Title: | Partial Replacement Imputation Estimation for Missing Covariates |
---|---|
Description: | Partial Replacement Imputation Estimation (PRIME) can overcome problems caused by missing covariates in additive partially linear model. PRIME conducts imputation and regression simultaneously with known and unknown model structure. More details can be referred to Zishu Zhan, Xiangjie Li and Jingxiao Zhang. (2022) <arXiv:2205.14994>. |
Authors: | Zishu Zhan [aut, cre], Xiangjie Li [aut], Jingxiao Zhang [aut] |
Maintainer: | Zishu Zhan <[email protected]> |
License: | GPL-3 |
Version: | 0.1.0 |
Built: | 2024-10-26 06:25:46 UTC |
Source: | CRAN |
partial replacement imputation estimation conducts imputation and regression simultaneously for missing covariates in additive partially linear model.
PRIME( Y, X, method = c("PRIME", "PRIME-MA"), model_structure = NULL, intercept = FALSE, bw = NULL, k_type = NULL, weight_type = c("CP", "CV"), L = NULL )
PRIME( Y, X, method = c("PRIME", "PRIME-MA"), model_structure = NULL, intercept = FALSE, bw = NULL, k_type = NULL, weight_type = c("CP", "CV"), L = NULL )
Y |
a numeric vector, the response variable. |
X |
a numeric matrix that may include NAs (missing), the covariate matrix. |
method |
Users can choose |
model_structure |
only available when |
intercept |
logical. if |
bw |
a positive value, specify the bandwidth in estimating missing values, default as |
k_type |
an optional character string, specify the type of kernel used in iterative estimating algorithm and support 'epk', 'biweight', 'triangle', 'gaussian', 'triweight', 'tricube', 'cosine', 'uniform' in current version, default as 'gaussian'. |
weight_type |
Options for computing weights for |
L |
an optional positive integer, degree of the piecewise polynomial, default as '3' for cubic splines. |
an object of class "prime" is a list containing at least the following components:
coef |
only available when |
beta |
only available when |
Cmat |
only available when |
weight |
only available when |
data(PRIME_SimuData) X = PRIME_SimuData[,-1] Y = PRIME_SimuData[,1] model_structure <- c(rep(0,5),1,1,1) # estimation result <- PRIME(Y, X, method = 'PRIME', model_structure, intercept = FALSE, weight_type = 'CV') result$coef result$beta
data(PRIME_SimuData) X = PRIME_SimuData[,-1] Y = PRIME_SimuData[,1] model_structure <- c(rep(0,5),1,1,1) # estimation result <- PRIME(Y, X, method = 'PRIME', model_structure, intercept = FALSE, weight_type = 'CV') result$coef result$beta
prime_SimuData An Example of Simulated Data for PRIME
PRIME_SimuData
PRIME_SimuData
The dataset prime_SimuData contains n = 200 samples with p = 8 covariates with missing
the response
the covariates with missing data