Title: | Miscellaneous Functions |
---|---|
Description: | Various functions for random number generation, density estimation, classification, curve fitting, and spatial data analysis. |
Authors: | Dai Feng |
Maintainer: | Dai Feng <[email protected]> |
License: | GPL |
Version: | 0.1-5 |
Built: | 2024-12-25 06:50:42 UTC |
Source: | CRAN |
Fit a variety of curves by a sequence of piecewise polynomials. The number and location of knots are determined by the Reversible Jump MCMC method.
curve.polynomial.rjmcmc(y, x, lambda, l, l0, c=0.4, gamma.shape=1e-3, gamma.rate=1e-3, maxit=10000, err=1e-8, verbose=TRUE)
curve.polynomial.rjmcmc(y, x, lambda, l, l0, c=0.4, gamma.shape=1e-3, gamma.rate=1e-3, maxit=10000, err=1e-8, verbose=TRUE)
y |
a vector of values of a response variable. |
x |
a vector of values of the corresponding explanatory variable. |
lambda |
the parameter of the Poisson prior for the number of knots. |
l |
the order of polynomials. |
l0 |
the degree of continuity at the knots. |
c |
the parameter controlling the rate of changing dimension. The default value is 0.4. |
gamma.shape |
the parameter shape of the gamma prior for the error precision. The default value is 1e-3. |
gamma.rate |
the parameter rate of the gamma prior for the error precision. The default value is 1e-3. |
maxit |
the maximum number of iterations. The default value is 10000. |
err |
the iteration stops when consecutive difference in percentage of mean-squared error reaches this bound. The default value is 1e-8. |
verbose |
logical. If |
The method is based on Denison et al. (1998). It can be used to fit
both smooth and unsmooth curves. When both l0
and l
are set to 3, it fits curves using cubic spline.
knots.save |
a list of location of knots. One component per iteration. |
betas.save |
a list of estimates of regression parameters
|
fitted.save |
a matrix of fitted values. One column per iteration. |
sigma2.save |
a vector of estimate of error variance. One component per iteration. |
The factor was added in the likelihood ratio
to penalize the ratio for dimensionality as suggested in Dimatteo et
al. (2001).
Denison, D. G. T., Mallick, B. K., Smith, A. F. M.(1998) Automatic Bayesian Curve Fitting JRSSB vol. 60, no. 2 333-350
Dimatteo, I., Genovese, C. R., Kass, R. E.(2001) Bayesian Curve-fitting with Free-knot Splines Biometrika vol. 88, no. 4 1055-1071
## Not run: #Example 1: smooth curve #example 3.1. (b) in Denison et al.(1998) x <- runif(200) xx <- -2 + 4*x y.truth <- sin(2*xx) + 2*exp(-16*xx^2) y <- y.truth + rnorm(200, mean=0, sd=0.3) results <- curve.polynomial.rjmcmc(y, x, lambda=1, l=2, l0=1) plot(sort(x), y.truth[order(x)], type="l") lines(sort(x), rowMeans(results$fitted.save), col="red") #Example 2: unsmooth curve #blocks in Denison et al.(1998) tj <- c(0.1, 0.13, 0.15, 0.23, 0.25, 0.4, 0.44, 0.65, 0.76, 0.78, 0.81) hj <- c(4, -5, 3, -4, 5, -4.2, 2.1, 4.3, -3.1, 2.1, -4.2) t <- seq(0, 1, len=2048) Ktmtj <- outer(t, tj, function(a,b) ifelse(a-b > 0, 1, -1)) ft <- rowSums(Ktmtj %*% diag(hj)) x <- t y <- ft + rnorm(2048, 0, 1) results <- curve.polynomial.rjmcmc(y, x, lambda=5, l=2, l0=1) plot(x, ft, type="s") lines(x, rowMeans(results$fitted.save), col="red") #Example 3: unsmooth curve #bumps in Denison et al.(1998) tj <- c(0.1, 0.13, 0.15, 0.23, 0.25, 0.4, 0.44, 0.65, 0.76, 0.78, 0.81) hj <- c(4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2)*10 wj <- c(0.005, 0.005, 0.006, 0.01, 0.01, 0.03, 0.01, 0.01, 0.005, 0.008, 0.005) t <- seq(0, 1, len=2048) ft <- rowSums((1 + abs(outer(t, tj ,"-") %*% diag(1/wj)))^(-4) %*% diag(hj)) y <- ft + rnorm(2048, 0, 1) results <- curve.polynomial.rjmcmc(y, t, lambda=5, l=2, l0=1) plot(t, ft, type="s") lines(t, rowMeans(results$fitted.save), col="red") ## End(Not run)
## Not run: #Example 1: smooth curve #example 3.1. (b) in Denison et al.(1998) x <- runif(200) xx <- -2 + 4*x y.truth <- sin(2*xx) + 2*exp(-16*xx^2) y <- y.truth + rnorm(200, mean=0, sd=0.3) results <- curve.polynomial.rjmcmc(y, x, lambda=1, l=2, l0=1) plot(sort(x), y.truth[order(x)], type="l") lines(sort(x), rowMeans(results$fitted.save), col="red") #Example 2: unsmooth curve #blocks in Denison et al.(1998) tj <- c(0.1, 0.13, 0.15, 0.23, 0.25, 0.4, 0.44, 0.65, 0.76, 0.78, 0.81) hj <- c(4, -5, 3, -4, 5, -4.2, 2.1, 4.3, -3.1, 2.1, -4.2) t <- seq(0, 1, len=2048) Ktmtj <- outer(t, tj, function(a,b) ifelse(a-b > 0, 1, -1)) ft <- rowSums(Ktmtj %*% diag(hj)) x <- t y <- ft + rnorm(2048, 0, 1) results <- curve.polynomial.rjmcmc(y, x, lambda=5, l=2, l0=1) plot(x, ft, type="s") lines(x, rowMeans(results$fitted.save), col="red") #Example 3: unsmooth curve #bumps in Denison et al.(1998) tj <- c(0.1, 0.13, 0.15, 0.23, 0.25, 0.4, 0.44, 0.65, 0.76, 0.78, 0.81) hj <- c(4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2)*10 wj <- c(0.005, 0.005, 0.006, 0.01, 0.01, 0.03, 0.01, 0.01, 0.005, 0.008, 0.005) t <- seq(0, 1, len=2048) ft <- rowSums((1 + abs(outer(t, tj ,"-") %*% diag(1/wj)))^(-4) %*% diag(hj)) y <- ft + rnorm(2048, 0, 1) results <- curve.polynomial.rjmcmc(y, t, lambda=5, l=2, l0=1) plot(t, ft, type="s") lines(t, rowMeans(results$fitted.save), col="red") ## End(Not run)
Estimate the parameters of a multivariate normal model under different priors.
mvn.bayes(X, nsim, prior=c("Jeffreys", "Conjugate"))
mvn.bayes(X, nsim, prior=c("Jeffreys", "Conjugate"))
X |
a matrix of observations with one subject per row. |
nsim |
number of simulations. |
prior |
a character string specifying the prior distribution. It must be either "Jeffreys" or "Conjugate" and may be abbreviated. The default is "Jeffreys". |
Both the Jeffreys prior and normal-inverse-Wishart conjugate prior are available. The conjugate prior of variance covariance matrix is inverse-Wishart. To use a noninformative proper prior, the degree of freedom of Wishart prior was set as the number of dimensions and the scale matrix was chosen based on the unbiased estimate. The number of prior measurements was taken as one and the prior mean was set as its unbiased estimate.
Mu.save |
a matrix of mean vector of the model, one row per iteration. |
Sigma.save |
a three dimensional array of variance of the model. Sigma.save[,,i] is the result from the ith iteration. |
When the number of dimensions is two, under Jeffreys prior, it is straightforward to obtain independent samples from the posteriors.
Berger, J. O., Sun, D. (2008) Objective Priors for the Bivariate Normal Model. The Annals of Statistics 36 963-982.
Gelman, A., Carlin, J. B., Stern, H. S., Rubin, D. B. (2003) Bayesian Data Analysis. 2nd ed. London: Chapman and Hall
Sun, D., Berger, J. O. (2009) Objective Priors for the Multivariate Normal Model. In Bayesian Statistics 8, Ed. J. Bernardo, M. Bayarri, J. Berger, A. Dawid, D. Heckerman, A. Smith and M. West. Oxford: Oxford University Press.
Sigma <- matrix(c(100, 0.99*sqrt(100*100), 0.99*sqrt(100*100), 100), nrow=2) X <- mvrnorm(1000, c(100, 100), Sigma) result <- mvn.bayes(X, 10000) Mu <- colMeans(result$Mu.save) Sigma <- apply(result$Sigma.save, c(1,2), mean)
Sigma <- matrix(c(100, 0.99*sqrt(100*100), 0.99*sqrt(100*100), 100), nrow=2) X <- mvrnorm(1000, c(100, 100), Sigma) result <- mvn.bayes(X, 10000) Mu <- colMeans(result$Mu.save) Sigma <- apply(result$Sigma.save, c(1,2), mean)
Obtain the Unbiased Estimate of Parameters of a Multivariate Normal Distribution.
mvn.ub(X)
mvn.ub(X)
X |
a matrix of observations with one subject per row. |
hat.Mu |
unbiased estimate of mean. |
hat.Sigma |
unbiased estimate of variance. |
Sigma <- matrix(c(100, 0.99*sqrt(100*100), 0.99*sqrt(100*100), 100), nrow=2) X <- mvrnorm(1000, c(100, 100), Sigma) result <- mvn.ub(X)
Sigma <- matrix(c(100, 0.99*sqrt(100*100), 0.99*sqrt(100*100), 100), nrow=2) X <- mvrnorm(1000, c(100, 100), Sigma) result <- mvn.ub(X)
Use the MCMC to obtain estimate of parameters of a multivariate skew normal distribution.
mvsn.mcmc(Y, prior.Mu0=NULL, prior.Sigma0=NULL, prior.muDelta0=NULL, prior.sigmaDelta0=NULL, prior.H0=NULL, prior.P0=NULL, nmcmc=10000, nburn=nmcmc/10, nthin=1, seed=100)
mvsn.mcmc(Y, prior.Mu0=NULL, prior.Sigma0=NULL, prior.muDelta0=NULL, prior.sigmaDelta0=NULL, prior.H0=NULL, prior.P0=NULL, nmcmc=10000, nburn=nmcmc/10, nthin=1, seed=100)
Y |
a matrix of observations with one subject per row. |
prior.Mu0 |
mean vector of multivariate normal prior of the
parameter |
prior.Sigma0 |
variance matrix of multivariate normal prior of
the parameter |
prior.muDelta0 |
mean vector of normal prior of the diagonal elements of parameter |
prior.sigmaDelta0 |
standard deviation vector of normal prior of the diagonal
elements of parameter |
prior.H0 |
the inverse of scale matrix of Wishart prior of the inverse of
parameter |
prior.P0 |
the degrees of freedom of Wishart prior of the inverse of
parameter |
nmcmc |
number of iterations. The default value is 10000. |
nburn |
number of burn-in. The default value is |
nthin |
output every |
seed |
random seed. The default value is 100. |
This function estimates the parameters of a multivariate skew normal distribution as in Sahu et al. 2003 using the MCMC.
Mu |
a matrix of parameter |
Sigma |
a three dimensional array of parameter |
Delta |
a matrix of diagonal elements of parameter |
DIC |
DIC value. |
Sahu, Sujit K., Dipak K. Dey, and Marcia D. Branco. (2003) A new class of multivariate skew distributions with applications to Bayesian regression models. Canadian Journal of Statistics vol. 31, no. 2 129-150.
## Not run: Mu <- rep(400, 2) Sigma <- diag(c(40, 40)) D <- diag(c(-30, -30)) Y <- rmvsn(n=1000, D, Mu, Sigma) mcmc <- mvsn.mcmc(Y) ## End(Not run)
## Not run: Mu <- rep(400, 2) Sigma <- diag(c(40, 40)) D <- diag(c(-30, -30)) Y <- rmvsn(n=1000, D, Mu, Sigma) mcmc <- mvsn.mcmc(Y) ## End(Not run)
Use the MCMC to obtain estimate of parameters of a multivariate skew t distribution.
mvst.mcmc(Y, prior.Mu0=NULL, prior.Sigma0=NULL, prior.muDelta0=NULL, prior.sigmaDelta0=NULL, prior.H0=NULL, prior.P0=NULL, nmcmc=10000, nburn=nmcmc/10, nthin=1, seed=1)
mvst.mcmc(Y, prior.Mu0=NULL, prior.Sigma0=NULL, prior.muDelta0=NULL, prior.sigmaDelta0=NULL, prior.H0=NULL, prior.P0=NULL, nmcmc=10000, nburn=nmcmc/10, nthin=1, seed=1)
Y |
a matrix of observations with one subject per row. |
prior.Mu0 |
mean vector of multivariate normal prior of the
parameter |
prior.Sigma0 |
variance matrix of multivariate normal prior of
the parameter |
prior.muDelta0 |
mean vector of normal prior of the diagonal elements of parameter |
prior.sigmaDelta0 |
standard deviation vector of normal prior of the diagonal
elements of parameter |
prior.H0 |
the inverse of scale matrix of Wishart prior of the inverse of
parameter |
prior.P0 |
the degrees of freedom of Wishart prior of the inverse of
parameter |
nmcmc |
number of iterations. The default value is 10000. |
nburn |
number of burn-in. The default value is |
nthin |
output every |
seed |
random seed. The default value is 1. Note that |
This function estimates the parameters of a multivariate skew t distribution as in Sahu et al. 2003 using the MCMC.
Mu |
a matrix of parameter |
Sigma |
a three dimensional array of parameter |
Delta |
a matrix of diagonal elements of parameter |
nu |
a vector of parameter |
DIC |
DIC value. |
Sahu, Sujit K., Dipak K. Dey, and Marcia D. Branco. (2003) A new class of multivariate skew distributions with applications to Bayesian regression models. Canadian Journal of Statistics vol. 31, no. 2 129-150.
## Not run: Mu <- rep(0, 2) Sigma <- diag(c(1,1)) D <- diag(c(1,1)) nu <- 5 Y <- rmvst(n=1000, D, Mu, Sigma, nu) mcmc <- mvst.mcmc(Y) ## End(Not run)
## Not run: Mu <- rep(0, 2) Sigma <- diag(c(1,1)) D <- diag(c(1,1)) nu <- 5 Y <- rmvst(n=1000, D, Mu, Sigma, nu) mcmc <- mvst.mcmc(Y) ## End(Not run)
Use the Expectation/Conditional Maximization Either (ECME) algorithm to obtain estimate of parameters of a multivariate t distribution.
mvt.ecme(X, lower.v, upper.v, err=1e-4)
mvt.ecme(X, lower.v, upper.v, err=1e-4)
X |
a matrix of observations with one subject per row. |
lower.v |
lower bound of degrees of freedom (df). |
upper.v |
upper bound of df. |
err |
the iteration stops when consecutive difference in percentage of df reaches this bound. The default value is 1e-4. |
They are number of forms of the generalization of the univariate student-t distribution to multivariate cases. This function adopts the widely used representation as a scale mixture of normal distributions.
To obtain the estimate, the algorithm adopted is the Expectation/Conditional Maximization Either (ECME), which extends the Expectation/Conditional Maximization (ECM) algorithm by allowing CM-steps to maximize either the constrained expected complete-data log-likelihood, as with ECM, or the correspondingly constrained actual log-likelihood function.
Mu |
estimate of location. |
Sigma |
estimate of scale matrix. |
v |
estimate of df. |
Chuanhai Liu (1994) Statistical Analysis Using the Multivariate t Distribution Ph. D. Dissertation, Harvard University
mu1 <- mu2 <- sigma12 <- sigma22 <- 100 rho12 <- 0.7 Sigma <- matrix(c(sigma12, rho12*sqrt(sigma12*sigma22), rho12*sqrt(sigma12*sigma22), sigma22), nrow=2) k <- 5 N <- 100 require(mvtnorm) X <- rmvt(N, sigma=Sigma, df=k, delta=c(mu1, mu2)) result <- mvt.ecme(X, 3, 300) result$Mu result$Sigma result$v
mu1 <- mu2 <- sigma12 <- sigma22 <- 100 rho12 <- 0.7 Sigma <- matrix(c(sigma12, rho12*sqrt(sigma12*sigma22), rho12*sqrt(sigma12*sigma22), sigma22), nrow=2) k <- 5 N <- 100 require(mvtnorm) X <- rmvt(N, sigma=Sigma, df=k, delta=c(mu1, mu2)) result <- mvt.ecme(X, 3, 300) result$Mu result$Sigma result$v
Use the MCMC to obtain estimate of parameters of a multivariate t distribution.
mvt.mcmc(X, prior.lower.v, prior.upper.v, prior.Mu0=rep(0, ncol(X)), prior.Sigma0=diag(10000, ncol(X)), prior.p=ncol(X), prior.V=diag(1, ncol(X)), initial.v=NULL, initial.Sigma=NULL, nmcmc=10000, nburn=nmcmc/10, nthin=1, seed=1)
mvt.mcmc(X, prior.lower.v, prior.upper.v, prior.Mu0=rep(0, ncol(X)), prior.Sigma0=diag(10000, ncol(X)), prior.p=ncol(X), prior.V=diag(1, ncol(X)), initial.v=NULL, initial.Sigma=NULL, nmcmc=10000, nburn=nmcmc/10, nthin=1, seed=1)
X |
a matrix of observations with one subject per row. |
prior.lower.v |
lower bound of degrees of freedom (df). |
prior.upper.v |
upper bound of df. |
prior.Mu0 |
mean vector of multivariate normal prior of the location. The default value is 0. |
prior.Sigma0 |
variance matrix of multivariate normal prior of the location. The default value is a diagonal matrix with diagonal entries equal to 10000. |
prior.p |
the df of wishart prior of inverse of the scale matrix. The default value is dimensions of observation. |
prior.V |
the scale matrix of wishart prior of inverse of the scale matrix. The default value is identity matrix. |
initial.v |
the initial value of the df. The default is
|
initial.Sigma |
the initial value of the scale matrix. The default is
|
nmcmc |
number of iterations. The default value is 10000. |
nburn |
number of burn-in. The default value is |
nthin |
output every |
seed |
random seed. The default value is 1. Note that |
To generate samples from the full conditional distribution of df, the slice sampling was used and the code was adapted from http://www.cs.toronto.edu/~radford/ftp/slice-R-prog.
Mu.save |
a matrix of locations of the distribution, one row per iteration. |
Sigma.save |
a three dimensional array of scale matrix of the distribution. Sigma.save[,,i] is the result from the ith iteration. |
v.save |
a vector of df of the distribution, one component per iteration. |
## Not run: mu1 <- mu2 <- sigma12 <- sigma22 <- 100 rho12 <- 0.9 Sigma <- matrix(c(sigma12, rho12*sqrt(sigma12*sigma22), rho12*sqrt(sigma12*sigma22), sigma22), nrow=2) k <- 8 N <- 100 X <- rmvt(N, sigma=Sigma, df=k, delta=c(mu1, mu2)) result <- mvt.mcmc(X, 4, 25) colMeans(result$Mu.save) apply(result$Sigma.save, c(1,2), mean) mean(result$v.save) ## End(Not run)
## Not run: mu1 <- mu2 <- sigma12 <- sigma22 <- 100 rho12 <- 0.9 Sigma <- matrix(c(sigma12, rho12*sqrt(sigma12*sigma22), rho12*sqrt(sigma12*sigma22), sigma22), nrow=2) k <- 8 N <- 100 X <- rmvt(N, sigma=Sigma, df=k, delta=c(mu1, mu2)) result <- mvt.mcmc(X, 4, 25) colMeans(result$Mu.save) apply(result$Sigma.save, c(1,2), mean) mean(result$v.save) ## End(Not run)
Generate random samples from multinomial distributions with the same number of classes but different event probabilities.
rMultinom(p)
rMultinom(p)
p |
matrix with each row specifying the probabilities for different classes of each sample. |
This function vectorizes the generation of random samples from different multinomial distributions by the inversion of CDF method.
Random samples from multinomial distributions.
#Example 1: Generate 100 random samples from multinomial distributions # with 3 classes and different event probabilities. p1 <- runif(100) p2 <- runif(100, 0, 1-p1) p3 <- 1-p1-p2 x <- rMultinom(p=cbind(p1, p2, p3))
#Example 1: Generate 100 random samples from multinomial distributions # with 3 classes and different event probabilities. p1 <- runif(100) p2 <- runif(100, 0, 1-p1) p3 <- 1-p1-p2 x <- rMultinom(p=cbind(p1, p2, p3))
Generate random samples from a multivariate skew normal distribution.
rmvsn(n, D, Mu, Sigma)
rmvsn(n, D, Mu, Sigma)
n |
number of samples. |
D |
parameter |
Mu |
parameter |
Sigma |
parameter |
This function generates random samples using the methods in Sahu et al. 2003.
Random samples from the multivariate skew normal distribution.
Sahu, Sujit K., Dipak K. Dey, and Marcia D. Branco. (2003) A new class of multivariate skew distributions with applications to Bayesian regression models. Canadian Journal of Statistics vol. 31, no. 2 129-150.
Mu <- rep(400, 2) Sigma <- diag(c(40, 40)) D <- diag(c(-30, -30)) Y <- rmvsn(n=1000, D, Mu, Sigma)
Mu <- rep(400, 2) Sigma <- diag(c(40, 40)) D <- diag(c(-30, -30)) Y <- rmvsn(n=1000, D, Mu, Sigma)
Generate random samples from a multivariate skew t distribution.
rmvst(n, D, Mu, Sigma, nu)
rmvst(n, D, Mu, Sigma, nu)
n |
number of samples. |
D |
parameter |
Mu |
parameter |
Sigma |
parameter |
nu |
parameter |
This function generates random samples using the methods in Sahu et al. 2003.
Random samples from the multivariate skew t distribution.
Sahu, Sujit K., Dipak K. Dey, and Marcia D. Branco. (2003) A new class of multivariate skew distributions with applications to Bayesian regression models. Canadian Journal of Statistics vol. 31, no. 2 129-150.
Mu <- rep(0, 2) Sigma <- diag(c(1,1)) D <- diag(c(1,1)) nu <- 5 Y <- rmvst(n=100, D, Mu, Sigma, nu)
Mu <- rep(0, 2) Sigma <- diag(c(1,1)) D <- diag(c(1,1)) nu <- 5 Y <- rmvst(n=100, D, Mu, Sigma, nu)
A linear mixed-effects model that combines unstructured variance/covariance matrix for inter-regional (long-range) correlations and an exchangeable correlation structure for intra-regional (short-range) correlations. Estimation is performed using the Gibbs sampling.
spatial.lme.mcmc(spatialMat, nlr, nsweep, verbose=TRUE)
spatial.lme.mcmc(spatialMat, nlr, nsweep, verbose=TRUE)
spatialMat |
a matrix of observations with one subject per column and one location per row. For each subject, the observations are arranged one location after another. |
nlr |
a vector of number of locations within each region. One component per region. |
nsweep |
the number of iterations. |
verbose |
logical. If |
The function was proposed to study the fMRI data. The original MATLAB code written by DuBois Bowman and Brian Caffo can be found at: http://www.biostat.jhsph.edu/~bcaffo/downloads/clusterBayes.m. Instead of stacking the data from two conditions, the R version fits the model for one condition and the user needs to use the function multiple times for separate conditions.
The initial values are obtained based on sample moments. The hyper-parameters for the prior distributions of the intra-regional variances and variances of locations' means are set up in the way that the mean is equal to the sample mean and the variance is large.
mu.save |
a matrix of means at every location. One column per iteration. |
sigma2.save |
a matrix of intra-regional variances. One column per iteration. |
lambda2.save |
a matrix of variances of locations' means within regions. One column per iteration. |
Gamma.save |
a matrix of inter-regional variance/covariance matrix. One column per iteration and within each column the elements of the variance/covariance matrix are arranged column-wise. |
There seemed to be no easy way to use lmer
or
lme
to fit
the variance/covariance structure in this model and SAS proc
mixed failed for certain cases.
Brian Caffo, DuBois Bowman, Lynn Eberly and Susan Spear Bassett (2009) A Markov Chain Monte Carlo Based Analysis of a Multilevel Model for Functional MRI Data Handbook of Markov Chain Monte Carlo
F. DuBois Bowman, Brian Caffo, Susan Spear Bassett, and Clinton Kilts (2008) A Bayesian Hierarchical Framework for Spatial Modeling of fMRI Data Neuroimage vol. 39, no. 1 146-156
## Not run: #simulate the data ns=100; nr=2; nlr <- c(20, 20) mu0 <- c(0, 0) sigma2 <- c(1., 1.) Gamma <- matrix(c(3, 0, 0, 3), nrow=2) sample <- matrix(0, nrow=sum(nlr), ncol=ns) for(i in 1:ns){ alpha <- mvrnorm(1, rep(0, nr), Gamma) sampleR <- NULL for(g in 1:nr){ beta <- rnorm(nlr[g], mean=alpha[g] + mu0[g], sd=sqrt(sigma2[g])) sampleR <- c(sampleR, beta) } sample[,i] <- sampleR } #run mcmc mcmc.result <- spatial.lme.mcmc(sample, nlr, 10000) #check the results Gamma <- mcmc.result$Gamma.save sigma2 <- mcmc.result$sigma2.save mu <- mcmc.result$mu.save matrix(rowMeans(Gamma), nr, nr) apply(sigma2, 1, function(x) quantile(x, prob=c(0.025, 0.5, 0.975))) summary(rowMeans(mu[1:nlr[1],])) summary(rowMeans(mu[(nlr[1]+1):sum(nlr),])) ## End(Not run)
## Not run: #simulate the data ns=100; nr=2; nlr <- c(20, 20) mu0 <- c(0, 0) sigma2 <- c(1., 1.) Gamma <- matrix(c(3, 0, 0, 3), nrow=2) sample <- matrix(0, nrow=sum(nlr), ncol=ns) for(i in 1:ns){ alpha <- mvrnorm(1, rep(0, nr), Gamma) sampleR <- NULL for(g in 1:nr){ beta <- rnorm(nlr[g], mean=alpha[g] + mu0[g], sd=sqrt(sigma2[g])) sampleR <- c(sampleR, beta) } sample[,i] <- sampleR } #run mcmc mcmc.result <- spatial.lme.mcmc(sample, nlr, 10000) #check the results Gamma <- mcmc.result$Gamma.save sigma2 <- mcmc.result$sigma2.save mu <- mcmc.result$mu.save matrix(rowMeans(Gamma), nr, nr) apply(sigma2, 1, function(x) quantile(x, prob=c(0.025, 0.5, 0.975))) summary(rowMeans(mu[1:nlr[1],])) summary(rowMeans(mu[(nlr[1]+1):sum(nlr),])) ## End(Not run)
Estimate the parameters of an univariate normal mixture model including the number of components using the Reversible Jump MCMC method. It can be used for density estimation and/or classification.
uvnm.rjmcmc(y, nsweep, kmax, k, w, mu, sigma2, Z, delta=1, xi=NULL, kappa=NULL, alpha=2, beta=NULL, g=0.2, h=NULL, verbose=TRUE)
uvnm.rjmcmc(y, nsweep, kmax, k, w, mu, sigma2, Z, delta=1, xi=NULL, kappa=NULL, alpha=2, beta=NULL, g=0.2, h=NULL, verbose=TRUE)
y |
a vector of observations. |
nsweep |
number of sweeps. One sweep has six moves to update parameters including the number of components. |
kmax |
the maximum number of components. |
k |
initial value of number of components. |
w |
initial values of weights of different components. |
mu |
initial values of means of different components. |
sigma2 |
initial values of variances of different components. |
Z |
initial values of allocations of all observations. |
delta |
the parameter of the prior distribution of |
xi |
the mean of the prior distribution of means of
components. By taking the default value |
kappa |
the precision of the prior distribution of means of
components. By taking the default value |
alpha |
the parameter shape of the prior distribution of precision of components. The default values is 2. |
beta |
the parameter rate of the prior distribution of
precision of components. By taking the default value
|
g |
the parameter shape of the gamma distribution for
|
h |
the parameter rate of the gamma distribution for
|
verbose |
logical. If |
Estimate the parameters of a univariate normal mixture model with flexible number of components using the Reversible Jump MCMC method in Richardson and Green (1997).
k.save |
a vector of number of components. |
w.save |
weights of the UVNM, one component of the list per sweep. |
mu.save |
means of the UVNM, one component of the list per sweep. |
sigma2.save |
variances of the UVNM, one component of the list per sweep. |
Z.save |
a matrix of allocation, one column per sweep. |
The error in equation (12) of Richardson and Green (1997) was corrected based on Richardson and Green (1998).
Sylvia Richardson and Peter J. Green (1997) On Bayesian Analysis of Mixtures with an Unknown Number of Components JRSSB vol. 59, no. 4 731-792
Sylvia Richardson and Peter J. Green (1998) Corrigendum: On Bayesian Analysis of Mixtures with an Unknown Number of Components JRSSB vol. 60, no. 3 661
## Not run: require(mixAK) data(Acidity) y <- Acidity w <- c(0.50, 0.17, 0.33) mu <- c(4, 5, 6) sigma2 <- c(0.08, 0.10, 0.14) Z <- do.call(cbind, lapply(1:3, function(i) w[i]*dnorm(y, mu[i], sqrt(sigma2[i])))) Z <- apply(Z, 1, function(x) which(x==max(x))[1]) result <- uvnm.rjmcmc(y, nsweep=200000, kmax=30, k=3, w, mu, sigma2, Z) ksave <- result$k.save round(table(ksave[-(1:100000)])/100000,4) #conditional density estimation focus.k <- 3 pick.k <- which(ksave==focus.k) w <- unlist(result$w.save[pick.k]) mu <- unlist(result$mu.save[pick.k]) sigma2 <- unlist(result$sigma2.save[pick.k]) den.estimate <- rep(w, each=length(y)) * dnorm(rep(y, length(w)), mean=rep(mu, each=length(y)), sd=rep(sqrt(sigma2), each=length(y))) den.estimate <- rowMeans(matrix(den.estimate, nrow=length(y)))*focus.k #within-sample classification class <- apply(result$Z.save[,pick.k], 1, function(x) c(sum(x==1), sum(x==2), sum(x==3))) class <- max.col(t(class)) #visualize the results hist(y, freq=FALSE, breaks=20, axes=FALSE, ylim=c(-0.3, 1), main="Density Estimation and Classification", ylab="") axis(2, at=c(-(3:1)/10, seq(0,10,2)/10), labels=c(3:1, seq(0,10,2)/10), font=2) lines(sort(y), den.estimate[order(y)], col="red") for(i in 1:3){ points(y[class==i], rep(-i/10, length(y[class==i])), col=i, pch=i) } mtext("Density", 2, at=0.5, line=2) mtext("Classification", 2, at=-0.15, line=2) ## End(Not run)
## Not run: require(mixAK) data(Acidity) y <- Acidity w <- c(0.50, 0.17, 0.33) mu <- c(4, 5, 6) sigma2 <- c(0.08, 0.10, 0.14) Z <- do.call(cbind, lapply(1:3, function(i) w[i]*dnorm(y, mu[i], sqrt(sigma2[i])))) Z <- apply(Z, 1, function(x) which(x==max(x))[1]) result <- uvnm.rjmcmc(y, nsweep=200000, kmax=30, k=3, w, mu, sigma2, Z) ksave <- result$k.save round(table(ksave[-(1:100000)])/100000,4) #conditional density estimation focus.k <- 3 pick.k <- which(ksave==focus.k) w <- unlist(result$w.save[pick.k]) mu <- unlist(result$mu.save[pick.k]) sigma2 <- unlist(result$sigma2.save[pick.k]) den.estimate <- rep(w, each=length(y)) * dnorm(rep(y, length(w)), mean=rep(mu, each=length(y)), sd=rep(sqrt(sigma2), each=length(y))) den.estimate <- rowMeans(matrix(den.estimate, nrow=length(y)))*focus.k #within-sample classification class <- apply(result$Z.save[,pick.k], 1, function(x) c(sum(x==1), sum(x==2), sum(x==3))) class <- max.col(t(class)) #visualize the results hist(y, freq=FALSE, breaks=20, axes=FALSE, ylim=c(-0.3, 1), main="Density Estimation and Classification", ylab="") axis(2, at=c(-(3:1)/10, seq(0,10,2)/10), labels=c(3:1, seq(0,10,2)/10), font=2) lines(sort(y), den.estimate[order(y)], col="red") for(i in 1:3){ points(y[class==i], rep(-i/10, length(y[class==i])), col=i, pch=i) } mtext("Density", 2, at=0.5, line=2) mtext("Classification", 2, at=-0.15, line=2) ## End(Not run)