[, c("y1", "y2", "y3", "y4")], cluster = Demo.twolevel$cluster,
output = FALSE)

lavaan model syntax
cat(mod$model)

Fitted lavaan object
lavaan::summary(mod$model.fit, standardized = TRUE, fit.measures = TRUE)

#..........
Write results

Example 7a: Assign results into an object and write results into an Excel file
mod <- multilevel.cfa(Demo.twolevel[, c("y1", "y2", "y3", "y4")], cluster = Demo.twolevel$cluster,

print = "all", write = "Multilevel_CFA.txt", output = FALSE)

Example 7b: Assign results into an object and write results into an Excel file
mod <- multilevel.cfa(Demo.twolevel[, c("y1", "y2", "y3", "y4")], cluster = Demo.twolevel$cluster,

print = "all", output = FALSE)

Write results into an Excel file
write.result(mod, "Multilevel_CFA.xlsx")

Estimate model and write results into an Excel file
multilevel.cfa(Demo.twolevel[, c("y1", "y2", "y3", "y4")], cluster = Demo.twolevel$cluster,

print = "all", write = "Multilevel_CFA.xlsx")

162 multilevel.cfa

#--
Model specification using 'model' for one or multiple factor model
with the same factor structure at the Within and Between Level

Example 8a: One-factor model
multilevel.cfa(Demo.twolevel, cluster = "cluster", model = c("y1", "y2", "y3", "y4"))

Example 8b: Two-factor model
multilevel.cfa(Demo.twolevel, cluster = "cluster",

model = list(c("y1", "y2", "y3"), c("y4", "y5", "y6")))

Example 8c: Two-factor model with user-specified labels for the factors
multilevel.cfa(Demo.twolevel, cluster = "cluster",

model = list(factor1 = c("y1", "y2", "y3"), factor2 = c("y4", "y5", "y6")))

#..........
Type of construct

Example 9a: Within-cluster constructs
multilevel.cfa(Demo.twolevel, cluster = "cluster", const = "within",

model = list(c("y1", "y2", "y3"), c("y4", "y5", "y6")))

Example 9b: Shared cluster-level construct
multilevel.cfa(Demo.twolevel, cluster = "cluster", const = "shared",

model = list(c("y1", "y2", "y3"), c("y4", "y5", "y6")))

Example 9c: Configural cluster construct (default)
multilevel.cfa(Demo.twolevel, cluster = "cluster", const = "config",

model = list(c("y1", "y2", "y3"), c("y4", "y5", "y6")))

Example 9d: Simultaneous shared and configural cluster construct
multilevel.cfa(Demo.twolevel, cluster = "cluster", const = "shareconf",

model = list(c("y1", "y2", "y3"), c("y4", "y5", "y6")))

#..........
Residual covariances at the Within level

Example 10a: Residual covariance between 'y1' and 'y4' at the Within level
multilevel.cfa(Demo.twolevel, cluster = "cluster",

model = list(c("y1", "y2", "y3"), c("y4", "y5", "y6")),
rescov = c("y1", "y4"))

Example 10b: Fix all residual variances at 0
i.e., strong factorial invariance across clusters
multilevel.cfa(Demo.twolevel, cluster = "cluster",

model = list(c("y1", "y2", "y3"), c("y4", "y5", "y6")),
fix.resid = "all")

#--
Model specification using 'model.w' and 'model.b' for one or multiple factor model
with different factor structure at the Within and Between Level

Example 11a: Two-factor model at the Within level and one-factor model at the Between level

multilevel.cor 163

multilevel.cfa(Demo.twolevel, cluster = "cluster",
model.w = list(c("y1", "y2", "y3"), c("y4", "y5", "y6")),
model.b = c("y1", "y2", "y3", "y4", "y5", "y6"))

Example 11b: Residual covariance between 'y1' and 'y4' at the Within level
Residual covariance between 'y5' and 'y6' at the Between level
multilevel.cfa(Demo.twolevel, cluster = "cluster",

model.w = list(c("y1", "y2", "y3"), c("y4", "y5", "y6")),
model.b = c("y1", "y2", "y3", "y4", "y5", "y6"),
rescov.w = c("y1", "y4"),
rescov.b = c("y5", "y6"))

End(Not run)

multilevel.cor Within-Group and Between-Group Correlation Matrix

Description

This function is a wrapper function for computing the within-group and between-group correlation
matrix by calling the sem function in the R package lavaan and provides standard errors, z test
statistics, and significance values (p-values) for testing the hypothesis H0: ρ = 0 for all pairs of
variables within and between groups.

Usage

multilevel.cor(..., data = NULL, cluster, within = NULL, between = NULL,
estimator = c("ML", "MLR"), optim.method = c("nlminb", "em"),
missing = c("listwise", "fiml"), sig = FALSE, alpha = 0.05,
print = c("all", "cor", "se", "stat", "p"), split = FALSE,

order = FALSE, tri = c("both", "lower", "upper"), tri.lower = TRUE,
p.adj = c("none", "bonferroni", "holm", "hochberg", "hommel",

"BH", "BY", "fdr"), digits = 2, p.digits = 3,
as.na = NULL, write = NULL, append = TRUE, check = TRUE,
output = TRUE)

Arguments

... a matrix or data frame. Alternatively, an expression indicating the variable
names in data e.g., multilevel.cor(x1, x2, x3, data = dat). Note that the
operators ., +, -, ~, :, ::, and ! can also be used to select variables, see ’Details’
in the df.subset function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a matrix or data frame for the argu-
ment

cluster either a character string indicating the variable name of the cluster variable in
... or data, or a vector representing the nested grouping structure (i.e., group
or cluster variable).

164 multilevel.cor

within a character vector representing variables that are measured on the within level
and modeled only on the within level. Variables not mentioned in within or
between are measured on the within level and will be modeled on both the
within and between level.

between a character vector representing variables that are measured on the between level
and modeled only on the between level. Variables not mentioned in within
or between are measured on the within level and will be modeled on both the
within and between level.

estimator a character string indicating the estimator to be used: "ML" (default) for maxi-
mum likelihood with conventional standard errors and "MLR" for maximum like-
lihood with Huber-White robust standard errors. Note that by default, full infor-
mation maximum likelihood (FIML) method is used to deal with missing data
when using "ML" (missing = "fiml"), whereas incomplete cases are removed
listwise (i.e., missing = "listwise") when using "MLR".

optim.method a character string indicating the optimizer, i.e., nlminb (default) for the uncon-
strained and bounds-constrained quasi-Newton method optimizer and "em" for
the Expectation Maximization (EM) algorithm.

missing a character string indicating how to deal with missing data, i.e., "listwise" for
listwise deletion or "fiml" (default) for full information maximum likelihood
(FIML) method. Note that FIML method is only available when estimator =
"ML". Note that it takes longer to estimate the model when using FIML and
using FIML might cause issues in model convergence, these issues might be
resolved by switching to listwise deletion.

sig logical: if TRUE, statistically significant correlation coefficients are shown in
boldface on the console.

alpha a numeric value between 0 and 1 indicating the significance level at which cor-
relation coefficients are printed boldface when sig = TRUE.

print a character string or character vector indicating which results to show on the
console, i.e. "all" for all results, "cor" for correlation coefficients, "se" for
standard errors, "stat" for z test statistics, and "p" for p-values.

split logical: if TRUE, output table is split in within-group and between-group corre-
lation matrix.

order logical: if TRUE, variables in the output table are ordered, so that variables spec-
ified in the argument between are shown first.

tri a character string indicating which triangular of the matrix to show on the con-
sole when split = TRUE, i.e., both for upper and upper for the upper triangular.

tri.lower logical: if TRUE (default) and split = FALSE (default), within-group correlations
are shown in the lower triangular and between-group correlation are shown in
the upper triangular.

p.adj a character string indicating an adjustment method for multiple testing based on
p.adjust, i.e., none (default), bonferroni, holm, hochberg, hommel, BH, BY,
or fdr.

digits an integer value indicating the number of decimal places to be used for display-
ing correlation coefficients.

multilevel.cor 165

p.digits an integer value indicating the number of decimal places to be used for display-
ing p-values.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x but not to cluster.

write a character string naming a file for writing the output into either a text file
with file extension ".txt" (e.g., "Output.txt") or Excel file with file exten-
tion ".xlsx" (e.g., "Output.xlsx"). If the file name does not contain any file
extension, an Excel file will be written.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console.

Details

The specification of the within-group and between-group variables is in line with the syntax in
Mplus. That is, the within argument is used to identify the variables in the matrix or data frame
specified in x that are measured on the individual level and modeled only on the within level. They
are specified to have no variance in the between part of the model. The between argument is used
to identify the variables in the matrix or data frame specified in x that are measured on the cluster
level and modeled only on the between level. Variables not mentioned in the arguments within or
between are measured on the individual level and will be modeled on both the within and between
level.

The function uses maximum likelihood estimation with conventional standard errors (estimator =
"ML") which are not robust against non-normality and full information maximum likelihood (FIML)
method (missing = "fiml") to deal with missing data by default. FIML method cannot be used
when within-group variables have no variance within some clusters. In this cases, the function
will switch to listwise deletion. Note that the current lavaan version 0.6-11 supports FIML method
only for maximum likelihood estimation with conventional standard errors (estimator = "ML")
in multilevel models. Maximum likelihood estimation with Huber-White robust standard errors
(estimator = "MLR") uses listwise deletion to deal with missing data. When using FIML method
there might be issues in model convergence, which might be resolved by switching to listwise
deletion (missing = "listwise").

The lavaan package uses a quasi-Newton optimization method ("nlminb") by default. If the op-
timizer does not converge, model estimation will switch to the Expectation Maximization (EM)
algorithm.

Statistically significant correlation coefficients can be shown in boldface on the console when speci-
fying sig = TRUE. However, this option is not supported when using R Markdown, i.e., the argument
sig will switch to FALSE.

Adjustment method for multiple testing when specifying the argument p.adj is applied to the
within-group and between-group correlation matrix separately.

Value

Returns an object of class misty.object, which is a list with following entries:

166 multilevel.cor

call function call

type type of analysis

data data frame specified in x including the group variable specified in cluster

args specification of function arguments

model.fit fitted lavaan object (mod.fit)

result list with result tables, i.e., summary for the specification of the estimation method
and missing data handling in lavaan, wb.cor for the within- and between-group
correlations, wb.se for the standard error of the within- and between-group cor-
relations, wb.stat for the test statistic of within- and between-group correla-
tions, wb.p for the significance value of the within- and between-group corre-
lations, with.cor for the within-group correlations, with.se for the standard
error of the within-group correlations, with.stat for the test statistic of within-
group correlations, with.p for the significance value of the within-group cor-
relations, betw.cor for the between-group correlations, betw.se for the stan-
dard error of the between-group correlations, betw.stat for the test statistic of
between-group correlations, betw.p for the significance value of the between-
group correlations

Note

The function uses the functions sem, lavInspect, lavMatrixRepresentation, lavTech, parameterEstimates,
and standardizedsolution provided in the R package lavaan by Yves Rosseel (2012).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Hox, J., Moerbeek, M., & van de Schoot, R. (2018). Multilevel analysis: Techniques and applica-
tions (3rd. ed.). Routledge.

Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and ad-
vanced multilevel modeling (2nd ed.). Sage Publishers.

See Also

write.result, multilevel.descript, multilevel.icc, cluster.scores

Examples

Not run:
Load data set "Demo.twolevel" in the lavaan package
data("Demo.twolevel", package = "lavaan")

#---
Cluster variable specification

Example 1a: Cluster variable 'cluster' in 'x'

multilevel.cor 167

multilevel.cor(Demo.twolevel[, c("y1", "y2", "y3", "cluster")], cluster = "cluster")

Example 1b: Cluster variable 'cluster' not in 'x'
multilevel.cor(Demo.twolevel[, c("y1", "y2", "y3")], cluster = Demo.twolevel$cluster)

Example 1c: Alternative specification using the 'data' argument
multilevel.cor(x1:x3, data = Demo.twolevel, cluster = "cluster")

#---
Example 2: All variables modeled on both the within and between level
Highlight statistically significant result at alpha = 0.05
multilevel.cor(Demo.twolevel[, c("y1", "y2", "y3")], sig = TRUE,

cluster = Demo.twolevel$cluster)

Example 3: Split output table in within-group and between-group correlation matrix.
multilevel.cor(Demo.twolevel[, c("y1", "y2", "y3")],

cluster = Demo.twolevel$cluster, split = TRUE)

Example 4: Print correlation coefficients, standard errors, z test statistics,
and p-values
multilevel.cor(Demo.twolevel[, c("y1", "y2", "y3")],

cluster = Demo.twolevel$cluster, print = "all")

Example 5: Print correlation coefficients and p-values
significance values with Bonferroni correction
multilevel.cor(Demo.twolevel[, c("y1", "y2", "y3")],

cluster = Demo.twolevel$cluster, print = c("cor", "p"),
p.adj = "bonferroni")

#---
Example 6: Variables "y1", "y2", and "y2" modeled on both the within and between level
Variables "w1" and "w2" modeled on the cluster level
multilevel.cor(Demo.twolevel[, c("y1", "y2", "y3", "w1", "w2")],

cluster = Demo.twolevel$cluster,
between = c("w1", "w2"))

Example 7: Show variables specified in the argument 'between' first
multilevel.cor(Demo.twolevel[, c("y1", "y2", "y3", "w1", "w2")],

cluster = Demo.twolevel$cluster,
between = c("w1", "w2"), order = TRUE)

#---
Example 8: Variables "y1", "y2", and "y2" modeled only on the within level
Variables "w1" and "w2" modeled on the cluster level
multilevel.cor(Demo.twolevel[, c("y1", "y2", "y3", "w1", "w2")],

cluster = Demo.twolevel$cluster,
within = c("y1", "y2", "y3"), between = c("w1", "w2"))

#---
Example 9: lavaan model and summary of the multilevel model used to compute the
within-group and between-group correlation matrix

mod <- multilevel.cor(Demo.twolevel[, c("y1", "y2", "y3")],

168 multilevel.descript

cluster = Demo.twolevel$cluster, output = FALSE)

lavaan model syntax
mod$model

Fitted lavaan object
lavaan::summary(mod$model.fit, standardized = TRUE)

#--
Write Results

Example 10a: Write results into a text file
multilevel.cor(Demo.twolevel[, c("y1", "y2", "y3")],

cluster = Demo.twolevel$cluster,
write = "Multilevel_Correlation.txt")

Example 10b: Write results into an Excel file
multilevel.cor(Demo.twolevel[, c("y1", "y2", "y3")],

cluster = Demo.twolevel$cluster,
write = "Multilevel_Correlation.xlsx")

result <- multilevel.cor(Demo.twolevel[, c("y1", "y2", "y3")],
cluster = Demo.twolevel$cluster, output = FALSE)

write.result(result, "Multilevel_Correlation.xlsx")

End(Not run)

multilevel.descript Multilevel Descriptive Statistics for Two-Level and Three-Level Data

Description

This function computes descriptive statistics for two-level and three-level multilevel data, e.g. aver-
age cluster size, variance components, intraclass correlation coefficient, design effect, and effective
sample size.

Usage

multilevel.descript(..., data = NULL, cluster, type = c("1a", "1b"),
method = c("aov", "lme4", "nlme"),
print = c("all", "var", "sd"), REML = TRUE, digits = 2,
icc.digits = 3, as.na = NULL, write = NULL, append = TRUE,
check = TRUE, output = TRUE)

Arguments

... a numeric vector, matrix, or data frame. Alternatively, an expression indicating
the variable names in data e.g., multilevel.descript(x1, x2, x3, data =
dat, cluster = "cluster"). Note that the operators ., +, -, ~, :, ::, and ! can
also be used to select variables, see ’Details’ in the df.subset function.

multilevel.descript 169

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a numeric vector, matrix, or data
frame for the argument

cluster a character string indicating the name of the cluster variable in ... or data for
two-level data, a character vector indicating the names of the cluster variables in
... for three-level data, or a vector or data frame representing the nested group-
ing structure (i.e., group or cluster variables). Alternatively, a character string
or character vector indicating the variable name(s) of the cluster variable(s) in
data. Note that the cluster variable at Level 3 come first in a three-level model,
i.e., cluster = c("level3", "level2").

type a character string indicating the type of intraclass correlation coefficient, i.e.,
type = "1a" (default) for ICC(1) representing the propotion of variance at Level
2 and Level 3, type = "1b" representing an estimate of the expected correla-
tion between two randomly chosen elements in the same group when spec-
ifying a three-level model (i.e., two cluster variables). See ’Details’ in the
multilevel.icc function for the formula used in this function.

method a character string indicating the method used to estimate intraclass correlation
coefficients, i.e., "aov" ICC estimated using the aov function, "lme4" (default)
ICC estimated using the lmer function in the lme4 package, "nlme" ICC esti-
mated using the lme function in the nlme package.

print a character string or character vector indicating which results to show on the
console, i.e. "all" for variances and standard deviations, "var" (default) for
variances, or "sd" for standard deviations within and between clusters.

REML logical: if TRUE (default), restricted maximum likelihood is used to estimate the
null model when using the lmer() function in the lme4 package or the lme()
function in the nlme package.

digits an integer value indicating the number of decimal places to be used.

icc.digits an integer indicating the number of decimal places to be used for displaying
intraclass correlation coefficients.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to ... but not to cluster.

write a character string naming a file for writing the output into either a text file
with file extension ".txt" (e.g., "Output.txt") or Excel file with file exten-
tion ".xlsx" (e.g., "Output.xlsx"). If the file name does not contain any file
extension, an Excel file will be written.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console.

Details

Two-Level Model In a two-level model, the intraclass correlation coefficients, design effect, and
the effective sample size are computed based on the random intercept-only model:

170 multilevel.descript

Yij = γ00 + u0j + rij

where the variance in Y is decomposed into two independent components: σ2
u0

, which rep-
resents the variance at Level 2, and σ2

r , which represents the variance at Level 1 (Hox et
al., 2018). For the computation of the intraclass correlation coefficients, see ’Details’ in the
multilevel.icc function. The design effect represents the effect of cluster sampling on the
variance of parameter estimation and is defined by the equation

deff = (
SECluster

SESimple
)2 = 1 + ρ(J − 1)

where SECluster is the standard error under cluster sampling, SESimple is the standard error
under simple random sampling, ρ is the intraclass correlation coefficient, ICC(1), and J is the
average cluster size. The effective sample size is defined by the equation:

Neffective =
Ntotal

deff

The effective sample size Neffective represents the equivalent total sample size that we should
use in estimating the standard error (Snijders & Bosker, 2012).

Three-Level Model In a three-level model, the intraclass correlation coefficients, design effect,
and the effective sample size are computed based on the random intercept-only model:

Yijk = γ000 + v0k + u0jk + rijk

where the variance in Y is decomposed into three independent components: σ2
v0 , which rep-

resents the variance at Level 3, σ2
u0

, which represents the variance at Level 2, and σ2
r , which

represents the variance at Level 1 (Hox et al., 2018). For the computation of the intraclass
correlation coefficients, see ’Details’ in the multilevel.icc function. The design effect rep-
resents the effect of cluster sampling on the variance of parameter estimation and is defined
by the equation

deff = (
SECluster

SESimple
)2 = 1 + ρL2(J − 1) + ρL3(JK − 1)

where ρL2 is the ICC(1) at Level 2, ρL3 is the ICC(1) at Level 3, J is the average cluster size
at Level 2, and K is the average cluster size at Level 3.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data data frame specified in ... including the cluster variable(s) specified in cluster

args specification of function arguments

model.fit fitted lavaan object (mod.fit)

multilevel.descript 171

result list with result tables, i.e., no.obs for the number of observations, no.no.miss
for the number of missing value, no.cluster.l2 and no.cluster.l3 for the
number of clusters at Level 2 and/or Level 3, m.cluster.size.l2 and m.cluster.size.l3
for the average cluster size at Level 2 and/or Level 3, sd.cluster.size.l2
and sd.cluster.size.l3 for the standard deviation of the cluster size at Level
2 and/or Level 3, min.cluster.size.l2 min.cluster.size.l3 for the mini-
mum cluster size at Level 2 and/or Level 3, max.cluster.size.l2 max.cluster.size.l3
for the maximum cluster size at Level 2 and/or Level 3, mean.x for the inter-
cept of the multilevel model, var.r for the variance within clusters, var.u for
the variance between Level 2 clusters, var.b for the variance between Level 3
clusters, icc1.l2 and icc1.l3 for ICC(1) at Level 2 and/or Level 3, icc2.l2
and icc2.l3 for ICC(2) at Level 2 and/or Level 3, deff for the design effect,
deff.sqrt for the square root of the design effect, n.effect for the effective
sample size

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Hox, J., Moerbeek, M., & van de Schoot, R. (2018). Multilevel analysis: Techniques and applica-
tions (3rd. ed.). Routledge.

Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and ad-
vanced multilevel modeling (2nd ed.). Sage Publishers.

See Also

write.result, multilevel.icc, descript

Examples

Not run:
Load data set "Demo.twolevel" in the lavaan package
data("Demo.twolevel", package = "lavaan")

#--
Two-Level Data

#..........
Cluster variable specification

Example 1a: Cluster variable 'cluster'
multilevel.descript(Demo.twolevel[, c("y1", "cluster")], cluster = "cluster")

Example 1b: Cluster variable 'cluster' not in '...'
multilevel.descript(Demo.twolevel$y1, cluster = Demo.twolevel$cluster)

Example 1c: Alternative specification using the 'data' argument
multilevel.descript(y1, data = Demo.twolevel, cluster = "cluster")

172 multilevel.descript

#---------------------------

Example 2: Multilevel descriptive statistics for 'y1'
multilevel.descript(Demo.twolevel$y1, cluster = Demo.twolevel$cluster)

Example 3: Multilevel descriptive statistics, print variance and standard deviation
multilevel.descript(Demo.twolevel$y1, cluster = Demo.twolevel$cluster, print = "all")

Example 4: Multilevel descriptive statistics, print ICC with 5 digits
multilevel.descript(Demo.twolevel$y1, cluster = Demo.twolevel$cluster, icc.digits = 5)

Example 5: Multilevel descriptive statistics
use lme() function in the nlme package to estimate ICC
multilevel.descript(Demo.twolevel$y1, cluster = Demo.twolevel$cluster, method = "nlme")

Example 6a: Multilevel descriptive statistics for 'y1', 'y2', 'y3', 'w1', and 'w2'
multilevel.descript(Demo.twolevel[, c("y1", "y2", "y3", "w1", "w2")],

cluster = Demo.twolevel$cluster)

Example 6b: Alternative specification using the 'data' argument
multilevel.descript(y1:y3, w1, w2, data = Demo.twolevel, cluster = "cluster")

#--
Three-Level Data

Create arbitrary three-level data
Demo.threelevel <- data.frame(Demo.twolevel, cluster2 = Demo.twolevel$cluster,

cluster3 = rep(1:10, each = 250))

#..........
Cluster variable specification

Example 7a: Cluster variables 'cluster' in '...'
multilevel.descript(Demo.threelevel[, c("y1", "cluster3", "cluster2")],

cluster = c("cluster3", "cluster2"))

Example 7b: Cluster variables 'cluster' not in '...'
multilevel.descript(Demo.threelevel$y1, cluster = Demo.threelevel[, c("cluster3", "cluster2")])

Example 7c: Alternative specification using the 'data' argument
multilevel.descript(y1, data = Demo.threelevel, cluster = c("cluster3", "cluster2"))

#--

Example 8: Multilevel descriptive statistics for 'y1', 'y2', 'y3', 'w1', and 'w2'
multilevel.descript(y1:y3, w1, w2, data = Demo.threelevel, cluster = c("cluster3", "cluster2"))

#--
Write Results

Example 9a: Write results into a Excel file
multilevel.descript(Demo.twolevel[, c("y1", "y2", "y3", "w1", "w2")],

cluster = Demo.twolevel$cluster, write = "Multilevel_Descript.txt")

multilevel.fit 173

Example 9b: Write results into a Excel file
multilevel.descript(Demo.twolevel[, c("y1", "y2", "y3", "w1", "w2")],

cluster = Demo.twolevel$cluster, write = "Multilevel_Descript.xlsx")

result <- multilevel.descript(Demo.twolevel[, c("y1", "y2", "y3", "w1", "w2")],
cluster = Demo.twolevel$cluster, output = FALSE)

write.result(result, "Multilevel_Descript.xlsx")

End(Not run)

multilevel.fit Simultaneous and Level-Specific Multilevel Model Fit Information

Description

This function provides simultaneous and level-specific model fit information using the partially
saturated model method for multilevel models estimated with the lavaan package. Note that level-
specific fit indices cannot be computed when the fitted model contains cross-level constraints, e.g.,
equal factor loadings across levels in line with the metric cross-level measurement invariance as-
sumption.

Usage

multilevel.fit(x, print = c("all", "summary", "fit"), digits = 3, p.digits = 3,
write = NULL, append = TRUE, check = TRUE, output = TRUE)

Arguments

x a fitted model of class "lavaan" from the lavaan package.

print a character string or character vector indicating which results to show on the
console, i.e. "all" for all results, "summary" for a summary of the specification
of the estimation method and missing data handling in lavaan and "fit" for
model fit.

digits an integer value indicating the number of decimal places to be used for dis-
playing results. Note that loglikelihood, information criteria and chi-square test
statistic is printed with digits minus 1 decimal places.

p.digits an integer value indicating the number of decimal places to be used for display-
ing the p-value.

write a character string naming a file for writing the output into either a text file
with file extension ".txt" (e.g., "Output.txt") or Excel file with file exten-
tion ".xlsx" (e.g., "Output.xlsx"). If the file name does not contain any file
extension, an Excel file will be written.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown.

174 multilevel.fit

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

x a fitted model of class "lavaan"

args specification of function arguments

model specified models, i.e., mod.l1 for the model at the Within level, mod.l1.syntax
for the lavaan syntax for the model at the Between level, mod.l2 for the model
at the Within level, mod.l2.syntax for the lavaan syntax for the model at
the Between level, mod.l12 for the model at the Within and Between level,
mod.l12.syntax for the lavaan syntax for the model at the Within and Between
level, l1.mod.base for the baseline model at the Within level saturated at the
Between level, l1.mod.hypo for the hypothesized model at the Within level sat-
urated at the Between level, l2.mod.base for the baseline model at the Between
level saturated at the Within level, l2.mod.hypo for the hypothesized model at
the Between level saturated at the Within level

result list with result tables, i.e., summary for the summary of the specification of the
estimation method and missing data handling in lavaan and fit for the model
fit information.

Note

The function uses the functions cfa, fitmeasures, lavInspect, lavTech, and parTable provided
in the R package lavaan by Yves Rosseel (2012).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical
Software, 48, 1-36. https://doi.org/10.18637/jss.v048.i02

See Also

multilevel.cfa, multilevel.invar, multilevel.omega, multilevel.cor, multilevel.descript

Examples

Not run:
Load data set "Demo.twolevel" in the lavaan package
data("Demo.twolevel", package = "lavaan")

Model specification
model <- 'level: 1

fw =~ y1 + y2 + y3

multilevel.icc 175

fw ~ x1 + x2 + x3
level: 2

fb =~ y1 + y2 + y3
fb ~ w1 + w2'

#---

Example 1: Model estimation with estimator = "ML"
fit1 <- lavaan::sem(model = model, data = Demo.twolevel, cluster = "cluster",

estimator = "ML")

Simultaneous and level-specific multilevel model fit information
ls.fit1 <- multilevel.fit(fit1)

Write results into a text file
multilevel.fit(fit1, write = "LS-Fit1.txt")

Write results into an Excel file
write.result(ls.fit1, "LS-Fit1.xlsx")

Example 2: Model estimation with estimator = "MLR"
fit2 <- lavaan::sem(model = model, data = Demo.twolevel, cluster = "cluster",

estimator = "MLR")

Simultaneous and level-specific multilevel model fit information
Write results into an Excel file
multilevel.fit(fit2, write = "LS-Fit2.xlsx")

End(Not run)

multilevel.icc Intraclass Correlation Coefficient, ICC(1) and ICC(2)

Description

This function computes the intraclass correlation coefficient ICC(1), i.e., proportion of the total
variance explained by the grouping structure, and ICC(2), i.e., reliability of aggregated variables in
a two-level and three-level model.

Usage

multilevel.icc(..., data = NULL, cluster, type = c("1a", "1b", "2"),
method = c("aov", "lme4", "nlme"), REML = TRUE,
as.na = NULL, check = TRUE)

Arguments

... a numeric vector, matrix, or data frame. Alternatively, an expression indicating
the variable names in data. Note that the operators ., +, -, ~, :, ::, and ! can
also be used to select variables, see ’Details’ in the df.subset function.

176 multilevel.icc

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a numeric vector, matrix, or data
frame for the argument

cluster a character string indicating the name of the cluster variable in ... or data for
two-level data, a character vector indicating the names of the cluster variables in
... for three-level data, or a vector or data frame representing the nested group-
ing structure (i.e., group or cluster variables). Alternatively, a character string
or character vector indicating the variable name(s) of the cluster variable(s) in
data. Note that the cluster variable at Level 3 come first in a three-level model,
i.e., cluster = c("level3", "level2").

type a character string indicating the type of intraclass correlation coefficient, i.e.,
type = "1a" (default) for ICC(1) and type = "2" for ICC(2) when specifying a
two-level model (i.e., one cluster variable), and type = "1a" (default) for ICC(1)
representing the propotion of variance at Level 2 and Level 3, type = "1b" rep-
resenting an estimate of the expected correlation between two randomly chosen
elements in the same group, and type = "2" for ICC(2) when specifying a three-
level model (i.e., two cluster variables). See ’Details’ for the formula used in this
function.

method a character string indicating the method used to estimate intraclass correlation
coefficients, i.e., method = "aov" ICC estimated using the aov function, method
= "lme4" (default) ICC estimated using the lmer function in the lme4 package,
method = "nlme" ICC estimated using the lme function in the nlme package.
Note that if the lme4 or nlme package is needed when estimating ICCs in a
three-level model.

REML logical: if TRUE (default), restricted maximum likelihood is used to estimate
the null model when using the lmer function in the lme4 package or the lme
function in the nlme package.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x but not to cluster.

check logical: if TRUE (default), argument specification is checked.

Details

Two-Level Model In a two-level model, the intraclass correlation coefficients are computed in the
random intercept-only model:

Yij = γ00 + u0j + rij

where the variance in Y is decomposed into two independent components: σ2
u0

, which rep-
resents the variance at Level 2, and σ2

r , which represents the variance at Level 1 (Hox et al.,
2018). These two variances sum up to the total variance and are referred to as variance com-
ponents. The intraclass correlation coefficient, ICC(1) ρ requested by type = "1a" represents
the proportion of the total variance explained by the grouping structure and is defined by the
equation

ρ =
σ2
u0

σ2
u0

+ σ2
r

multilevel.icc 177

The intraclass correlation coefficient, ICC(2) λj requested by type = "2" represents the relia-
bility of aggregated variables and is defined by the equation

λj =
σ2
u0

σ2
u0

+
σ2
r

nj

=
njρ

1 + (nj − 1)ρ

where nj is the average group size (Snijders & Bosker, 2012).

Three-Level Model In a three-level model, the intraclass correlation coefficients are computed in
the random intercept-only model:

Yijk = γ000 + v0k + u0jk + rijk

where the variance in Y is decomposed into three independent components: σ2
v0 , which rep-

resents the variance at Level 3, σ2
u0

, which represents the variance at Level 2, and σ2
r , which

represents the variance at Level 1 (Hox et al., 2018). There are two ways to compute the
intraclass correlation coefficient in a three-level model. The first method requested by type
= "1a" represents the proportion of variance at Level 2 and Level 3 and should be used if
we are interestd in a decomposition of the variance across levels. The intraclass correlation
coefficient, ICC(1) ρL2 at Level 2 is defined as:

ρL2 =
σ2
u0

σ2
v0 + σ2

u0
+ σ2

r

The ICC(1) ρL3 at Level 3 is defined as:

ρL3 =
σ2
v0

σ2
v0 + σ2

u0
+ σ2

r

The second method requested by type = "1b" represents the expected correlation between two
randomly chosen elements in the same group. The intraclass correlation coefficient, ICC(1)
ρL2 at Level 2 is defined as:

ρL2 =
σ2
v0 + σ2

u0

σ2
v0 + σ2

u0
+ σ2

r

The ICC(1) ρL3 at Level 3 is defined as:

ρL3 =
σ2
v0

σ2
v0 + σ2

u0
+ σ2

r

Note that both formula are correct, but express different aspects of the data, which happen to
coincide when there are only two levels (Hox et al., 2018).
The intraclass correlation coefficients, ICC(2) requested by type = "2" represent the relia-
bility of aggregated variables at Level 2 and Level 3. The ICC(2) λj at Level 2 is defined
as:

λj =
σ2
u0

σ2
u0

+
σ2
r

nj

The ICC(2) λk at Level 3 is defined as:

178 multilevel.icc

λk =
σ2
v0

σ2
v0

+σ2
u0

nj
+

σ2
r

nk·nj

where nj is the average group size at Level 2 and nj is the average group size at Level 3 (Hox
et al., 2018).

Value

Returns a numeric vector or matrix with intraclass correlation coefficient(s). In a three level model,
the label L2 is used for ICCs at Level 2 and L3 for ICCs at Level 3.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Hox, J., Moerbeek, M., & van de Schoot, R. (2018). Multilevel analysis: Techniques and applica-
tions (3rd. ed.). Routledge.

Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and ad-
vanced multilevel modeling (2nd ed.). Sage Publishers.

See Also

multilevel.cfa, multilevel.cor, multilevel.descript

Examples

Load data set "Demo.twolevel" in the lavaan package
data("Demo.twolevel", package = "lavaan")

#--
Two-Level Models

#..........
Cluster variable specification

Example 1a: Cluster variable 'cluster' in '...'
multilevel.icc(Demo.twolevel[, c("y1", "cluster")], cluster = "cluster")

Example 1b: Cluster variable 'cluster' not in '...'
multilevel.icc(Demo.twolevel$y1, cluster = Demo.twolevel$cluster)

Example 1c: Alternative specification using the 'data' argument
multilevel.icc(y1, data = Demo.twolevel, cluster = "cluster")

#..........

Example 2: ICC(1) for 'y1'
multilevel.icc(Demo.twolevel$y1, cluster = Demo.twolevel$cluster)

multilevel.indirect 179

Example 3: ICC(2)
multilevel.icc(Demo.twolevel$y1, cluster = Demo.twolevel$cluster, type = 2)

Example 4: ICC(1)
use lme() function in the lme4 package to estimate ICC
multilevel.icc(Demo.twolevel$y1, cluster = Demo.twolevel$cluster, method = "nlme")

Example 5a: ICC(1) for 'y1', 'y2', and 'y3'
multilevel.icc(Demo.twolevel[, c("y1", "y2", "y3")], cluster = Demo.twolevel$cluster)

Example 5b: Alternative specification using the 'data' argument
multilevel.icc(y1:y3, data = Demo.twolevel, cluster = "cluster")

#--
Three-Level Models

Create arbitrary three-level data
Demo.threelevel <- data.frame(Demo.twolevel, cluster2 = Demo.twolevel$cluster,

cluster3 = rep(1:10, each = 250))

#..........
Cluster variable specification

Example 6a: Cluster variables 'cluster' in '...'
multilevel.icc(Demo.threelevel[, c("y1", "cluster3", "cluster2")],

cluster = c("cluster3", "cluster2"))

Example 6b: Cluster variables 'cluster' not in '...'
multilevel.icc(Demo.threelevel$y1, cluster = Demo.threelevel[, c("cluster3", "cluster2")])

Example 6c: Alternative specification using the 'data' argument
multilevel.icc(y1, data = Demo.threelevel, cluster = c("cluster3", "cluster2"))

#..........

Example 7a: ICC(1), propotion of variance at Level 2 and Level 3
multilevel.icc(y1, data = Demo.threelevel, cluster = c("cluster3", "cluster2"))

Example 7b: ICC(1), expected correlation between two randomly chosen elements
in the same group
multilevel.icc(y1, data = Demo.threelevel, cluster = c("cluster3", "cluster2"),

type = "1b")

Example 7c: ICC(2)
multilevel.icc(y1, data = Demo.threelevel, cluster = c("cluster3", "cluster2"),
type = "2")

multilevel.indirect Confidence Interval for the Indirect Effect in a 1-1-1 Multilevel Medi-
ation Model

180 multilevel.indirect

Description

This function computes the confidence interval for the indirect effect in a 1-1-1 multilevel mediation
model with random slopes based on the Monte Carlo method.

Usage

multilevel.indirect(a, b, se.a, se.b, cov.ab = 0, cov.rand, se.cov.rand,
nrep = 100000, alternative = c("two.sided", "less", "greater"),

seed = NULL, conf.level = 0.95, digits = 3, write = NULL,
append = TRUE, check = TRUE, output = TRUE)

Arguments

a a numeric value indicating the coefficient a, i.e., average effect of X on M on
the cluster or between-group level.

b a numeric value indicating the coefficient b, i.e., average effect of M on Y ad-
justed for X on the cluster or between-group level.

se.a a positive numeric value indicating the standard error of a.

se.b a positive numeric value indicating the standard error of b.

cov.ab a positive numeric value indicating the covariance between a and b.

cov.rand a positive numeric value indicating the covariance between the random slopes
for a and b.

se.cov.rand a positive numeric value indicating the standard error of the covariance between
the random slopes for a and b.

nrep an integer value indicating the number of Monte Carlo repetitions.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

seed a numeric value specifying the seed of the random number generator when using
the Monte Carlo method.

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

digits an integer value indicating the number of decimal places to be used for display-
ing

write a character string naming a text file with file extension ".txt" (e.g., "Output.txt")
for writing the output into a text file.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console.

Details

In statistical mediation analysis (MacKinnon & Tofighi, 2013), the indirect effect refers to the effect
of the independent variable X on the outcome variable Y transmitted by the mediator variable M .
The magnitude of the indirect effect ab is quantified by the product of the the coefficient a (i.e.,

multilevel.indirect 181

effect of X on M) and the coefficient b (i.e., effect of M on Y adjusted for X). However, mediation
in the context of a 1-1-1 multilevel mediation model where variables X , M , and Y are measured
at level 1, the coefficients a and b can vary across level-2 units (i.e., random slope). As a result,
a and b may covary so that the estimate of the indirect effect is no longer simply the product of
the coefficients âb̂, but âb̂ + τa,b, where τa,b (i.e., cov.rand) is the level-2 covariance between the
random slopes a and b. The covariance term needs to be added to âb̂ only when random slopes are
estimated for both a and b. Otherwise, the simple product is sufficient to quantify the indirect effect,
and the indirect function can be used instead.

In practice, researchers are often interested in confidence limit estimation for the indirect effect.
There are several methods for computing a confidence interval for the indirect effect in a single-
level mediation models (see indirect function). The Monte Carlo (MC) method (MacKinnon et
al., 2004) is a promising method in single-level mediation model which was also adapted to the
multilevel mediation model (Bauer, Preacher & Gil, 2006). This method requires seven pieces of
information available from the results of a multilevel mediation model:

a Coefficient a, i.e., average effect of X on M on the cluster or between-group level. In Mplus,
Estimate of the random slope a under Means at the Between Level.

b Coefficient a, i.e., average effect of M on Y on the cluster or between-group level. In Mplus,
Estimate of the random slope b under Means at the Between Level.

se.a Standard error of a. In Mplus, S.E. of the random slope a under Means at the Between Level.

se.a Standard error of a. In Mplus, S.E. of the random slope a under Means at the Between Level.

cov.ab Covariance between a and b. In Mplus, the estimated covariance matrix for the parameter
estimates (i.e., asymptotic covariance matrix) need to be requested by specifying TECH3 along
with TECH1 in the OUTPUT section. In the TECHNICAL 1 OUTPUT under PARAMETER SPECIFICATION
FOR BETWEEN, the numbers of the parameter for the coefficients a and b need to be identified
under ALPHA to look up cov.av in the corresponding row and column in the TECHNICAL 3
OUTPUT under ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES.

cov.rand Covariance between the random slopes for a and b. In Mplus, Estimate of the covariance
a WITH b at the Between Level.

se.cov.rand Standard error of the covariance between the random slopes for a and b. In Mplus,
S.E. of the covariance a WITH b at the Between Level.

Note that all pieces of information except cov.ab can be looked up in the standard output of the
multilevel mediation model. In order to specify cov.ab, the covariance matrix for the parameter
estimates (i.e., asymptotic covariance matrix) is required. In practice, cov.ab will oftentimes be
very small so that cov.ab may be set to 0 (i.e., default value) with negligible impact on the results.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data list with the input specified in a, b, se.a, se.b, cov.ab, cov.rand, and se.cov.rand

args specification of function arguments

result list with result tables, i.e., ab for the simulated ab values and mc for the estimate
of the indirect effect and the confidence interval

182 multilevel.indirect

Note

The function was adapted from the interactive web tool by Preacher and Selig (2010).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Bauer, D. J., Preacher, K. J., & Gil, K. M. (2006). Conceptualizing and testing random indirect
effects and moderated Mediation in multilevel models: New procedures and recommendations.
Psychological Methods, 11, 142-163. https://doi.org/10.1037/1082-989X.11.2.142

Kenny, D. A., Korchmaros, J. D., & Bolger, N. (2003). Lower level Mediation in multilevel models.
Psychological Methods, 8, 115-128. https://doi.org/10.1037/1082-989x.8.2.115

MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect
effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39,
99-128. https://doi.org/10.1207/s15327906mbr3901_4

MacKinnon, D. P., & Tofighi, D. (2013). Statistical mediation analysis. In J. A. Schinka, W. F.
Velicer, & I. B. Weiner (Eds.), Handbook of psychology: Research methods in psychology (pp.
717-735). John Wiley & Sons, Inc..

Preacher, K. J., & Selig, J. P. (2010). Monte Carlo method for assessing multilevel Mediation:
An interactive tool for creating confidence intervals for indirect effects in 1-1-1 multilevel models
[Computer software]. Available from http://quantpsy.org/.

See Also

indirect

Examples

Not run:
Example 1: Confidence Interval for the Indirect Effect
multilevel.indirect(a = 0.25, b = 0.20, se.a = 0.11, se.b = 0.13,

cov.ab = 0.01, cov.rand = 0.40, se.cov.rand = 0.02)

Example 2: Save results of the Monte Carlo method
ab <- multilevel.indirect(a = 0.25, b = 0.20, se.a = 0.11, se.b = 0.13,

cov.ab = 0.01, cov.rand = 0.40, se.cov.rand = 0.02,
output = FALSE)$result$ab

Histogram of the distribution of the indirect effect
hist(ab)

Example 3: Write results into a text file
multilevel.indirect(a = 0.25, b = 0.20, se.a = 0.11, se.b = 0.13,

cov.ab = 0.01, cov.rand = 0.40, se.cov.rand = 0.02,
write = "ML-Indirect.txt")

End(Not run)

multilevel.invar 183

multilevel.invar Cross-Level Measurement Invariance Evaluation

Description

This function is a wrapper function for evaluating configural, metric, and scalar cross-level mea-
surement invariance using multilevel confirmatory factor analysis with continuous indicators by
calling the cfa function in the R package lavaan.

Usage

multilevel.invar(..., data = NULL, cluster, model = NULL, rescov = NULL,
invar = c("config", "metric", "scalar"), fix.resid = NULL,
ident = c("marker", "var", "effect"),
estimator = c("ML", "MLR"), optim.method = c("nlminb", "em"),
missing = c("listwise", "fiml"),
print = c("all", "summary", "coverage", "descript", "fit",

"est", "modind", "resid"),
print.fit = c("all", "standard", "scaled", "robust"),

mod.minval = 6.63, resid.minval = 0.1, digits = 3, p.digits = 3,
as.na = NULL, write = NULL, append = TRUE, check = TRUE,
output = TRUE)

Arguments

... a matrix or data frame. If model is NULL, multilevel confirmatory factor analysis
based on a measurement model with one factor at the Within and Between level
comprising all variables in the matrix or data frame is conducted to evaluate
cross-level measurement invariance. Note that the cluster variable specified in
cluster is excluded from x when specifying the argument cluster using the
variable name of the cluster variable. If model is specified, the matrix or data
frame needs to contain all variables used in the model argument. Alternatively,
an expression indicating the variable names in data e.g., multilevel.invar(x1,
x2, x3, data = dat). Note that the operators ., +, -, ~, :, ::, and ! can also be
used to select variables, see ’Details’ in the df.subset function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a matrix or data frame for the argu-
ment

cluster either a character string indicating the variable name of the cluster variable in
... or data, or a vector representing the nested grouping structure (i.e., group
or cluster variable).

model a character vector specifying the same factor structure with one factor at the
Within and Between Level, or a list of character vectors for specifying the same
measurement model with more than one factor at the Within and Between Level,
e.g.,model = c("x1", "x2", "x3", "x4") for specifying a measurement model
with one factor labeled wf at the Within level and a measurement model with

184 multilevel.invar

one factor labeled bf at the Between level each comprising four indicators,
or model = list(factor1 = c("x1", "x2", "x3", "x4"),factor2 = c("x5",
"x6", "x7", "x8")) for specifying a measurement model with two latent fac-
tors labeled wfactor1 and wfactor2 at the Within level and a measurement
model with two latent factors labeled bfactor1 and bfactor2 at the Between
level each comprising four indicators. Note that the name of each list element is
used to label factors, where prefixes w and b are added the labels to distinguish
factor labels at the Within and Between level, i.e., all list elements need to be
named, otherwise factors are labeled with "wf1", "wf2", "wf3" for labels at
the Within level and "bf1", "bf2", "bf3" for labels at the Between level and
so on.

rescov a character vector or a list of character vectors for specifying residual covari-
ances at the Within level, e.g. rescov = c("x1", "x2") for specifying a resid-
ual covariance between indicators x1 and x2 at the Within level or rescov =
list(c("x1", "x2"), c("x3", "x4")) for specifying residual covariances be-
tween indicators x1 and x2, and indicators x3 and x4 at the Within level. Note
that residual covariances at the Between level can only be specified by using the
arguments model.w, model.b, and model.b.

invar a character string indicating the level of measurement invariance to be evalu-
ated, i.e., config to evaluate configural measurement invariance (i.e., same fac-
tor structure across levels), metric (default) to evaluate configural and metric
measurement invariance (i.e., equal factor loadings across level), and scalar to
evaluate configural, metric and scalar measurement invariance (i.e., all residual
variances at the Between level equal zero).

fix.resid a character vector for specifying residual variances to be fixed at 0 at the Be-
tween level for the configural and metric invariance model, e.g., fix.resid =
c("x1", "x3") to fix residual variances of indicators x1 and x2 at the Between
level at 0. Note that it is also possible to specify fix.resid = "all" which fixes
all residual variances at the Between level at 0 in line with the strong factorial
measurement invariance assumption across cluster.

ident a character string indicating the method used for identifying and scaling latent
variables, i.e., "marker" for the marker variable method fixing the first factor
loading of each latent variable to 1, "var" for the fixed variance method fixing
the variance of each latent variable to 1, or "effect" for the effects-coding
method using equality constraints so that the average of the factor loading for
each latent variable equals 1.

estimator a character string indicating the estimator to be used: "ML" for maximum likeli-
hood with conventional standard errors and "MLR" (default) for maximum like-
lihood with Huber-White robust standard errors and a scaled test statistic that
is asymptotically equal to the Yuan-Bentler test statistic. Note that by default,
full information maximum likelihood (FIML) method is used to deal with miss-
ing data when using "ML" (missing = "fiml"), whereas incomplete cases are
removed listwise (i.e., missing = "listwise") when using "MLR".

optim.method a character string indicating the optimizer, i.e., "nlminb" (default) for the un-
constrained and bounds-constrained quasi-Newton method optimizer and "em"
for the Expectation Maximization (EM) algorithm.

multilevel.invar 185

missing a character string indicating how to deal with missing data, i.e., "listwise" (de-
fault) for listwise deletion or "fiml" for full information maximum likelihood
(FIML) method. Note that FIML method is only available when estimator =
"ML", that it takes longer to estimate the model using FIML, and that FIML is
prone to convergence issues which might be resolved by switching to listwise
deletion.

print a character string or character vector indicating which results to show on the
console, i.e. "all" for all results, "summary" for a summary of the specifica-
tion of the estimation method and missing data handling in lavaan, "coverage"
for the variance-covariance coverage of the data, "descript" for descriptive
statistics, "fit" for model fit and model comparison, "est" for parameter es-
timates, and "modind" for modification indices. By default, a summary of the
specification and model fit and model comparison are printed.

print.fit a character string or character vector indicating which version of the CFI, TLI,
and RMSEA to show on the console, i.e., "all" for all versions of the CFI,
TLI, and RMSEA, "standard" (default when estimator = "ML") for fit indices
without any non-normality correction, "scaled" for population-corrected ro-
bust fit indices with ad hoc non-normality correction, and robust (default when
estimator = "MLR") for sample-corrected robust fit indices based on formula
provided by Li and Bentler (2006) and Brosseau-Liard and Savalei (2014).

mod.minval numeric value to filter modification indices and only show modifications with a
modification index value equal or higher than this minimum value. By default,
modification indices equal or higher 6.63 are printed. Note that a modification
index value of 6.63 is equivalent to a significance level of α = .01.

resid.minval numeric value indicating the minimum absolute residual correlation coefficients
and standardized means to highlight in boldface. By default, absolute residual
correlation coefficients and standardized means equal or higher 0.1 are high-
lighted. Note that highlighting can be disabled by setting the minimum value to
1.

digits an integer value indicating the number of decimal places to be used for display-
ing results. Note that information criteria and chi-square test statistic is printed
with digits minus 1 decimal places.

p.digits an integer value indicating the number of decimal places to be used for display-
ing the p-value.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x but not to cluster.

write a character string naming a file for writing the output into either a text file
with file extension ".txt" (e.g., "Output.txt") or Excel file with file exten-
tion ".xlsx" (e.g., "Output.xlsx"). If the file name does not contain any file
extension, an Excel file will be written.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification, convergence and model iden-
tification is checked.

output logical: if TRUE (default), output is shown.

186 multilevel.invar

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data matrix or data frame specified in x

args specification of function arguments

model list with specified model for the configural, metric, and scalar invariance model

model.fit list with fitted lavaan object of the configural, metric, and scalar invariance
model

check list with the results of the convergence and model identification check for the
configural, metric, and scalar invariance model

result list with result tables, i.e., summary for the summary of the specification of
the estimation method and missing data handling in lavaan, coverage for the
variance-covariance coverage of the data, descript for descriptive statistics,
fit for a list with model fit based on standard, scaled, and robust fit indices, est
for a list with parameter estimates for the configural, metric, and scalar invari-
ance model, and modind for the list with modification indices for the configural,
metric, and scalar invariance model

Note

The function uses the functions lavTestLRT provided in the R package lavaan by Yves Rosseel
(2012).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical
Software, 48, 1-36. https://doi.org/10.18637/jss.v048.i02

See Also

multilevel.cfa, multilevel.fit, multilevel.omega, multilevel.cor, multilevel.descript

Examples

Not run:
Load data set "Demo.twolevel" in the lavaan package
data("Demo.twolevel", package = "lavaan")

#--
Cluster variable specification

Example 1a: Cluster variable 'cluster' in 'x'

multilevel.invar 187

multilevel.invar(Demo.twolevel[,c("y1", "y2", "y3", "y4", "cluster")], cluster = "cluster")

Example 1b: Cluster variable 'cluster' not in 'x'
multilevel.invar(Demo.twolevel[,c("y1", "y2", "y3", "y4")], cluster = Demo.twolevel$cluster)

Example 1c: Alternative specification using the 'data' argument
multilevel.invar(y1:y4, data = Demo.twolevel, cluster = "cluster")

#--
Model specification using 'x' for a one-factor model

#..........
Level of measurement invariance

Example 2a: Configural invariance
multilevel.invar(Demo.twolevel[,c("y1", "y2", "y3", "y4")],

cluster = Demo.twolevel$cluster, invar = "config")

Example 2b: Metric invariance
multilevel.invar(Demo.twolevel[,c("y1", "y2", "y3", "y4")],

cluster = Demo.twolevel$cluster, invar = "metric")

Example 2c: Scalar invariance
multilevel.invar(Demo.twolevel[,c("y1", "y2", "y3", "y4")],

cluster = Demo.twolevel$cluster, invar = "scalar")

#..........
Residual covariance at the Within level and residual variance at the Between level

Example 3a: Residual covariance between "y3" and "y4" at the Within level
multilevel.invar(Demo.twolevel[,c("y1", "y2", "y3", "y4")],

cluster = Demo.twolevel$cluster, rescov = c("y3", "y4"))

Example 3b: Residual variances of 'y1' at the Between level fixed at 0
multilevel.invar(Demo.twolevel[,c("y1", "y2", "y3", "y4")],

cluster = Demo.twolevel$cluster, fix.resid = "y1")

#..........
Example 4: Print all results
multilevel.invar(Demo.twolevel[,c("y1", "y2", "y3", "y4")],

cluster = Demo.twolevel$cluster, print = "all")

#..........
Example 5: lavaan model and summary of the estimated model
mod <- multilevel.invar(Demo.twolevel[,c("y1", "y2", "y3", "y4")],

cluster = Demo.twolevel$cluster, output = FALSE)

lavaan syntax of the metric invariance model
mod$model$metric

Fitted lavaan object of the metric invariance model
lavaan::summary(mod$model.fit$metric, standardized = TRUE, fit.measures = TRUE)

188 multilevel.omega

#--
Model specification using 'model' for one or multiple factor model

Example 6a: One-factor model
multilevel.invar(Demo.twolevel, cluster = "cluster", model = c("y1", "y2", "y3", "y4"))

Example 6b: Two-factor model
multilevel.invar(Demo.twolevel, cluster = "cluster",

model = list(c("y1", "y2", "y3"), c("y4", "y5", "y6")))

#--
Write results

Example 7a: Write results into an Excel file
multilevel.invar(Demo.twolevel[,c("y1", "y2", "y3", "y4")],

cluster = Demo.twolevel$cluster, print = "all",
write = "Multilevel_Invariance.txt")

Example 7b: Write results into an Excel file
multilevel.invar(Demo.twolevel[,c("y1", "y2", "y3", "y4")],

cluster = Demo.twolevel$cluster, print = "all",
write = "Multilevel_Invariance.xlsx")

Assign results into an object and write results into an Excel file
mod <- multilevel.invar(Demo.twolevel[,c("y1", "y2", "y3", "y4")],

cluster = Demo.twolevel$cluster, print = "all",
output = FALSE)

Write results into an Excel file
write.result(mod, "Multilevel_Invariance.xlsx")

End(Not run)

multilevel.omega Multilevel Composite Reliability

Description

This function computes point estimate and Monte Carlo confidence interval for the multilevel com-
posite reliability defined by Lai (2021) for a within-cluster construct, shared cluster-level construct,
and configural cluster construct by calling the cfa function in the R package lavaan.

Usage

multilevel.omega(..., data = NULL, cluster, rescov = NULL,
const = c("within", "shared", "config"),
fix.resid = NULL, optim.method = c("nlminb", "em"),
missing = c("listwise", "fiml"), nrep = 100000, seed = NULL,
conf.level = 0.95, print = c("all", "omega", "item"),
digits = 2, as.na = NULL, write = NULL, append = TRUE,
check = TRUE, output = TRUE)

multilevel.omega 189

Arguments

... a matrix or data frame. Multilevel confirmatory factor analysis based on a mea-
surement model with one factor at the Within level and one factor at the Be-
tween level comprising all variables in the matrix or data frame is conducted.
Note that the cluster variable specified in cluster is excluded from x when
specifying the argument cluster using the variable name of the cluster vari-
able. Alternatively, an expression indicating the variable names in data e.g.,
multilevel.omega(x1, x2, x3, data = dat, cluster = "cluster"). Note that
the operators ., +, -, ~, :, ::, and ! can also be used to select variables, see ’De-
tails’ in the df.subset function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a matrix or data frame for the argu-
ment

cluster either a character string indicating the variable name of the cluster variable in
... or data, or a vector representing the nested grouping structure (i.e., group
or cluster variable).

rescov a character vector or a list of character vectors for specifying residual covari-
ances at the Within level, e.g. rescov = c("x1", "x2") for specifying a resid-
ual covariance between indicators x1 and x2 at the Within level or rescov =
list(c("x1", "x2"), c("x3", "x4")) for specifying residual covariances be-
tween indicators x1 and x2, and indicators x3 and x4 at the Within level. Note
that residual covariances at the Between level cannot be specified using this
function.

const a character string indicating the type of construct(s), i.e., "within" for within-
cluster constructs, "shared" for shared cluster-level constructs, and "config"
(default) for configural cluster constructs.

fix.resid a character vector for specifying residual variances to be fixed at 0 at the Be-
tween level, e.g., fix.resid = c("x1", "x3") to fix residual variances of indi-
cators x1 and x2 at the Between level at 0. Note that it is also possible to specify
fix.resid = "all" which fixes all residual variances at the Between level at
0 in line with the strong factorial measurement invariance assumption across
cluster.

optim.method a character string indicating the optimizer, i.e., "nlminb" (default) for the un-
constrained and bounds-constrained quasi-Newton method optimizer and "em"
for the Expectation Maximization (EM) algorithm.

missing a character string indicating how to deal with missing data, i.e., "listwise" for
listwise deletion or "fiml" (default) for full information maximum likelihood
(FIML) method.

nrep an integer value indicating the number of Monte Carlo repetitions for computing
confidence intervals.

seed a numeric value specifying the seed of the random number generator for com-
puting the Monte Carlo confidence interval.

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

print a character vector indicating which results to show, i.e. "all" (default), for all
results "omega" for omega, and "item" for item statistics.

190 multilevel.omega

digits an integer value indicating the number of decimal places to be used for dis-
playing results. Note that loglikelihood, information criteria and chi-square test
statistic is printed with digits minus 1 decimal places.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x but not to cluster.

write a character string naming a file for writing the output into either a text file
with file extension ".txt" (e.g., "Output.txt") or Excel file with file exten-
tion ".xlsx" (e.g., "Output.xlsx"). If the file name does not contain any file
extension, an Excel file will be written.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification, convergence and model iden-
tification is checked.

output logical: if TRUE (default), output is shown.

Value

call function call

type type of analysis

data data frame specified in x including the group variable specified in cluster

args specification of function arguments

model specified model

model.fit fitted lavaan object (mod.fit)

check results of the convergence and model identification check

result list with result tables, i.e., omega for the coefficient omega including Monte
Carlo confidence interval and itemstat for descriptive statistics

Note

The function uses the functions lavInspect, lavTech, and lavNames, provided in the R pack-
age lavaan by Yves Rosseel (2012). The internal function .internal.mvrnorm is a copy of the
mvrnorm function in the package MASS by Venables and Ripley (2002).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Lai, M. H. C. (2021). Composite reliability of multilevel data: It’s about observed scores and
construct meanings. Psychological Methods, 26(1), 90–102. https://doi.org/10.1037/met0000287

Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical
Software, 48, 1-36. https://doi.org/10.18637/jss.v048.i02

Venables, W. N., Ripley, B. D. (2002).Modern Applied Statistics with S (4th ed.). Springer. https://www.stats.ox.ac.uk/pub/MASS4/.

multilevel.omega 191

See Also

item.omega, multilevel.cfa, multilevel.fit, multilevel.invar, multilevel.cor, multilevel.descript

Examples

Not run:
Load data set "Demo.twolevel" in the lavaan package
data("Demo.twolevel", package = "lavaan")

#---
Cluster variable specification

Example 1a: Cluster variable 'cluster' in 'x'
multilevel.omega(Demo.twolevel[,c("y1", "y2", "y3", "y4", "cluster")], cluster = "cluster")

Example 1b: Cluster variable 'cluster' not in 'x'
multilevel.omega(Demo.twolevel[,c("y1", "y2", "y3", "y4")], cluster = Demo.twolevel$cluster)

Example 1c: Alternative specification using the 'data' argument
multilevel.omega(y1:y4, data = Demo.twolevel, cluster = "cluster")

#---
Type of construct

Example 2a: Within-Cluster Construct
multilevel.omega(Demo.twolevel[,c("y1", "y2", "y3", "y4")],

cluster = Demo.twolevel$cluster, const = "within")

Example 2b: Shared Cluster-Level Construct
multilevel.omega(Demo.twolevel[,c("y1", "y2", "y3", "y4")],

cluster = Demo.twolevel$cluster, const = "shared")

Example 2c: Configural Construct
multilevel.omega(Demo.twolevel[,c("y1", "y2", "y3", "y4")],

cluster = Demo.twolevel$cluster, const = "config")

#---
Residual covariance at the Within level and residual variance at the Between level

Example 3a: Residual covariance between "y4" and "y5" at the Within level
multilevel.omega(Demo.twolevel[,c("y1", "y2", "y3", "y4")],

cluster = Demo.twolevel$cluster, const = "config",
rescov = c("y3", "y4"))

Example 3b: Residual variances of 'y1' at the Between level fixed at 0
multilevel.omega(Demo.twolevel[,c("y1", "y2", "y3", "y4")],

cluster = Demo.twolevel$cluster, const = "config",
fix.resid = c("y1", "y2"), digits = 3)

#--
Write results

192 multilevel.r2

Example 4a: Write results into a text file
multilevel.omega(Demo.twolevel[,c("y1", "y2", "y3", "y4")],

cluster = Demo.twolevel$cluster, write = "Multilevel_Omega.txt")

Example 4b: Write results into an Excel file
multilevel.omega(Demo.twolevel[,c("y1", "y2", "y3", "y4")],

cluster = Demo.twolevel$cluster, write = "Multilevel_Omega.xlsx")

Example 4b: Assign results into an object and write results into an Excel file
mod <- multilevel.omega(Demo.twolevel[,c("y1", "y2", "y3", "y4")],

cluster = Demo.twolevel$cluster, output = FALSE)

Write results into an Excel file
write.result(mod, "Multilevel_Omega.xlsx")

End(Not run)

multilevel.r2 R-Squared Measures for Multilevel and Linear Mixed Effects Models

Description

This function computes R-squared measures by Raudenbush and Bryk (2002), Snijders and Bosker
(1994), Nakagawa and Schielzeth (2013) as extended by Johnson (2014), and Rights and Sterba
(2019) for multilevel and linear mixed effects models estimated by using the lmer() function in the
package lme4 or lme() function in the package nlme.

Usage

multilevel.r2(model, print = c("all", "RB", "SB", "NS", "RS"), digits = 3,
plot = FALSE, gray = FALSE, start = 0.15, end = 0.85,
color = c("#D55E00", "#0072B2", "#CC79A7", "#009E73", "#E69F00"),
write = NULL, append = TRUE, check = TRUE, output = TRUE)

Arguments

model a fitted model of class "lmerMod" from the lme4 package or "lme" from the
nlme package.

print a character vector indicating which R-squared measures to be printed on the
console, i.e., RB for measures from Raudenbush and Bryk (2002), SB for mea-
sures from Snijders and Bosker (1994), NS for measures from Nakagawa and
Schielzeth (2013) as extended by Johnson (2014), and RS for measures from
Rights and Sterba (2019). The default setting is print = "RS".

digits an integer value indicating the number of decimal places to be used.

plot logical: if TRUE, bar chart showing the decomposition of scaled total, within-
cluster, and between-cluster outcome variance into five (total), three (within-
cluster), and two (between-cluster) proportions is drawn. Note that the ggplot2
package is required to draw the bar chart.

multilevel.r2 193

gray logical: if TRUE, graphical parameter to draw the bar chart in gray scale.

start a numeric value between 0 and 1, graphical parameter to specify the gray value
at the low end of the palette.

end a numeric value between 0 and 1, graphical parameter to specify the gray value
at the high end of the palette.

color a character vector, graphical parameter indicating the color of bars in the bar
chart in the following order: Fixed slopes (Within), Fixed slopes (Between),
Slope variation (Within), Intercept variation (Between), and Residual (Within).
By default, colors from the colorblind-friendly palettes are used

write a character string naming a text file with file extension ".txt" (e.g., "Output.txt")
for writing the output into a text file.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console.

Details

A number of R-squared measures for multilevel and linear mixed effects models have been de-
veloped in the methodological literature (see Rights & Sterba, 2018). Based on these measures,
following measures were implemented in the current function:

Raudenbush and Bryk (2002) R-squared measures by Raudenbush and Bryk (2002) are based on
the proportional reduction of unexplained variance when predictors are added. More specif-
ically, variance estimates from the baseline/null model (i.e., σ2

e|b and σ2
u0|b) and variance es-

timates from the model including predictors (i.e., σ2
e|m and σ2

u0|m) are used to compute the
proportional reduction in variance between baseline/null model and the complete model by:

R2
1(RB) =

σ2
e|b − σ2

e|m

σ2
e|b

for the proportional reduction at level-1 (within-cluster) and by:

R2
2(RB) =

σ2
u0|b − σ2

u0|m

σ2
u0|b

for the proportional reduction at level-2 (between-cluster), where |b and |m represent the base-
line and full models, respectively (Hox et al., 2018; Roberts et al., 2010).
A major disadvantage of these measures is that adding predictors can increases rather than
decreases some of the variance components and it is even possible to obtain negative values
for R2 with these formulas (Snijders & Bosker, 2012). According to Snijders and Bosker
(1994) this can occur because the between-group variance is a function of both level-1 and
level-2 variance:

var(Ȳj) = σ2
u0 +

σ2
e

nj

194 multilevel.r2

Hence, adding a predictor (e.g., cluster-mean centered predictor) that explains proportion of
the within-group variance will decrease the estimate of σ2

e and increase the estimate σ2
u0 if

this predictor does not explain a proportion of the between-group variance to balance out the
decrease in σ2

e (LaHuis et al., 2014). Negative estimates for R2 can also simply occur due to
chance fluctuation in sample estimates from the two models.
Another disadvantage of these measures is that R2

2(RB) for the explained variance at level-2
has been shown to perform poorly in simulation studies even with j = 200 clusters with group
cluster size of nj = 50 (LaHuis et al., 2014; Rights & Sterba, 2019).
Moreover, when there is missing data in the level-1 predictors, it is possible that sample sizes
for the baseline and complete models differ.
Finally, it should be noted that R-squared measures by Raudenbush and Bryk (2002) are ap-
propriate for random intercept models, but not for random intercept and slope models. For
random slope models, Snijders and Bosker (2012) suggested to re-estimate the model as ran-
dom intercept models with the same predictors while omitting the random slopes to compute
the R-squared measures. However, the simulation study by LaHuis (2014) suggested that the
R-squared measures showed an acceptable performance when there was little slope variance,
but did not perform well in the presence of higher levels of slope variance.

Snijders and Bosker (1994) R-squared measures by Snijders and Bosker (1994) are based on the
proportional reduction of mean squared prediction error and is computed using the formula:

R2
1(SB) =

σ̂2
e|m + σ̂2

u0|m

σ̂2
e|b + σ̂2

u0|b

for computing the proportional reduction of error at level-1 representing the total amount of
explained variance and using the formula:

R2
2(SB) =

σ̂2
e|m/nj + σ̂2

u0|m

σ̂2
e|b/nj + σ̂2

u0|b

for computing the proportional reduction of error at level-2 by dividing the σ̂2
e by the group

cluster size nj or by the average cluster size for unbalanced data (Roberts et al., 2010). Note
that the function uses the harmonic mean of the group sizes as recommended by Snijders and
Bosker (1994). The population values of R2 based on these measures cannot be negative
because the interplay of level-1 and level-2 variance components is considered. However,
sample estimates of R2 can be negative either due to chance fluctuation when sample sizes are
small or due to model misspecification (Snijders and Bosker, 2012).
When there is missing data in the level-1 predictors, it is possible that sample sizes for the
baseline and complete models differ.
Similar to the R-squared measures by Raudenbush and Bryk (2002), the measures by Snijders
and Bosker (1994) are appropriate for random intercept models, but not for random intercept
and slope models. Accordingly, for random slope models, Snijders and Bosker (2012) sug-
gested to re-estimate the model as random intercept models with the same predictors while
omitting the random slopes to compute the R-squared measures. The simulation study by
LaHuis et al. (2014) revealed that the R-squared measures showed an acceptable performance,
but it should be noted that R2

2(SB) the explained variance at level-2 was not investigated in
their study.

multilevel.r2 195

Nakagawa and Schielzeth (2013) R-squared measures by Nakagawa and Schielzeth (2013) are
based on partitioning model-implied variance from a single fitted model and uses the variance
of predicted values of var(Ŷij) to form both the outcome variance in the denominator and the
explained variance in the numerator of the formulas:

R2
m(NS) =

var(Ŷij)

var(Ŷij) + σ2
u0 + σ2

e

for marginal total R2
m(NS) and:

R2
c(NS) =

var(Ŷij) + σ2
u0

var(Ŷij) + σ2
u0 + σ2

e

for conditional total R2
c(NS). In the former formula R2 predicted scores are marginalized

across random effects to indicate the variance explained by fixed effects and in the latter for-
mula R2 predicted scores are conditioned on random effects to indicate the variance explained
by fixed and random effects (Rights and Sterba, 2019).
The advantage of these measures is that they can never become negative and that they can
also be extended to generalized linear mixed effects models (GLMM) when outcome vari-
ables are not continuous (e.g., binary outcome variables). Note that currently the function
does not provide R2 measures for GLMMs, but these measures can be obtained using the
r.squaredGLMM() function in the MuMIn package.
A disadvantage is that these measures do not allow random slopes and are restricted to the
simplest random effect structure (i.e., random intercept model). In other words, these mea-
sures do not fully reflect the structure of the fitted model when using random intercept and
slope models. However, Johnson (2014) extended these measures to allow random slope by
taking into account the contribution of random slopes, intercept-slope covariances, and the
covariance matrix of random slope to the variance in Yij . As a result, R-squared measures by
Nakagawa and Schielzeth (2013) as extended by Johnson (2014) can be used for both random
intercept, and random intercept and slope models.
The major criticism of the R-squared measures by Nakagawa and Schielzeth (2013) as ex-
tended by Johnson (2014) is that these measures do not decompose outcome variance into each
of total, within-cluster, and between-cluster variance which precludes from computing level-
specific R2 measures. In addition, these measures do not distinguish variance attributable to
level-1 versus level-2 predictors via fixed effects, and they also do not distinguish between
random intercept and random slope variation (Rights and Sterba, 2019).

Rights and Sterba (2019) R-squared measures by Rights and Sterba (2019) provide an integrative
framework of R-squared measures for multilevel and linear mixed effects models with random
intercepts and/or slopes. Their measures are also based on partitioning model implied variance
from a single fitted model, but they provide a full partitioning of the total outcome variance to
one of five specific sources:

• variance attributable to level-1 predictors via fixed slopes (shorthand: variance attributable
to f1)

• variance attributable to level-2 predictors via fixed slopes (shorthand: variance attributable
to f2)

• variance attributable to level-1 predictors via random slope variation/ covariation (short-
hand: variance attributable to v)

196 multilevel.r2

• variance attributable to cluster-specific outcome means via random intercept variation
(shorthand: variance attributable to m)

• variance attributable to level-1 residuals

R2 measures are based on the outcome variance of interest (total, within-cluster, or between-
cluster) in the denominator, and the source contributing to explained variance in the numerator:

Total R2 measures incorporate both within-cluster and between cluster variance in the de-
nominator and quantify variance explained in an omnibus sense:

• R
2(f1)
t : Proportion of total outcome variance explained by level-1 predictors via fixed

slopes.

• R
2(f2)
t : Proportion of total outcome variance explained by level-2 predictors via fixed

slopes.

• R
2(f)
t : Proportion of total outcome variance explained by all predictors via fixed

slopes.

• R
2(v)
t : Proportion of total outcome variance explained by level-1 predictors via ran-

dom slope variation/covariation.

• R
2(m)
t : Proportion of total outcome variance explained by cluster-specific outcome

means via random intercept variation.

• R
2(fv)
t : Proportion of total outcome variance explained by predictors via fixed slopes

and random slope variation/covariation.

• R
2(fvm)
t : Proportion of total outcome variance explained by predictors via fixed

slopes and random slope variation/covariation and by cluster-specific outcome means
via random intercept variation.

Within-Cluster R2 measures incorporate only within-cluster variance in the denominator
and indicate the degree to which within-cluster variance can be explained by a given
model:

• R
2(f1)
w : Proportion of within-cluster outcome variance explained by level-1 predic-

tors via fixed slopes.

• R
2(v)
w : Proportion of within-cluster outcome variance explained by level-1 predictors

via random slope variation/covariation.

• R
2(f1v)
w : Proportion of within-cluster outcome variance explained by level-1 predic-

tors via fixed slopes and random slope variation/covariation.
Between-Cluster R2 measures incorporate only between-cluster variance in the denomina-

tor and indicate the degree to which between-cluster variance can be explained by a given
model:

• R
2(f2)
b : Proportion of between-cluster outcome variance explained by level-2 predic-

tors via fixed slopes.

• R
2(m)
b : Proportion of between-cluster outcome variance explained by cluster-specific

outcome means via random intercept variation.

The decomposition of the total outcome variance can be visualized in a bar chart by specifying
plot = TRUE. The first column of the bar chart decomposes scaled total variance into five
distinct proportions (i.e., R2(f1)

t , R2(f2)
t , R2(f)

t , R2(v)
t , R2(m)

t , R2(fv)
t , and R

2(fvm)
t), the

second column decomposes scaled within-cluster variance into three distinct proportions (i.e.,
R

2(f1)
w , R2(v)

w , and R
2(f1v)
w), and the third column decomposes scaled between-cluster variance

into two distinct proportions (i.e., R2(f2)
b , R2(m)

b).

multilevel.r2 197

Note that the function assumes that all level-1 predictors are centered within cluster (i.e.,
group-mean or cluster-mean centering) as has been widely recommended (e.g., Enders &
Tofighi, D., 2007; Rights et al., 2019). In fact, it does not matter whether a lower-level pre-
dictor is merely a control variable, or is quantitative or categorical (Yaremych et al., 2021),
cluster-mean centering should always be used for lower-level predictors to obtain an orthog-
onal between-within partitioning of a lower-level predictor’s variance that directly parallels
what happens to a level-1 outcome (Hoffman & Walters, 2022). In the absence of cluster-
mean-centering, however, the function provides total R2 measures, but does not provide any
within-cluster or between-cluster R2 measures.

By default, the function only computes R-squared measures by Rights and Sterba (2019) because
the other R-squared measures reflect the same population quantity provided by Rights and Sterba
(2019). That is, R-squared measures R2

1(RB) and R2
2(RB) by Raudenbush and Bryk (2002) are

equivalent to R
2(f1v)
w and R

2(f2)
b , R-squared measures R2

1(SB) and R2
2(SB) are equivalent to R

2(f)
t

and R
2(f2)
b , and R-squared measures R2

m(NS) and R2
c(NS) by Nakagawa and Schielzeth (2013)

as extended by Johnson (2014) are equivalent to R
2(f)
t and R

2(fvm)
t (see Rights and Sterba, Table

3).

Note that none of these measures provide an R2 for the random slope variance explained by cross-
level interactions, a quantity that is frequently of interest (Hoffman & Walters, 2022).

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data matrix or data frame specified in data

plot ggplot2 object for plotting the results

args specification of function arguments

result list with result tables, i.e., rb for the R2 measures by Raudenbush and Bryk
(2002), sb for the R2 measures by Snijders and Bosker (1994), ns for the R2
measures by Nakagawa and Schielzeth (2013), and rs for the R2 measures by
Rights and Sterba (2019)

Note

This function is based on the multilevelR2() function from the mitml package by Simon Grund,
Alexander Robitzsch and Oliver Luedtke (2021), and a copy of the function r2mlm in the r2mlm
package by Mairead Shaw, Jason Rights, Sonya Sterba, and Jessica Flake.

Author(s)

Simon Grund, Alexander Robitzsch, Oliver Luedtk, Mairead Shaw, Jason D. Rights, Sonya K.
Sterba, Jessica K. Flake, and Takuya Yanagida

198 multilevel.r2

References

Enders, C. K., & Tofighi, D. (2007). Centering predictor variables in cross-sectional multilevel
models: A new look at an old issue. Psychological Methods, 12, 121-138. https://doi.org/10.1037/1082-
989X.12.2.121

Hoffmann, L., & Walter, W. R. (2022). Catching up on multilevel modeling. Annual Review of
Psychology, 73, 629-658. https://doi.org/10.1146/annurev-psych-020821-103525

Hox, J., Moerbeek, M., & van de Schoot, R. (2018). Multilevel Analysis: Techniques and Applica-
tions (3rd ed.) Routledge.

Johnson, P. C. D. (2014). Extension of Nakagawa & Schielzeth’s R2 GLMM to random slopes mod-
els. Methods in Ecology and Evolution, 5(9), 944-946. https://doi.org/10.1111/2041-210X.12225

LaHuis, D. M., Hartman, M. J., Hakoyama, S., & Clark, P. C. (2014). Explained variance measures
for multilevel models. Organizational Research Methods, 17, 433-451. https://doi.org/10.1177/1094428114541701

Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from gener-
alized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133-142. https://doi.org/10.1111/j.2041-
210x.2012.00261.x

Raudenbush, S. W., & Bryk, A. S., (2002). Hierarchical linear models: Applications and data
analysis methods. Sage.

Rights, J. D., Preacher, K. J., & Cole, D. A. (2020). The danger of conflating level-specific effects
of control variables when primary interest lies in level-2 effects. British Journal of Mathematical
and Statistical Psychology, 73(Suppl 1), 194-211. https://doi.org/10.1111/bmsp.12194

Rights, J. D., & Sterba, S. K. (2019). Quantifying explained variance in multilevel models: An
integrative framework for defining R-squared measures. Psychological Methods, 24, 309-338.
https://doi.org/10.1037/met0000184

Roberts, K. J., Monaco, J. P., Stovall, H., & Foster, V. (2011). Explained variance in multilevel
models (pp. 219-230). In J. J. Hox & J. K. Roberts (Eds.), Handbook of Advanced Multilevel
Analysis. Routledge.

Snijders, T. A. B., & Bosker, R. (1994). Modeled variance in two-level models. Sociological
methods and research, 22, 342-363. https://doi.org/10.1177/0049124194022003004

Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and ad-
vanced multilevel modeling (2nd ed.). Sage.

Yaremych, H. E., Preacher, K. J., & Hedeker, D. (2021). Centering categorical predictors in multi-
level models: Best practices and interpretation. Psychological Methods. Advance online publica-
tion. https://doi.org/10.1037/met0000434

See Also

multilevel.cor, multilevel.descript, multilevel.icc, multilevel.indirect

Examples

Not run:
Load misty, lme4, nlme, and ggplot2 package
library(misty)
library(lme4)
library(nlme)

multilevel.r2 199

library(ggplot2)

Load data set "Demo.twolevel" in the lavaan package
data("Demo.twolevel", package = "lavaan")

#--
#'
Cluster mean centering, center() from the misty package
Demo.twolevel$x2.c <- center(Demo.twolevel$x2, type = "CWC",

cluster = Demo.twolevel$cluster)

Compute group means, cluster.scores() from the misty package
Demo.twolevel$x2.b <- cluster.scores(Demo.twolevel$x2,

cluster = Demo.twolevel$cluster)

Estimate multilevel model using the lme4 package
mod1a <- lmer(y1 ~ x2.c + x2.b + w1 + (1 + x2.c | cluster), data = Demo.twolevel,

REML = FALSE, control = lmerControl(optimizer = "bobyqa"))

Estimate multilevel model using the nlme package
mod1b <- lme(y1 ~ x2.c + x2.b + w1, random = ~ 1 + x2.c | cluster, data = Demo.twolevel,

method = "ML")

#--
#'
Example 1a: R-squared measures according to Rights and Sterba (2019)
multilevel.r2(mod1a)
#'
Example 1b: R-squared measures according to Rights and Sterba (2019)
multilevel.r2(mod1b)
#'
Example 1a: Write Results into a text file
multilevel.r2(mod1a, write = "ML-R2.txt")

#---

Example 2: Bar chart showing the decomposition of scaled total, within-cluster,
and between-cluster outcome variance
multilevel.r2(mod1a, plot = TRUE)

Bar chart in gray scale
multilevel.r2(mod1a, plot = TRUE, gray = TRUE)

Save bar chart, ggsave() from the ggplot2 package
ggsave("Proportion_of_Variance.png", dpi = 600, width = 5.5, height = 5.5)

#---

Example 3: Estimate multilevel model without random slopes
Note. R-squared measures by Raudenbush and Bryk (2002), and Snijders and
Bosker (2012) should be computed based on the random intercept model
mod2 <- lmer(y1 ~ x2.c + x2.b + w1 + (1 | cluster), data = Demo.twolevel,

REML = FALSE, control = lmerControl(optimizer = "bobyqa"))

200 multilevel.r2.manual

Print all available R-squared measures
multilevel.r2(mod2, print = "all")

#---

Example 4: Draw bar chart manually
mod1a.r2 <- multilevel.r2(mod1a, output = FALSE)

Prepare data frame for ggplot()
df <- data.frame(var = factor(rep(c("Total", "Within", "Between"), each = 5),

level = c("Total", "Within", "Between")),
part = factor(c("Fixed Slopes (Within)", "Fixed Slopes (Between)",

"Slope Variation (Within)", "Intercept Variation (Between)",
"Residual (Within)"),

level = c("Residual (Within)", "Intercept Variation (Between)",
"Slope Variation (Within)", "Fixed Slopes (Between)",
"Fixed Slopes (Within)")),

y = as.vector(mod1a.r2$result$rs$decomp))

Draw bar chart in line with the default setting of multilevel.r2()
ggplot(df, aes(x = var, y = y, fill = part)) +

theme_bw() +
geom_bar(stat = "identity") +
scale_fill_manual(values = c("#E69F00", "#009E73", "#CC79A7", "#0072B2", "#D55E00")) +
scale_y_continuous(name = "Proportion of Variance", breaks = seq(0, 1, by = 0.1)) +
theme(axis.title.x = element_blank(),

axis.ticks.x = element_blank(),
legend.title = element_blank(),
legend.position = "bottom",
legend.box.margin = margin(-10, 6, 6, 6)) +

guides(fill = guide_legend(nrow = 2, reverse = TRUE))

End(Not run)

multilevel.r2.manual R-Squared Measures for Multilevel and Linear Mixed Effects Models
by Rights and Sterba (2019), Manually Inputting Parameter Estimates

Description

This function computes R-squared measures by Rights and Sterba (2019) for multilevel and linear
mixed effects models by manually inputting parameter estimates.

Usage

multilevel.r2.manual(data, within = NULL, between = NULL, random = NULL,
gamma.w = NULL, gamma.b = NULL, tau, sigma2,
intercept = TRUE, center = TRUE, digits = 3,
plot = FALSE, gray = FALSE, start = 0.15, end = 0.85,

multilevel.r2.manual 201

color = c("#D55E00", "#0072B2", "#CC79A7", "#009E73", "#E69F00"),
write = NULL, append = TRUE, check = TRUE, output = TRUE)

Arguments

data a matrix or data frame with the level-1 and level-2 predictors and outcome vari-
able used in the model.

within a character vector with the variable names in data or numeric vector with num-
bers corresponding to the columns in data of the level-1 predictors used in the
model. If none used, set to NULL.

between a character vector with the variable names in data or numeric vector with num-
bers corresponding to the columns in data of the level-2 predictors used in the
model. If none used, set to NULL.

random a character vector with the variable names in data or numeric vector with num-
bers corresponding to the columns in data of the level-1 predictors that have
random slopes in the model. If no random slopes specified, set to NULL.

gamma.w a numeric vector of fixed slope estimates for all level-1 predictors, to be entered
in the order of the predictors listed in the argument within.

gamma.b a numeric vector of the intercept and fixed slope estimates for all level-2predictors,
to be entered in the order of the predictors listed in the argument between. Note
that the first element is the parameter estimate for the intercept if intercept =
TRUE.

tau a matrix indicating the random effects covariance matrix, the first row/column
denotes the intercept variance and covariances (if intercept is fixed, set all to 0)
and each subsequent row/column denotes a given random slope’s variance and
covariances (to be entered in the order listed in the argument random).

sigma2 a numeric value indicating the level-1 residual variance.

intercept logical: if TRUE (default), the first element in the gamma.b is assumed to be
the fixed intercept estimate; if set to FALSE, the first element in the argument
gamma.b is assumed to be the first fixed level-2 predictor slope.

center logical: if TRUE (default), all level-1 predictors are assumed to be cluster-mean-
centered and the function will output all decompositions; if set to FALSE, func-
tion will output only the total decomposition.

digits an integer value indicating the number of decimal places to be used.

plot logical: if TRUE, bar chart showing the decomposition of scaled total, within-
cluster, and between-cluster outcome variance into five (total), three (within-
cluster), and two (between-cluster) proportions is drawn. Note that the ggplot2
package is required to draw the bar chart.

gray logical: if TRUE, graphical parameter to draw the bar chart in gray scale.

start a numeric value between 0 and 1, graphical parameter to specify the gray value
at the low end of the palette.

end a numeric value between 0 and 1, graphical parameter to specify the gray value
at the high end of the palette.

202 multilevel.r2.manual

color a character vector, graphical parameter indicating the color of bars in the bar
chart in the following order: Fixed slopes (Within), Fixed slopes (Between),
Slope variation (Within), Intercept variation (Between), and Residual (Within).
By default, colors from the colorblind-friendly palettes are used.

write a character string naming a text file with file extension ".txt" (e.g., "Output.txt")
for writing the output into a text file.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console.

Details

A number of R-squared measures for multilevel and linear mixed effects models have been devel-
oped in the methodological literature (see Rights & Sterba, 2018). R-squared measures by Rights
and Sterba (2019) provide an integrative framework of R-squared measures for multilevel and linear
mixed effects models with random intercepts and/or slopes. Their measures are based on partition-
ing model implied variance from a single fitted model, but they provide a full partitioning of the
total outcome variance to one of five specific sources. See the help page of the multilevel.r2
function for more details.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data matrix or data frame specified in data

plot ggplot2 object for plotting the results

args specification of function arguments

result list with result tables, i.e., decomp for the decomposition, total for total R2
measures, within for the within-cluster R2 measures, and between

for the between-cluster R2 measures.

Note

This function is based on a copy of the function r2mlm_manual() in the r2mlm package by Mairead
Shaw, Jason Rights, Sonya Sterba, and Jessica Flake.

Author(s)

Jason D. Rights, Sonya K. Sterba, Jessica K. Flake, and Takuya Yanagida

multilevel.r2.manual 203

References

Rights, J. D., & Cole, D. A. (2018). Effect size measures for multilevel models in clinical child and
adolescent research: New r-squared methods and recommendations. Journal of Clinical Child and
Adolescent Psychology, 47, 863-873. https://doi.org/10.1080/15374416.2018.1528550

Rights, J. D., & Sterba, S. K. (2019). Quantifying explained variance in multilevel models: An
integrative framework for defining R-squared measures. Psychological Methods, 24, 309-338.
https://doi.org/10.1037/met0000184

See Also

multilevel.r2, multilevel.cor, multilevel.descript, multilevel.icc, multilevel.indirect

Examples

Not run:
Load misty, lme4, nlme, and ggplot2 package
library(misty)
library(lme4)

Load data set "Demo.twolevel" in the lavaan package
data("Demo.twolevel", package = "lavaan")

#---

Cluster mean centering, center() from the misty package
Demo.twolevel$x2.c <- center(Demo.twolevel$x2, type = "CWC",

cluster = Demo.twolevel$cluster)

Compute group means, cluster.scores() from the misty package
Demo.twolevel$x2.b <- cluster.scores(Demo.twolevel$x2,

cluster = Demo.twolevel$cluster)

Estimate random intercept model using the lme4 package
mod1 <- lmer(y1 ~ x2.c + x2.b + w1 + (1| cluster), data = Demo.twolevel,

REML = FALSE, control = lmerControl(optimizer = "bobyqa"))

Estimate random intercept and slope model using the lme4 package
mod2 <- lmer(y1 ~ x2.c + x2.b + w1 + (1 + x2.c | cluster), data = Demo.twolevel,

REML = FALSE, control = lmerControl(optimizer = "bobyqa"))

#---
Example 1: Random intercept model

Fixed slope estimates
fixef(mod1)

Random effects variance-covariance matrix
as.data.frame(VarCorr(mod1))

R-squared measures according to Rights and Sterba (2019)
multilevel.r2.manual(data = Demo.twolevel,

204 na.auxiliary

within = "x2.c", between = c("x2.b", "w1"),
gamma.w = 0.41127956,
gamma.b = c(0.01123245, -0.08269374, 0.17688507),
tau = 0.9297401,
sigma2 = 1.813245794)

#---
Example 2: Random intercept and slope model

Fixed slope estimates
fixef(mod2)

Random effects variance-covariance matrix
as.data.frame(VarCorr(mod2))

R-squared measures according to Rights and Sterba (2019)
multilevel.r2.manual(data = Demo.twolevel,

within = "x2.c", between = c("x2.b", "w1"), random = "x2.c",
gamma.w = 0.41127956,
gamma.b = c(0.01123245, -0.08269374, 0.17688507),

tau = matrix(c(0.931008649, 0.004110479, 0.004110479, 0.017068857), ncol = 2),
sigma2 = 1.813245794)

End(Not run)

na.auxiliary Auxiliary variables analysis

Description

This function computes (1) Pearson product-moment correlation matrix to identify variables related
to the incomplete variable and (2) Cohen’s d comparing cases with and without missing values to
identify variables related to the probability of missingness.

Usage

na.auxiliary(..., data = NULL, tri = c("both", "lower", "upper"), weighted = FALSE,
correct = FALSE, digits = 2, as.na = NULL, write = NULL,
append = TRUE, check = TRUE, output = TRUE)

Arguments

... a matrix or data frame with incomplete data, where missing values are coded
as NA. Alternatively, an expression indicating the variable names in data e.g.,
na.auxiliary(x1, x2, x3, data = dat). Note that the operators ., +, -, ~, :,
::, and ! can also be used to select variables, see ’Details’ in the df.subset
function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a matrix or data frame for the argu-
ment

na.auxiliary 205

tri a character string indicating which triangular of the correlation matrix to show
on the console, i.e., both for upper and lower triangular, lower (default) for the
lower triangular, and upper for the upper triangular.

weighted logical: if TRUE (default), the weighted pooled standard deviation is used.

correct logical: if TRUE, correction factor for Cohen’s d to remove positive bias in small
samples is used.

digits integer value indicating the number of decimal places digits to be used for dis-
playing correlation coefficients and Cohen’s d estimates.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

write a character string naming a text file with file extension ".txt" (e.g., "Output.txt")
for writing the output into a text file.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console.

Details

Note that non-numeric variables (i.e., factors, character vectors, and logical vectors) are excluded
from to the analysis.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data data frame used for the current analysis

args specification of function arguments

result list with result tables, i.e., cor.mat for the correlation matrix and d.mat for
Cohen’s d

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of
Psychology, 60, 549-576. https://doi.org/10.1146/annurev.psych.58.110405.085530

van Buuren, S. (2018). Flexible imputation of missing data (2nd ed.). Chapman & Hall.

206 na.coverage

See Also

as.na, na.as, na.coverage, na.descript, na.indicator, na.pattern, na.prop, na.test

Examples

Example 1a: Auxiliary variables
na.auxiliary(airquality)

Example 1b: Alternative specification using the 'data' argument
na.auxiliary(., data = airquality)

Not run:
Example 2: Write Results into a text file
na.auxiliary(airquality, write = "NA_Auxiliary.txt")

End(Not run)

na.coverage Variance-Covariance Coverage

Description

This function computes the proportion of cases that contributes for the calculation of each variance
and covariance.

Usage

na.coverage(..., data = NULL, tri = c("both", "lower", "upper"), digits = 2,
as.na = NULL, write = NULL, append = TRUE, check = TRUE,
output = TRUE)

Arguments

... a matrix or data frame with incomplete data, where missing values are coded
as NA. Alternatively, an expression indicating the variable names in data e.g.,
na.coverage(x1, x2, x3, data = dat). Note that the operators ., +, -, ~, :,
::, and ! can also be used to select variables, see ’Details’ in the df.subset
function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a matrix or data frame for the argu-
ment

tri a character string or character vector indicating which triangular of the matrix to
show on the console, i.e., both for upper and lower triangular, lower (default)
for the lower triangular, and upper for the upper triangular.

digits an integer value indicating the number of decimal places to be used for display-
ing proportions.

na.coverage 207

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

write a character string naming a file for writing the output into either a text file
with file extension ".txt" (e.g., "Output.txt") or Excel file with file exten-
tion ".xlsx" (e.g., "Output.xlsx"). If the file name does not contain any file
extension, an Excel file will be written.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data data frame used for the current analysis

args specification of function arguments

result result table

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of
Psychology, 60, 549-576. https://doi.org/10.1146/annurev.psych.58.110405.085530

van Buuren, S. (2018). Flexible imputation of missing data (2nd ed.). Chapman & Hall.

See Also

write.result, as.na, na.as, na.auxiliary, na.descript, na.indicator, na.pattern, na.prop,
na.test

Examples

Example 1a: Compute variance-covariance coverage
na.coverage(airquality)

Example 1b: Alternative specification using the 'data' argument
na.coverage(., data = airquality)

Not run:
Example 2a: Write Results into a text file
na.coverage(airquality, write = "Coverage.txt")

208 na.descript

Example 2b: Write Results into an Excel file
na.coverage(airquality, write = "Coverage.xlsx")

result <- na.coverage(airquality, output = FALSE)
write.result(result, "Coverage.xlsx")

End(Not run)

na.descript Descriptive Statistics for Missing Data in Single-Level, Two-Level and
Three-Level Data

Description

This function computes descriptive statistics for missing data in single-level, two-level, and three-
level data, e.g. number of incomplete cases, number of missing values, and summary statistics for
the number of missing values across all variables.

Usage

na.descript(..., data = NULL, cluster = NULL, table = FALSE, digits = 2,
as.na = NULL, write = NULL, append = TRUE, check = TRUE,
output = TRUE)

Arguments

... a matrix or data frame with incomplete data, where missing values are coded
as NA. Alternatively, an expression indicating the variable names in data e.g.,
na.descript(x1, x2, x3, data = dat). Note that the operators ., +, -, ~, :,
::, and ! can also be used to select variables, see ’Details’ in the df.subset
function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a matrix or data frame for the argu-
ment

cluster a character string indicating the name of the cluster variable in ... or data for
two-level data, a character vector indicating the names of the cluster variables in
... for three-level data, or a vector or data frame representing the nested group-
ing structure (i.e., group or cluster variables). Alternatively, a character string
or character vector indicating the variable name(s) of the cluster variable(s) in
data. Note that the cluster variable at Level 3 come first in a three-level model,
i.e., cluster = c("level3", "level2").

table logical: if TRUE, a frequency table with number of observed values ("nObs"),
percent of observed values ("pObs"), number of missing values ("nNA"), and
percent of missing values ("pNA") is printed for each variable on the console.

digits an integer value indicating the number of decimal places to be used for display-
ing percentages.

na.descript 209

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

write a character string naming a file for writing the output into either a text file
with file extension ".txt" (e.g., "Output.txt") or Excel file with file exten-
tion ".xlsx" (e.g., "Output.xlsx"). If the file name does not contain any file
extension, an Excel file will be written.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data data frame used for the current analysis

args specification of function arguments

result list with results

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of
Psychology, 60, 549-576. https://doi.org/10.1146/annurev.psych.58.110405.085530

van Buuren, S. (2018). Flexible imputation of missing data (2nd ed.). Chapman & Hall.

See Also

write.result, as.na, na.as, na.auxiliary, na.coverage, na.indicator, na.pattern, na.prop,
na.test

Examples

#--
Single-Level Data

Example 1a: Descriptive statistics for missing data
na.descript(airquality)

Example 1b: Alternative specification using the 'data' argument
na.descript(., data = airquality)

210 na.indicator

Example 2: Descriptive statistics for missing data, print results with 3 digits
na.descript(airquality, digits = 3)

Example 3: Descriptive statistics for missing data with frequency table
na.descript(airquality, table = TRUE)

#--
Two-Level Data

Load data set "Demo.twolevel" in the lavaan package
data("Demo.twolevel", package = "lavaan")

Example 4: escriptive statistics for missing data
na.descript(Demo.twolevel, cluster = "cluster")

#--
Three-Level Data

Create arbitrary three-level data
Demo.threelevel <- data.frame(Demo.twolevel, cluster2 = Demo.twolevel$cluster,

cluster3 = rep(1:10, each = 250))

Example 5: escriptive statistics for missing data
na.descript(Demo.threelevel, cluster = c("cluster3", "cluster2"))

#--
Write Results

Not run:
Example 6a: Write Results into a text file
na.descript(airquality, table = TRUE, write = "NA_Descriptives.txt")

Example 6b: Write Results into a Excel file
na.descript(airquality, table = TRUE, write = "NA_Descriptives.xlsx")

result <- na.descript(airquality, table = TRUE, output = FALSE)
write.result(result, "NA_Descriptives.xlsx")

End(Not run)

na.indicator Missing Data Indicator Matrix

Description

This function creates a missing data indicator matrix R that denotes whether values are observed or
missing, i.e., r = 1 if a value is observed, and r = 0 if a value is missing.

Usage

na.indicator(..., data = NULL, as.na = NULL, check = TRUE)

na.indicator 211

Arguments

... a matrix or data frame with incomplete data, where missing values are coded
as NA. Alternatively, an expression indicating the variable names in data e.g.,
na.indicator(x1, x2, x3, data = dat). Note that the operators ., +, -, ~, :,
::, and ! can also be used to select variables, see ’Details’ in the df.subset
function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a matrix or data frame for the argu-
ment

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE (default), argument specification is checked.

Value

Returns a matrix or data frame with r = 1 if a value is observed, and r = 0 if a value is missing.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of
Psychology, 60, 549-576. https://doi.org/10.1146/annurev.psych.58.110405.085530

van Buuren, S. (2018). Flexible imputation of missing data (2nd ed.). Chapman & Hall.

See Also

as.na, na.as, na.auxiliary, na.coverage, na.descript, na.pattern, na.prop, na.test

Examples

Example 1a: Create missing data indicator matrix \eqn{R}
na.indicator(airquality)

Example 1b: Alternative specification using the 'data' argument
na.indicator(., data = airquality)

212 na.pattern

na.pattern Missing Data Pattern

Description

This function computes a summary of missing data patterns, i.e., number (cases with a specific
missing data pattern.

Usage

na.pattern(..., data = NULL, order = FALSE, digits = 2, as.na = NULL, write = NULL,
append = TRUE, check = TRUE, output = TRUE)

Arguments

... a matrix or data frame with incomplete data, where missing values are coded
as NA. a matrix or data frame with incomplete data, where missing values are
coded as NA. Alternatively, an expression indicating the variable names in data
e.g., na.pattern(x1, x2, x3, data = dat).Note that the operators ., +, -, ~,
:, ::, and ! can also be used to select variables, see ’Details’ in the df.subset
function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a matrix or data frame for the argu-
ment

order logical: if TRUE, variables are ordered from left to right in increasing order of
missing values.

digits an integer value indicating the number of decimal places to be used for display-
ing percentages.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

write a character string naming a file for writing the output into either a text file
with file extension ".txt" (e.g., "Output.txt") or Excel file with file exten-
tion ".xlsx" (e.g., "Output.xlsx"). If the file name does not contain any file
extension, an Excel file will be written.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

na.pattern 213

data data frame used for the current analysis

args specification of function arguments

result result tables

pattern group variable of missing data pattern

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of
Psychology, 60, 549-576. https://doi.org/10.1146/annurev.psych.58.110405.085530

van Buuren, S. (2018). Flexible imputation of missing data (2nd ed.). Chapman & Hall.

See Also

write.result, as.na, na.as, na.auxiliary, na.coverage, na.descript, na.indicator, na.prop,
na.test

Examples

Not run:
Example 1a: Compute a summary of missing data patterns
dat.pattern <- na.pattern(airquality)

Example 1b: Alternative specification using the 'data' argument
dat.pattern <- na.pattern(., data = airquality)

Example 2: Vector of missing data pattern for each case
dat.pattern$pattern

Data frame without cases with missing data pattern 2 and 4
airquality[!dat.pattern$pattern

Example 3a: Write Results into an text file
result <- na.pattern(airquality, write = "NA_Pattern.txt")

Example 3b: Write Results into an Excel file
result <- na.pattern(airquality, write = "NA_Pattern.xlsx")

result <- na.pattern(dat, output = FALSE)
write.result(result, "NA_Pattern.xlsx")

End(Not run)

214 na.prop

na.prop Proportion of Missing Data for Each Case

Description

This function computes the proportion of missing data for each case in a matrix or data frame.

Usage

na.prop(..., data = NULL, digits = 2, append = TRUE, name = "na.prop",
as.na = NULL, check = TRUE)

Arguments

... a matrix or data frame with incomplete data, where missing values are coded
as NA. Alternatively, an expression indicating the variable names in data e.g.,
na.prop(x1, x2, x3, data = dat). Note that the operators ., +, -, ~, :, ::, and
! can also be used to select variables, see ’Details’ in the df.subset function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a matrix or data frame for the argu-
ment

name a character string indicating the name of the variable appended to the data frame
specified in the arguement data when append = TRUE.

.

append logical: if TRUE (default), variable with proportion of missing data is appended
to the data frame specified in the argument data

digits an integer value indicating the number of decimal places to be used for display-
ing proportions.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.

Value

Returns a numeric vector with the same length as the number of rows in x containing the proportion
of missing data.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

na.test 215

References

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of
Psychology, 60, 549-576. https://doi.org/10.1146/annurev.psych.58.110405.085530

van Buuren, S. (2018). Flexible imputation of missing data (2nd ed.). Chapman & Hall.

See Also

as.na, na.as, na.auxiliary, na.coverage, na.descript, na.indicator, na.pattern, na.test

Examples

Example 1a: Compute proportion of missing data for each case in the data frame
na.prop(airquality)

Example 1b: Alternative specification using the 'data' argument,
append proportions to the data frame 'airquality'
na.prop(., data = airquality)

na.test Little’s Missing Completely at Random (MCAR) Test

Description

This function performs Little’s Missing Completely at Random (MCAR) test

Usage

na.test(..., data = NULL, digits = 2, p.digits = 3, as.na = NULL, write = NULL,
append = TRUE,check = TRUE, output = TRUE)

Arguments

... a matrix or data frame with incomplete data, where missing values are coded
as NA. Alternatively, an expression indicating the variable names in data e.g.,
na.test(x1, x2, x3, data = dat). Note that the operators ., +, -, ~, :, ::, and
! can also be used to select variables, see ’Details’ in the df.subset function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a matrix or data frame for the argu-
ment

digits an integer value indicating the number of decimal places to be used for display-
ing results.

p.digits an integer value indicating the number of decimal places to be used for display-
ing the p-value.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

216 na.test

write a character string naming a text file with file extension ".txt" (e.g., "Output.txt")
for writing the output into a text file.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.
output logical: if TRUE (default), output is shown.

Details

Little (1988) proposed a multivariate test of Missing Completely at Random (MCAR) that tests
for mean differences on every variable in the data set across subgroups that share the same miss-
ing data pattern by comparing the observed variable means for each pattern of missing data with
the expected population means estimated using the expectation-maximization (EM) algorithm (i.e.,
EM maximum likelihood estimates). The test statistic is the sum of the squared standardized differ-
ences between the subsample means and the expected population means weighted by the estimated
variance-covariance matrix and the number of observations within each subgroup (Enders, 2010).
Under the null hypothesis that data are MCAR, the test statistic follows asymptotically a chi-square
distribution with

∑
kj − k degrees of freedom, where kj is the number of complete variables for

missing data pattern j, and k is the total number of variables. A statistically significant result pro-
vides evidence against MCAR.

Note that Little’s MCAR test has a number of problems (see Enders, 2010). First, the test does not
identify the specific variables that violates MCAR, i.e., the test does not identify potential corre-
lates of missingness (i.e., auxiliary variables). Second, the test is based on multivariate normality,
i.e., under departure from the normality assumption the test might be unreliable unless the sample
size is large and is not suitable for categorical variables. Third, the test investigates mean differ-
ences assuming that the missing data pattern share a common covariance matrix, i.e., the test cannot
detect covariance-based deviations from MCAR stemming from a Missing at Random (MAR) or
Missing Not at Random (MNAR) mechanism because MAR and MNAR mechanisms can also pro-
duce missing data subgroups with equal means. Fourth, simulation studies suggest that Little’s
MCAR test suffers from low statistical power, particularly when the number of variables that vi-
olate MCAR is small, the relationship between the data and missingness is weak, or the data are
MNAR (Thoemmes & Enders, 2007). Fifth, the test can only reject, but cannot prove the MCAR
assumption, i.e., a statistically not significant result and failing to reject the null hypothesis of the
MCAR test does not prove the null hypothesis that the data is MCAR. Finally, under the null hy-
pothesis the data are actually MCAR or MNAR, while a statistically significant result indicates that
missing data are MAR or MNAR, i.e., MNAR cannot be ruled out regardless of the result of the
test.

This function is based on the prelim.norm function in the norm package which can handle about
30 variables. With more than 30 variables specified in the argument x, the prelim.norm function
might run into numerical problems leading to results that are not trustworthy. In this case it is
recommended to reduce the number of variables specified in the argument x. If the number of vari-
ables cannot be reduced, it is recommended to use the LittleMCAR function in the BaylorEdPsych
package which can deal with up to 50 variables. However, this package was removed from the
CRAN repository and needs to be obtained from the archive along with the mvnmle package which
is needed for using the LittleMCAR function. Note that the mcar_test function in the naniar
package is also based on the prelim.norm function which results are not trustworthy whenever
the warning message In norm::prelim.norm(data) : NAs introduced by coercion to integer
range is printed on the console.

na.test 217

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data matrix or data frame specified in x

args specification of function arguments

result result table

Note

Code is adapted from the R function by Eric Stemmler: tinyurl.com/r-function-for-MCAR-test

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

Thoemmes, F., & Enders, C. K. (2007, April). A structural equation model for testing whether
data are missing completely at random. Paper presented at the annual meeting of the American
Educational Research Association, Chicago, IL.

Little, R. J. A. (1988). A test of Missing Completely at Random for multivariate data with missing
values. Journal of the American Statistical Association, 83, 1198-1202. https://doi.org/10.2307/2290157

See Also

as.na, na.as, na.auxiliary, na.coverage, na.descript, na.indicator, na.pattern, na.prop.

Examples

Example 1a: Conduct Little's MCAR test
na.test(airquality)

Example b: Alternative specification using the 'data' argument,
na.test(., data = airquality)

Not run:
Example 2: Write results into a text file
na.test(airquality, write = "NA_Test.txt")

End(Not run)

218 print.misty.object

print.misty.object Print misty.object object

Description

This function prints the misty.object object

Usage

S3 method for class 'misty.object'
print(x,

print = x$args$print, tri = x$args$tri, freq = x$args$freq,
hypo = x$args$hypo, descript = x$args$descript, epsilon = x$args$epsilon,
effsize = x$args$effsize, posthoc = x$args$posthoc, split = x$args$split,
table = x$args$table, digits = x$args$digits, p.digits = x$args$p.digits,
icc.digits = x$args$icc.digits, sort.var = x$args$sort.var,
order = x$args$order, check = TRUE, ...)

Arguments

x misty.object object.

print a character string or character vector indicating which results to to be printed on
the console.

tri a character string or character vector indicating which triangular of the matrix
to show on the console, i.e., both for upper and lower triangular, lower for the
lower triangular, and upper for the upper triangular.

freq logical: if TRUE, absolute frequencies will be included in the cross tabulation
(crosstab() function).

hypo logical: if TRUE, null and alternative hypothesis are shown on the console (test.t,
test.welch, test.z function).

descript logical: if TRUE, descriptive statistics are shown on the console (test.t, test.welch,
test.z function).

epsilon logical: if TRUE, box indices of sphericity (epsilon) are shown on the console
(aov.w).

effsize logical: if TRUE, effect size measure(s) is shown on the console (test.t, test.welch,
test.z function). test.z function).

posthoc logical: if TRUE,post hoc test for multiple comparison is shown on the console
(test.welch).

split logical: if TRUE, output table is split by variables when specifying more than one
variable in x (freq).

table logical: if TRUE, a frequency table with number of observed values ("nObs"),
percent of observed values ("pObs"), number of missing values ("nNA"), and
percent of missing values ("pNA") is printed for each variable on the console
(na.descript() function).

read.dta 219

digits an integer value indicating the number of decimal places digits to be used for
displaying results.

p.digits an integer indicating the number of decimal places to be used for displaying
p-values.

icc.digits an integer indicating the number of decimal places to be used for displaying intr-
aclass correlation coefficients (multilevel.descript() and multilevel.icc()
function).

sort.var logical: if TRUE, output is sorted by variables.

order logical: if TRUE, variables are ordered from left to right in increasing order of
missing values (na.descript() function).

check logical: if TRUE, argument specification is checked.

... further arguments passed to or from other methods.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

read.dta Read Stata DTA File

Description

This function calls the read_dta function in the haven package by Hadley Wickham, Evan Miller
and Danny Smith (2023) to read a Stata DTA file.

Usage

read.dta(file, use.value.labels = FALSE, formats = FALSE, label = FALSE, labels = FALSE,
missing = FALSE, widths = FALSE, as.data.frame = TRUE, check = TRUE)

Arguments

file a character string indicating the name of the Stata data file with or without file
extension ’.dta’, e.g., "Stata_Data.dta" or "Stata_Data".

use.value.labels

logical: if TRUE, variables with value labels are converted into factors.

formats logical: if TRUE (default), variable formats are shown in an attribute for all vari-
ables.

label logical: if TRUE, variable labels are shown in an attribute for all variables.

labels logical: if TRUE, value labels are shown in an attribute for all variables.

missing logical: if TRUE, convert tagged missing values to regular R NA.

widths logical: if TRUE, widths are shown in an attribute for all variables.

as.data.frame logical: if TRUE (default), function returns a regular data frame; if FALSE function
returns a tibble.

check logical: if TRUE (default), argument specification is checked.

220 read.mplus

Value

Returns a data frame or tibble.

Note

This function is a modified copy of the read_dta() function in the haven package by Hadley
Wickham, Evan Miller and Danny Smith (2023).

Author(s)

Hadley Wickham and Evan Miller

References

Wickham H, Miller E, Smith D (2023). haven: Import and Export ’SPSS’, ’Stata’ and ’SAS’ Files.
R package version 2.5.3. https://CRAN.R-project.org/package=haven

See Also

read.sav, write.sav, read.xlsx, write.xlsx, read.mplus, write.mplus

Examples

Not run:

read.dta("Stata_Data.dta")
read.dta("Stata_Data")

Example 2: Read Stata data, convert variables with value labels into factors
read.dta("Stata_Data.dta", use.value.labels = TRUE)

Example 3: Read Stata data as tibble
read.dta("Stata_Data.dta", as.data.frame = FALSE)

End(Not run)

read.mplus Read Mplus Data File and Variable Names

Description

This function reads a Mplus data file and/or Mplus input/output file to return a data frame with
variable names extracted from the Mplus input/output file. Note that by default -99 in the Mplus
data file is replaced with to NA.

Usage

read.mplus(file, sep = "", input = NULL, na = -99, print = FALSE, return.var = FALSE,
encoding = "UTF-8-BOM", check = TRUE)

https://CRAN.R-project.org/package=haven

read.mplus 221

Arguments

file a character string indicating the name of the Mplus data file with or without the
file extension .dat, e.g., "Mplus_Data.dat" or "Mplus_Data". Note that it is
not necessary to specify this argument when return.var = TRUE.

sep a character string indicating the field separator (i.e., delimiter) used in the data
file specified in file. By default, the separator is ’white space’, i.e., one or more
spaces, tabs, newlines or carriage returns.

input a character string indicating the Mplus input (.inp) or output file (.out) in
which the variable names are specified in the VARIABLE: section. Note that if
input = NULL, this function is equivalent to read.table(file).

na a numeric vector indicating values to replace with NA. By default, -99 is replaced
with NA. If -99 is not a missing value change the argument to NULL.

print logical: if TRUE, variable names are printed on the console.

return.var logical: if TRUE, the function returns the variable names extracted from the
Mplus input or output file only.

encoding character string declaring the encoding used on file so the character data can
be re-encoded.See the ’Encoding’ section of the help page for the file function,
the ’R Data Import/Export Manual’ and ’Note’.

check logical: if TRUE (default), argument specification is checked.

Value

A data frame containing a representation of the data in the file.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Muthen, L. K., & Muthen, B. O. (1998-2017). Mplus User’s Guide (8th ed.). Muthen & Muthen.

See Also

read.dta, write.dta, read.sav, write.sav, read.xlsx, write.xlsx

Examples

Not run:
Example 1: Read Mplus data file and variable names extracted from the Mplus input file
dat <- read.mplus("Mplus_Data.dat", input = "Mplus_Input.inp")

Example 2: Read Mplus data file and variable names extracted from the Mplus input file,
print variable names on the console
dat <- read.mplus("Mplus_Data.dat", input = "Mplus_Input.inp", print = TRUE)

Example 3: Read variable names extracted from the Mplus input file
varnames <- read.mplus(input = "Mplus_Input.inp", return.var = TRUE)

222 read.sav

End(Not run)

read.sav Read SPSS File

Description

This function calls the read_spss function in the haven package by Hadley Wickham, Evan Miller
and Danny Smith (2023) to read an SPSS file.

Usage

read.sav(file, use.value.labels = FALSE, use.missings = TRUE, formats = FALSE,
label = FALSE, labels = FALSE, missing = FALSE, widths = FALSE,
as.data.frame = TRUE, check = TRUE)

Arguments

file a character string indicating the name of the SPSS data file with or without file
extension ’.sav’, e.g., "SPSS_Data.sav" or "SPSS_Data".

use.value.labels

logical: if TRUE, variables with value labels are converted into factors.

use.missings logical: if TRUE (default), user-defined missing values are converted into NAs.

formats logical: if TRUE, variable formats are shown in an attribute for all variables.

label logical: if TRUE, variable labels are shown in an attribute for all variables.

labels logical: if TRUE, value labels are shown in an attribute for all variables.

missing logical: if TRUE, value labels for user-defined missings are shown in an attribute
for all variables.

widths logical: if TRUE, widths are shown in an attribute for all variables.

as.data.frame logical: if TRUE (default), function returns a regular data frame; if FALSE function
returns a tibble.

check logical: if TRUE (default), argument specification is checked.

Value

Returns a data frame or tibble.

Author(s)

Hadley Wickham, Evan Miller and Danny Smith

References

Wickham H, Miller E, Smith D (2023). haven: Import and Export ’SPSS’, ’Stata’ and ’SAS’ Files.
R package version 2.5.3. https://CRAN.R-project.org/package=haven

https://CRAN.R-project.org/package=haven

read.xlsx 223

See Also

read.dta, write.dta, read.xlsx, write.xlsx, read.mplus, write.mplus

Examples

Not run:
Example 1: Read SPSS data file
read.sav("SPSS_Data.sav")
read.sav("SPSS_Data")

Example 2: Read SPSS data file, convert variables with value labels into factors
read.sav("SPSS_Data.sav", use.value.labels = TRUE)

Example 3: Read SPSS data file, user-defined missing values are not converted into NAs
read.sav("SPSS_Data.sav", use.missing = FALSE)

Example 4: Read SPSS data file as tibble
read.sav("SPSS_Data.sav", as.data.frame = FALSE)

End(Not run)

read.xlsx Read Excel File

Description

This function calls the read_xlsx() function in the readxl package by Hadley Wickham and Jen-
nifer Bryan (2019) to read an Excel file (.xlsx).

Usage

read.xlsx(file, sheet = NULL, header = TRUE, range = NULL,
coltypes = c("skip", "guess", "logical", "numeric", "date", "text", "list"),

na = "", trim = TRUE, skip = 0, nmax = Inf, guessmax = min(1000, nmax),
progress = readxl::readxl_progress(), name.repair = "unique",
as.data.frame = TRUE, check = TRUE)

Arguments

file a character string indicating the name of the Excel data file with or without file
extension ’.xlsx’, e.g., "My_Excel_Data.xlsx" or "My_Excel_Data".

sheet a character string indicating the name of a sheet or a numeric value indicating
the position of the sheet to read. By default the first sheet will be read.

header logical: if TRUE (default), the first row is used as column names, if FALSE default
names are used. A character vector giving a name for each column can also
be used. If coltypes as a vector is provided, colnames can have one entry
per column, i.e. have the same length as coltypes, or one entry per unskipped
column.

224 read.xlsx

range a character string indicating the cell range to read from, e.g. typical Excel ranges
like "B3:D87", possibly including the sheet name like "Data!B2:G14". Inter-
preted strictly, even if the range forces the inclusion of leading or trailing empty
rows or columns. Takes precedence over skip, nmax and sheet.

coltypes a character vector containing one entry per column from these options "skip",
"guess", "logical", "numeric", "date", "text" or "list". If exactly one
coltype is specified, it will be recycled. By default (i.e., coltypes = NULL)
coltypes will be guessed. The content of a cell in a skipped column is never
read and that column will not appear in the data frame output. A list cell loads
a column as a list of length 1 vectors, which are typed using the type guessing
logic from coltypes = NULL, but on a cell-by-cell basis.

na a character vector indicating strings to interpret as missing values. By default,
blank cells will be treated as missing data.

trim logical: if TRUE (default), leading and trailing whitespace will be trimmed.

skip a numeric value indicating the minimum number of rows to skip before reading
anything, be it column names or data. Leading empty rows are automatically
skipped, so this is a lower bound. Ignored if the argument range is specified.

nmax a numeric value indicating the maximum number of data rows to read. Trailing
empty rows are automatically skipped, so this is an upper bound on the number
of rows in the returned data frame. Ignored if the argument range is specified.

guessmax a numeric value indicating the maximum number of data rows to use for guess-
ing column types.

progress display a progress spinner? By default, the spinner appears only in an interactive
session, outside the context of knitting a document, and when the call is likely
to run for several seconds or more.

name.repair a character string indicating the handling of column names. By default, the
function ensures column names are not empty and are unique.

as.data.frame logical: if TRUE (default), function returns a regular data frame; if FALSE function
returns a tibble.

check logical: if TRUE (default), argument specification is checked.

Value

Returns a data frame or tibble.

Author(s)

Hadley Wickham and Jennifer Bryan

References

Wickham H, Miller E, Smith D (2023). readxl: Read Excel Files. R package version 1.4.3. https:
//CRAN.R-project.org/package=readxl

See Also

read.dta, write.dta, read.sav, write.sav, read.mplus, write.mplus

https://CRAN.R-project.org/package=readxl
https://CRAN.R-project.org/package=readxl

rec 225

Examples

Not run:
Example 1: Read Excel file (.xlsx)
read.xlsx("data.xlsx")

Example 1: Read Excel file (.xlsx), use default names as column names
read.xlsx("data.xlsx", header = FALSE)

Example 2: Read Excel file (.xlsx), interpret -99 as missing values
read.xlsx("data.xlsx", na = "-99")

Example 3: Read Excel file (.xlsx), use x1, x2, and x3 as column names
read.xlsx("data.xlsx", header = c("x1", "x2", "x3"))

Example 4: Read Excel file (.xlsx), read cells A1:B5
read.xlsx("data.xlsx", range = "A1:B5")

Example 5: Read Excel file (.xlsx), skip 2 rows before reading data
read.xlsx("data.xlsx", skip = 2)

Example 5: Read Excel file (.xlsx), return a tibble
read.xlsx("data.xlsx", as.data.frame = FALSE)

End(Not run)

rec Recode Variable

Description

This function recodes numeric vectors, character vectors, or factors according to recode specifica-
tions.

Usage

rec(..., data = NULL, spec, as.factor = FALSE, levels = NULL, append = TRUE,
name = ".e", as.na = NULL, table = FALSE, check = TRUE)

Arguments

... a numeric vector, character vector, factor, matrix or data frame. Alternatively, an
expression indicating the variable names in data e.g., rec(x1, x2, x3, data =
dat, spec = "1 = 0")). Note that the operators ., +, -, ~, :, ::, and ! can also
be used to select variables, see ’Details’ in the df.subset function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a a numeric vector, character vector,
factor, matrix or data frame for the argument

spec a character string of recode specifications (see ’Details’).

226 rec

as.factor logical: if TRUE, character vector will be coerced to a factor.

levels a character vector for specifying the levels in the returned factor.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

append logical: if TRUE (default), centered variable(s) are appended to the data frame
specified in the argument data.

name a character string or character vector indicating the names of the recoded vari-
ables. By default, variables are named with the ending ".r" Resulting in e.g.
"x1.r" and "x2.r". Variable names can also be specified using a character vec-
tor matching the number of variables specified in ... (e.g., name = c("recode.x1",
"recode.x2")).

table logical: if TRUE, a cross table variable x recoded variable is printed on the con-
sole if only one variable is specified in

check logical: if TRUE (default), argument specification is checked.

Details

Recode specifications appear in a character string, separated by semicolons (see the examples be-
low), of the form input = output. If an input value satisfies more than one specification, then the
first (from left to right) applies. If no specification is satisfied, then the input value is carried over
to the result. NA is allowed in input and output. Several recode specifications are supported:

Single Value For example, spec = "0 = NA".

Vector of Values For example, spec = "c(7, 8, 9) = 'high'".

Range of Values For example, spec = "7:9 = 'C'". The special values lo (lowest value) and hi
(highest value) may appear in a range. For example, spec = "lo:10 = 1". Note that : is not
the R sequence operator. In addition you may not use : with the collect operator, e.g., spec =
"c(1, 3, 5:7)" will cause an error.

else For example, spec = "0 = 1; else = NA". Everything that does not fit a previous specification.
Note that else matches all otherwise unspecified values on input, including NA.

Value

Returns a numeric vector or data frame with the same length or same number of rows as ...
containing the recoded coded variable(s).

Note

This function was adapted from the recode() function in the car package by John Fox and Sanford
Weisberg (2019).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

rec 227

References

Fox, J., & Weisberg S. (2019). An R Companion to Applied Regression (3rd ed.). Thousand Oaks
CA: Sage. URL: https://socialsciences.mcmaster.ca/jfox/Books/Companion/

See Also

coding, item.reverse

Examples

#--
Numeric vector
x.num <- c(1, 2, 4, 5, 6, 8, 12, 15, 19, 20)

Example 1a: Recode 5 = 50 and 19 = 190
rec(x.num, spec = "5 = 50; 19 = 190")

Example 1b: Recode 1, 2, and 5 = 100 and 4, 6, and 7 = 200 and else = 300
rec(x.num, spec = "c(1, 2, 5) = 100; c(4, 6, 7) = 200; else = 300")

Example 1c: Recode lowest value to 10 = 100 and 11 to highest value = 200
rec(x.num, spec = "lo:10 = 100; 11:hi = 200")

Example 1d: Recode 5 = 50 and 19 = 190 and check recoding
rec(x.num, spec = "5 = 50; 19 = 190", table = TRUE)

#--
Character vector
x.chr <- c("a", "c", "f", "j", "k")

Example 2a: Recode a to x
rec(x.chr, spec = "'a' = 'X'")

Example 2b: Recode a and f to x, c and j to y, and else to z
rec(x.chr, spec = "c('a', 'f') = 'x'; c('c', 'j') = 'y'; else = 'z'")

Example 2c: Recode a to x and coerce to a factor
rec(x.chr, spec = "'a' = 'X'", as.factor = TRUE)

#--
Factor
x.fac <- factor(c("a", "b", "a", "c", "d", "d", "b", "b", "a"))

Example 3a: Recode a to x, factor levels ordered alphabetically
rec(x.fac, spec = "'a' = 'x'")

Example 3b: Recode a to x, user-defined factor levels
rec(x.fac, spec = "'a' = 'x'", levels = c("x", "b", "c", "d"))

#--
Multiple variables
dat <- data.frame(x1.num = c(1, 2, 4, 5, 6),

228 restart

x2.num = c(5, 19, 2, 6, 3),
x1.chr = c("a", "c", "f", "j", "k"),
x2.chr = c("b", "c", "a", "d", "k"),
x1.fac = factor(c("a", "b", "a", "c", "d")),
x2.fac = factor(c("b", "a", "d", "c", "e")))

Example 4a: Recode numeric vector and attach to 'dat'
dat <- cbind(dat, rec(dat[, c("x1.num", "x2.num")], spec = "5 = 50; 19 = 190"))

Example 4b: Alternative specification using the 'data' argument,
rec(x1.num, x2.num, data = dat, spec = "5 = 50; 19 = 190")

Example 4c: Recode character vector and attach to 'dat'
dat <- cbind(dat, rec(dat[, c("x1.chr", "x2.chr")], spec = "'a' = 'X'"))

Example 4d: Recode factor vector and attach to 'dat'
dat <- cbind(dat, rec(dat[, c("x1.fac", "x2.fac")], spec = "'a' = 'X'"))

restart Restart R Session

Description

This function restarts the RStudio session and is equivalent to using the menu item Session -
Restart R.

Usage

restart()

Details

The function call executeCommand("restartR") in the package rstudioapi is used to restart the
R session. Note that the function restartSession() in the package rstudioapi is not equivalent to
the menu item Session - Restart R since it does not unload packages loaded during an R session.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Ushey, K., Allaire, J., Wickham, H., & Ritchie, G. (2022). rstudioapi: Safely access the RStudio
API. R package version 0.14. https://CRAN.R-project.org/package=rstudioapi

result.lca 229

Examples

Not run:

Example 1: Restart the R Session
restart()

End(Not run)

result.lca Summary Result Table and Grouped Bar Charts for Latent Class Anal-
ysis Estimated in Mplus

Description

This function reads all Mplus output files from latent class analysis in subfolders to create a sum-
mary result table and bar charts for each latent class solution separately. By default, the function
reads output files in all subfolders of the current working directory. Optionally, bar charts for each
latent class solution can be requested by setting the argument plot to TRUE. Note that subfolders
with only one Mplus output file are excluded.

Usage

result.lca(folder = getwd(), exclude = NULL, sort.n = TRUE, sort.p = TRUE,
plot = FALSE, group.ind = TRUE, ci = TRUE, conf.level = 0.95, adjust = TRUE,

axis.title = 7, axis.text = 7, levels = NULL, labels = NULL,
ylim = NULL, ylab = "Mean Value", breaks = ggplot2::waiver(),

error.width = 0.1, legend.title = 7, legend.text = 7, legend.key.size = 0.4,
gray = FALSE, start = 0.15, end = 0.85, dpi = 600,
width = "n.ind", height = 4, digits = 1, p.digits = 3,
write = NULL, append = TRUE, check = TRUE, output = TRUE)

Arguments

folder a character vector indicating the name of the subfolders to be excluded from the
summary result table.

exclude a character vector indicating the name of the subfolders excluded from the result
tables.

sort.n logical: if TRUE (default), result table is sorted according to the number of classes
within each folder.

sort.p logical: if TRUE (default), class proportions are sorted decreasing.

plot logical: if TRUE, bar charts with error bars for confidence intervals are saved in
the folder _Plots within subfolders. Note that plots are only available for LCA
with continuous or count indicator variables.

group.ind logical: if TRUE (default), latent class indicators are represented by separate bars,
if FALSE latent classes are represented by separate bars.

230 result.lca

ci logical: if TRUE (default), confidence intervals are added to the bar charts.

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

adjust logical: if TRUE (default), difference-adjustment for the confidence intervals is
applied.

axis.title a numeric value specifying the size of the axis title.

axis.text a numeric value specifying the size of the axis text

levels a character string specifying the order of the indicator variables shown on the
x-axis.

labels a character string specifying the labels of the indicator variables shown on the
x-axis.

ylim a numeric vector of length two specifying limits of the y-axis.

ylab a character string specifying the label of the y-axis.

breaks a numeric vector specifying the points at which tick-marks are drawn at the y-
axis.

error.width a numeric vector specifying the width of the error bars. By default, the width of
the error bars is 0.1 plus number of classes divided by 30.

legend.title a numeric value specifying the size of the legend title.

legend.text a numeric value specifying the size of the legend text.
legend.key.size

a numeric value specifying the size of the legend keys.

gray logical: if TRUE, bar charts are drawn in gray scale.

start a numeric value between 0 and 1 specifying the gray value at the low end of the
palette.

end a numeric value between 0 and 1 specifying the gray value at the high end of the
palette.

dpi a numeric value specifying the plot resolution when saving the bar chart.

width a numeric value specifying the width of the plot when saving the bar chart. By
default, the width is number of indicators plus number of classes divided by 2.

height a numeric value specifying the height of the plot when saving the bar chart.

digits an integer value indicating the number of decimal places to be used for display-
ing results. Note that the scaling correction factor is displayed with digits plus
1 decimal places.

p.digits an integer value indicating the number of decimal places to be used for display-
ing p-values, entropy value, and class proportions.

write a character string naming a file for writing the output into either a text file
with file extension ".txt" (e.g., "Output.txt") or Excel file with file exten-
tion ".xlsx" (e.g., "Output.xlsx"). If the file name does not contain any file
extension, an Excel file will be written.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown.

result.lca 231

Details

The result summary table comprises following entries:

• "Folder": Subfolder from which the group of Mplus outputs files were summarized.
• "#Class": Number of classes (i.e., CLASSES ARE c(#Class)).
• "Conv": Model converged, TRUE or FALSE (i.e., THE MODEL ESTIMATION TERMINATED NORMALLY.
• "#Param": Number of estimated parameters (i.e., Number of Free Parameters).
• "logLik": Log-likelihood of the estimated model (i.e., H0 Value).
• "Scale": Scaling correction factor (i.e., H0 Scaling Correction Factor for). Provided

only when ESTIMATOR IS MLR.
• "LL Rep": Best log-likelihood replicated, TRUE or FALSE (i.e., THE BEST LOGLIKELIHOOD VALUE
HAS BEEN REPLICATED).

• "AIC": Akaike information criterion (i.e., Akaike (AIC)).
• "CAIC": Consistent AIC, not reported in the Mplus output, but simply BIC + #Param.
• "BIC": Bayesian information criterion (i.e., Bayesian (BIC)).
• "Chi-Pear": Pearson chi-square test of model fit (i.e., Pearson Chi-Square), only available

when indicators are count or ordered categorical.
• "Chi-LRT": Likelihood ratio chi-square test of model fit (i.e., Likelihood Ratio Chi-Square),

only available when indicators are count or ordered catgeorical.
• "SABIC": Sample-size adjusted BIC (i.e., Sample-Size Adjusted BIC).
• "LMR-LRT": Significance value (p-value) of the Vuong-Lo-Mendell-Rubin test (i.e., VUONG-LO-MENDELL-RUBIN
LIKELIHOOD RATIO TEST). Provided only when OUTPUT: TECH11.

• "A-LRT": Significance value (p-value) of the Adjusted Lo-Mendell-Rubin Test (i.e., LO-MENDELL-RUBIN
ADJUSTED LRT TEST). Provided only when OUTPUT: TECH11.

• "BLRT": Significance value (p-value) of the bootstrapped likelihood ratio test. Provided only
when OUTPUT: TECH14.

• "Entropy": Sample-size adjusted BIC (i.e., Entropy).
• "p1": Class proportion of the first class based on the estimated posterior probabilities (i.e.,
FINAL CLASS COUNTS AND PROPORTIONS).

• "p2": Class proportion of the second class based on the estimated posterior probabilities (i.e.,
FINAL CLASS COUNTS AND PROPORTIONS).

Value

Returns an object, which is a list with following entries:

call function call
type type of analysis
output list with all Mplus outputs
args specification of function arguments
result list with result tables, i.e., summary for the summary result table, mean_var for

the result table with means and variances for each latent class separately, mean
for the result table with means for each latent class separately, and var for the
result table with variances for each latent class separately

232 result.lca

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Masyn, K. E. (2013). Latent class analysis and finite mixture modeling. In T. D. Little (Ed.), The
Oxford handbook of quantitative methods: Statistical analysis (pp. 551–611). Oxford University
Press.

Muthen, L. K., & Muthen, B. O. (1998-2017). Mplus User’s Guide (8th ed.). Muthen & Muthen.

See Also

mplus.lca, mplus.run, read.mplus, write.mplus

Examples

Not run:
Load data set "HolzingerSwineford1939" in the lavaan package
data("HolzingerSwineford1939", package = "lavaan")

Run LCA with k = 1 to k = 6 classes
mplus.lca(HolzingerSwineford1939, ind = c("x1", "x2", "x3", "x4"),

run.mplus = TRUE)

Example 1a: Read Mplus output files, create result table, write table, and save plots
result.lca(write = "LCA.xlsx", plot = TRUE)

Example 1b: Write results into a text file
result.lca(write = "LCA.txt")

#---
Example 2: Draw bar chart manually

library(ggplot2)

Collect LCA results
lca.result <- result.lca()

Result table with means
means <- lca.result$result$mean

Extract results from variance-covariance structure A with 4 latent classes
plotdat <- means[means$folder == "A_Invariant-Theta_Diagonal-Sigma" & means$nclass == 4,]

Draw bar chart
ggplot(plotdat, aes(ind, est, group = class, fill = class)) +

geom_bar(stat = "identity", position = "dodge", color = "black",
linewidth = 0.1) +

geom_errorbar(aes(ymin = low, ymax = upp), width = 0.23,
linewidth = 0.2, position = position_dodge(0.9)) +

scale_x_discrete("") +

robust.coef 233

scale_y_continuous("Mean Value", limits = c(0, 9),
breaks = seq(0, 9, by = 1)) +

labs(fill = "Latent Class") +
guides(fill = guide_legend(nrow = 1L)) +
theme(axis.title = element_text(size = 11),

axis.text = element_text(size = 11),
legend.position = "bottom",
legend.key.size = unit(0.5 , 'cm'),
legend.title = element_text(size = 11),
legend.text = element_text(size = 11),
legend.box.spacing = unit(-9L, "pt"))

Save bar chart
ggsave("LCA_4-Class.png", dpi = 600, width = 6, height = 4)

End(Not run)

robust.coef Unstandardized Coefficients with Heteroscedasticity-Consistent Stan-
dard Errors

Description

This function computes heteroscedasticity-consistent standard errors and significance values for
linear models estimated by using the lm() function and generalized linear models estimated by
using the glm() function. For linear models the heteroscedasticity-robust F-test is computed as
well. By default the function uses the HC4 estimator.

Usage

robust.coef(model, type = c("HC0", "HC1", "HC2", "HC3", "HC4", "HC4m", "HC5"),
digits = 3, p.digits = 4, write = NULL, append = TRUE, check = TRUE,
output = TRUE)

Arguments

model a fitted model of class lm or glm.

type a character string specifying the estimation type, where "H0" gives White’s es-
timator and "H1" to "H5" are refinement of this estimator. See help page of the
vcovHC() function in the R package sandwich for more details.

digits an integer value indicating the number of decimal places to be used for display-
ing results. Note that information criteria and chi-square test statistic are printed
with digits minus 1 decimal places.

p.digits an integer value indicating the number of decimal places to be used for display-
ing p-values.

234 robust.coef

write a character string naming a file for writing the output into either a text file
with file extension ".txt" (e.g., "Output.txt") or Excel file with file exten-
tion ".xlsx" (e.g., "Output.xlsx"). If the file name does not contain any file
extension, an Excel file will be written.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown.

Details

The family of heteroscedasticity-consistent (HC) standard errors estimator for the model parameters
of a regression model is based on an HC covariance matrix of the parameter estimates and does
not require the assumption of homoscedasticity. HC estimators approach the correct value with
increasing sample size, even in the presence of heteroscedasticity. On the other hand, the OLS
standard error estimator is biased and does not converge to the proper value when the assumption
of homoscedasticity is violated (Dalington & Hayes, 2017).

White (1980) introduced the idea of HC covariance matrix to econometricians and derived the
asymptotically justified form of the HC covariance matrix known as HC0 (Long & Ervin, 2000).
Simulation studies have shown that the HC0 estimator tends to underestimate the true variance in
small to moderately large samples (N ≤ 250) and in the presence of leverage observations, which
leads to an inflated type I error risk (e.g., Cribari-Neto & Lima, 2014). The alternative estimators
HC1 to HC5 are asymptotically equivalent to HC0 but include finite-sample corrections, which re-
sults in superior small sample properties compared to the HC0 estimator. Long and Ervin (2000)
recommended routinely using the HC3 estimator regardless of a heteroscedasticity test. However,
the HC3 estimator can be unreliable when the data contains leverage observations. The HC4 es-
timator, on the other hand, performs well with small samples, in the presence of high leverage
observations, and when errors are not normally distributed (Cribari-Neto, 2004). In summary, it
appears that the HC4 estimator performs the best in terms of controlling the type I and type II error
risk (Rosopa, 2013). As opposed to the findings of Cribari-Neto et al. (2007), the HC5 estimator
did not show any substantial advantages over HC4. Both HC5 and HC4 performed similarly across
all the simulation conditions considered in the study (Ng & Wilcox, 2009).

Note that the F-test of significance on the multiple correlation coefficient R also assumes ho-
moscedasticity of the errors. Violations of this assumption can result in a hypothesis test that is
either liberal or conservative, depending on the form and severity of the heteroscedasticity.

Hayes (2007) argued that using a HC estimator instead of assuming homoscedasticity provides re-
searchers with more confidence in the validity and statistical power of inferential tests in regression
analysis. Hence, the HC3 or HC4 estimator should be used routinely when estimating regression
models. If a HC estimator is not used as the default method of standard error estimation, researchers
are advised to at least double-check the results by using an HC estimator to ensure that conclusions
are not compromised by heteroscedasticity. However, the presence of heteroscedasticity suggests
that the data is not adequately explained by the statistical model of estimated conditional means.
Unless heteroscedasticity is believed to be solely caused by measurement error associated with the
predictor variable(s), it should serve as warning to the researcher regarding the adequacy of the
estimated model.

robust.coef 235

Value

Returns an object of class misty.object, which is a list with following entries:

call function call
type type of analysis
model model specified in model

args specification of function arguments
result list with results, i.e., coef for the unstandardized regression coefficients with

heteroscedasticity-consistent standard errors, F.test for the heteroscedasticity-
robust F-Test, and sandwich for the sandwich covariance matrix

Note

This function is based on the vcovHC function from the sandwich package (Zeileis, Köll, & Graham,
2020) and the functions coeftest and waldtest from the lmtest package (Zeileis & Hothorn,
2002).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Darlington, R. B., & Hayes, A. F. (2017). Regression analysis and linear models: Concepts, appli-
cations, and implementation. The Guilford Press.

Cribari-Neto, F. (2004). Asymptotic inference under heteroskedasticity of unknown form. Compu-
tational Statistics & Data Analysis, 45, 215-233. https://doi.org/10.1016/S0167-9473(02)00366-3

Cribari-Neto, F., & Lima, M. G. (2014). New heteroskedasticity-robust standard errors for the linear
regression model. Brazilian Journal of Probability and Statistics, 28, 83-95.

Cribari-Neto, F., Souza, T., & Vasconcellos, K. L. P. (2007). Inference under heteroskedasticity and
leveraged data. Communications in Statistics - Theory and Methods, 36, 1877-1888. https://doi.org/10.1080/03610920601126589

Hayes, A.F, & Cai, L. (2007). Using heteroscedasticity-consistent standard error estimators in OLS
regression: An introduction and software implementation. Behavior Research Methods, 39, 709-
722. https://doi.org/10.3758/BF03192961

Long, J.S., & Ervin, L.H. (2000). Using heteroscedasticity consistent standard errors in the linear re-
gression model. The American Statistician, 54, 217-224. https://doi.org/10.1080/00031305.2000.10474549

Ng, M., & Wilcoy, R. R. (2009). Level robust methods based on the least squares regression estima-
tor. Journal of Modern Applied Statistical Methods, 8, 284-395. https://doi.org/10.22237/jmasm/1257033840

Rosopa, P. J., Schaffer, M. M., & Schroeder, A. N. (2013). Managing heteroscedasticity in general
linear models. Psychological Methods, 18(3), 335-351. https://doi.org/10.1037/a0032553

White, H. (1980). A heteroskedastic-consistent covariance matrix estimator and a direct test of
heteroskedasticity. Econometrica, 48, 817-838. https://doi.org/10.2307/1912934

Zeileis, A., & Hothorn, T. (2002). Diagnostic checking in regression relationships. R News, 2(3),
7–10. http://CRAN.R-project.org/doc/Rnews/

Zeileis A, Köll S, & Graham N (2020). Various versatile variances: An object-oriented implementa-
tion of clustered covariances in R. Journal of Statistical Software, 95(1), 1-36. https://doi.org/10.18637/jss.v095.i01

236 rwg.lindell

See Also

std.coef, write.result

Examples

dat <- data.frame(x1 = c(3, 2, 4, 9, 5, 3, 6, 4, 5, 6, 3, 5),
x2 = c(1, 4, 3, 1, 2, 4, 3, 5, 1, 7, 8, 7),
x3 = c(0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1),
y1 = c(2, 7, 4, 4, 7, 8, 4, 2, 5, 1, 3, 8),
y2 = c(0, 1, 0, 2, 0, 1, 0, 0, 1, 2, 1, 0))

#---
Example 1: Linear model

mod1 <- lm(y1 ~ x1 + x2 + x3, data = dat)
robust.coef(mod1)

#---
Example 2: Generalized linear model

mod2 <- glm(y2 ~ x1 + x2 + x3, data = dat, family = poisson())
robust.coef(mod2)

Not run:
#--
Write Results

Example 3a: Write Results into a text file
robust.coef(mod1, write = "Robust_Coef.txt", output = FALSE)

Example 3b: Write Results into an Excel file
robust.coef(mod1, write = "Robust_Coef.xlsx", output = FALSE)

result <- robust.coef(mod1, output = FALSE)
write.result(result, "Robust_Coef.xlsx")

End(Not run)

rwg.lindell Lindell, Brandt and Whitney (1999) r*wg(j) Within-Group Agreement
Index for Multi-Item Scales

Description

This function computes r*wg(j) within-group agreement index for multi-item scales as described in
Lindell, Brandt and Whitney (1999).

rwg.lindell 237

Usage

rwg.lindell(..., data = NULL, cluster, A = NULL, ranvar = NULL, z = TRUE,
expand = TRUE, na.omit = FALSE, append = TRUE, name = "rwg",
as.na = NULL, check = TRUE)

Arguments

... a numeric vector or data frame. Alternatively, an expression indicating the vari-
able names in data e.g., rwg.lindell(x1, x2, x3, data = dat). Note that the
operators ., +, -, ~, :, ::, and ! can also be used to select variables, see ’Details’
in the df.subset function.

data a data frame when specifying one or more variables in the argument Note
that the argument is NULL when specifying a numeric vector or data frame for
the argument

cluster either a character string indicating the variable name of the cluster variable in
... or data, or a vector representing the nested grouping structure (i.e., group
or cluster variable).

A a numeric value indicating the number of discrete response options of the items
from which the random variance is computed based on (A2 − 1)/12. Note that
either the argument j or the argumentranvar is specified.

ranvar a numeric value indicating the random variance to which the mean of the item
variance is divided. Note that either the argument j or the argumentranvar is
specified.

z logical: if TRUE (default), Fisher z-transformation based on the formula z =
0.5 ∗ log((1 + r)/(1− r)) is applied to the vector of r*wg(j) estimates.

expand logical: if TRUE (default), vector of r*wg(j) estimates is expanded to match the
input vector x.

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion).

append logical: if TRUE (default), a variable with the r*wg(j) within-group agreement
index are appended to the data frame specified in the argument data.

name a character string indicating the name of the variable appended to the data frame
specified in the arguement data when append = TRUE. By default, the variable
is named rwg.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x, but not to cluster.

check logical: if TRUE (default), argument specification is checked.

Details

The r*wg(j) index is calculated by dividing the mean of the item variance by the expected random
variance (i.e., null distribution). The default null distribution in most research is the rectangular
or uniform distribution calculated with σ2

eu = (A2 − 1)/12, where A is the number of discrete
response options of the items. However, what constitutes a reasonable standard for random variance

238 rwg.lindell

is highly debated. Note that the r*wg(j) allows that the mean of the item variances to be larger than
the expected random variances, i.e., r*wg(j) values can be negative.

Note that the rwg.j.lindell() function in the multilevel package uses listwise deletion by default,
while the rwg.lindell() function uses all available information to compute the r*wg(j) agreement
index by default. In order to obtain equivalent results in the presence of missing values, listwise
deletion (na.omit = TRUE) needs to be applied.

Examples for the application of r*wg(j) within-group agreement index for multi-item scales can be
found in Bardach, Yanagida, Schober and Lueftenegger (2018), Bardach, Lueftenegger, Yanagida,
Schober and Spiel (2018), and Bardach, Lueftenegger, Yanagida, Spiel and Schober (2019).

Value

Returns a numeric vector containing r*wg(j) agreement index for multi-item scales with the same
length as group if expand = TRUE or a data frame with following entries if expand = FALSE:

cluster cluster identifier

n cluster size

rwg.lindell r*wg(j) estimate for each group

z.rwg.lindell Fisher z-transformed r*wg(j) estimate for each cluster

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Bardach, L., Lueftenegger, M., Yanagida, T., & Schober, B. (2019). Achievement or agreement -
Which comes first? Clarifying the temporal ordering of achievement and within-class consensus on
classroom goal structures. Learning and Instruction, 61, 72-83. https://doi.org/10.1016/j.learninstruc.2019.01.003

Bardach, L., Lueftenegger, M., Yanagida, T., Schober, B. & Spiel, C. (2019). The role of within-
class consensus on mastery goal structures in predicting socio-emotional outcomes. British Journal
of Educational Psychology, 89, 239-258. https://doi.org/10.1111/bjep.12237

Bardach, L., Yanagida, T., Schober, B. & Lueftenegger, M. (2018). Within-class consensus on class-
room goal structures: Relations to achievement and achievement goals in mathematics and language
classes. Learning and Individual Differences, 67, 78-90. https://doi.org/10.1016/j.lindif.2018.07.002

Lindell, M. K., Brandt, C. J., & Whitney, D. J. (1999). A revised index of interrater agree-
ment for multi-item ratings of a single target. Applied Psychological Measurement, 23, 127-135.
https://doi.org/10.1177/01466219922031257

O’Neill, T. A. (2017). An overview of interrater agreement on Likert scales for researchers and
practitioners. Frontiers in Psychology, 8, Article 777. https://doi.org/10.3389/fpsyg.2017.00777

See Also

cluster.scores

script.copy 239

Examples

dat <- data.frame(id = c(1, 2, 3, 4, 5, 6, 7, 8, 9),
cluster = c(1, 1, 1, 2, 2, 2, 3, 3, 3),
x1 = c(2, 3, 2, 1, 1, 2, 4, 3, 5),
x2 = c(3, 2, 2, 1, 2, 1, 3, 2, 5),
x3 = c(3, 1, 1, 2, 3, 3, 5, 5, 4))

Example 1a: Compute Fisher z-transformed r*wg(j) for a multi-item scale
with A = 5 response options
rwg.lindell(dat[, c("x1", "x2", "x3")], cluster = dat$cluster, A = 5)

Example 1b: Alternative specification using the 'data' argument,
rwg.lindell(x1:x3, data = dat, cluster = "cluster", A = 5)
Example 2: Compute Fisher z-transformed r*wg(j) for a multi-item scale with a random variance of 2
rwg.lindell(dat[, c("x1", "x2", "x3")], cluster = dat$cluster, ranvar = 2)

Example 3: Compute r*wg(j) for a multi-item scale with A = 5 response options
rwg.lindell(dat[, c("x1", "x2", "x3")], cluster = dat$cluster, A = 5, z = FALSE)

Example 4: Compute Fisher z-transformed r*wg(j) for a multi-item scale
with A = 5 response options, do not expand the vector
rwg.lindell(dat[, c("x1", "x2", "x3")], cluster = dat$cluster, A = 5, expand = FALSE)

script.copy Save Copy of the Current Script in RStudio

Description

This function saves a copy of the current script in RStudio. By default, a folder callled _R_Script_Archive
will be created to save the copy of the current R script with the current date and time into the folder.
Note that the current R script needs to have a file location before the script can be copied.

Usage

script.copy(file = NULL, folder = "_R_Script_Archive", create.folder = TRUE,
time = TRUE, format = "%Y-%m-%d_%H%M", overwrite = TRUE,
check = TRUE)

Arguments

file a character string naming the file of the copy without the file extension ".R". By
default, the file of the copy has the same name as the original file.

folder a character string naming the folder in which the file of the copy is saved. If
NULL, the file of the copy is saved in the same folder as the original file. By
default, the file of the copy is saved into a folder called "_R_Script_Archive".

create.folder logical: if TRUE (default), folder(s) specified in the file argument is created.
If FALSE and the folder does not exist, then a error message is printed on the
console.

240 script.new

time logical: if TRUE (default), the current time is attached to the name of the file
specified in the argument file.

format a character string indicating the format if the POSIXct class resulting from
the Sys.time function. The default setting provides a character string indi-
cating the year, month, day, minutes, and seconds. See the help page of the
format.POSIXct function.

overwrite logical: if TRUE (default) an existing destination file is overwritten.

check logical: if TRUE (default), argument specification is checked.

Note

This function uses the getSourceEditorContext() function in the rstudioapi package by Kevin
Ushey, JJ Allaire, Hadley Wickham, and Gary Ritchie (2023).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Ushey, K., Allaire, J., Wickham, H., & Ritchie, G. (2023). rstudioapi: Safely access the RStudio
API. R package version 0.15.0 https://CRAN.R-project.org/package=rstudioapi

See Also

script.new, script.close, script.open, script.save, setsource

Examples

Not run:
Example 1: Save copy current R script into the folder '_R_Script_Archive'
script.copy()

Exmample 2: Save current R script as 'R_Script.R' into the folder 'Archive'
script.copy("R_Script", folder = "Archive", time = FALSE)

End(Not run)

script.new Open new R Script, R Markdown script, or SQL Script in RStudio

Description

This function opens a new R script, R markdown script, or SQL script in RStudio.

script.new 241

Usage

script.new(text = "", type = c("r", "rmarkdown", "sql"),
position = rstudioapi::document_position(0, 0),
run = FALSE, check = TRUE)

Arguments

text a character vector indicating what text should be inserted in the new R script.
By default, an empty script is opened.

type a character string indicating the type of document to be created, i.e., r (default)
for an R script, rmakrdown for an R Markdown file, or sql for an SQL script.

position document_position() function in the rstudioapi package indicating the cursor
position.

run logical: if TRUE, the code is executed after the document is created.

check logical: if TRUE (default), argument specification is checked.

Note

This function uses the documentNew() function in the rstudioapi package by Kevin Ushey, JJ
Allaire, Hadley Wickham, and Gary Ritchie (2023).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Ushey, K., Allaire, J., Wickham, H., & Ritchie, G. (2023). rstudioapi: Safely access the RStudio
API. R package version 0.15.0 https://CRAN.R-project.org/package=rstudioapi

See Also

script.close, script.open, script.save, script.copy, setsource

Examples

Not run:

Example 1: Open new R script file
script.new()

Example 2: Open new R script file and run some code
script.new("#----------------------------
Example

Generate 100 random numbers
rnorm(100)")

End(Not run)

242 script.open

script.open Open, Close and Save R Script in RStudio

Description

The function script.open opens an R script, R markdown script, or SQL script in RStudio, the
function script.close closes an R script, and the function script.save saves an R script. Note
that the R script need to have a file location before the script can be saved.

Usage

script.open(path, line = 1, col = 1, cursor = TRUE, run = FALSE,
echo = TRUE, max.length = 999, spaced = TRUE, check = TRUE)

script.close(save = FALSE, check = TRUE)

script.save(all = FALSE, check = TRUE)

Arguments

path a character string indicating the path of the script.

line a numeric value indicating the line in the script to navigate to.

col a numeric value indicating the column in the script to navigate to.

cursor logical: if TRUE (default), the cursor moves to the requested location after open-
ing the document.

run logical: if TRUE, the code is executed after the document is opened

echo logical: if TRUE (default), each expression is printed after parsing, before evalu-
ation.

max.length a numeric value indicating the maximal number of characters output for the
deparse of a single expression.

spaced logical: if TRUE (default), empty line is printed before each expression.

save logical: if TRUE, the script is saved before closing when using the function
script.close.

all logical: if TRUE, all scripts opened in RStudio are saved when using the function
script.save.

check logical: if TRUE (default), argument specification is checked.

Note

This function uses the documentOpen(), documentPath(), documentClose(), documentSave(),
and documentSaveAll() functions in the rstudioapi package by Kevin Ushey, JJ Allaire, Hadley
Wickham, and Gary Ritchie (2023).

setsource 243

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Ushey, K., Allaire, J., Wickham, H., & Ritchie, G. (2023). rstudioapi: Safely access the RStudio
API. R package version 0.15.0 https://CRAN.R-project.org/package=rstudioapi

See Also

script.save, script.copy, setsource

Examples

Not run:

Example 1: Open R script file
script.open("script.R")

Example 2: Open R script file and run the code
script.open("script.R", run = TRUE)

Example 3: Close current R script file
script.close()

Example 4: Save current R script
script.save()

Example 5: Save all R scripts
script.save(all = TRUE)

End(Not run)

setsource Set Working Directory to the Source File Location

Description

This function sets the working directory to the source file location (i.e., path of the current R
script) in RStudio and is equivalent to using the menu item Session - Set Working Directory -
To Source File Location. Note that the R script needs to have a file location before this function
can be used.

Usage

setsource(path = TRUE, check = TRUE)

244 size.cor

Arguments

path logical: if TRUE (default), the path of the source file is shown on the console.

check logical: if TRUE, argument specification is checked.

Value

Returns the path of the source file location.

Note

This function uses the documentPath() function in the rstudioapi package by Kevin Ushey, JJ
Allaire, Hadley Wickham, and Gary Ritchie (2023).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Ushey, K., Allaire, J., Wickham, H., & Ritchie, G. (2023). rstudioapi: Safely access the RStudio
API. R package version 0.15.0 https://CRAN.R-project.org/package=rstudioapi

See Also

script.close, script.new, script.open, script.save

Examples

Not run:

Example 1: Set working directory to the source file location
setsource()

Example 2: Set working directory to the source file location
and assign path to an object
path <- setsource()
path

End(Not run)

size.cor Sample Size Determination for Testing Pearson’s Correlation Coeffi-
cient

Description

This function performs sample size computation for testing Pearson’s product-moment correlation
coefficient based on precision requirements (i.e., type-I-risk, type-II-risk and an effect size).

size.cor 245

Usage

size.cor(rho, delta, alternative = c("two.sided", "less", "greater"),
alpha = 0.05, beta = 0.1, write = NULL, append = TRUE,
check = TRUE, output = TRUE)

Arguments

rho a number indicating the correlation coefficient under the null hypothesis, ρ.0.

delta a numeric value indicating the minimum difference to be detected, δ.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

alpha type-I-risk, α.

beta type-II-risk, β.

write a character string naming a text file with file extension ".txt" (e.g., "Output.txt")
for writing the output into a text file.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data matrix or data frame specified in x

args specification of function arguments

result list with the result, i.e., optimal sample size

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>,

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
New York: John Wiley & Sons.

Rasch, D., Pilz, J., Verdooren, L. R., & Gebhardt, G. (2011). Optimal experimental design with R.
Boca Raton: Chapman & Hall/CRC.

See Also

size.mean, size.prop

246 size.mean

Examples

#---
Example 1: Two-sided test
H0: rho = 0.3, H1: rho != 0.3
alpha = 0.05, beta = 0.2, delta = 0.2

size.cor(rho = 0.3, delta = 0.2, alpha = 0.05, beta = 0.2)

#---
Example 2: One-sided test
H0: rho <= 0.3, H1: rho > 0.3
alpha = 0.05, beta = 0.2, delta = 0.2

size.cor(rho = 0.3, delta = 0.2, alternative = "greater", alpha = 0.05, beta = 0.2)

size.mean Sample Size Determination for Testing Arithmetic Means

Description

This function performs sample size computation for the one-sample and two-sample t-test based on
precision requirements (i.e., type-I-risk, type-II-risk and an effect size).

Usage

size.mean(delta, sample = c("two.sample", "one.sample"),
alternative = c("two.sided", "less", "greater"),
alpha = 0.05, beta = 0.1, write = NULL, append = TRUE,
check = TRUE, output = TRUE)

Arguments

delta a numeric value indicating the relative minimum difference to be detected, δ.

sample a character string specifying one- or two-sample t-test, must be one of "two.sample"
(default) or "one.sample".

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

alpha type-I-risk, α.

beta type-II-risk, β.

write a character string naming a text file with file extension ".txt" (e.g., "Output.txt")
for writing the output into a text file.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown.

size.mean 247

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data matrix or data frame specified in x

args specification of function arguments

result list with the result, i.e., optimal sample size

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>,

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
New York: John Wiley & Sons.

Rasch, D., Pilz, J., Verdooren, L. R., & Gebhardt, G. (2011). Optimal experimental design with R.
Boca Raton: Chapman & Hall/CRC.

See Also

size.prop, size.cor

Examples

#---
Example 1: Two-sided one-sample test
H0: mu = mu.0, H1: mu != mu.0
alpha = 0.05, beta = 0.2, delta = 0.5

size.mean(delta = 0.5, sample = "one.sample",
alternative = "two.sided", alpha = 0.05, beta = 0.2)

#---
Example 2: One-sided one-sample test
H0: mu <= mu.0, H1: mu > mu.0
alpha = 0.05, beta = 0.2, delta = 0.5

size.mean(delta = 0.5, sample = "one.sample",
alternative = "greater", alpha = 0.05, beta = 0.2)

#---
Example 3: Two-sided two-sample test
H0: mu.1 = mu.2, H1: mu.1 != mu.2
alpha = 0.01, beta = 0.1, delta = 1

size.mean(delta = 1, sample = "two.sample",
alternative = "two.sided", alpha = 0.01, beta = 0.1)

248 size.prop

#---
Example 4: One-sided two-sample test
H0: mu.1 <= mu.2, H1: mu.1 > mu.2
alpha = 0.01, beta = 0.1, delta = 1

size.mean(delta = 1, sample = "two.sample",
alternative = "greater", alpha = 0.01, beta = 0.1)

size.prop Sample Size Determination for Testing Proportions

Description

This function performs sample size computation for the one-sample and two-sample test for pro-
portions based on precision requirements (i.e., type-I-risk, type-II-risk and an effect size).

Usage

size.prop(pi = 0.5, delta, sample = c("two.sample", "one.sample"),
alternative = c("two.sided", "less", "greater"),
alpha = 0.05, beta = 0.1, correct = FALSE,
write = NULL, append = TRUE, check = TRUE, output = TRUE)

Arguments

pi a number indicating the true value of the probability under the null hypothesis
(one-sample test), π.0 or a number indicating the true value of the probability in
group 1 (two-sample test), π.1.

delta minimum difference to be detected, δ.

sample a character string specifying one- or two-sample proportion test, must be one of
"two.sample" (default) or "one.sample".

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "less" or "greater".

alpha type-I-risk, α.

beta type-II-risk, β.

correct a logical indicating whether continuity correction should be applied.

write a character string naming a text file with file extension ".txt" (e.g., "Output.txt")
for writing the output into a text file.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown.

size.prop 249

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

data matrix or data frame specified in x

args specification of function arguments

result list with the result, i.e., optimal sample size

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>,

References

Fleiss, J. L., Levin, B., & Paik, M. C. (2003). Statistical methods for rates and proportions (3rd
ed.). John Wiley & Sons.

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

Rasch, D., Pilz, J., Verdooren, L. R., & Gebhardt, G. (2011). Optimal experimental design with R.
Chapman & Hall/CRC.

See Also

size.mean, size.cor

Examples

#---
Example 1: Two-sided one-sample test
H0: pi = 0.5, H1: pi != 0.5
alpha = 0.05, beta = 0.2, delta = 0.2

size.prop(pi = 0.5, delta = 0.2, sample = "one.sample",
alternative = "two.sided", alpha = 0.05, beta = 0.2)

#---
Example 2: Two-sided one-sample test
H0: pi = 0.5, H1: pi != 0.5
alpha = 0.05, beta = 0.2, delta = 0.2
with continuity correction

size.prop(pi = 0.5, delta = 0.2, sample = "one.sample",
alternative = "two.sided", alpha = 0.05, beta = 0.2,
correct = TRUE)

#---
Example 3: One-sided one-sample test
H0: pi <= 0.5, H1: pi > 0.5

250 skewness

alpha = 0.05, beta = 0.2, delta = 0.2

size.prop(pi = 0.5, delta = 0.2, sample = "one.sample",
alternative = "less", alpha = 0.05, beta = 0.2)

#---
Example 4: Two-sided two-sample test
H0: pi.1 = pi.2 = 0.5, H1: pi.1 != pi.2
alpha = 0.01, beta = 0.1, delta = 0.2

size.prop(pi = 0.5, delta = 0.2, sample = "two.sample",
alternative = "two.sided", alpha = 0.01, beta = 0.1)

#---
Example 5: One-sided two-sample test
H0: pi.1 <= pi.1 = 0.5, H1: pi.1 > pi.2
alpha = 0.01, beta = 0.1, delta = 0.2

size.prop(pi = 0.5, delta = 0.2, sample = "two.sample",
alternative = "greater", alpha = 0.01, beta = 0.1)

skewness Skewness and Kurtosis

Description

The function skewness computes the skewness, the function kurtosis computes the kurtosis.

Usage

skewness(..., data = NULL, as.na = NULL, check = TRUE)

kurtosis(..., data = NULL, as.na = NULL, check = TRUE)

Arguments

... a numeric vector. Alternatively, an expression indicating the variable names in
data e.g., skewness(x1, data = dat).

data a data frame when specifying the variable in the argument Note that the
argument is NULL when specifying a numeric vector for the argument

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE (default), argument specification is checked.

Details

The same method for estimating skewness and kurtosis is used in SAS and SPSS. Missing values
(NA) are stripped before the computation. Note that at least 3 observations are needed to compute
skewness and at least 4 observations are needed to compute excess kurtosis.

std.coef 251

Value

Returns the estimated skewness or kurtosis of x.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
New York: John Wiley & Sons.

See Also

descript

Examples

Set seed of the random number generation
set.seed(123)
Generate random numbers according to N(0, 1)
x <- rnorm(100)

Example 1: Compute skewness
skewness(x)

Example 2: Compute excess kurtosis
kurtosis(x)

std.coef Standardized Coefficients

Description

This function computes standardized coefficients for linear models estimated by using the lm()
function.

Usage

std.coef(model, print = c("all", "stdx", "stdy", "stdyx"), digits = 3, p.digits = 4,
write = NULL, append = TRUE, check = TRUE, output = TRUE)

252 std.coef

Arguments

model a fitted model of class "lm".

print a character vector indicating which results to show, i.e. "all", for all results,
"stdx" for standardizing only the predictor, "stdy" for for standardizing only
the criterion, and "stdyx" for for standardizing both the predictor and the crite-
rion. Note that the default setting is depending on the level of measurement of
the predictors, i.e., if all predictors are continuous, the default setting is print
= "stdyx"; if all predictors are binary, the default setting is print = "stdy"; if
predictors are continuous and binary, the default setting is print = c("stdy",
"stdyx").

digits an integer value indicating the number of decimal places to be used for display-
ing results.

p.digits an integer value indicating the number of decimal places to be used for display-
ing the p-value.

write a character string naming a text file with file extension ".txt" (e.g., "Output.txt")
for writing the output into a text file.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console.

Details

The slope β can be standardized with respect to only x, only y, or both y and x:

StdX(β1) = β1SD(x)

StdX(β1) standardizes with respect to x only and is interpreted as the change in y when x changes
one standard deviation referred to as SD(x).

StdY (β1) =
β1

SD(x)

StdY (β1) standardizes with respect to y only and is interpreted as the change in y standard devia-
tion units, referred to as SD(y), when x changes one unit.

StdY X(β1) = β1
SD(x)

SD(y)

StdY X(β1) standardizes with respect to both y and x and is interpreted as the change in y standard
deviation units when x changes one standard deviation.

Note that the StdY X(β1) and the StdY (β1) standardizations are not suitable for the slope of a
binary predictor because a one standard deviation change in a binary variable is generally not of
interest (Muthen, Muthen, & Asparouhov, 2016).

The standardization of the slope β3 in a regression model with an interaction term uses the product
of standard deviations SD(x1)SD(x2) rather than the standard deviation of the product SD(x1x2)

std.coef 253

for the interaction variable x1x2 (see Wen, Marsh & Hau, 2010). Likewise, the standardization of
the slope β3 in a polynomial regression model with a quadratic term uses the product of standard
deviations SD(x)SD(x) rather than the standard deviation of the product SD(xx) for the quadratic
term x2.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

model model specified in model

args specification of function arguments

result list with result tables, i.e., coef for the regression table including standardized
coefficients and sd for the standard deviation of the outcome and predictor(s)

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Muthen, B. O., Muthen, L. K., & Asparouhov, T. (2016). Regression and mediation analysis using
Mplus. Muthen & Muthen.

Wen, Z., Marsh, H. W., & Hau, K.-T. (2010). Structural equation models of latent interactions: An
appropriate standardized solution and its scale-free properties. Structural Equation Modeling: A
Multidisciplinary Journal, 17, 1-22. https://doi.org/10.1080/10705510903438872

Examples

dat <- data.frame(x1 = c(3, 2, 4, 9, 5, 3, 6, 4, 5, 6, 3, 5),
x2 = c(1, 4, 3, 1, 2, 4, 3, 5, 1, 7, 8, 7),
x3 = c(0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1),
y = c(2, 7, 4, 4, 7, 8, 4, 2, 5, 1, 3, 8))

#---
Linear model

Example 1: Regression model with continuous predictors
mod.lm1 <- lm(y ~ x1 + x2, data = dat)
std.coef(mod.lm1)

Example 2: Print all standardized coefficients
std.coef(mod.lm1, print = "all")

Example 3: Regression model with dichotomous predictor
mod.lm2 <- lm(y ~ x3, data = dat)
std.coef(mod.lm2)

Example 4: Regression model with continuous and dichotomous predictors

254 test.levene

mod.lm3 <- lm(y ~ x1 + x2 + x3, data = dat)
std.coef(mod.lm3)

Example 5: Regression model with continuous predictors and an interaction term
mod.lm4 <- lm(y ~ x1*x2, data = dat)

Example 6: Regression model with a quadratic term
mod.lm5 <- lm(y ~ x1 + I(x1^2), data = dat)
std.coef(mod.lm5)

#---
Example 7: Write Results into an Excel file

Not run:
mod.lm1 <- lm(y ~ x1 + x2, data = dat)

std.coef(mod.lm1, write = "Std_Coef.xlsx", output = FALSE)

result <- std.coef(mod.lm1, output = FALSE)
write.result(result, "Std_Coef.xlsx")

End(Not run)

test.levene Levene’s Test for Homogeneity of Variance

Description

This function performs Levene’s test for homogeneity of variance across two or more independent
groups.

Usage

test.levene(formula, data, method = c("median", "mean"), conf.level = 0.95,
hypo = TRUE, descript = TRUE, plot = FALSE, violin.alpha = 0.3,
violin.trim = FALSE, box = TRUE, box.alpha = 0.2, box.width = 0.2,
jitter = TRUE, jitter.size = 1.25, jitter.width = 0.05,
jitter.height = 0, jitter.alpha = 0.2, gray = FALSE,
start = 0.9, end = 0.4, color = NULL, xlab = NULL, ylab = NULL,
ylim = NULL, breaks = ggplot2::waiver(), title = "",
subtitle = "", digits = 2, p.digits = 3, as.na = NULL,
write = NULL, append = TRUE, check = TRUE, output = TRUE)

Arguments

formula a formula of the form y ~ group where y is a numeric variable giving the data
values and group a numeric variable, character variable or factor with two or
more than two values or factor levels giving the corresponding groups.

data a matrix or data frame containing the variables in the formula formula.

test.levene 255

method a character string specifying the method to compute the center of each group,
i.e. method = "median" (default) to compute the Levene’s test based on the
median (aka Brown-Forsythe test) or method = "mean" to compute the Levene’s
test based on the arithmetic mean.

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

hypo logical: if TRUE (default), null and alternative hypothesis are shown on the con-
sole.

descript logical: if TRUE (default), descriptive statistics are shown on the console.

plot logical: if TRUE, a plot showing violin plots with boxplots is drawn.

violin.alpha a numeric value indicating the opacity of the violins.

violin.trim logical: if TRUE, the tails of the violins to the range of the data is trimmed.

box logical: if TRUE (default), boxplots are drawn.

box.alpha a numeric value indicating the opacity of the boxplots.

box.width a numeric value indicating the width of the boxplots.

jitter logical: if TRUE (default), jittered data points are drawn.

jitter.size a numeric value indicating the size aesthetic for the jittered data points.

jitter.width a numeric value indicating the amount of horizontal jitter.

jitter.height a numeric value indicating the amount of vertical jitter.

jitter.alpha a numeric value indicating the opacity of the jittered data points.

gray logical: if TRUE, the plot is drawn in gray scale.

start a numeric value between 0 and 1, graphical parameter to specify the gray value
at the low end of the palette.

end a numeric value between 0 and 1, graphical parameter to specify the gray value
at the high end of the palette.

color a character vector, indicating the color of the violins and the boxes. By default,
default ggplot2 colors are used.

xlab a character string specifying the labels for the x-axis.

ylab a character string specifying the labels for the y-axis.

ylim a numeric vector of length two specifying limits of the limits of the y-axis.

breaks a numeric vector specifying the points at which tick-marks are drawn at the y-
axis.

title a character string specifying the text for the title for the plot.

subtitle a character string specifying the text for the subtitle for the plot.

digits an integer value indicating the number of decimal places to be used for display-
ing results.

p.digits an integer value indicating the number of decimal places to be used for display-
ing the p-value.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

256 test.levene

write a character string naming a text file with file extension ".txt" (e.g., "Output.txt")
for writing the output into a text file.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown.

Details

Levene’s test is equivalent to a one-way analysis of variance (ANOVA) with the absolute deviations
of observations from the mean of each group as dependent variable (center = "mean"). Brown
and Forsythe (1974) modified the Levene’s test by using the absolute deviations of observations
from the median (center = "median"). By default, the Levene’s test uses the absolute deviations
of observations from the median.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

formula formula of the current analysis

data data frame specified in data

plot ggplot2 object for plotting the results

args specification of function arguments

result list with result tables, i.e., descript for descriptive statistics and test for the
ANOVA table

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Brown, M. B., & Forsythe, A. B. (1974). Robust tests for the equality of variances. Journal of the
American Statistical Association, 69, 364-367.

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

See Also

aov.b, test.t, test.welch

test.t 257

Examples

dat <- data.frame(y = c(2, 3, 4, 5, 5, 7, 8, 4, 5, 2, 4, 3),
group = c(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3))

Example 1: Levene's test based on the median with 95% confidence interval
test.levene(y ~ group, data = dat)

Example 2: Levene's test based on the arithmetic mean with 95% confidence interval
test.levene(y ~ group, data = dat, method = "mean")

Example 3: Levene's test based on the median with 99% confidence interval
test.levene(y ~ group, data = dat, conf.level = 0.99)

Not run:
Example 4: Write results into a text file
test.levene(y ~ group, data = dat, write = "Levene.txt")

Example 5: Levene's test based on the median with 95
plot results
test.levene(y ~ group, data = dat, plot = TRUE)

Load ggplot2 package
library(ggplot2)

Save plot, ggsave() from the ggplot2 package
ggsave("Levene-test.png", dpi = 600, width = 5, height = 6)

Levene's test based on the median with 95
extract plot
p <- test.levene(y ~ group, data = dat, output = FALSE)$plot
p

Example 6: Extract data
plotdat <- test.levene(y ~ group, data = dat, output = FALSE)$data

Draw violin and boxplots in line with the default setting of test.levene()
ggplot(plotdat, aes(group, y, fill = group)) +

geom_violin(alpha = 0.3, trim = FALSE) +
geom_boxplot(alpha = 0.2, width = 0.2) +
geom_jitter(alpha = 0.2, width = 0.05, size = 1.25) +
theme_bw() + guides(fill = "none")

End(Not run)

test.t t-Test

Description

This function performs one-sample, two-sample, and paired-sample t-tests and provides descriptive
statistics, effect size measure, and a plot showing error bars for (difference-adjusted) confidence

258 test.t

intervals with jittered data points.

Usage

test.t(x, ...)

Default S3 method:
test.t(x, y = NULL, mu = 0, paired = FALSE,

alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, hypo = TRUE, descript = TRUE, effsize = FALSE,
weighted = FALSE, cor = TRUE, ref = NULL, correct = FALSE,
plot = FALSE, point.size = 4, adjust = TRUE, error.width = 0.1,
xlab = NULL, ylab = NULL, ylim = NULL, breaks = ggplot2::waiver(),
line = TRUE, line.type = 3, line.size = 0.8,
jitter = TRUE, jitter.size = 1.25, jitter.width = 0.05,
jitter.height = 0, jitter.alpha = 0.1, title = "",
subtitle = "Confidence Interval", digits = 2, p.digits = 4,
as.na = NULL, write = NULL, append = TRUE,check = TRUE, output = TRUE, ...)

S3 method for class 'formula'
test.t(formula, data, alternative = c("two.sided", "less", "greater"),

conf.level = 0.95, hypo = TRUE, descript = TRUE, effsize = FALSE,
weighted = FALSE, cor = TRUE, ref = NULL, correct = FALSE,
plot = FALSE, point.size = 4, adjust = TRUE, error.width = 0.1,
xlab = NULL, ylab = NULL, ylim = NULL, breaks = ggplot2::waiver(),
jitter = TRUE, jitter.size = 1.25, jitter.width = 0.05,
jitter.height = 0, jitter.alpha = 0.1, title = "",
subtitle = "Confidence Interval", digits = 2, p.digits = 4,

as.na = NULL, write = NULL, append = TRUE, check = TRUE, output = TRUE, ...)

Arguments

x a numeric vector of data values.

... further arguments to be passed to or from methods.

y a numeric vector of data values.

mu a numeric value indicating the population mean under the null hypothesis. Note
that the argument mu is only used when computing a one sample t-test.

paired logical: if TRUE, paired-samples t-test is computed.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

hypo logical: if TRUE (default), null and alternative hypothesis are shown on the con-
sole.

descript logical: if TRUE (default), descriptive statistics are shown on the console.

effsize logical: if TRUE, effect size measure Cohen’s d is shown on the console, see
cohens.d function.

test.t 259

weighted logical: if TRUE, the weighted pooled standard deviation is used to compute Co-
hen’s d for a two-sample design (i.e., paired = FALSE), while standard deviation
of the difference scores is used to compute Cohen’s d for a paired-sample design
(i.e., paired = TRUE).

cor logical: if TRUE (default), paired = TRUE, and weighted = FALSE, Cohen’s d for
a paired-sample design while controlling for the correlation between the two sets
of measurement is computed. Note that this argument is only used in a paired-
sample design (i.e., paired = TRUE) when specifying weighted = FALSE.

ref character string "x" or "y" for specifying the reference reference group when
using the default test.t() function or a numeric value or character string in-
dicating the reference group in a two-sample design when using the formula
test.t() function. The standard deviation of the reference variable or ref-
erence group is used to standardized the mean difference to compute Cohen’s
d. Note that this argument is only used in a two-sample design (i.e., paired =
FALSE).

correct logical: if TRUE, correction factor to remove positive bias in small samples is
used.

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

plot logical: if TRUE, a plot showing error bars for confidence intervals is drawn.

point.size a numeric value indicating the size aesthetic for the point representing the mean
value.

adjust logical: if TRUE (default), difference-adjustment for the confidence intervals in a
two-sample design is applied.

error.width a numeric value indicating the horizontal bar width of the error bar.

xlab a character string specifying the labels for the x-axis.

ylab a character string specifying the labels for the y-axis.

ylim a numeric vector of length two specifying limits of the limits of the y-axis.

breaks a numeric vector specifying the points at which tick-marks are drawn at the y-
axis.

line logical: if TRUE (default), a horizontal line is drawn at mu for the one-sample
t-test or at 0 for the paired-sample t-test.

line.type an integer value or character string specifying the line type for the line repre-
senting the population mean under the null hypothesis, i.e., 0 = blank, 1 = solid,
2 = dashed, 3 = dotted, 4 = dotdash, 5 = longdash, 6 = twodash.

line.size a numeric value indicating the linewidth aesthetic for the line representing the
population mean under the null hypothesis.

jitter logical: if TRUE (default), jittered data points are drawn.

jitter.size a numeric value indicating the size aesthetic

jitter.width a numeric value indicating the amount of horizontal jitter.

jitter.height a numeric value indicating the amount of vertical jitter.

jitter.alpha a numeric value indicating the opacity of the jittered data points.

title a character string specifying the text for the title for the plot.

260 test.t

subtitle a character string specifying the text for the subtitle for the plot.

digits an integer value indicating the number of decimal places to be used for display-
ing descriptive statistics and confidence interval.

p.digits an integer value indicating the number of decimal places to be used for display-
ing the p-value.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

write a character string naming a text file with file extension ".txt" (e.g., "Output.txt")
for writing the output into a text file.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console.

formula in case of two sample t-test (i.e., paired = FALSE), a formula of the form y ~
group where group is a numeric variable, character variable or factor with two
values or factor levels giving the corresponding groups.

data a matrix or data frame containing the variables in the formula formula.

Details

Effect Size Measure By default, Cohen’s d based on the non-weighted standard deviation (i.e.,
weighted = FALSE) which does not assume homogeneity of variance is computed (see Delacre
et al., 2021) when requesting an effect size measure (i.e., effsize = TRUE). Cohen’s d based on
the pooled standard deviation assuming equality of variances between groups can be requested
by specifying weighted = TRUE.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

sample type of sample, i.e., one-, two-, or paired sample

formula formula of the current analysis

data data frame specified in data

plot ggplot2 object for plotting the results

args specification of function arguments

result result table

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

test.t 261

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

Delacre, M., Lakens, D., Ley, C., Liu, L., & Leys, C. (2021). Why Hedges’ g*s based on the non-
pooled standard deviation should be reported with Welch’s t-test. https://doi.org/10.31234/osf.io/tu6mp

See Also

aov.b, aov.w, test.welch, test.z, test.levene, cohens.d, ci.mean.diff, ci.mean

Examples

dat1 <- data.frame(group = c(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2),
x = c(3, 1, 4, 2, 5, 3, 2, 3, 6, 6, 3, NA))

#---
One-Sample Design

Example 1a: Two-sided one-sample t-test
population mean = 3
test.t(dat1$x, mu = 3)

Example 1b: One-sided one-sample t-test
population mean = 3, population standard deviation = 1.2
test.t(dat1$x, mu = 3, alternative = "greater")

Example 1c: Two-sided one-sample t-test
population mean = 3, convert value 3 to NA
test.t(dat1$x, mu = 3, as.na = 3)

Example 1d: Two-sided one-sample t-test
population mean = 3, print Cohen's d
test.t(dat1$x, sigma = 1.2, mu = 3, effsize = TRUE)

Example 1e: Two-sided one-sample t-test
population mean = 3, print Cohen's d with small sample correction factor
test.t(dat1$x, sigma = 1.2, mu = 3, effsize = TRUE, correct = TRUE)

Example 1f: Two-sided one-sample t-test
population mean = 3,
do not print hypotheses and descriptive statistics
test.t(dat1$x, sigma = 1.2, mu = 3, hypo = FALSE, descript = FALSE)

Example 1g: Two-sided one-sample t-test
print descriptive statistics with 3 digits and p-value with 5 digits
test.t(dat1$x, mu = 3, digits = 3, p.digits = 5)

Not run:
Example 1h: Two-sided one-sample t-test
population mean = 3, plot results
test.t(dat1$x, mu = 3, plot = TRUE)

262 test.t

Load ggplot2 package
library(ggplot2)

Save plot, ggsave() from the ggplot2 package
ggsave("One-sample_t-test.png", dpi = 600, width = 3, height = 6)

Example 1i: Two-sided one-sample t-test
population mean = 3, extract plot
p <- test.t(dat1$x, mu = 3, output = FALSE)$plot
p

Extract data
plotdat <- data.frame(x = test.t(dat1$x, mu = 3, output = FALSE)$data[[1]])

Draw plot in line with the default setting of test.t()
ggplot(plotdat, aes(0, x)) +

geom_point(stat = "summary", fun = "mean", size = 4) +
stat_summary(fun.data = "mean_cl_normal", geom = "errorbar", width = 0.20) +
scale_x_continuous(name = NULL, limits = c(-2, 2)) +
scale_y_continuous(name = NULL) +
geom_hline(yintercept = 3, linetype = 3, linewidth = 0.8) +
labs(subtitle = "Two-Sided 95
theme_bw() + theme(plot.subtitle = element_text(hjust = 0.5),

axis.text.x = element_blank(),
axis.ticks.x = element_blank())

End(Not run)
#---
Two-Sample Design

Example 2a: Two-sided two-sample t-test
test.t(x ~ group, data = dat1)

Example 2b: One-sided two-sample t-test
test.t(x ~ group, data = dat1, alternative = "greater")

Example 2c: Two-sided two-sample t-test
print Cohen's d with weighted pooled SD
test.t(x ~ group, data = dat1, effsize = TRUE)

Example 2d: Two-sided two-sample t-test
print Cohen's d with unweighted pooled SD
test.t(x ~ group, data = dat1, effsize = TRUE, weighted = FALSE)

Example 2e: Two-sided two-sample t-test
print Cohen's d with weighted pooled SD and
small sample correction factor
test.t(x ~ group, data = dat1, effsize = TRUE, correct = TRUE)

Example 2f: Two-sided two-sample t-test
print Cohen's d with SD of the reference group 1
test.t(x ~ group, data = dat1, effsize = TRUE,

test.t 263

ref = 1)

Example 2f: Two-sided two-sample t-test
print Cohen's d with weighted pooled SD and
small sample correction factor
test.t(x ~ group, data = dat1, effsize = TRUE,

correct = TRUE)

Example 2h: Two-sided two-sample t-test
do not print hypotheses and descriptive statistics,
test.t(x ~ group, data = dat1, descript = FALSE, hypo = FALSE)

Example 2i: Two-sided two-sample t-test
print descriptive statistics with 3 digits and p-value with 5 digits
test.t(x ~ group, data = dat1, digits = 3, p.digits = 5)

Not run:
Example 2j: Two-sided two-sample t-test
Plot results
test.t(x ~ group, data = dat1, plot = TRUE)

Load ggplot2 package
library(ggplot2)

Save plot, ggsave() from the ggplot2 package
ggsave("Two-sample_t-test.png", dpi = 600, width = 4, height = 6)

Example 2k: Two-sided two-sample t-test
extract plot
p <- test.t(x ~ group, data = dat1, output = FALSE)$plot
p

Extract data used to plot results
plotdat <- test.t(x ~ group, data = dat1, output = FALSE)$data

Draw plot in line with the default setting of test.t()
ggplot(plotdat, aes(factor(group), x)) +

geom_point(stat = "summary", fun = "mean", size = 4) +
stat_summary(fun.data = "mean_cl_normal", geom = "errorbar", width = 0.20) +
scale_x_discrete(name = NULL) + scale_y_continuous(name = "y") +
labs(title = "", subtitle = "Two-Sided 95
theme_bw() + theme(plot.subtitle = element_text(hjust = 0.5))

End(Not run)

#-----------------

group1 <- c(3, 1, 4, 2, 5, 3, 6, 7)
group2 <- c(5, 2, 4, 3, 1)

Example 2l: Two-sided two-sample t-test
test.t(group1, group2)

264 test.t

#---
Paired-Sample Design

dat2 <- data.frame(pre = c(1, 3, 2, 5, 7),
post = c(2, 2, 1, 6, 8))

Example 3a: Two-sided paired-sample t-test
test.t(dat2$pre, dat2$post, paired = TRUE)

Example 3b: One-sided paired-sample t-test
test.t(dat2$pre, dat2$post, paired = TRUE,

alternative = "greater")

Example 3c: Two-sided paired-sample t-test
convert value 1 to NA
test.t(dat2$pre, dat2$post, as.na = 1, paired = TRUE)

Example 3d: Two-sided paired-sample t-test
print Cohen's d based on the standard deviation of the difference scores
test.t(dat2$pre, dat2$post, paired = TRUE, effsize = TRUE)

Example 3e: Two-sided paired-sample t-test
print Cohen's d based on the standard deviation of the difference scores
with small sample correction factor
test.t(dat2$pre, dat2$post, paired = TRUE, effsize = TRUE,

correct = TRUE)

Example 3f: Two-sided paired-sample t-test
print Cohen's d controlling for the correlation between measures
test.t(dat2$pre, dat2$post, paired = TRUE, effsize = TRUE,

weighted = FALSE)

Example 3g: Two-sided paired-sample t-test
print Cohen's d controlling for the correlation between measures
with small sample correction factor
test.t(dat2$pre, dat2$post, paired = TRUE, effsize = TRUE,

weighted = FALSE, correct = TRUE)

Example 3h: Two-sided paired-sample t-test
print Cohen's d ignoring the correlation between measures
test.t(dat2$pre, dat2$post, paired = TRUE, effsize = TRUE,

weighted = FALSE, cor = FALSE)

Example 3i: Two-sided paired-sample t-test
do not print hypotheses and descriptive statistics
test.t(dat2$pre, dat2$post, paired = TRUE, hypo = FALSE, descript = FALSE)

Example 3j: Two-sided paired-sample t-test
population standard deviation of difference score = 1.2
print descriptive statistics with 3 digits and p-value with 5 digits
test.t(dat2$pre, dat2$post, paired = TRUE, digits = 3,

p.digits = 5)

test.welch 265

Not run:
Example 3k: Two-sided paired-sample t-test
Plot results
test.t(dat2$pre, dat2$post, paired = TRUE, plot = TRUE)

Load ggplot2 package
library(ggplot2)

Save plot, ggsave() from the ggplot2 package
ggsave("Paired-sample_t-test.png", dpi = 600, width = 3, height = 6)

Example 3l: Two-sided paired-sample t-test
Extract plot
p <- test.t(dat2$pre, dat2$post, paired = TRUE, output = FALSE)$plot
p

Extract data used to plot results
plotdat <- data.frame(test.t(dat2$pre, dat2$post, paired = TRUE, output = FALSE)$data)

Difference score
plotdat$diff <- plotdat$y - plotdat$x

Draw plot in line with the default setting of test.t()
ggplot(plotdat, aes(0, diff)) +

geom_point(stat = "summary", fun = "mean", size = 4) +
stat_summary(fun.data = "mean_cl_normal", geom = "errorbar", width = 0.20) +
scale_x_discrete(name = NULL) + scale_y_continuous(name = NULL) +
geom_hline(yintercept = 0, linetype = 3, linewidth = 0.8) +
labs(subtitle = "Two-Sided 95
theme_bw() + theme(plot.subtitle = element_text(hjust = 0.5),

axis.text.x = element_blank(),
axis.ticks.x = element_blank())

End(Not run)

test.welch Welch’s Test

Description

This function performs Welch’s two-sample t-test and Welch’s ANOVA including Games-Howell
post hoc test for multiple comparison and provides descriptive statistics, effect size measures, and
a plot showing error bars for difference-adjusted confidence intervals with jittered data points.

Usage

test.welch(formula, data, alternative = c("two.sided", "less", "greater"),
posthoc = FALSE, conf.level = 0.95, hypo = TRUE, descript = TRUE,
effsize = FALSE, weighted = FALSE, ref = NULL, correct = FALSE,
plot = FALSE, point.size = 4, adjust = TRUE, error.width = 0.1,

266 test.welch

xlab = NULL, ylab = NULL, ylim = NULL, breaks = ggplot2::waiver(),
jitter = TRUE, jitter.size = 1.25, jitter.width = 0.05,
jitter.height = 0, jitter.alpha = 0.1, title = "",
subtitle = "Confidence Interval", digits = 2, p.digits = 4,
as.na = NULL, write = NULL, append = TRUE, check = TRUE,
output = TRUE, ...)

Arguments

formula a formula of the form y ~ group where y is a numeric variable giving the data
values and group a numeric variable, character variable or factor with two or
more than two values or factor levels giving the corresponding groups.

data a matrix or data frame containing the variables in the formula formula.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". Note that this argument is only used when con-
ducting Welch’s two-sample t-test.

posthoc logical: if TRUE, Games-Howell post hoc test for multiple comparison is con-
ducted when performing Welch’s ANOVA.

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

hypo logical: if TRUE (default), null and alternative hypothesis are shown on the con-
sole.

descript logical: if TRUE (default), descriptive statistics are shown on the console.

effsize logical: if TRUE, effect size measure Cohen’s d for Welch’s two-sample t-test
(see cohens.d), η2 and ω2 for Welch’s ANOVA and Cohen’s d for the post hoc
tests are shown on the console.

weighted logical: if TRUE, the weighted pooled standard deviation is used to compute
Cohen’s d.

ref a numeric value or character string indicating the reference group. The standard
deviation of the reference group is used to standardized the mean difference to
compute Cohen’s d.

correct logical: if TRUE, correction factor to remove positive bias in small samples is
used.

plot logical: if TRUE, a plot showing error bars for confidence intervals is drawn.

point.size a numeric value indicating the size aesthetic for the point representing the mean
value.

adjust logical: if TRUE (default), difference-adjustment for the confidence intervals is
applied.

error.width a numeric value indicating the horizontal bar width of the error bar.

xlab a character string specifying the labels for the x-axis.

ylab a character string specifying the labels for the y-axis.

ylim a numeric vector of length two specifying limits of the limits of the y-axis.

breaks a numeric vector specifying the points at which tick-marks are drawn at the y-
axis.

test.welch 267

jitter logical: if TRUE (default), jittered data points are drawn.

jitter.size a numeric value indicating the size aesthetic for the jittered data points.

jitter.width a numeric value indicating the amount of horizontal jitter.

jitter.height a numeric value indicating the amount of vertical jitter.

jitter.alpha a numeric value indicating the opacity of the jittered data points.

title a character string specifying the text for the title for the plot.

digits an integer value indicating the number of decimal places to be used for display-
ing descriptive statistics and confidence interval.

p.digits an integer value indicating the number of decimal places to be used for display-
ing the p-value.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

write a character string naming a text file with file extension ".txt" (e.g., "Output.txt")
for writing the output into a text file.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console.

... further arguments to be passed to or from methods.

subtitle a character string specifying the text for the subtitle for the plot.

Details

Effect Size Measure By default, Cohen’s d based on the non-weighted standard deviation (i.e.,
weighted = FALSE) which does not assume homogeneity of variance is computed (see Delacre
et al., 2021) when requesting an effect size measure (i.e., effsize = TRUE). Cohen’s d based on
the pooled standard deviation assuming equality of variances between groups can be requested
by specifying weighted = TRUE.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

sample type of sample, i.e., two- or multiple sample

formula formula of the current analysis

data data frame specified in data

plot ggplot2 object for plotting the results

args specification of function arguments

result result table

268 test.welch

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

Delacre, M., Lakens, D., Ley, C., Liu, L., & Leys, C. (2021). Why Hedges’ g*s based on the non-
pooled standard deviation should be reported with Welch’s t-test. https://doi.org/10.31234/osf.io/tu6mp

See Also

test.t, test.z, test.levene, aov.b, cohens.d, ci.mean.diff, ci.mean

Examples

dat1 <- data.frame(group1 = c(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2),
group2 = c(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3),
y = c(3, 1, 4, 2, 5, 3, 2, 3, 6, 6, 3, NA))

#---
Two-Sample Design

Example 1a: Two-sided two-sample Welch-test
test.welch(y ~ group1, data = dat1)

Example 1b: One-sided two-sample Welch-test
test.welch(y ~ group1, data = dat1, alternative = "greater")

Example 1c: Two-sided two-sample Welch-test
print Cohen's d with weighted pooled SD
test.welch(y ~ group1, data = dat1, effsize = TRUE)

Example 1d: Two-sided two-sample Welch-test
print Cohen's d with unweighted pooled SD
test.welch(y ~ group1, data = dat1, effsize = TRUE, weighted = FALSE)

Example 1e: Two-sided two-sample Welch-test
print Cohen's d with weighted pooled SD and
small sample correction factor
test.welch(y ~ group1, data = dat1, effsize = TRUE, correct = TRUE)

Example 1f: Two-sided two-sample Welch-test
print Cohen's d with SD of the reference group 1
test.welch(y ~ group1, data = dat1, effsize = TRUE,

ref = 1)

Example 1g: Two-sided two-sample Welch-test
print Cohen's d with weighted pooled SD and
small sample correction factor
test.welch(y ~ group1, data = dat1, effsize = TRUE,

test.welch 269

correct = TRUE)

Example 1h: Two-sided two-sample Welch-test
do not print hypotheses and descriptive statistics,
test.welch(y ~ group1, data = dat1, descript = FALSE, hypo = FALSE)

Example 1i: Two-sided two-sample Welch-test
print descriptive statistics with 3 digits and p-value with 5 digits
test.welch(y ~ group1, data = dat1, digits = 3, p.digits = 5)

Not run:
Example 1j: Two-sided two-sample Welch-test
plot results
test.welch(y ~ group1, data = dat1, plot = TRUE)

Load ggplot2 package
library(ggplot2)

Save plot, ggsave() from the ggplot2 package
ggsave("Two-sample_Welch-test.png", dpi = 600, width = 4, height = 6)

Example 1k: Two-sided two-sample Welch-test
extract plot
p <- test.welch(y ~ group1, data = dat1, output = FALSE)$plot
p

Extract data
plotdat <- test.welch(y ~ group1, data = dat1, output = FALSE)$data

Draw plot in line with the default setting of test.welch()
ggplot(plotdat, aes(factor(group), y)) +

geom_point(stat = "summary", fun = "mean", size = 4) +
stat_summary(fun.data = "mean_cl_normal", geom = "errorbar", width = 0.20) +
scale_x_discrete(name = NULL) +
labs(subtitle = "Two-Sided 95
theme_bw() + theme(plot.subtitle = element_text(hjust = 0.5))

End(Not run)
#---
Multiple-Sample Design

Example 2a: Welch's ANOVA
test.welch(y ~ group2, data = dat1)

Example 2b: Welch's ANOVA
print eta-squared and omega-squared
test.welch(y ~ group2, data = dat1, effsize = TRUE)

Example 2c: Welch's ANOVA
do not print hypotheses and descriptive statistics,
test.welch(y ~ group2, data = dat1, descript = FALSE, hypo = FALSE)

Not run:

270 test.z

Example 2d: Welch's ANOVA
plot results
test.welch(y ~ group2, data = dat1, plot = TRUE)

Load ggplot2 package
library(ggplot2)

Save plot, ggsave() from the ggplot2 package
ggsave("Multiple-sample_Welch-test.png", dpi = 600, width = 4.5, height = 6)

Example 2e: Welch's ANOVA
extract plot
p <- test.welch(y ~ group2, data = dat1, output = FALSE)$plot
p

Extract data
plotdat <- test.welch(y ~ group2, data = dat1, output = FALSE)$data

Draw plot in line with the default setting of test.welch()
ggplot(plotdat, aes(group, y)) +

geom_point(stat = "summary", fun = "mean", size = 4) +
stat_summary(fun.data = "mean_cl_normal", geom = "errorbar", width = 0.20) +
scale_x_discrete(name = NULL) +
labs(subtitle = "Two-Sided 95
theme_bw() + theme(plot.subtitle = element_text(hjust = 0.5))

End(Not run)

test.z z-Test

Description

This function performs one-sample, two-sample, and paired-sample z-tests and provides descriptive
statistics, effect size measure, and a plot showing error bars for (difference-adjusted) confidence
intervals with jittered data points.

Usage

test.z(x, ...)

Default S3 method:
test.z(x, y = NULL, sigma = NULL, sigma2 = NULL, mu = 0,

paired = FALSE, alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, hypo = TRUE, descript = TRUE, effsize = FALSE,
plot = FALSE, point.size = 4, adjust = TRUE, error.width = 0.1,
xlab = NULL, ylab = NULL, ylim = NULL, breaks = ggplot2::waiver(),
line = TRUE, line.type = 3, line.size = 0.8, jitter = TRUE,
jitter.size = 1.25, jitter.width = 0.05, jitter.height = 0,

test.z 271

jitter.alpha = 0.1, title = "", subtitle = "Confidence Interval",
digits = 2, p.digits = 4, as.na = NULL, write = NULL, append = TRUE,
check = TRUE, output = TRUE, ...)

S3 method for class 'formula'
test.z(formula, data, sigma = NULL, sigma2 = NULL,

alternative = c("two.sided", "less", "greater"), conf.level = 0.95,
hypo = TRUE, descript = TRUE, effsize = FALSE,
plot = FALSE, point.size = 4, adjust = TRUE, error.width = 0.1,
xlab = NULL, ylab = NULL, ylim = NULL, breaks = ggplot2::waiver(),
jitter = TRUE, jitter.size = 1.25, jitter.width = 0.05, jitter.height = 0,
jitter.alpha = 0.1, title = "", subtitle = "Confidence Interval",
digits = 2, p.digits = 4, as.na = NULL, write = NULL, append = TRUE,
check = TRUE, output = TRUE, ...)

Arguments

x a numeric vector of data values.

... further arguments to be passed to or from methods.

y a numeric vector of data values.

sigma a numeric vector indicating the population standard deviation(s). In case of two-
sample z-test, equal standard deviations are assumed when specifying one value
for the argument sigma; when specifying two values for the argument sigma,
unequal standard deviations are assumed. Note that either argument sigma or
argument sigma2 is specified.

sigma2 a numeric vector indicating the population variance(s). In case of two-sample
z-test, equal variances are assumed when specifying one value for the argument
sigma2; when specifying two values for the argument sigma, unequal variance
are assumed. Note that either argument sigma or argument sigma2 is specified.

mu a numeric value indicating the population mean under the null hypothesis. Note
that the argument mu is only used when computing a one-sample z-test.

paired logical: if TRUE, paired-sample z-test is computed.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

hypo logical: if TRUE (default), null and alternative hypothesis are shown on the con-
sole.

descript logical: if TRUE (default), descriptive statistics are shown on the console.

effsize logical: if TRUE, effect size measure Cohen’s d is shown on the console.

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

plot logical: if TRUE, a plot showing error bars for confidence intervals is drawn.

point.size a numeric value indicating the size aesthetic for the point representing the mean
value.

adjust logical: if TRUE (default), difference-adjustment for the confidence intervals in a
two-sample design is applied.

272 test.z

error.width a numeric value indicating the horizontal bar width of the error bar.

xlab a character string specifying the labels for the x-axis.

ylab a character string specifying the labels for the y-axis.

ylim a numeric vector of length two specifying limits of the limits of the y-axis.

breaks a numeric vector specifying the points at which tick-marks are drawn at the y-
axis.

line logical: if TRUE (default), a horizontal line is drawn at mu for the one-sample
t-test or at 0 for the paired-sample t-test.

line.type an integer value or character string specifying the line type for the line repre-
senting the population mean under the null hypothesis, i.e., 0 = blank, 1 = solid,
2 = dashed, 3 = dotted, 4 = dotdash, 5 = longdash, 6 = twodash.

line.size a numeric value indicating the linewidth aesthetic for the line representing the
population mean under the null hypothesis.

jitter logical: if TRUE (default), jittered data points are drawn.

jitter.size a numeric value indicating the size aesthetic for the jittered data points.

jitter.width a numeric value indicating the amount of horizontal jitter.

jitter.height a numeric value indicating the amount of vertical jitter.

jitter.alpha a numeric value indicating the opacity of the jittered data points.

title a character string specifying the text for the title for the plot.

subtitle a character string specifying the text for the subtitle for the plot.

digits an integer value indicating the number of decimal places to be used for display-
ing descriptive statistics and confidence interval.

p.digits an integer value indicating the number of decimal places to be used for display-
ing the p-value.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

write a character string naming a text file with file extension ".txt" (e.g., "Output.txt")
for writing the output into a text file.

append logical: if TRUE (default), output will be appended to an existing text file with
extension .txt specified in write, if FALSE existing text file will be overwritten.

check logical: if TRUE (default), argument specification is checked.

output logical: if TRUE (default), output is shown on the console.

formula in case of two sample z-test (i.e., paired = FALSE), a formula of the form y ~
group where group is a numeric variable, character variable or factor with two
values or factor levels giving the corresponding groups.

data a matrix or data frame containing the variables in the formula formula.

test.z 273

Details

Cohen’s d reported when argument effsize = TRUE is based on the population standard deviation
specified in sigma or the square root of the population variance specified in sigma2. In a one-sample
and paired-sample design, Cohen’s d is the mean of the difference scores divided by the population
standard deviation of the difference scores (i.e., equivalent to Cohen’s dz according to Lakens,
2013). In a two-sample design, Cohen’s d is the difference between means of the two groups of
observations divided by either the population standard deviation when assuming and specifying
equal standard deviations or the unweighted pooled population standard deviation when assuming
and specifying unequal standard deviations.

Value

Returns an object of class misty.object, which is a list with following entries:

call function call

type type of analysis

sample type of sample, i.e., one-, two-, or paired sample

formula formula of the current analysis

data data frame specified in data

plot ggplot2 object for plotting the results

args specification of function arguments

result result table

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practi-
cal primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 1-12. https://doi.org/10.3389/fpsyg.2013.00863

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

See Also

test.t, aov.b, aov.w, test.welch, cohens.d, ci.mean.diff, ci.mean

Examples

dat1 <- data.frame(group = c(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2),
x = c(3, 1, 4, 2, 5, 3, 2, 3, 6, 4, 3, NA))

#---
One-Sample Design

Example 1a: Two-sided one-sample z-test
population mean = 3, population standard deviation = 1.2

274 test.z

test.z(dat1$x, sigma = 1.2, mu = 3)

Example 1b: Two-sided one-sample z-test
population mean = 3, population variance = 1.44
test.z(dat1$x, sigma2 = 1.44, mu = 3)

Example 1c: One-sided one-sample z-test
population mean = 3, population standard deviation = 1.2
test.z(dat1$x, sigma = 1.2, mu = 3, alternative = "greater")

Example 1d: Two-sided one-sample z-test
population mean = 3, population standard deviation = 1.2
convert value 3 to NA
test.z(dat1$x, sigma = 1.2, mu = 3, as.na = 3)

Example 1e: Two-sided one-sample z-test
population mean = 3, population standard deviation = 1.2
print Cohen's d
test.z(dat1$x, sigma = 1.2, mu = 3, effsize = TRUE)

Example 1f: Two-sided one-sample z-test
population mean = 3, population standard deviation = 1.2
do not print hypotheses and descriptive statistics
test.z(dat1$x, sigma = 1.2, mu = 3, hypo = FALSE, descript = FALSE)

Example 1g: Two-sided one-sample z-test
population mean = 3, population standard deviation = 1.2
print descriptive statistics with 3 digits and p-value with 5 digits
test.z(dat1$x, sigma = 1.2, mu = 3, digits = 3, p.digits = 5)

Not run:
Example 1h: Two-sided one-sample z-test
population mean = 3, population standard deviation = 1.2
plot results
test.z(dat1$x, sigma = 1.2, mu = 3, plot = TRUE)

Load ggplot2 package
library(ggplot2)

Save plot, ggsave() from the ggplot2 package
ggsave("One-sample_z-test.png", dpi = 600, width = 3, height = 6)

Example 1i: Two-sided one-sample z-test
population mean = 3, population standard deviation = 1.2
extract plot
p <- test.z(dat1$x, sigma = 1.2, mu = 3, output = FALSE)$plot
p

Extract data
plotdat <- data.frame(test.z(dat1$x, sigma = 1.2, mu = 3, output = FALSE)$data[[1]])

Extract results
result <- test.z(dat1$x, sigma = 1.2, mu = 3, output = FALSE)$result

test.z 275

Draw plot in line with the default setting of test.z()
ggplot(plotdat, aes(0, x)) +

geom_point(data = result, aes(x = 0L, m), size = 4) +
geom_errorbar(data = result, aes(x = 0L, y = m, ymin = m.low, ymax = m.upp),

width = 0.2) +
scale_x_continuous(name = NULL, limits = c(-2, 2)) +
scale_y_continuous(name = NULL) +
geom_hline(yintercept = 3, linetype = 3, linewidth = 0.8) +
labs(subtitle = "Two-Sided 95
theme_bw() + theme(plot.subtitle = element_text(hjust = 0.5),

axis.text.x = element_blank(),
axis.ticks.x = element_blank())

End(Not run)

#---
Two-Sample Design

Example 2a: Two-sided two-sample z-test
population standard deviation (SD) = 1.2, equal SD assumption
test.z(x ~ group, sigma = 1.2, data = dat1)

Example 2b: Two-sided two-sample z-test
population standard deviation (SD) = 1.2 and 1.5, unequal SD assumption
test.z(x ~ group, sigma = c(1.2, 1.5), data = dat1)

Example 2c: Two-sided two-sample z-test
population variance (Var) = 1.44 and 2.25, unequal Var assumption
test.z(x ~ group, sigma2 = c(1.44, 2.25), data = dat1)

Example 2d: One-sided two-sample z-test
population standard deviation (SD) = 1.2, equal SD assumption
test.z(x ~ group, sigma = 1.2, data = dat1, alternative = "greater")

Example 2e: Two-sided two-sample z-test
population standard deviation (SD) = 1.2, equal SD assumption
print Cohen's d
test.z(x ~ group, sigma = 1.2, data = dat1, effsize = TRUE)

Example 2f: Two-sided two-sample z-test
population standard deviation (SD) = 1.2, equal SD assumption
do not print hypotheses and descriptive statistics,
print Cohen's d
test.z(x ~ group, sigma = 1.2, data = dat1, descript = FALSE, hypo = FALSE)

Example 2g: Two-sided two-sample z-test
population mean = 3, population standard deviation = 1.2
print descriptive statistics with 3 digits and p-value with 5 digits
test.z(x ~ group, sigma = 1.2, data = dat1, digits = 3, p.digits = 5)

Not run:
Example 2h: Two-sided two-sample z-test

276 test.z

population standard deviation (SD) = 1.2, equal SD assumption
plot results
test.z(x ~ group, sigma = 1.2, data = dat1, plot = TRUE)

Load ggplot2 package
library(ggplot2)

Save plot, ggsave() from the ggplot2 package
ggsave("Two-sample_z-test.png", dpi = 600, width = 4, height = 6)

Example 2i: Two-sided two-sample z-test
population standard deviation (SD) = 1.2, equal SD assumption
extract plot
p <- test.z(x ~ group, sigma = 1.2, data = dat1, output = FALSE)$plot
p

End(Not run)

#-----------------

group1 <- c(3, 1, 4, 2, 5, 3, 6, 7)
group2 <- c(5, 2, 4, 3, 1)

Example 2j: Two-sided two-sample z-test
population standard deviation (SD) = 1.2, equal SD assumption
test.z(group1, group2, sigma = 1.2)

#---
Paired-Sample Design

dat2 <- data.frame(pre = c(1, 3, 2, 5, 7),
post = c(2, 2, 1, 6, 8), stringsAsFactors = FALSE)

Example 3a: Two-sided paired-sample z-test
population standard deviation of difference score = 1.2
test.z(dat2$pre, dat2$post, sigma = 1.2, paired = TRUE)

Example 3b: Two-sided paired-sample z-test
population variance of difference score = 1.44
test.z(dat2$pre, dat2$post, sigma2 = 1.44, paired = TRUE)

Example 3c: One-sided paired-sample z-test
population standard deviation of difference score = 1.2
test.z(dat2$pre, dat2$post, sigma = 1.2, paired = TRUE,

alternative = "greater")

Example 3d: Two-sided paired-sample z-test
population standard deviation of difference score = 1.2
convert value 1 to NA
test.z(dat2$pre, dat2$post, sigma = 1.2, as.na = 1, paired = TRUE)

Example 3e: Two-sided paired-sample z-test
population standard deviation of difference score = 1.2

test.z 277

print Cohen's d
test.z(dat2$pre, dat2$post, sigma = 1.2, paired = TRUE, effsize = TRUE)

Example 3f: Two-sided paired-sample z-test
population standard deviation of difference score = 1.2
do not print hypotheses and descriptive statistics
test.z(dat2$pre, dat2$post, sigma = 1.2, mu = 3, paired = TRUE,

hypo = FALSE, descript = FALSE)

Example 3g: Two-sided paired-sample z-test
population standard deviation of difference score = 1.2
print descriptive statistics with 3 digits and p-value with 5 digits
test.z(dat2$pre, dat2$post, sigma = 1.2, paired = TRUE,

digits = 3, p.digits = 5)

Not run:
Example 3h: Two-sided paired-sample z-test
population standard deviation of difference score = 1.2
plot results
test.z(dat2$pre, dat2$post, sigma = 1.2, paired = TRUE, plot = TRUE)

Load ggplot2 package
library(ggplot2)

Save plot, ggsave() from the ggplot2 package
ggsave("Paired-sample_z-test.png", dpi = 600, width = 3, height = 6)

Example 3i: Two-sided paired-sample z-test
population standard deviation of difference score = 1.2
extract plot
p <- test.z(dat2$pre, dat2$post, sigma = 1.2, paired = TRUE, output = FALSE)$plot
p

Extract data
plotdat <- data.frame(test.z(dat2$pre, dat2$post, sigma = 1.2, paired = TRUE,

output = FALSE)$data)

Difference score
plotdat$diff <- plotdat$y - plotdat$x

Extract results
result <- test.z(dat2$pre, dat2$post, sigma = 1.2, paired = TRUE,

output = FALSE)$result

Draw plot in line with the default setting of test.t()
ggplot(plotdat, aes(0, diff)) +

geom_point(data = result, aes(x = 0, m.diff), size = 4) +
geom_errorbar(data = result,

aes(x = 0L, y = m.diff, ymin = m.low, ymax = m.upp), width = 0.2) +
scale_x_continuous(name = NULL, limits = c(-2, 2)) +
scale_y_continuous(name = "y") +
geom_hline(yintercept = 0, linetype = 3, linewidth = 0.8) +
labs(subtitle = "Two-Sided 95

278 write.dta

theme_bw() + theme(plot.subtitle = element_text(hjust = 0.5),
axis.text.x = element_blank(),
axis.ticks.x = element_blank())

End(Not run)

write.dta Write Stata DTA File

Description

This function writes a data frame or matrix into a Stata data file.

Usage

write.dta(x, file = "Stata_Data.dta", version = 14, label = NULL,
str.thres = 2045, adjust.tz = TRUE, check = TRUE)

Arguments

x a matrix or data frame to be written in Stata, vectors are coerced to a data frame.

file a character string naming a file with or without file extension ’.dta’, e.g., "Stata_Data.dta"
or "Stata_Data".

version Stats file version to use. Supports versions 8-15.

label Sataset label to use, or NULL. Defaults to the value stored in the "label" attribute
pf data. Must be <= 80 characters.

str.thres any chracter vector with a maximum length greater than str.thre bytes wil be
stored as a long string strL instead of a standard string str variable if version
is greater or equal 13.

adjust.tz this argument controls how the timezone of date-time values is treated when
writing, see ’Details’ in the in the write_dta function in the havan package.

check logical: if TRUE (default), variable attributes specified in the argument var.attr
is checked.

Note

This function is a modified copy of the read_dta() function in the haven package by Hadley
Wickham, Evan Miller and Danny Smith (2023).

Author(s)

Hadley Wickham, Evan Miller and Danny Smith

References

Wickham H, Miller E, Smith D (2023). haven: Import and Export ’SPSS’, ’Stata’ and ’SAS’ Files.
R package version 2.5.3. https://CRAN.R-project.org/package=haven

https://CRAN.R-project.org/package=haven

write.mplus 279

See Also

read.dta, write.sav, write.mplus, write.xlsx

Examples

Not run:

Example 1: Write data frame 'mtcars' into the State data file 'mtcars.dta'
write.dta(mtcars, "mtcars.dta")

End(Not run)

write.mplus Write Mplus Data File

Description

This function writes a matrix or data frame to a tab-delimited file without variable names, a Mplus
input template, and a text file with variable names. Note that only numeric variables are allowed,
i.e., non-numeric variables will be removed from the data set. Missing data will be coded as a single
numeric value.

Usage

write.mplus(x, file = "Mplus_Data.dat", data = TRUE, input = TRUE,
var = FALSE, na = -99, check = TRUE)

Arguments

x a matrix or data frame to be written to a tab-delimited file.

file a character string naming a file with or without the file extension ’.dat’, e.g.,
"Mplus_Data.dat" or "Mplus_Data".

data logical: if TRUE (default), Mplus data file is written in a text file named according
to the argumentfile.

input logical: if TRUE (default), Mplus input template is written in a text file named
according to the argumentfile with the extension _INPUT.inp.

var logical: if TRUE, variable names are written in a text file named according to the
argumentfile with the extension _VARNAMES.txt.

na a numeric value or character string representing missing values (NA) in the data
set.

check logical: if TRUE (default), argument specification is checked.

Value

Returns a character string indicating the variable names for the Mplus input file.

280 write.result

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Muthen, L. K., & Muthen, B. O. (1998-2017). Mplus User’s Guide (8th ed.). Muthen & Muthen.

See Also

read.mplus, mplus.run, write.sav, write.xlsx, write.dta

Examples

Not run:
Example 1: Write Mplus Data File and a Mplus input template
write.mplus(mtcars)

Example 2: Write Mplus Data File "mtcars.dat" and a Mplus input template "mtcars_INPUT.inp",
missing values coded with -999,
write variable names in a text file called "mtcars_VARNAMES.inp"
write.mplus(mtcars, file = "mtcars.dat", var = TRUE, na = -999)

End(Not run)

write.result Write Results of a misty Object into an Excel file

Description

This function writes the results of a misty object (misty.object) into a Excel file.

Usage

write.result(x, file = "Results.xlsx", tri = x$args$tri,
digits = x$args$digits, p.digits = x$args$p.digits,
icc.digits = x$args$icc.digits, check = TRUE)

Arguments

x misty object (misty.object) resulting from a misty function supported by the
write.result function (see ’Details’).

file a character string naming a file with or without file extension ’.xlsx’, e.g., "Results.xlsx"
or "Results".

tri a character string or character vector indicating which triangular of the matrix
to show on the console, i.e., both for upper and lower triangular, lower for the
lower triangular, and upper for the upper triangular.

write.result 281

digits an integer value indicating the number of decimal places digits to be used for
displaying results.

p.digits an integer indicating the number of decimal places to be used for displaying
p-values.

icc.digits an integer indicating the number of decimal places to be used for displaying
intraclass correlation coefficients.

check logical: if TRUE (default), argument specification is checked.

Details

Currently the function supports result objects from the function cor.matrix, crosstab, descript,
dominance.manual, dominance, effsize, freq, item.alpha, item.cfa, item.invar, item.omega,
result.lca, multilevel.cfa, multilevel.cor, multilevel.descript, multilevel.fit, multilevel.invar,
multilevel.omega, na.coverage, na.descript, na.pattern, robust.coef, and std.coef.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

See Also

cor.matrix, crosstab, descript, dominance.manual, dominance, effsize, freq, item.alpha,
item.cfa, item.invar, item.omega, result.lca, multilevel.cfa, multilevel.cor, multilevel.descript,
multilevel.fit, multilevel.invar, multilevel.omega, na.coverage, na.descript, na.pattern,
robust.coef, std.coef

Examples

Not run:
#--
Example 1: item.cfa() function

Load data set "HolzingerSwineford1939" in the lavaan package
data("HolzingerSwineford1939", package = "lavaan")

result <- item.cfa(HolzingerSwineford1939[, c("x1", "x2", "x3")], output = FALSE)
write.result(result, "CFA.xlsx")

#--
Example 2: multilevel.descript() function

Load data set "Demo.twolevel" in the lavaan package
data("Demo.twolevel", package = "lavaan")

result <- multilevel.descript(y1:y3, data = Demo.twolevel, cluster = "cluster",
output = FALSE)

write.result(result, "Multilevel_Descript.xlsx")

End(Not run)

282 write.sav

write.sav Write SPSS File

Description

This function writes a data frame or matrix into a SPSS file by either using the write_sav() func-
tion in the haven package by Hadley Wickham and Evan Miller (2019) or the free software PSPP.

Usage

write.sav(x, file = "SPSS_Data.sav", var.attr = NULL, pspp.path = NULL,
digits = 2, write.csv = FALSE, sep = c(";", ","), na = "",
write.sps = FALSE, check = TRUE)

Arguments

x a matrix or data frame to be written in SPSS, vectors are coerced to a data frame.

file a character string naming a file with or without file extension ’.sav’, e.g., "SPSS_Data.sav"
or "SPSS_Data".

var.attr a matrix or data frame with variable attributes used in the SPSS file, only ’vari-
able labels’ (column name label), ’value labels’ column name values, and
’user-missing values’ column name missing are supported (see ’Details’).

pspp.path a character string indicating the path where the PSPP folder is located on the
computer, e.g.C:/Program Files/PSPP/.

digits an integer value indicating the number of decimal places shown in the SPSS file
for non-integer variables.

write.csv logical: if TRUE, CSV file is written along with the SPSS file.

sep a character string for specifying the CSV file, either ";" for the separator and
"." for the decimal point (default, i.e. equivalent to write.csv2) or "." for the
decimal point and "," for the separator (i.e. equivalent to write.csv), must be
one of both ";" (default) or ",".

na a character string for specifying missing values in the CSV file.

write.sps logical: if TRUE, SPSS syntax is written along with the SPSS file when using
PSPP.

check logical: if TRUE, variable attributes specified in the argument var.attr is checked.

Details

If arguments pspp.path is not specified (i.e., pspp.path = NULL), write_sav() function in the
haven is used. Otherwise the object x is written as CSV file, which is subsequently imported into
SPSS using the free software PSPP by executing a SPSS syntax written in R. Note that PSPP needs
to be installed on your computer when using the pspp.path argument.

A SPSS file with ’variable labels’, ’value labels’, and ’user-missing values’ is written by specifying
the var.attr argument. Note that the number of rows in the matrix or data frame specified in

write.sav 283

var.attr needs to match with the number of columns in the data frame or matrix specified in x,
i.e., each row in var.attr represents the variable attributes of the corresponding variable in x. In
addition, column names of the matrix or data frame specified in var.attr needs to be labeled as
label for ’variable labels, values for ’value labels’, and missing for ’user-missing values’.

Labels for the values are defined in the column values of the matrix or data frame in var.attr
using the equal-sign (e.g., 0 = female) and are separated by a semicolon (e.g., 0 = female; 1 =
male).

User-missing values are defined in the column missing of the matrix or data frame in var.attr,
either specifying one user-missing value (e.g., -99) or more than one but up to three user-missing
values separated by a semicolon (e.g., -77; -99.

Note

Part of the function using PSPP was adapted from the write.pspp() function in the miceadds
package by Alexander Robitzsch, Simon Grund and Thorsten Henke (2019).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

GNU Project (2018). GNU PSPP for GNU/Linux (Version 1.2.0). Boston, MA: Free Software
Foundation. https://www.gnu.org/software/pspp/

Wickham H., & Miller, E. (2019). haven: Import and Export ’SPSS’, ’Stata’ and ’SAS’ Files. R
package version 2.2.0.

Robitzsch, A., Grund, S., & Henke, T. (2019). miceadds: Some additional multiple imputation
functions, especially for mice. R package version 3.4-17.

See Also

read.sav, write.xlsx, write.dta, write.mplus

Examples

Not run:
dat <- data.frame(id = 1:5,

gender = c(NA, 0, 1, 1, 0),
age = c(16, 19, 17, NA, 16),
status = c(1, 2, 3, 1, 4),
score = c(511, 506, 497, 502, 491))

Example 1: Write SPSS file using the haven package
write.sav(dat, file = "Dataframe_haven.sav")

Example 2: Write SPSS file using PSPP,
write CSV file and SPSS syntax along with the SPSS file
write.sav(dat, file = "Dataframe_PSPP.sav", pspp.path = "C:/Program Files/PSPP",

write.csv = TRUE, write.sps = TRUE)

https://www.gnu.org/software/pspp/

284 write.xlsx

Example 3: Specify variable attributes
Note that it is recommended to manually specify the variables attritbues in a CSV or
Excel file which is subsequently read into R
attr <- data.frame(# Variable names

var = c("id", "gender", "age", "status", "score"),
Variable labels
label = c("Identification number", "Gender", "Age in years",

"Migration background", "Achievement test score"),
Value labels
values = c("", "0 = female; 1 = male", "",

"1 = Austria; 2 = former Yugoslavia; 3 = Turkey; 4 = other",
""),

User-missing values
missing = c("", "-99", "-99", "-99", "-99"), stringsAsFactors = FALSE)

Example 4: Write SPSS file with variable attributes using the haven package
write.sav(dat, file = "Dataframe_haven_Attr.sav", var.attr = attr)

Example 5: Write SPSS with variable attributes using PSPP
write.sav(dat, file = "Dataframe_PSPP_Attr.sav", var.attr = attr,

pspp.path = "C:/Program Files/PSPP")

End(Not run)

write.xlsx Write Excel File

Description

This function calls the write_xlsx() function in the writexl package by Jeroen Ooms to write an
Excel file (.xlsx).

Usage

write.xlsx(x, file = "Excel_Data.xlsx", col.names = TRUE, format = FALSE,
use.zip64 = FALSE, check = TRUE)

Arguments

x a matrix, data frame or (named) list of matrices or data frames that will be writ-
ten in the Excel file.

file a character string naming a file with or without file extension ’.xlsx’, e.g., "My_Excle.xlsx"
or "My_Excel".

col.names logical: if TRUE, column names are written at the top of the Excel sheet.

format logical: if TRUE, column names in the Excel file are centered and bold.

use.zip64 logical: if TRUE, zip64 to enable support for 4GB+ Excel files is used.

check logical: if TRUE (default), argument specification is checked.

write.xlsx 285

Details

This function supports strings, numbers, booleans, and dates.

Note

The function was adapted from the write_xlsx() function in the writexl package by Jeroen Ooms
(2021).

Author(s)

Jeroen Ooms

References

Jeroen O. (2021). writexl: Export Data Frames to Excel ’xlsx’ Format. R package version 1.4.0.
https://CRAN.R-project.org/package=writexl

See Also

read.xlsx, write.sav, write.dta, write.mplus

Examples

Not run:
Example 1: Write Excel file (.xlsx)
dat <- data.frame(id = 1:5,

gender = c(NA, 0, 1, 1, 0),
age = c(16, 19, 17, NA, 16),
status = c(1, 2, 3, 1, 4),
score = c(511, 506, 497, 502, 491))

write.xlsx(dat, file = "Excel.xlsx")

Example 2: Write Excel file with multiple sheets (.xlsx)
write.xlsx(list(cars = cars, mtcars = mtcars), file = "Excel_Sheets.xlsx")

End(Not run)

Index

aov.b, 4, 11, 256, 261, 268, 273
aov.w, 6, 7, 45, 218, 261, 273
as.na, 13, 206, 207, 209, 211, 213, 215, 217

center, 16, 135
check.collin, 20, 25, 29
check.outlier, 22, 24, 29
check.resid, 25
chr.grep, 29, 31, 32, 34
chr.grepl, 31, 32, 34
chr.grepl (chr.grep), 29
chr.gsub, 30, 31, 32, 34
chr.omit, 30, 31, 32, 34
chr.trim, 30–32, 33
ci.mean, 6, 11, 34, 40, 48, 51, 55, 75, 261,

268, 273
ci.mean.diff, 6, 11, 36, 38, 45, 48, 51, 55,

75, 261, 268, 273
ci.mean.w, 43
ci.median, 40, 45, 48, 51, 55, 75
ci.median (ci.mean), 34
ci.prop, 36, 40, 45, 46, 51, 55, 75
ci.prop.diff, 48, 49, 55, 75
ci.sd, 36, 40, 45, 48, 51, 75
ci.sd (ci.var), 53
ci.var, 36, 40, 45, 48, 51, 53, 75
cluster.scores, 19, 56, 132, 166, 238
coding, 19, 58, 135, 227
cohens.d, 6, 11, 61, 70, 97, 258, 261, 266,

268, 273
cor.matrix, 64, 67, 97, 281
cor.test, 69
crosstab, 71, 75, 100, 281

descript, 36, 40, 45, 48, 51, 55, 72, 74, 100,
171, 251, 281

df.duplicated, 76, 80, 82–84, 86, 88
df.merge, 77, 79, 82–84, 86, 88
df.move, 77, 80, 81, 83, 84, 86, 88
df.rbind, 77, 80, 82, 82, 84, 86, 88

df.rename, 77, 80, 82, 83, 84, 86, 88
df.sort, 77, 80, 82–84, 85, 88
df.subset, 13, 16, 35, 44, 46, 54, 57, 68, 71,

74, 77, 80–84, 86, 86, 96, 99, 105,
109, 118, 126, 129, 131, 133, 156,
163, 168, 175, 183, 189, 204, 206,
208, 211, 212, 214, 215, 225, 237

df.unique (df.duplicated), 76
dominance, 89, 93, 281
dominance.manual, 91, 92, 281

effsize, 64, 70, 96, 281

format.POSIXct, 240
freq, 72, 75, 98, 218, 281

indirect, 101, 181, 182
item.alpha, 105, 115, 127, 130, 132, 281
item.cfa, 107, 108, 122, 127, 132, 160, 281
item.invar, 117, 281
item.omega, 107, 115, 125, 130, 132, 191, 281
item.reverse, 19, 60, 107, 127, 128, 135, 227
item.scores, 19, 57, 107, 115, 127, 130, 130

kurtosis (skewness), 250

lagged, 133
libraries, 136
library, 136
lm, 22, 25

mplus, 137, 144, 149, 152, 155
mplus.lca, 139, 140, 149, 152, 155, 232
mplus.print, 138, 139, 144, 144, 152, 153,

155
mplus.run, 139, 144, 149, 150, 155, 232, 280
mplus.update, 139, 144, 149, 152, 152
multilevel.cfa, 156, 174, 178, 186, 191, 281
multilevel.cor, 160, 163, 174, 178, 186,

191, 198, 203, 281

286

INDEX 287

multilevel.descript, 57, 72, 75, 100, 160,
166, 168, 174, 178, 186, 191, 198,
203, 281

multilevel.fit, 160, 173, 186, 191, 281
multilevel.icc, 57, 70, 166, 169–171, 175,

198, 203
multilevel.indirect, 104, 179, 198, 203
multilevel.invar, 122, 160, 174, 183, 191,

281
multilevel.omega, 160, 174, 186, 188, 281
multilevel.r2, 192, 202, 203
multilevel.r2.manual, 200

na.as, 206, 207, 209, 211, 213, 215, 217
na.as (as.na), 13
na.auxiliary, 14, 64, 70, 204, 207, 209, 211,

213, 215, 217
na.coverage, 14, 206, 206, 209, 211, 213,

215, 217, 281
na.descript, 14, 72, 75, 100, 206, 207, 208,

211, 213, 215, 217, 281
na.indicator, 14, 206, 207, 209, 210, 213,

215, 217
na.pattern, 14, 206, 207, 209, 211, 212, 215,

217, 281
na.prop, 14, 206, 207, 209, 211, 213, 214, 217
na.test, 14, 206, 207, 209, 211, 213, 215, 215

p.adjust, 8, 69, 164
print.misty.object, 218

rbind, 83
read.dta, 219, 221, 223, 224, 279
read.mplus, 139, 144, 149, 152, 155, 220,

220, 223, 224, 232, 280
read.sav, 220, 221, 222, 224, 283
read.xlsx, 220, 221, 223, 223, 285
rec, 19, 60, 130, 135, 225
require, 136
restart, 228
result.lca, 229, 281
robust.coef, 233, 281
rwg.lindell, 19, 236

script.close, 240, 241, 244
script.close (script.open), 242
script.copy, 239, 241, 243
script.new, 240, 240, 244
script.open, 240, 241, 242, 244

script.save, 240, 241, 243, 244
script.save (script.open), 242
setsource, 240, 241, 243, 243
size.cor, 70, 244, 247, 249
size.mean, 245, 246, 249
size.prop, 245, 247, 248
skewness, 250
std.coef, 91, 93, 236, 251, 281

test.levene, 6, 254, 261, 268
test.t, 6, 11, 36, 40, 45, 64, 218, 256, 257,

268, 273
test.welch, 6, 218, 256, 261, 265, 273
test.z, 6, 11, 36, 40, 45, 64, 218, 261, 268,

270

write.dta, 221, 223, 224, 278, 280, 283, 285
write.mplus, 139, 144, 149, 152, 155, 220,

223, 224, 232, 279, 279, 283, 285
write.result, 70, 72, 91, 93, 100, 107, 122,

127, 166, 171, 207, 209, 213, 236,
280

write.sav, 220, 221, 224, 279, 280, 282, 285
write.xlsx, 220, 221, 223, 279, 280, 283, 284

	aov.b
	aov.w
	as.na
	center
	check.collin
	check.outlier
	check.resid
	chr.grep
	chr.gsub
	chr.omit
	chr.trim
	ci.mean
	ci.mean.diff
	ci.mean.w
	ci.prop
	ci.prop.diff
	ci.var
	cluster.scores
	coding
	cohens.d
	cor.matrix
	crosstab
	descript
	df.duplicated
	df.merge
	df.move
	df.rbind
	df.rename
	df.sort
	df.subset
	dominance
	dominance.manual
	effsize
	freq
	indirect
	item.alpha
	item.cfa
	item.invar
	item.omega
	item.reverse
	item.scores
	lagged
	libraries
	mplus
	mplus.lca
	mplus.print
	mplus.run
	mplus.update
	multilevel.cfa
	multilevel.cor
	multilevel.descript
	multilevel.fit
	multilevel.icc
	multilevel.indirect
	multilevel.invar
	multilevel.omega
	multilevel.r2
	multilevel.r2.manual
	na.auxiliary
	na.coverage
	na.descript
	na.indicator
	na.pattern
	na.prop
	na.test
	print.misty.object
	read.dta
	read.mplus
	read.sav
	read.xlsx
	rec
	restart
	result.lca
	robust.coef
	rwg.lindell
	script.copy
	script.new
	script.open
	setsource
	size.cor
	size.mean
	size.prop
	skewness
	std.coef
	test.levene
	test.t
	test.welch
	test.z
	write.dta
	write.mplus
	write.result
	write.sav
	write.xlsx
	Index

