Title: | Multidimensional Item Response Theory |
---|---|
Description: | Analysis of discrete response data using unidimensional and multidimensional item analysis models under the Item Response Theory paradigm (Chalmers (2012) <doi:10.18637/jss.v048.i06>). Exploratory and confirmatory item factor analysis models are estimated with quadrature (EM) or stochastic (MHRM) methods. Confirmatory bi-factor and two-tier models are available for modeling item testlets using dimension reduction EM algorithms, while multiple group analyses and mixed effects designs are included for detecting differential item, bundle, and test functioning, and for modeling item and person covariates. Finally, latent class models such as the DINA, DINO, multidimensional latent class, mixture IRT models, and zero-inflated response models are supported. |
Authors: | Phil Chalmers [aut, cre] , Joshua Pritikin [ctb], Alexander Robitzsch [ctb], Mateusz Zoltak [ctb], KwonHyun Kim [ctb], Carl F. Falk [ctb], Adam Meade [ctb], Lennart Schneider [ctb], David King [ctb], Chen-Wei Liu [ctb], Ogreden Oguzhan [ctb] |
Maintainer: | Phil Chalmers <[email protected]> |
License: | GPL (>= 3) |
Version: | 1.43 |
Built: | 2024-12-25 07:12:03 UTC |
Source: | CRAN |
Full information maximum likelihood estimation of multidimensional IRT models
Analysis of dichotomous and polytomous response data using unidimensional and multidimensional latent trait models under the Item Response Theory (IRT) paradigm. Exploratory and confirmatory models can be estimated with quadrature (EM) or stochastic (MHRM) methods. Confirmatory bi-factor and two-tier analyses are available for modeling item testlets. Multiple group analysis and mixed effects designs also are available for detecting differential item and test functioning as well as modeling item and person covariates. Finally, latent class models such as the DINA, DINO, multidimensional latent class, mixture and zero-inflated IRT models, and several other discrete variable models are supported.
Users interested in the most recent version of this package can visit https://github.com/philchalmers/mirt and follow the instructions for installing the package from source. Questions regarding the package can be sent to the mirt-package Google Group, located at https://groups.google.com/forum/#!forum/mirt-package. User contributed files, workshop files, and evaluated help files are also available on the package wiki (https://github.com/philchalmers/mirt/wiki).
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Compare nested models using likelihood ratio test (X2), Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC),
Sample-Size Adjusted BIC (SABIC), and Hannan-Quinn (HQ) Criterion.
When given a sequence of objects, anova
tests the models against one another
in the order specified. Note that the object
inputs should be ordered in terms
of most constrained model to least constrained.
## S4 method for signature 'SingleGroupClass' anova( object, object2, ..., bounded = FALSE, mix = 0.5, frame = 1, verbose = FALSE )
## S4 method for signature 'SingleGroupClass' anova( object, object2, ..., bounded = FALSE, mix = 0.5, frame = 1, verbose = FALSE )
object |
an object of class |
object2 |
a second model estimated from any of the mirt package estimation methods |
... |
additional less constrained model objects to be compared sequentially to the previous model |
bounded |
logical; are the two models comparing a bounded parameter (e.g., comparing a single
2PL and 3PL model with 1 df)? If |
mix |
proportion of chi-squared mixtures. Default is 0.5 |
frame |
(internal parameter not for standard use) |
verbose |
(deprecated argument) |
a data.frame
/mirt_df
object
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: x <- mirt(Science, 1) x2 <- mirt(Science, 2) anova(x, x2) # compare three models sequentially (X2 not always meaningful) x3 <- mirt(Science, 1, 'gpcm') x4 <- mirt(Science, 1, 'nominal') anova(x, x2, x3, x4) # in isolation anova(x) # with priors on first model model <- "Theta = 1-4 PRIOR = (1-4, a1, lnorm, 0, 10)" xp <- mirt(Science, model) anova(xp, x2) anova(xp) # bounded parameter dat <- expand.table(LSAT7) mod <- mirt(dat, 1) mod2 <- mirt(dat, 1, itemtype = c(rep('2PL', 4), '3PL')) anova(mod, mod2) #unbounded test anova(mod, mod2, bounded = TRUE) #bounded # priors model <- 'F = 1-5 PRIOR = (5, g, norm, -1, 1)' mod1b <- mirt(dat, model, itemtype = c(rep('2PL', 4), '3PL')) anova(mod1b) model2 <- 'F = 1-5 PRIOR = (1-5, g, norm, -1, 1)' mod2b <- mirt(dat, model2, itemtype = '3PL') anova(mod1b, mod2b) ## End(Not run)
## Not run: x <- mirt(Science, 1) x2 <- mirt(Science, 2) anova(x, x2) # compare three models sequentially (X2 not always meaningful) x3 <- mirt(Science, 1, 'gpcm') x4 <- mirt(Science, 1, 'nominal') anova(x, x2, x3, x4) # in isolation anova(x) # with priors on first model model <- "Theta = 1-4 PRIOR = (1-4, a1, lnorm, 0, 10)" xp <- mirt(Science, model) anova(xp, x2) anova(xp) # bounded parameter dat <- expand.table(LSAT7) mod <- mirt(dat, 1) mod2 <- mirt(dat, 1, itemtype = c(rep('2PL', 4), '3PL')) anova(mod, mod2) #unbounded test anova(mod, mod2, bounded = TRUE) #bounded # priors model <- 'F = 1-5 PRIOR = (5, g, norm, -1, 1)' mod1b <- mirt(dat, model, itemtype = c(rep('2PL', 4), '3PL')) anova(mod1b) model2 <- 'F = 1-5 PRIOR = (1-5, g, norm, -1, 1)' mod2b <- mirt(dat, model2, itemtype = '3PL') anova(mod1b, mod2b) ## End(Not run)
Compute the area of a test or item information function over a definite integral range.
areainfo( x, theta_lim, which.items = 1:extract.mirt(x, "nitems"), group = NULL, ... )
areainfo( x, theta_lim, which.items = 1:extract.mirt(x, "nitems"), group = NULL, ... )
x |
an object of class 'SingleGroupClass', or an object of class 'MultipleGroupClass' if a suitable
|
theta_lim |
range of integration to be computed |
which.items |
an integer vector indicating which items to include in the expected information function. Default uses all possible items |
group |
group argument to pass to |
... |
additional arguments passed to |
a data.frame
with the lower and upper integration range, the information area
within the range (Info), the information area over the range -10 to 10 (Total.Info), proportion
of total information given the integration range (Info.Proportion), and the number of items included (nitems)
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
dat <- expand.table(LSAT7) mod <- mirt(dat, 1) areainfo(mod, c(-2,0), which.items = 1) #item 1 ## Not run: areainfo(mod, c(-2,0), which.items = 1:3) #items 1 to 3 areainfo(mod, c(-2,0)) # all items (total test information) # plot the area area <- areainfo(mod, c(-2,0)) Theta <- matrix(seq(-3,3, length.out=1000)) info <- testinfo(mod, Theta) plot(info ~ Theta, type = 'l') pick <- Theta >= -2 & Theta <=0 polygon(c(-2, Theta[pick], 0), c(0, info[pick], 0), col='lightblue') text(x = 2, y = 0.5, labels = paste("Total Information:", round(area$TotalInfo, 3), "\n\nInformation in (-2, 0):", round(area$Info, 3), paste("(", round(100 * area$Proportion, 2), "%)", sep = "")), cex = 1.2) ## End(Not run)
dat <- expand.table(LSAT7) mod <- mirt(dat, 1) areainfo(mod, c(-2,0), which.items = 1) #item 1 ## Not run: areainfo(mod, c(-2,0), which.items = 1:3) #items 1 to 3 areainfo(mod, c(-2,0)) # all items (total test information) # plot the area area <- areainfo(mod, c(-2,0)) Theta <- matrix(seq(-3,3, length.out=1000)) info <- testinfo(mod, Theta) plot(info ~ Theta, type = 'l') pick <- Theta >= -2 & Theta <=0 polygon(c(-2, Theta[pick], 0), c(0, info[pick], 0), col='lightblue') text(x = 2, y = 0.5, labels = paste("Total Information:", round(area$TotalInfo, 3), "\n\nInformation in (-2, 0):", round(area$Info, 3), paste("(", round(100 * area$Proportion, 2), "%)", sep = "")), cex = 1.2) ## End(Not run)
Table of counts extracted from Mislvey (1985). Data the 16 possible response patterns observed for four items from the arithmetic reasoning test of the Armed Services Vocational Aptitude Battery (ASVAB), Form 8A, from samples of white males and females and black males and females.
Phil Chalmers [email protected]
Mislevy, R. J. (1985). Estimation of latent group effects. Journal of the American Statistical Association, 80, 993-997.
data(ASVAB) datWM <- expand.table(subset(ASVAB, select=c(Item.1:Item.4, White_Male))) datWF <- expand.table(subset(ASVAB, select=c(Item.1:Item.4, White_Female))) datBM <- expand.table(subset(ASVAB, select=c(Item.1:Item.4, Black_Male))) datBF <- expand.table(subset(ASVAB, select=c(Item.1:Item.4, Black_Female))) dat <- rbind(datWM, datWF, datBM, datBF) sex <- rep(c("Male", "Female", "Male", "Female"), times=c(nrow(datWM), nrow(datWF), nrow(datBM), nrow(datBF))) |> factor() color <- rep(c("White", "Black"), times=c(nrow(datWM) + nrow(datWF), nrow(datBM) + nrow(datBF))) |> factor() group <- sex:color itemstats(dat, group=group)
data(ASVAB) datWM <- expand.table(subset(ASVAB, select=c(Item.1:Item.4, White_Male))) datWF <- expand.table(subset(ASVAB, select=c(Item.1:Item.4, White_Female))) datBM <- expand.table(subset(ASVAB, select=c(Item.1:Item.4, Black_Male))) datBF <- expand.table(subset(ASVAB, select=c(Item.1:Item.4, Black_Female))) dat <- rbind(datWM, datWF, datBM, datBF) sex <- rep(c("Male", "Female", "Male", "Female"), times=c(nrow(datWM), nrow(datWF), nrow(datBM), nrow(datBF))) |> factor() color <- rep(c("White", "Black"), times=c(nrow(datWM) + nrow(datWF), nrow(datBM) + nrow(datBF))) |> factor() group <- sex:color itemstats(dat, group=group)
This function computes updated parameter and standard error estimates using multiple imputation methodology. Given a set of parameter estimates and their associated standard errors the function returns the weighted average of the overall between and within variability due to the multiple imputations according to Rubin's (1987) methodology.
averageMI(par, SEpar, as.data.frame = TRUE)
averageMI(par, SEpar, as.data.frame = TRUE)
par |
a list containing parameter estimates which were computed the imputed datasets |
SEpar |
a list containing standard errors associated with |
as.data.frame |
logical; return a data.frame instead of a list? Default is TRUE |
returns a list or data.frame containing the updated averaged parameter estimates, standard errors, and t-values with the associated degrees of freedom and two tailed p-values
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Rubin, D.B. (1987) Multiple Imputation for Nonresponse in Surveys. Wiley & Sons, New York.
## Not run: # simulate data set.seed(1234) N <- 1000 # covariates X1 <- rnorm(N); X2 <- rnorm(N) covdata <- data.frame(X1, X2) Theta <- matrix(0.5 * X1 + -1 * X2 + rnorm(N, sd = 0.5)) # items and response data a <- matrix(1, 20); d <- matrix(rnorm(20)) dat <- simdata(a, d, 1000, itemtype = '2PL', Theta=Theta) mod1 <- mirt(dat, 1, 'Rasch', covdata=covdata, formula = ~ X1 + X2) coef(mod1, simplify=TRUE) # draw plausible values for secondary analyses pv <- fscores(mod1, plausible.draws = 10) pvmods <- lapply(pv, function(x, covdata) lm(x ~ covdata$X1 + covdata$X2), covdata=covdata) # compute Rubin's multiple imputation average so <- lapply(pvmods, summary) par <- lapply(so, function(x) x$coefficients[, 'Estimate']) SEpar <- lapply(so, function(x) x$coefficients[, 'Std. Error']) averageMI(par, SEpar) ## End(Not run)
## Not run: # simulate data set.seed(1234) N <- 1000 # covariates X1 <- rnorm(N); X2 <- rnorm(N) covdata <- data.frame(X1, X2) Theta <- matrix(0.5 * X1 + -1 * X2 + rnorm(N, sd = 0.5)) # items and response data a <- matrix(1, 20); d <- matrix(rnorm(20)) dat <- simdata(a, d, 1000, itemtype = '2PL', Theta=Theta) mod1 <- mirt(dat, 1, 'Rasch', covdata=covdata, formula = ~ X1 + X2) coef(mod1, simplify=TRUE) # draw plausible values for secondary analyses pv <- fscores(mod1, plausible.draws = 10) pvmods <- lapply(pv, function(x, covdata) lm(x ~ covdata$X1 + covdata$X2), covdata=covdata) # compute Rubin's multiple imputation average so <- lapply(pvmods, summary) par <- lapply(so, function(x) x$coefficients[, 'Estimate']) SEpar <- lapply(so, function(x) x$coefficients[, 'Std. Error']) averageMI(par, SEpar) ## End(Not run)
bfactor
fits a confirmatory maximum likelihood two-tier/bifactor/testlet model to
dichotomous and polytomous data under the item response theory paradigm.
The IRT models are fit using a dimensional reduction EM algorithm so that regardless
of the number of specific factors estimated the model only uses the number of
factors in the second-tier structure plus 1. For the bifactor model the maximum
number of dimensions is only 2 since the second-tier only consists of a
ubiquitous unidimensional factor. See mirt
for appropriate methods to be used
on the objects returned from the estimation.
bfactor( data, model, model2 = paste0("G = 1-", ncol(data)), group = NULL, quadpts = NULL, invariance = "", ... )
bfactor( data, model, model2 = paste0("G = 1-", ncol(data)), group = NULL, quadpts = NULL, invariance = "", ... )
data |
a |
model |
a numeric vector specifying which factor loads on which
item. For example, if for a 4 item test with two specific factors, the first
specific factor loads on the first two items and the second specific factor
on the last two, then the vector is Alternatively, input can be specified using the |
model2 |
a two-tier model specification object defined by |
group |
a factor variable indicating group membership used for multiple group analyses |
quadpts |
number of quadrature nodes to use after accounting for the reduced number of dimensions.
Scheme is the same as the one used in |
invariance |
see |
... |
additional arguments to be passed to the estimation engine. See |
bfactor
follows the item factor analysis strategy explicated by
Gibbons and Hedeker (1992), Gibbons et al. (2007), and Cai (2010).
Nested models may be compared via an approximate
chi-squared difference test or by a reduction in AIC or BIC (accessible via
anova
). See mirt
for more details regarding the
IRT estimation approach used in this package.
The two-tier model has a specific block diagonal covariance structure between the primary and secondary latent traits. Namely, the secondary latent traits are assumed to be orthogonal to all traits and have a fixed variance of 1, while the primary traits can be organized to vary and covary with other primary traits in the model.
The bifactor model is a special case of the two-tier model when above is a 1x1 matrix,
and therefore only 1 primary factor is being modeled. Evaluation of the numerical integrals
for the two-tier model requires only
dimensions for integration since the
second order (or 'specific') factors require only 1 integration grid due to the
dimension reduction technique.
Note: for multiple group two-tier analyses only the second-tier means and variances should be freed since the specific factors are not treated independently due to the dimension reduction technique.
function returns an object of class SingleGroupClass
(SingleGroupClass-class) or MultipleGroupClass
(MultipleGroupClass-class).
Phil Chalmers [email protected]
Cai, L. (2010). A two-tier full-information item factor analysis model with applications. Psychometrika, 75, 581-612.
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Bradlow, E.T., Wainer, H., & Wang, X. (1999). A Bayesian random effects model for testlets. Psychometrika, 64, 153-168.
Gibbons, R. D., & Hedeker, D. R. (1992). Full-information Item Bi-Factor Analysis. Psychometrika, 57, 423-436.
Gibbons, R. D., Darrell, R. B., Hedeker, D., Weiss, D. J., Segawa, E., Bhaumik, D. K., Kupfer, D. J., Frank, E., Grochocinski, V. J., & Stover, A. (2007). Full-Information item bifactor analysis of graded response data. Applied Psychological Measurement, 31, 4-19.
Wainer, H., Bradlow, E.T., & Wang, X. (2007). Testlet response theory and its applications. New York, NY: Cambridge University Press.
## Not run: ### load SAT12 and compute bifactor model with 3 specific factors data(SAT12) data <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) specific <- c(2,3,2,3,3,2,1,2,1,1,1,3,1,3,1,2,1,1,3,3,1,1,3,1,3,3,1,3,2,3,1,2) mod1 <- bfactor(data, specific) summary(mod1) itemplot(mod1, 18, drop.zeros = TRUE) #drop the zero slopes to allow plotting # alternative model definition via ?mirt.model syntax specific2 <- "S1 = 7,9,10,11,13,15,17,18,21,22,24,27,31 S2 = 1,3,6,8,16,29,32 S3 = 2,4,5,12,14,19,20,23,25,26,28,30" mod2 <- bfactor(data, specific2) anova(mod1, mod2) # same # also equivalent using item names instead (not run) specific3 <- "S1 = Item.7, Item.9, Item.10, Item.11, Item.13, Item.15, Item.17, Item.18, Item.21, Item.22, Item.24, Item.27, Item.31 S2 = Item.1, Item.3, Item.6, Item.8, Item.16, Item.29, Item.32 S3 = Item.2, Item.4, Item.5, Item.12, Item.14, Item.19, Item.20, Item.23, Item.25, Item.26, Item.28, Item.30" # mod3 <- bfactor(data, specific3) # anova(mod1, mod2, mod3) # all same ### Try with fixed guessing parameters added guess <- rep(.1,32) mod2 <- bfactor(data, specific, guess = guess) coef(mod2) anova(mod1, mod2) ## don't estimate specific factor for item 32 specific[32] <- NA mod3 <- bfactor(data, specific) anova(mod3, mod1) # same, but with syntax (not run) specific3 <- "S1 = 7,9,10,11,13,15,17,18,21,22,24,27,31 S2 = 1,3,6,8,16,29 S3 = 2,4,5,12,14,19,20,23,25,26,28,30" # mod3b <- bfactor(data, specific3) # anova(mod3b) ######### # mixed itemtype example # simulate data a <- matrix(c( 1,0.5,NA, 1,0.5,NA, 1,0.5,NA, 1,0.5,NA, 1,0.5,NA, 1,0.5,NA, 1,0.5,NA, 1,NA,0.5, 1,NA,0.5, 1,NA,0.5, 1,NA,0.5, 1,NA,0.5, 1,NA,0.5, 1,NA,0.5),ncol=3,byrow=TRUE) d <- matrix(c( -1.0,NA,NA, -1.5,NA,NA, 1.5,NA,NA, 0.0,NA,NA, 2.5,1.0,-1, 3.0,2.0,-0.5, 3.0,2.0,-0.5, 3.0,2.0,-0.5, 2.5,1.0,-1, 2.0,0.0,NA, -1.0,NA,NA, -1.5,NA,NA, 1.5,NA,NA, 0.0,NA,NA),ncol=3,byrow=TRUE) items <- rep('2PL', 14) items[5:10] <- 'graded' sigma <- diag(3) dataset <- simdata(a,d,5000,itemtype=items,sigma=sigma) itemstats(dataset) specific <- "S1 = 1-7 S2 = 8-14" simmod <- bfactor(dataset, specific) coef(simmod, simplify=TRUE) ######### # General testlet response model (Wainer, 2007) # simulate data set.seed(1234) a <- matrix(0, 12, 4) a[,1] <- rlnorm(12, .2, .3) ind <- 1 for(i in 1:3){ a[ind:(ind+3),i+1] <- a[ind:(ind+3),1] ind <- ind+4 } print(a) d <- rnorm(12, 0, .5) sigma <- diag(c(1, .5, 1, .5)) dataset <- simdata(a,d,2000,itemtype=rep('2PL', 12),sigma=sigma) itemstats(dataset) # estimate by applying constraints and freeing the latent variances specific <- "S1 = 1-4 S2 = 5-8 S3 = 9-12" model <- "G = 1-12 CONSTRAIN = (1, a1, a2), (2, a1, a2), (3, a1, a2), (4, a1, a2), (5, a1, a3), (6, a1, a3), (7, a1, a3), (8, a1, a3), (9, a1, a4), (10, a1, a4), (11, a1, a4), (12, a1, a4) COV = S1*S1, S2*S2, S3*S3" simmod <- bfactor(dataset, specific, model) coef(simmod, simplify=TRUE) # Constrained testlet model (Bradlow, 1999) model2 <- "G = 1-12 CONSTRAIN = (1, a1, a2), (2, a1, a2), (3, a1, a2), (4, a1, a2), (5, a1, a3), (6, a1, a3), (7, a1, a3), (8, a1, a3), (9, a1, a4), (10, a1, a4), (11, a1, a4), (12, a1, a4), (GROUP, COV_22, COV_33, COV_44) COV = S1*S1, S2*S2, S3*S3" simmod2 <- bfactor(dataset, specific, model2) coef(simmod2, simplify=TRUE) anova(simmod2, simmod) ######### # Two-tier model # simulate data set.seed(1234) a <- matrix(c( 0,1,0.5,NA,NA, 0,1,0.5,NA,NA, 0,1,0.5,NA,NA, 0,1,0.5,NA,NA, 0,1,0.5,NA,NA, 0,1,NA,0.5,NA, 0,1,NA,0.5,NA, 0,1,NA,0.5,NA, 1,0,NA,0.5,NA, 1,0,NA,0.5,NA, 1,0,NA,0.5,NA, 1,0,NA,NA,0.5, 1,0,NA,NA,0.5, 1,0,NA,NA,0.5, 1,0,NA,NA,0.5, 1,0,NA,NA,0.5),ncol=5,byrow=TRUE) d <- matrix(rnorm(16)) items <- rep('2PL', 16) sigma <- diag(5) sigma[1,2] <- sigma[2,1] <- .4 dataset <- simdata(a,d,2000,itemtype=items,sigma=sigma) itemstats(dataset) specific <- "S1 = 1-5 S2 = 6-11 S3 = 12-16" model <- ' G1 = 1-8 G2 = 9-16 COV = G1*G2' # quadpts dropped for faster estimation, but not as precise simmod <- bfactor(dataset, specific, model, quadpts = 9, TOL = 1e-3) coef(simmod, simplify=TRUE) summary(simmod) itemfit(simmod, QMC=TRUE) M2(simmod, QMC=TRUE) residuals(simmod, QMC=TRUE) ## End(Not run)
## Not run: ### load SAT12 and compute bifactor model with 3 specific factors data(SAT12) data <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) specific <- c(2,3,2,3,3,2,1,2,1,1,1,3,1,3,1,2,1,1,3,3,1,1,3,1,3,3,1,3,2,3,1,2) mod1 <- bfactor(data, specific) summary(mod1) itemplot(mod1, 18, drop.zeros = TRUE) #drop the zero slopes to allow plotting # alternative model definition via ?mirt.model syntax specific2 <- "S1 = 7,9,10,11,13,15,17,18,21,22,24,27,31 S2 = 1,3,6,8,16,29,32 S3 = 2,4,5,12,14,19,20,23,25,26,28,30" mod2 <- bfactor(data, specific2) anova(mod1, mod2) # same # also equivalent using item names instead (not run) specific3 <- "S1 = Item.7, Item.9, Item.10, Item.11, Item.13, Item.15, Item.17, Item.18, Item.21, Item.22, Item.24, Item.27, Item.31 S2 = Item.1, Item.3, Item.6, Item.8, Item.16, Item.29, Item.32 S3 = Item.2, Item.4, Item.5, Item.12, Item.14, Item.19, Item.20, Item.23, Item.25, Item.26, Item.28, Item.30" # mod3 <- bfactor(data, specific3) # anova(mod1, mod2, mod3) # all same ### Try with fixed guessing parameters added guess <- rep(.1,32) mod2 <- bfactor(data, specific, guess = guess) coef(mod2) anova(mod1, mod2) ## don't estimate specific factor for item 32 specific[32] <- NA mod3 <- bfactor(data, specific) anova(mod3, mod1) # same, but with syntax (not run) specific3 <- "S1 = 7,9,10,11,13,15,17,18,21,22,24,27,31 S2 = 1,3,6,8,16,29 S3 = 2,4,5,12,14,19,20,23,25,26,28,30" # mod3b <- bfactor(data, specific3) # anova(mod3b) ######### # mixed itemtype example # simulate data a <- matrix(c( 1,0.5,NA, 1,0.5,NA, 1,0.5,NA, 1,0.5,NA, 1,0.5,NA, 1,0.5,NA, 1,0.5,NA, 1,NA,0.5, 1,NA,0.5, 1,NA,0.5, 1,NA,0.5, 1,NA,0.5, 1,NA,0.5, 1,NA,0.5),ncol=3,byrow=TRUE) d <- matrix(c( -1.0,NA,NA, -1.5,NA,NA, 1.5,NA,NA, 0.0,NA,NA, 2.5,1.0,-1, 3.0,2.0,-0.5, 3.0,2.0,-0.5, 3.0,2.0,-0.5, 2.5,1.0,-1, 2.0,0.0,NA, -1.0,NA,NA, -1.5,NA,NA, 1.5,NA,NA, 0.0,NA,NA),ncol=3,byrow=TRUE) items <- rep('2PL', 14) items[5:10] <- 'graded' sigma <- diag(3) dataset <- simdata(a,d,5000,itemtype=items,sigma=sigma) itemstats(dataset) specific <- "S1 = 1-7 S2 = 8-14" simmod <- bfactor(dataset, specific) coef(simmod, simplify=TRUE) ######### # General testlet response model (Wainer, 2007) # simulate data set.seed(1234) a <- matrix(0, 12, 4) a[,1] <- rlnorm(12, .2, .3) ind <- 1 for(i in 1:3){ a[ind:(ind+3),i+1] <- a[ind:(ind+3),1] ind <- ind+4 } print(a) d <- rnorm(12, 0, .5) sigma <- diag(c(1, .5, 1, .5)) dataset <- simdata(a,d,2000,itemtype=rep('2PL', 12),sigma=sigma) itemstats(dataset) # estimate by applying constraints and freeing the latent variances specific <- "S1 = 1-4 S2 = 5-8 S3 = 9-12" model <- "G = 1-12 CONSTRAIN = (1, a1, a2), (2, a1, a2), (3, a1, a2), (4, a1, a2), (5, a1, a3), (6, a1, a3), (7, a1, a3), (8, a1, a3), (9, a1, a4), (10, a1, a4), (11, a1, a4), (12, a1, a4) COV = S1*S1, S2*S2, S3*S3" simmod <- bfactor(dataset, specific, model) coef(simmod, simplify=TRUE) # Constrained testlet model (Bradlow, 1999) model2 <- "G = 1-12 CONSTRAIN = (1, a1, a2), (2, a1, a2), (3, a1, a2), (4, a1, a2), (5, a1, a3), (6, a1, a3), (7, a1, a3), (8, a1, a3), (9, a1, a4), (10, a1, a4), (11, a1, a4), (12, a1, a4), (GROUP, COV_22, COV_33, COV_44) COV = S1*S1, S2*S2, S3*S3" simmod2 <- bfactor(dataset, specific, model2) coef(simmod2, simplify=TRUE) anova(simmod2, simmod) ######### # Two-tier model # simulate data set.seed(1234) a <- matrix(c( 0,1,0.5,NA,NA, 0,1,0.5,NA,NA, 0,1,0.5,NA,NA, 0,1,0.5,NA,NA, 0,1,0.5,NA,NA, 0,1,NA,0.5,NA, 0,1,NA,0.5,NA, 0,1,NA,0.5,NA, 1,0,NA,0.5,NA, 1,0,NA,0.5,NA, 1,0,NA,0.5,NA, 1,0,NA,NA,0.5, 1,0,NA,NA,0.5, 1,0,NA,NA,0.5, 1,0,NA,NA,0.5, 1,0,NA,NA,0.5),ncol=5,byrow=TRUE) d <- matrix(rnorm(16)) items <- rep('2PL', 16) sigma <- diag(5) sigma[1,2] <- sigma[2,1] <- .4 dataset <- simdata(a,d,2000,itemtype=items,sigma=sigma) itemstats(dataset) specific <- "S1 = 1-5 S2 = 6-11 S3 = 12-16" model <- ' G1 = 1-8 G2 = 9-16 COV = G1*G2' # quadpts dropped for faster estimation, but not as precise simmod <- bfactor(dataset, specific, model, quadpts = 9, TOL = 1e-3) coef(simmod, simplify=TRUE) summary(simmod) itemfit(simmod, QMC=TRUE) M2(simmod, QMC=TRUE) residuals(simmod, QMC=TRUE) ## End(Not run)
A 3-item tabulated data set extracted from Table 3 in Chapter Two.
Phil Chalmers [email protected]
Bock, R. D. (1997). The Nominal Categories Model. In van der Linden, W. J. & Hambleton, R. K. Handbook of modern item response theory. New York: Springer.
## Not run: dat <- expand.table(Bock1997) head(dat) itemstats(dat, use_ts=FALSE) mod <- mirt(dat, 1, 'nominal') # reproduce table 3 in Bock (1997) fs <- round(fscores(mod, verbose = FALSE, full.scores = FALSE)[,c('F1','SE_F1')],2) fttd <- residuals(mod, type = 'exp') table <- data.frame(fttd[,-ncol(fttd)], fs) table mod <- mirt(dat, 1, 'nominal') coef(mod) ## End(Not run)
## Not run: dat <- expand.table(Bock1997) head(dat) itemstats(dat, use_ts=FALSE) mod <- mirt(dat, 1, 'nominal') # reproduce table 3 in Bock (1997) fs <- round(fscores(mod, verbose = FALSE, full.scores = FALSE)[,c('F1','SE_F1')],2) fttd <- residuals(mod, type = 'exp') table <- data.frame(fttd[,-ncol(fttd)], fs) table mod <- mirt(dat, 1, 'nominal') coef(mod) ## End(Not run)
Given two fitted models, compute a parametric bootstrap test to determine whether
the less restrictive models fits significantly better than the more restricted model.
Note that this hypothesis test also works when prior parameter distributions are included for
either model. Function can be run in parallel after using a suitable mirtCluster
definition.
boot.LR(mod, mod2, R = 1000, verbose = TRUE)
boot.LR(mod, mod2, R = 1000, verbose = TRUE)
mod |
an estimated model object, more constrained than |
mod2 |
an estimated model object |
R |
number of parametric bootstraps to use. |
verbose |
logical; include additional information in the console? |
a p-value evaluating whether the more restrictive model fits significantly worse than the less restrictive model
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: # standard dat <- expand.table(LSAT7) mod1 <- mirt(dat, 1) mod2 <- mirt(dat, 1, '3PL') # standard LR test anova(mod1, mod2) # bootstrap LR test (run in parallel to save time) if(interactive()) mirtCluster() boot.LR(mod1, mod2, R=200) ## End(Not run)
## Not run: # standard dat <- expand.table(LSAT7) mod1 <- mirt(dat, 1) mod2 <- mirt(dat, 1, '3PL') # standard LR test anova(mod1, mod2) # bootstrap LR test (run in parallel to save time) if(interactive()) mirtCluster() boot.LR(mod1, mod2, R=200) ## End(Not run)
Given an internal mirt object estimate the bootstrapped standard errors. It may
be beneficial to run the computations using multi-core architecture (e.g., the parallel
package). Parameters are organized from the freely estimated values in mod2values(x)
(equality constraints will also be returned in the bootstrapped estimates).
boot.mirt(x, R = 100, boot.fun = NULL, technical = NULL, ...)
boot.mirt(x, R = 100, boot.fun = NULL, technical = NULL, ...)
x |
an estimated model object |
R |
number of draws to use (passed to the |
boot.fun |
a user-defined function used to extract the information from the bootstrap
fitted models. Must be of the form |
technical |
technical arguments passed to estimation engine. See |
... |
additional arguments to be passed on to |
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: # standard mod <- mirt(Science, 1) booted <- boot.mirt(mod, R=20) plot(booted) booted #run in parallel using snow back-end using all available cores mod <- mirt(Science, 1) booted <- boot.mirt(mod, parallel = 'snow', ncpus = parallel::detectCores()) booted #### # bootstrapped CIs for standardized factor loadings boot.fun <- function(mod){ so <- summary(mod, verbose=FALSE) as.vector(so$rotF) } # test to see if it works before running boot.fun(mod) # run booted.loads <- boot.mirt(mod, boot.fun=boot.fun) booted.loads ## End(Not run)
## Not run: # standard mod <- mirt(Science, 1) booted <- boot.mirt(mod, R=20) plot(booted) booted #run in parallel using snow back-end using all available cores mod <- mirt(Science, 1) booted <- boot.mirt(mod, parallel = 'snow', ncpus = parallel::detectCores()) booted #### # bootstrapped CIs for standardized factor loadings boot.fun <- function(mod){ so <- summary(mod, verbose=FALSE) as.vector(so$rotF) } # test to see if it works before running boot.fun(mod) # run booted.loads <- boot.mirt(mod, boot.fun=boot.fun) booted.loads ## End(Not run)
Return a list (or data.frame) of raw item and group level coefficients. Note that while
the output to the console is rounded to three digits, the returned list of objects is not.
Hence, elements from cfs <- coef(mod); cfs[[1]]
will contain the non-rounded results (useful
for simulations).
## S4 method for signature 'SingleGroupClass' coef( object, CI = 0.95, printSE = FALSE, rotate = "none", Target = NULL, IRTpars = FALSE, rawug = FALSE, as.data.frame = FALSE, simplify = FALSE, unique = FALSE, verbose = TRUE, ... )
## S4 method for signature 'SingleGroupClass' coef( object, CI = 0.95, printSE = FALSE, rotate = "none", Target = NULL, IRTpars = FALSE, rawug = FALSE, as.data.frame = FALSE, simplify = FALSE, unique = FALSE, verbose = TRUE, ... )
object |
an object of class |
CI |
the amount of converged used to compute confidence intervals; default is 95 percent confidence intervals |
printSE |
logical; print the standard errors instead of the confidence intervals? When
|
rotate |
see |
Target |
a dummy variable matrix indicting a target rotation pattern |
IRTpars |
logical; convert slope intercept parameters into traditional IRT parameters?
Only applicable to unidimensional models or models with simple structure (i.e., only one non-zero slope).
If a suitable ACOV estimate was computed in the fitted
model, and |
rawug |
logical; return the untransformed internal g and u parameters?
If |
as.data.frame |
logical; convert list output to a data.frame instead? |
simplify |
logical; if all items have the same parameter names (indicating they are of the same class) then they are collapsed to a matrix, and a list of length 2 is returned containing a matrix of item parameters and group-level estimates |
unique |
return the vector of uniquely estimated parameters |
verbose |
logical; allow information to be printed to the console? |
... |
additional arguments to be passed |
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: dat <- expand.table(LSAT7) x <- mirt(dat, 1) coef(x) coef(x, IRTpars = TRUE) coef(x, simplify = TRUE) #with computed information matrix x <- mirt(dat, 1, SE = TRUE) coef(x) coef(x, printSE = TRUE) coef(x, as.data.frame = TRUE) #two factors x2 <- mirt(Science, 2) coef(x2) coef(x2, rotate = 'varimax') ## End(Not run)
## Not run: dat <- expand.table(LSAT7) x <- mirt(dat, 1) coef(x) coef(x, IRTpars = TRUE) coef(x, simplify = TRUE) #with computed information matrix x <- mirt(dat, 1, SE = TRUE) coef(x) coef(x, printSE = TRUE) coef(x, as.data.frame = TRUE) #two factors x2 <- mirt(Science, 2) coef(x2) coef(x2, rotate = 'varimax') ## End(Not run)
Initializes the proper S4 class and methods necessary for mirt functions to use in estimation for defining
customized group-level functions. To use the defined objects pass to the
mirt(..., customGroup = OBJECT)
command, and ensure that the class parameters are properly labelled.
createGroup( par, est, den, nfact, standardize = FALSE, gr = NULL, hss = NULL, gen = NULL, lbound = NULL, ubound = NULL, derivType = "Richardson" )
createGroup( par, est, den, nfact, standardize = FALSE, gr = NULL, hss = NULL, gen = NULL, lbound = NULL, ubound = NULL, derivType = "Richardson" )
par |
a named vector of the starting values for the parameters |
est |
a logical vector indicating which parameters should be freely estimated by default |
den |
the probability density function given the Theta/ability values.
First input contains a vector of all the defined parameters and the second input
must be a matrix called |
nfact |
number of factors required for the model. E.g., for unidimensional models with only one
dimension of integration |
standardize |
logical; use standardization of the quadrature table method proposed by
Woods and Thissen (2006)? If TRUE, the logical elements named |
gr |
gradient function (vector of first derivatives) of the log-likelihood used in
estimation. The function must be of the form |
hss |
Hessian function (matrix of second derivatives) of the log-likelihood used in
estimation. If not specified a numeric approximation will be used.
The input is identical to the |
gen |
a function used when |
lbound |
optional vector indicating the lower bounds of the parameters. If not specified then the bounds will be set to -Inf |
ubound |
optional vector indicating the lower bounds of the parameters. If not specified then the bounds will be set to Inf |
derivType |
if the |
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
# normal density example, N(mu, sigma^2) den <- function(obj, Theta) dnorm(Theta, obj@par[1], sqrt(obj@par[2])) par <- c(mu = 0, sigma2 = .5) est <- c(FALSE, TRUE) lbound <- c(-Inf, 0) grp <- createGroup(par, est, den, nfact = 1, lbound=lbound) dat <- expand.table(LSAT6) mod <- mirt(dat, 1, 'Rasch') modcustom <- mirt(dat, 1, 'Rasch', customGroup=grp) coef(mod) coef(modcustom)
# normal density example, N(mu, sigma^2) den <- function(obj, Theta) dnorm(Theta, obj@par[1], sqrt(obj@par[2])) par <- c(mu = 0, sigma2 = .5) est <- c(FALSE, TRUE) lbound <- c(-Inf, 0) grp <- createGroup(par, est, den, nfact = 1, lbound=lbound) dat <- expand.table(LSAT6) mod <- mirt(dat, 1, 'Rasch') modcustom <- mirt(dat, 1, 'Rasch', customGroup=grp) coef(mod) coef(modcustom)
Initializes the proper S4 class and methods necessary for mirt
functions to use in estimation. To use the defined objects pass to the
mirt(..., customItems = list())
command, and
ensure that the classes are properly labelled and unique in the list.
Additionally, the input mirt(..., customItemsData = list())
can
also be included to specify additional item-level information to better
recycle custom-item definitions (e.g., for supplying varying
Q-matrices), where the list
input must have the same length as the
number of items. For further examples regarding how this function can be
used for fitting unfolding-type models see Liu and Chalmers (2018).
createItem( name, par, est, P, gr = NULL, hss = NULL, gen = NULL, lbound = NULL, ubound = NULL, derivType = "Richardson", derivType.hss = "Richardson", bytecompile = TRUE )
createItem( name, par, est, P, gr = NULL, hss = NULL, gen = NULL, lbound = NULL, ubound = NULL, derivType = "Richardson", derivType.hss = "Richardson", bytecompile = TRUE )
name |
a character indicating the item class name to be defined |
par |
a named vector of the starting values for the parameters |
est |
a logical vector indicating which parameters should be freely estimated by default |
P |
the probability trace function for all categories (first column is category 1, second
category two, etc). First input contains a vector of all the item parameters, the second input
must be a matrix called
or
to be valid; however, the names of the arguements is not relavent. Finally, this function must return a |
gr |
gradient function (vector of first derivatives) of the log-likelihood used in
estimation. The function must be of the form |
hss |
Hessian function (matrix of second derivatives) of the log-likelihood used in
estimation. If not specified a numeric approximation will be used (required for the MH-RM
algorithm only). The input is identical to the |
gen |
a function used when |
lbound |
optional vector indicating the lower bounds of the parameters. If not specified then the bounds will be set to -Inf |
ubound |
optional vector indicating the lower bounds of the parameters. If not specified then the bounds will be set to Inf |
derivType |
if the |
derivType.hss |
if the |
bytecompile |
logical; where applicable, byte compile the functions provided? Default is
|
The summary()
function will not return proper standardized loadings
since the function is not sure how to handle them (no slopes could be
defined at all!). Instead loadings of .001 are filled in as place-holders.
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Liu, C.-W. and Chalmers, R. P. (2018). Fitting item response unfolding models to Likert-scale data using mirt in R. PLoS ONE, 13, 5. doi:10.1371/journal.pone.0196292
## Not run: name <- 'old2PL' par <- c(a = .5, b = -2) est <- c(TRUE, TRUE) P.old2PL <- function(par,Theta, ncat){ a <- par[1] b <- par[2] P1 <- 1 / (1 + exp(-1*a*(Theta - b))) cbind(1-P1, P1) } x <- createItem(name, par=par, est=est, P=P.old2PL) # So, let's estimate it! dat <- expand.table(LSAT7) sv <- mirt(dat, 1, c(rep('2PL',4), 'old2PL'), customItems=list(old2PL=x), pars = 'values') tail(sv) #looks good mod <- mirt(dat, 1, c(rep('2PL',4), 'old2PL'), customItems=list(old2PL=x)) coef(mod) mod2 <- mirt(dat, 1, c(rep('2PL',4), 'old2PL'), customItems=list(old2PL=x), method = 'MHRM') coef(mod2) # same definition as above, but using symbolic derivative computations # (can be more accurate/stable) xs <- createItem(name, par=par, est=est, P=P.old2PL, derivType = 'symbolic') mod <- mirt(dat, 1, c(rep('2PL',4), 'old2PL'), customItems=list(old2PL=xs)) coef(mod, simplify=TRUE) # several secondary functions supported M2(mod, calcNull=FALSE) itemfit(mod) fscores(mod, full.scores=FALSE) plot(mod) # fit the same model, but specify gradient function explicitly (use of a browser() may be helpful) gr <- function(x, Theta){ # browser() a <- x@par[1] b <- x@par[2] P <- probtrace(x, Theta) PQ <- apply(P, 1, prod) r_P <- x@dat / P grad <- numeric(2) grad[2] <- sum(-a * PQ * (r_P[,2] - r_P[,1])) grad[1] <- sum((Theta - b) * PQ * (r_P[,2] - r_P[,1])) ## check with internal numerical form to be safe # numerical_deriv(x@par[x@est], mirt:::EML, obj=x, Theta=Theta) grad } x <- createItem(name, par=par, est=est, P=P.old2PL, gr=gr) mod <- mirt(dat, 1, c(rep('2PL',4), 'old2PL'), customItems=list(old2PL=x)) coef(mod, simplify=TRUE) ### non-linear name <- 'nonlin' par <- c(a1 = .5, a2 = .1, d = 0) est <- c(TRUE, TRUE, TRUE) P.nonlin <- function(par,Theta, ncat=2){ a1 <- par[1] a2 <- par[2] d <- par[3] P1 <- 1 / (1 + exp(-1*(a1*Theta + a2*Theta^2 + d))) cbind(1-P1, P1) } x2 <- createItem(name, par=par, est=est, P=P.nonlin) mod <- mirt(dat, 1, c(rep('2PL',4), 'nonlin'), customItems=list(nonlin=x2)) coef(mod) ### nominal response model (Bock 1972 version) Tnom.dev <- function(ncat) { T <- matrix(1/ncat, ncat, ncat - 1) diag(T[-1, ]) <- diag(T[-1, ]) - 1 return(T) } name <- 'nom' par <- c(alp=c(3,0,-3),gam=rep(.4,3)) est <- rep(TRUE, length(par)) P.nom <- function(par, Theta, ncat){ alp <- par[1:(ncat-1)] gam <- par[ncat:length(par)] a <- Tnom.dev(ncat) %*% alp c <- Tnom.dev(ncat) %*% gam z <- matrix(0, nrow(Theta), ncat) for(i in 1:ncat) z[,i] <- a[i] * Theta + c[i] P <- exp(z) / rowSums(exp(z)) P } nom1 <- createItem(name, par=par, est=est, P=P.nom) nommod <- mirt(Science, 1, 'nom1', customItems=list(nom1=nom1)) coef(nommod) Tnom.dev(4) %*% coef(nommod)[[1]][1:3] #a Tnom.dev(4) %*% coef(nommod)[[1]][4:6] #d ## End(Not run)
## Not run: name <- 'old2PL' par <- c(a = .5, b = -2) est <- c(TRUE, TRUE) P.old2PL <- function(par,Theta, ncat){ a <- par[1] b <- par[2] P1 <- 1 / (1 + exp(-1*a*(Theta - b))) cbind(1-P1, P1) } x <- createItem(name, par=par, est=est, P=P.old2PL) # So, let's estimate it! dat <- expand.table(LSAT7) sv <- mirt(dat, 1, c(rep('2PL',4), 'old2PL'), customItems=list(old2PL=x), pars = 'values') tail(sv) #looks good mod <- mirt(dat, 1, c(rep('2PL',4), 'old2PL'), customItems=list(old2PL=x)) coef(mod) mod2 <- mirt(dat, 1, c(rep('2PL',4), 'old2PL'), customItems=list(old2PL=x), method = 'MHRM') coef(mod2) # same definition as above, but using symbolic derivative computations # (can be more accurate/stable) xs <- createItem(name, par=par, est=est, P=P.old2PL, derivType = 'symbolic') mod <- mirt(dat, 1, c(rep('2PL',4), 'old2PL'), customItems=list(old2PL=xs)) coef(mod, simplify=TRUE) # several secondary functions supported M2(mod, calcNull=FALSE) itemfit(mod) fscores(mod, full.scores=FALSE) plot(mod) # fit the same model, but specify gradient function explicitly (use of a browser() may be helpful) gr <- function(x, Theta){ # browser() a <- x@par[1] b <- x@par[2] P <- probtrace(x, Theta) PQ <- apply(P, 1, prod) r_P <- x@dat / P grad <- numeric(2) grad[2] <- sum(-a * PQ * (r_P[,2] - r_P[,1])) grad[1] <- sum((Theta - b) * PQ * (r_P[,2] - r_P[,1])) ## check with internal numerical form to be safe # numerical_deriv(x@par[x@est], mirt:::EML, obj=x, Theta=Theta) grad } x <- createItem(name, par=par, est=est, P=P.old2PL, gr=gr) mod <- mirt(dat, 1, c(rep('2PL',4), 'old2PL'), customItems=list(old2PL=x)) coef(mod, simplify=TRUE) ### non-linear name <- 'nonlin' par <- c(a1 = .5, a2 = .1, d = 0) est <- c(TRUE, TRUE, TRUE) P.nonlin <- function(par,Theta, ncat=2){ a1 <- par[1] a2 <- par[2] d <- par[3] P1 <- 1 / (1 + exp(-1*(a1*Theta + a2*Theta^2 + d))) cbind(1-P1, P1) } x2 <- createItem(name, par=par, est=est, P=P.nonlin) mod <- mirt(dat, 1, c(rep('2PL',4), 'nonlin'), customItems=list(nonlin=x2)) coef(mod) ### nominal response model (Bock 1972 version) Tnom.dev <- function(ncat) { T <- matrix(1/ncat, ncat, ncat - 1) diag(T[-1, ]) <- diag(T[-1, ]) - 1 return(T) } name <- 'nom' par <- c(alp=c(3,0,-3),gam=rep(.4,3)) est <- rep(TRUE, length(par)) P.nom <- function(par, Theta, ncat){ alp <- par[1:(ncat-1)] gam <- par[ncat:length(par)] a <- Tnom.dev(ncat) %*% alp c <- Tnom.dev(ncat) %*% gam z <- matrix(0, nrow(Theta), ncat) for(i in 1:ncat) z[,i] <- a[i] * Theta + c[i] P <- exp(z) / rowSums(exp(z)) P } nom1 <- createItem(name, par=par, est=est, P=P.nom) nommod <- mirt(Science, 1, 'nom1', customItems=list(nom1=nom1)) coef(nommod) Tnom.dev(4) %*% coef(nommod)[[1]][1:3] #a Tnom.dev(4) %*% coef(nommod)[[1]][4:6] #d ## End(Not run)
Mathematics data from de Ayala (2009; pg. 14); 5 item dataset in table format.
Phil Chalmers [email protected]
de Ayala, R. J. (2009). The theory and practice of item response theory. Guilford Press.
## Not run: dat <- expand.table(deAyala) head(dat) itemstats(dat) ## End(Not run)
## Not run: dat <- expand.table(deAyala) head(dat) itemstats(dat) ## End(Not run)
This function runs the Wald and likelihood-ratio approaches for testing differential
item functioning (DIF) with two or more groups. This is primarily a convenience wrapper to the
multipleGroup
function for performing standard DIF procedures. Independent
models can be estimated in parallel by defining a parallel object with mirtCluster
,
which will help to decrease the run time. For best results, the baseline model should contain
a set of 'anchor' items and have freely estimated hyper-parameters in the focal groups.
DIF( MGmodel, which.par, scheme = "add", items2test = 1:extract.mirt(MGmodel, "nitems"), groups2test = "all", seq_stat = "SABIC", Wald = FALSE, p.adjust = "none", pairwise = FALSE, return_models = FALSE, return_seq_model = FALSE, max_run = Inf, plotdif = FALSE, type = "trace", simplify = TRUE, verbose = TRUE, ... )
DIF( MGmodel, which.par, scheme = "add", items2test = 1:extract.mirt(MGmodel, "nitems"), groups2test = "all", seq_stat = "SABIC", Wald = FALSE, p.adjust = "none", pairwise = FALSE, return_models = FALSE, return_seq_model = FALSE, max_run = Inf, plotdif = FALSE, type = "trace", simplify = TRUE, verbose = TRUE, ... )
MGmodel |
an object returned from |
which.par |
a character vector containing the parameter names which will be inspected for DIF |
scheme |
type of DIF analysis to perform, either by adding or dropping constraints across groups. These can be:
|
items2test |
a numeric vector, or character vector containing the item names, indicating
which items will be tested for DIF. In models where anchor items are known, omit them from
this vector. For example, if items 1 and 2 are anchors in a 10 item test, then
|
groups2test |
a character vector indicating which groups to use in the DIF testing
investigations. Default is |
seq_stat |
select a statistic to test for in the sequential schemes. Potential values are
(in descending order of power) |
Wald |
logical; perform Wald tests for DIF instead of likelihood ratio test? |
p.adjust |
string to be passed to the |
pairwise |
logical; perform pairwise tests between groups when the number of groups is greater than 2? Useful as quickly specified post-hoc tests |
return_models |
logical; return estimated model objects for further analysis? Default is FALSE |
return_seq_model |
logical; on the last iteration of the sequential schemes, return
the fitted multiple-group model containing the freely estimated parameters indicative of
DIF? This is generally only useful when |
max_run |
a number indicating the maximum number of cycles to perform in sequential searches. The default is to perform search until no further DIF is found |
plotdif |
logical; create item plots for items that are displaying DIF according to the
|
type |
the |
simplify |
logical; simplify the output by returning a data.frame object with the differences between AIC, BIC, etc, as well as the chi-squared test (X2) and associated df and p-values |
verbose |
logical print extra information to the console? |
... |
additional arguments to be passed to |
Generally, the pre-computed baseline model should have been configured with two estimation properties: 1) a set of 'anchor' items, where the anchor items have various parameters that have been constrained to be equal across the groups, and 2) contain freely estimated latent mean and variance terms in all but one group (the so-called 'reference' group). These two properties help to fix the metric of the groups so that item parameter estimates do not contain latent distribution characteristics.
a mirt_df
object with the information-based criteria for DIF, though this may be changed
to a list output when return_models
or simplify
are modified. As well, a silent
'DIF_coefficeints'
attribute is included to view the item parameter differences
between the groups
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Chalmers, R. P., Counsell, A., and Flora, D. B. (2016). It might not make a big DIF: Improved Differential Test Functioning statistics that account for sampling variability. Educational and Psychological Measurement, 76, 114-140. doi:10.1177/0013164415584576
## Not run: # simulate data where group 2 has a smaller slopes and more extreme intercepts set.seed(12345) a1 <- a2 <- matrix(abs(rnorm(15,1,.3)), ncol=1) d1 <- d2 <- matrix(rnorm(15,0,.7),ncol=1) a2[1:2, ] <- a1[1:2, ]/3 d1[c(1,3), ] <- d2[c(1,3), ]/4 head(data.frame(a.group1 = a1, a.group2 = a2, d.group1 = d1, d.group2 = d2)) itemtype <- rep('2PL', nrow(a1)) N <- 1000 dataset1 <- simdata(a1, d1, N, itemtype) dataset2 <- simdata(a2, d2, N, itemtype, mu = .1, sigma = matrix(1.5)) dat <- rbind(dataset1, dataset2) group <- c(rep('D1', N), rep('D2', N)) #### no anchors, all items tested for DIF by adding item constrains one item at a time. # define a parallel cluster (optional) to help speed up internal functions if(interactive()) mirtCluster() # Information matrix with Oakes' identity (not controlling for latent group differences) # NOTE: Without properly equating the groups the following example code is not testing for DIF, # but instead reflects a combination of DIF + latent-trait distribution effects model <- multipleGroup(dat, 1, group, SE = TRUE) # Likelihood-ratio test for DIF (as well as model information) dif <- DIF(model, c('a1', 'd')) dif # function silently includes "DIF_coefficients" attribute to view # the IRT parameters post-completion extract.mirt(dif, "DIF_coefficients") # same as above, but using Wald tests with Benjamini & Hochberg adjustment DIF(model, c('a1', 'd'), Wald = TRUE, p.adjust = 'fdr') # equate the groups by assuming the last 5 items have no DIF itemnames <- colnames(dat) model <- multipleGroup(dat, 1, group, SE = TRUE, invariance = c(itemnames[11:ncol(dat)], 'free_means', 'free_var')) # test whether adding slopes and intercepts constraints results in DIF. Plot items showing DIF resulta1d <- DIF(model, c('a1', 'd'), plotdif = TRUE, items2test=1:10) resulta1d # test whether adding only slope constraints results in DIF for all items DIF(model, 'a1', items2test=1:10) # Determine whether it's a1 or d parameter causing DIF (could be joint, however) (a1s <- DIF(model, 'a1', items2test = 1:3)) (ds <- DIF(model, 'd', items2test = 1:3)) ### drop down approach (freely estimating parameters across groups) when ### specifying a highly constrained model with estimated latent parameters model_constrained <- multipleGroup(dat, 1, group, invariance = c(colnames(dat), 'free_means', 'free_var')) dropdown <- DIF(model_constrained, c('a1', 'd'), scheme = 'drop') dropdown # View silent "DIF_coefficients" attribute extract.mirt(dropdown, "DIF_coefficients") ### sequential schemes (add constraints) ### sequential searches using SABIC as the selection criteria # starting from completely different models stepup <- DIF(model, c('a1', 'd'), scheme = 'add_sequential', items2test=1:10) stepup # step down procedure for highly constrained model stepdown <- DIF(model_constrained, c('a1', 'd'), scheme = 'drop_sequential') stepdown # view final MG model (only useful when scheme is 'add_sequential') updated_mod <- DIF(model, c('a1', 'd'), scheme = 'add_sequential', return_seq_model=TRUE) plot(updated_mod, type='trace') ################################### # Multi-group example a1 <- a2 <- a3 <- matrix(abs(rnorm(15,1,.3)), ncol=1) d1 <- d2 <- d3 <- matrix(rnorm(15,0,.7),ncol=1) a2[1:2, ] <- a1[1:2, ]/3 d3[c(1,3), ] <- d2[c(1,3), ]/4 head(data.frame(a.group1 = a1, a.group2 = a2, a.group3 = a3, d.group1 = d1, d.group2 = d2, d.group3 = d3)) itemtype <- rep('2PL', nrow(a1)) N <- 1000 dataset1 <- simdata(a1, d1, N, itemtype) dataset2 <- simdata(a2, d2, N, itemtype, mu = .1, sigma = matrix(1.5)) dataset3 <- simdata(a3, d3, N, itemtype, mu = .2) dat <- rbind(dataset1, dataset2, dataset3) group <- gl(3, N, labels = c('g1', 'g2', 'g3')) # equate the groups by assuming the last 5 items have no DIF itemnames <- colnames(dat) model <- multipleGroup(dat, group=group, SE=TRUE, invariance = c(itemnames[11:ncol(dat)], 'free_means', 'free_var')) coef(model, simplify=TRUE) # omnibus tests dif <- DIF(model, which.par = c('a1', 'd'), items2test=1:9) dif # pairwise post-hoc tests for items flagged via omnibus tests dif.posthoc <- DIF(model, which.par = c('a1', 'd'), items2test=1:2, pairwise = TRUE) dif.posthoc # further probing for df = 1 tests, this time with Wald tests DIF(model, which.par = c('a1'), items2test=1:2, pairwise = TRUE, Wald=TRUE) DIF(model, which.par = c('d'), items2test=1:2, pairwise = TRUE, Wald=TRUE) ## End(Not run)
## Not run: # simulate data where group 2 has a smaller slopes and more extreme intercepts set.seed(12345) a1 <- a2 <- matrix(abs(rnorm(15,1,.3)), ncol=1) d1 <- d2 <- matrix(rnorm(15,0,.7),ncol=1) a2[1:2, ] <- a1[1:2, ]/3 d1[c(1,3), ] <- d2[c(1,3), ]/4 head(data.frame(a.group1 = a1, a.group2 = a2, d.group1 = d1, d.group2 = d2)) itemtype <- rep('2PL', nrow(a1)) N <- 1000 dataset1 <- simdata(a1, d1, N, itemtype) dataset2 <- simdata(a2, d2, N, itemtype, mu = .1, sigma = matrix(1.5)) dat <- rbind(dataset1, dataset2) group <- c(rep('D1', N), rep('D2', N)) #### no anchors, all items tested for DIF by adding item constrains one item at a time. # define a parallel cluster (optional) to help speed up internal functions if(interactive()) mirtCluster() # Information matrix with Oakes' identity (not controlling for latent group differences) # NOTE: Without properly equating the groups the following example code is not testing for DIF, # but instead reflects a combination of DIF + latent-trait distribution effects model <- multipleGroup(dat, 1, group, SE = TRUE) # Likelihood-ratio test for DIF (as well as model information) dif <- DIF(model, c('a1', 'd')) dif # function silently includes "DIF_coefficients" attribute to view # the IRT parameters post-completion extract.mirt(dif, "DIF_coefficients") # same as above, but using Wald tests with Benjamini & Hochberg adjustment DIF(model, c('a1', 'd'), Wald = TRUE, p.adjust = 'fdr') # equate the groups by assuming the last 5 items have no DIF itemnames <- colnames(dat) model <- multipleGroup(dat, 1, group, SE = TRUE, invariance = c(itemnames[11:ncol(dat)], 'free_means', 'free_var')) # test whether adding slopes and intercepts constraints results in DIF. Plot items showing DIF resulta1d <- DIF(model, c('a1', 'd'), plotdif = TRUE, items2test=1:10) resulta1d # test whether adding only slope constraints results in DIF for all items DIF(model, 'a1', items2test=1:10) # Determine whether it's a1 or d parameter causing DIF (could be joint, however) (a1s <- DIF(model, 'a1', items2test = 1:3)) (ds <- DIF(model, 'd', items2test = 1:3)) ### drop down approach (freely estimating parameters across groups) when ### specifying a highly constrained model with estimated latent parameters model_constrained <- multipleGroup(dat, 1, group, invariance = c(colnames(dat), 'free_means', 'free_var')) dropdown <- DIF(model_constrained, c('a1', 'd'), scheme = 'drop') dropdown # View silent "DIF_coefficients" attribute extract.mirt(dropdown, "DIF_coefficients") ### sequential schemes (add constraints) ### sequential searches using SABIC as the selection criteria # starting from completely different models stepup <- DIF(model, c('a1', 'd'), scheme = 'add_sequential', items2test=1:10) stepup # step down procedure for highly constrained model stepdown <- DIF(model_constrained, c('a1', 'd'), scheme = 'drop_sequential') stepdown # view final MG model (only useful when scheme is 'add_sequential') updated_mod <- DIF(model, c('a1', 'd'), scheme = 'add_sequential', return_seq_model=TRUE) plot(updated_mod, type='trace') ################################### # Multi-group example a1 <- a2 <- a3 <- matrix(abs(rnorm(15,1,.3)), ncol=1) d1 <- d2 <- d3 <- matrix(rnorm(15,0,.7),ncol=1) a2[1:2, ] <- a1[1:2, ]/3 d3[c(1,3), ] <- d2[c(1,3), ]/4 head(data.frame(a.group1 = a1, a.group2 = a2, a.group3 = a3, d.group1 = d1, d.group2 = d2, d.group3 = d3)) itemtype <- rep('2PL', nrow(a1)) N <- 1000 dataset1 <- simdata(a1, d1, N, itemtype) dataset2 <- simdata(a2, d2, N, itemtype, mu = .1, sigma = matrix(1.5)) dataset3 <- simdata(a3, d3, N, itemtype, mu = .2) dat <- rbind(dataset1, dataset2, dataset3) group <- gl(3, N, labels = c('g1', 'g2', 'g3')) # equate the groups by assuming the last 5 items have no DIF itemnames <- colnames(dat) model <- multipleGroup(dat, group=group, SE=TRUE, invariance = c(itemnames[11:ncol(dat)], 'free_means', 'free_var')) coef(model, simplify=TRUE) # omnibus tests dif <- DIF(model, which.par = c('a1', 'd'), items2test=1:9) dif # pairwise post-hoc tests for items flagged via omnibus tests dif.posthoc <- DIF(model, which.par = c('a1', 'd'), items2test=1:2, pairwise = TRUE) dif.posthoc # further probing for df = 1 tests, this time with Wald tests DIF(model, which.par = c('a1'), items2test=1:2, pairwise = TRUE, Wald=TRUE) DIF(model, which.par = c('d'), items2test=1:2, pairwise = TRUE, Wald=TRUE) ## End(Not run)
Defines the object returned from mdirt
.
Call
:function call
Data
:list of data, sometimes in different forms
Options
:list of estimation options
Fit
:a list of fit information
Model
:a list of model-based information
ParObjects
:a list of the S4 objects used during estimation
OptimInfo
:a list of arguments from the optimization process
Internals
:a list of internal arguments for secondary computations (inspecting this object is generally not required)
vcov
:a matrix represented the asymptotic covariance matrix of the parameter estimates
time
:a data.frame indicating the breakdown of computation times in seconds
signature(x = "DiscreteClass")
signature(object = "DiscreteClass")
signature(object = "DiscreteClass")
signature(x = "DiscreteClass")
signature(object = "DiscreteClass")
signature(object = "DiscreteClass")
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Draws plausible parameters from a model using parametric sampling (if the information matrix
was computed) or via bootstrap sampling. Primarily for use with the DRF
function.
draw_parameters( mod, draws, method = c("parametric", "boostrap"), redraws = 20, verbose = FALSE, ... )
draw_parameters( mod, draws, method = c("parametric", "boostrap"), redraws = 20, verbose = FALSE, ... )
mod |
estimated single or multiple-group model |
draws |
number of draws to obtain |
method |
type of plausible values to obtain. Can be 'parametric', for the parametric sampling
scheme which uses the estimated information matrix, or 'boostrap' to obtain values from the
|
redraws |
number of redraws to perform when the given parameteric sample does not satisfy the upper and lower parameter bounds. If a valid set cannot be found within this number of draws then an error will be thrown |
verbose |
logical; include additional information in the console? |
... |
additional arguments to be passed |
returns a draws x p matrix of plausible parameters, where each row correspeonds to a single set
## Not run: set.seed(1234) n <- 40 N <- 500 # only first 5 items as anchors model <- 'F = 1-40 CONSTRAINB = (1-5, a1), (1-5, d)' a <- matrix(1, n) d <- matrix(rnorm(n), n) group <- c(rep('Group_1', N), rep('Group_2', N)) ## ------------- # groups completely equal dat1 <- simdata(a, d, N, itemtype = 'dich') dat2 <- simdata(a, d, N, itemtype = 'dich') dat <- rbind(dat1, dat2) mod <- multipleGroup(dat, model, group=group, SE=TRUE, invariance=c('free_means', 'free_var')) param_set <- draw_parameters(mod, 100) head(param_set) ## End(Not run)
## Not run: set.seed(1234) n <- 40 N <- 500 # only first 5 items as anchors model <- 'F = 1-40 CONSTRAINB = (1-5, a1), (1-5, d)' a <- matrix(1, n) d <- matrix(rnorm(n), n) group <- c(rep('Group_1', N), rep('Group_2', N)) ## ------------- # groups completely equal dat1 <- simdata(a, d, N, itemtype = 'dich') dat2 <- simdata(a, d, N, itemtype = 'dich') dat <- rbind(dat1, dat2) mod <- multipleGroup(dat, model, group=group, SE=TRUE, invariance=c('free_means', 'free_var')) param_set <- draw_parameters(mod, 100) head(param_set) ## End(Not run)
Function performs various omnibus differential item (DIF), bundle (DBF), and test (DTF)
functioning procedures on an object
estimated with multipleGroup()
. The compensatory and non-compensatory statistics provided
are described in Chalmers (2018), which generally can be interpreted as IRT generalizations
of the SIBTEST and CSIBTEST statistics. For hypothesis tests, these measures
require the ACOV matrix to be computed in the
fitted multiple-group model (otherwise, sets of plausible draws from the posterior are explicitly
required).
DRF( mod, draws = NULL, focal_items = 1L:extract.mirt(mod, "nitems"), param_set = NULL, den.type = "marginal", best_fitting = FALSE, CI = 0.95, npts = 1000, quadpts = NULL, theta_lim = c(-6, 6), Theta_nodes = NULL, plot = FALSE, DIF = FALSE, DIF.cats = FALSE, groups2test = "all", pairwise = FALSE, simplify = TRUE, p.adjust = "none", par.strip.text = list(cex = 0.7), par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col = "black")), auto.key = list(space = "right", points = FALSE, lines = TRUE), verbose = TRUE, ... )
DRF( mod, draws = NULL, focal_items = 1L:extract.mirt(mod, "nitems"), param_set = NULL, den.type = "marginal", best_fitting = FALSE, CI = 0.95, npts = 1000, quadpts = NULL, theta_lim = c(-6, 6), Theta_nodes = NULL, plot = FALSE, DIF = FALSE, DIF.cats = FALSE, groups2test = "all", pairwise = FALSE, simplify = TRUE, p.adjust = "none", par.strip.text = list(cex = 0.7), par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col = "black")), auto.key = list(space = "right", points = FALSE, lines = TRUE), verbose = TRUE, ... )
mod |
a multipleGroup object which estimated only 2 groups |
draws |
a number indicating how many draws to take to form a suitable multiple imputation
or bootstrap estimate of the expected test scores (100 or more). If |
focal_items |
a character/numeric vector indicating which items to include in the DRF tests. The default uses all of the items (note that including anchors in the focal items has no effect because they are exactly equal across groups). Selecting fewer items will result in tests of 'differential bundle functioning' |
param_set |
an N x p matrix of parameter values drawn from the posterior (e.g., using the
parametric sampling approach, bootstrap, of MCMC). If supplied, then these will be used to compute
the DRF measures. Can be much more efficient to pre-compute these values if DIF, DBF, or DTF are
being evaluated within the same model (especially when using the bootstrap method).
See |
den.type |
character specifying how the density of the latent traits is computed.
Default is |
best_fitting |
logical; use the best fitting parametric distribution (Gaussian by default) that was used at the time of model estimation? This will result in much fast computations, however the results are more dependent upon the underlying modelling assumptions. Default is FALSE, which uses the empirical histogram approach |
CI |
range of confidence interval when using draws input |
npts |
number of points to use for plotting. Default is 1000 |
quadpts |
number of quadrature nodes to use when constructing DRF statistics. Default is extracted from the input model object |
theta_lim |
lower and upper limits of the latent trait (theta) to be evaluated, and is
used in conjunction with |
Theta_nodes |
an optional matrix of Theta values to be evaluated in the draws for the sDRF statistics. However, these values are not averaged across, and instead give the bootstrap confidence intervals at the respective Theta nodes. Useful when following up a large sDRF or uDRF statistic, for example, to determine where the difference between the test curves are large (while still accounting for sampling variability). Returns a matrix with observed variability |
plot |
logical; plot the 'sDRF' functions for the evaluated sDBF or sDTF values across the
integration grid or, if |
DIF |
logical; return a list of item-level imputation properties using the DRF statistics? These can generally be used as a DIF detection method and as a graphical display for understanding DIF within each item |
DIF.cats |
logical; same as |
groups2test |
when more than 2 groups are being investigated which two groups should be used in the effect size comparisons? |
pairwise |
logical; perform pairwise computations when the applying to multi-group settings |
simplify |
logical; attempt to simplify the output rather than returning larger lists? |
p.adjust |
string to be passed to the |
par.strip.text |
plotting argument passed to |
par.settings |
plotting argument passed to |
auto.key |
plotting argument passed to |
verbose |
logical; include additional information in the console? |
... |
additional arguments to be passed to |
The effect sizes estimates by the DRF function are
and
where are the scoring equations used to evaluate the model-implied
difference between the focal and reference group. The
terms can either be estimated from the posterior via an empirical
histogram approach (default), or can use the best
fitting prior distribution that is obtain post-convergence (default is a Guassian
distribution). Note that, in comparison to Chalmers (2018), the focal group is
the leftmost scoring function while the reference group is the rightmost
scoring function. This is largely to keep consistent with similar effect
size statistics, such as SIBTEST, DFIT, Wainer's measures of impact, etc,
which in general can be seen as special-case estimators of this family.
Phil Chalmers [email protected]
Chalmers, R. P. (2018). Model-Based Measures for Detecting and Quantifying Response Bias. Psychometrika, 83(3), 696-732. doi:10.1007/s11336-018-9626-9
## Not run: set.seed(1234) n <- 30 N <- 500 # only first 5 items as anchors model <- 'F = 1-30 CONSTRAINB = (1-5, a1), (1-5, d)' a <- matrix(1, n) d <- matrix(rnorm(n), n) group <- c(rep('Group_1', N), rep('Group_2', N)) ## ------------- # groups completely equal dat1 <- simdata(a, d, N, itemtype = 'dich') dat2 <- simdata(a, d, N, itemtype = 'dich') dat <- rbind(dat1, dat2) mod <- multipleGroup(dat, model, group=group, SE=TRUE, invariance=c('free_means', 'free_var')) plot(mod) plot(mod, which.items = 6:10) #DBF plot(mod, type = 'itemscore') plot(mod, type = 'itemscore', which.items = 10:15) # empirical histogram approach DRF(mod) DRF(mod, focal_items = 6:10) #DBF DRF(mod, DIF=TRUE) DRF(mod, DIF=TRUE, focal_items = 10:15) # Best-fitting Gaussian distributions DRF(mod, best_fitting=TRUE) DRF(mod, focal_items = 6:10, best_fitting=TRUE) #DBF DRF(mod, DIF=TRUE, best_fitting=TRUE) DRF(mod, DIF=TRUE, focal_items = 10:15, best_fitting=TRUE) DRF(mod, plot = TRUE) DRF(mod, focal_items = 6:10, plot = TRUE) #DBF DRF(mod, DIF=TRUE, plot = TRUE) DRF(mod, DIF=TRUE, focal_items = 10:15, plot = TRUE) if(interactive()) mirtCluster() DRF(mod, draws = 500) DRF(mod, draws = 500, best_fitting=TRUE) DRF(mod, draws = 500, plot=TRUE) # pre-draw parameter set to save computations # (more useful when using non-parametric bootstrap) param_set <- draw_parameters(mod, draws = 500) DRF(mod, focal_items = 6, param_set=param_set) #DIF test DRF(mod, DIF=TRUE, param_set=param_set) #DIF test DRF(mod, focal_items = 6:10, param_set=param_set) #DBF test DRF(mod, param_set=param_set) #DTF test DRF(mod, focal_items = 6:10, draws=500) #DBF test DRF(mod, focal_items = 10:15, draws=500) #DBF test DIFs <- DRF(mod, draws = 500, DIF=TRUE) print(DIFs) DRF(mod, draws = 500, DIF=TRUE, plot=TRUE) DIFs <- DRF(mod, draws = 500, DIF=TRUE, focal_items = 6:10) print(DIFs) DRF(mod, draws = 500, DIF=TRUE, focal_items = 6:10, plot = TRUE) DRF(mod, DIF=TRUE, focal_items = 6) DRF(mod, draws=500, DIF=TRUE, focal_items = 6) # evaluate specific values for sDRF Theta_nodes <- matrix(seq(-6,6,length.out = 100)) sDTF <- DRF(mod, Theta_nodes=Theta_nodes) head(sDTF) sDTF <- DRF(mod, Theta_nodes=Theta_nodes, draws=200) head(sDTF) # sDIF (isolate single item) sDIF <- DRF(mod, Theta_nodes=Theta_nodes, focal_items=6) head(sDIF) sDIF <- DRF(mod, Theta_nodes=Theta_nodes, focal_items = 6, draws=200) head(sDIF) ## ------------- ## random slopes and intercepts for 15 items, and latent mean difference ## (no systematic DTF should exist, but DIF will be present) set.seed(1234) dat1 <- simdata(a, d, N, itemtype = 'dich', mu=.50, sigma=matrix(1.5)) dat2 <- simdata(a + c(numeric(15), rnorm(n-15, 0, .25)), d + c(numeric(15), rnorm(n-15, 0, .5)), N, itemtype = 'dich') dat <- rbind(dat1, dat2) mod1 <- multipleGroup(dat, 1, group=group) plot(mod1) DRF(mod1) #does not account for group differences! Need anchors mod2 <- multipleGroup(dat, model, group=group, SE=TRUE, invariance=c('free_means', 'free_var')) plot(mod2) # significant DIF in multiple items.... # DIF(mod2, which.par=c('a1', 'd'), items2test=16:30) DRF(mod2) DRF(mod2, draws=500) #non-sig DTF due to item cancellation ## ------------- ## systematic differing slopes and intercepts (clear DTF) set.seed(1234) dat1 <- simdata(a, d, N, itemtype = 'dich', mu=.50, sigma=matrix(1.5)) dat2 <- simdata(a + c(numeric(15), rnorm(n-15, 1, .25)), d + c(numeric(15), rnorm(n-15, 1, .5)), N, itemtype = 'dich') dat <- rbind(dat1, dat2) mod3 <- multipleGroup(dat, model, group=group, SE=TRUE, invariance=c('free_means', 'free_var')) plot(mod3) #visable DTF happening # DIF(mod3, c('a1', 'd'), items2test=16:30) DRF(mod3) #unsigned bias. Signed bias (group 2 scores higher on average) DRF(mod3, draws=500) DRF(mod3, draws=500, plot=TRUE) #multiple DRF areas along Theta # plot the DIF DRF(mod3, draws=500, DIF=TRUE, plot=TRUE) # evaluate specific values for sDRF Theta_nodes <- matrix(seq(-6,6,length.out = 100)) sDTF <- DRF(mod3, Theta_nodes=Theta_nodes, draws=200) head(sDTF) # DIF sDIF <- DRF(mod3, Theta_nodes=Theta_nodes, focal_items = 30, draws=200) car::some(sDIF) ## ---------------------------------------------------------------- # polytomous example # simulate data where group 2 has a different slopes/intercepts set.seed(4321) a1 <- a2 <- matrix(rlnorm(20,.2,.3)) a2[c(16:17, 19:20),] <- a1[c(16:17, 19:20),] + c(-.5, -.25, .25, .5) # for the graded model, ensure that there is enough space between the intercepts, # otherwise closer categories will not be selected often diffs <- t(apply(matrix(runif(20*4, .3, 1), 20), 1, cumsum)) diffs <- -(diffs - rowMeans(diffs)) d1 <- d2 <- diffs + rnorm(20) rownames(d1) <- rownames(d2) <- paste0('Item.', 1:20) d2[16:20,] <- d1[16:20,] + matrix(c(-.5, -.5, -.5, -.5, 1, 0, 0, -1, .5, .5, -.5, -.5, 1, .5, 0, -1, .5, .5, .5, .5), byrow=TRUE, nrow=5) tail(data.frame(a.group1 = a1, a.group2 = a2), 6) list(d.group1 = d1[15:20,], d.group2 = d2[15:20,]) itemtype <- rep('graded', nrow(a1)) N <- 600 dataset1 <- simdata(a1, d1, N, itemtype) dataset2 <- simdata(a2, d2, N, itemtype, mu = -.25, sigma = matrix(1.25)) dat <- rbind(dataset1, dataset2) group <- c(rep('D1', N), rep('D2', N)) # item 1-10 as anchors mod <- multipleGroup(dat, group=group, SE=TRUE, invariance=c(colnames(dat)[1:10], 'free_means', 'free_var')) coef(mod, simplify=TRUE) plot(mod) plot(mod, type='itemscore') # DIF tests vis Wald method DIF(mod, items2test=11:20, which.par=c('a1', paste0('d', 1:4)), Wald=TRUE, p.adjust='holm') DRF(mod) DRF(mod, DIF=TRUE, focal_items=11:20) DRF(mod, DIF.cats=TRUE, focal_items=11:20) ## ---------------------------------------------------------------- ### multidimensional DTF set.seed(1234) n <- 50 N <- 1000 # only first 5 items as anchors within each dimension model <- 'F1 = 1-25 F2 = 26-50 COV = F1*F2 CONSTRAINB = (1-5, a1), (1-5, 26-30, d), (26-30, a2)' a <- matrix(c(rep(1, 25), numeric(50), rep(1, 25)), n) d <- matrix(rnorm(n), n) group <- c(rep('Group_1', N), rep('Group_2', N)) Cov <- matrix(c(1, .5, .5, 1.5), 2) Mean <- c(0, 0.5) # groups completely equal dat1 <- simdata(a, d, N, itemtype = 'dich', sigma = cov2cor(Cov)) dat2 <- simdata(a, d, N, itemtype = 'dich', sigma = Cov, mu = Mean) dat <- rbind(dat1, dat2) mod <- multipleGroup(dat, model, group=group, SE=TRUE, invariance=c('free_means', 'free_var')) coef(mod, simplify=TRUE) plot(mod, degrees = c(45,45)) DRF(mod) # some intercepts slightly higher in Group 2 d2 <- d d2[c(10:15, 31:35)] <- d2[c(10:15, 31:35)] + 1 dat1 <- simdata(a, d, N, itemtype = 'dich', sigma = cov2cor(Cov)) dat2 <- simdata(a, d2, N, itemtype = 'dich', sigma = Cov, mu = Mean) dat <- rbind(dat1, dat2) mod <- multipleGroup(dat, model, group=group, SE=TRUE, invariance=c('free_means', 'free_var')) coef(mod, simplify=TRUE) plot(mod, degrees = c(45,45)) DRF(mod) DRF(mod, draws = 500) ## End(Not run)
## Not run: set.seed(1234) n <- 30 N <- 500 # only first 5 items as anchors model <- 'F = 1-30 CONSTRAINB = (1-5, a1), (1-5, d)' a <- matrix(1, n) d <- matrix(rnorm(n), n) group <- c(rep('Group_1', N), rep('Group_2', N)) ## ------------- # groups completely equal dat1 <- simdata(a, d, N, itemtype = 'dich') dat2 <- simdata(a, d, N, itemtype = 'dich') dat <- rbind(dat1, dat2) mod <- multipleGroup(dat, model, group=group, SE=TRUE, invariance=c('free_means', 'free_var')) plot(mod) plot(mod, which.items = 6:10) #DBF plot(mod, type = 'itemscore') plot(mod, type = 'itemscore', which.items = 10:15) # empirical histogram approach DRF(mod) DRF(mod, focal_items = 6:10) #DBF DRF(mod, DIF=TRUE) DRF(mod, DIF=TRUE, focal_items = 10:15) # Best-fitting Gaussian distributions DRF(mod, best_fitting=TRUE) DRF(mod, focal_items = 6:10, best_fitting=TRUE) #DBF DRF(mod, DIF=TRUE, best_fitting=TRUE) DRF(mod, DIF=TRUE, focal_items = 10:15, best_fitting=TRUE) DRF(mod, plot = TRUE) DRF(mod, focal_items = 6:10, plot = TRUE) #DBF DRF(mod, DIF=TRUE, plot = TRUE) DRF(mod, DIF=TRUE, focal_items = 10:15, plot = TRUE) if(interactive()) mirtCluster() DRF(mod, draws = 500) DRF(mod, draws = 500, best_fitting=TRUE) DRF(mod, draws = 500, plot=TRUE) # pre-draw parameter set to save computations # (more useful when using non-parametric bootstrap) param_set <- draw_parameters(mod, draws = 500) DRF(mod, focal_items = 6, param_set=param_set) #DIF test DRF(mod, DIF=TRUE, param_set=param_set) #DIF test DRF(mod, focal_items = 6:10, param_set=param_set) #DBF test DRF(mod, param_set=param_set) #DTF test DRF(mod, focal_items = 6:10, draws=500) #DBF test DRF(mod, focal_items = 10:15, draws=500) #DBF test DIFs <- DRF(mod, draws = 500, DIF=TRUE) print(DIFs) DRF(mod, draws = 500, DIF=TRUE, plot=TRUE) DIFs <- DRF(mod, draws = 500, DIF=TRUE, focal_items = 6:10) print(DIFs) DRF(mod, draws = 500, DIF=TRUE, focal_items = 6:10, plot = TRUE) DRF(mod, DIF=TRUE, focal_items = 6) DRF(mod, draws=500, DIF=TRUE, focal_items = 6) # evaluate specific values for sDRF Theta_nodes <- matrix(seq(-6,6,length.out = 100)) sDTF <- DRF(mod, Theta_nodes=Theta_nodes) head(sDTF) sDTF <- DRF(mod, Theta_nodes=Theta_nodes, draws=200) head(sDTF) # sDIF (isolate single item) sDIF <- DRF(mod, Theta_nodes=Theta_nodes, focal_items=6) head(sDIF) sDIF <- DRF(mod, Theta_nodes=Theta_nodes, focal_items = 6, draws=200) head(sDIF) ## ------------- ## random slopes and intercepts for 15 items, and latent mean difference ## (no systematic DTF should exist, but DIF will be present) set.seed(1234) dat1 <- simdata(a, d, N, itemtype = 'dich', mu=.50, sigma=matrix(1.5)) dat2 <- simdata(a + c(numeric(15), rnorm(n-15, 0, .25)), d + c(numeric(15), rnorm(n-15, 0, .5)), N, itemtype = 'dich') dat <- rbind(dat1, dat2) mod1 <- multipleGroup(dat, 1, group=group) plot(mod1) DRF(mod1) #does not account for group differences! Need anchors mod2 <- multipleGroup(dat, model, group=group, SE=TRUE, invariance=c('free_means', 'free_var')) plot(mod2) # significant DIF in multiple items.... # DIF(mod2, which.par=c('a1', 'd'), items2test=16:30) DRF(mod2) DRF(mod2, draws=500) #non-sig DTF due to item cancellation ## ------------- ## systematic differing slopes and intercepts (clear DTF) set.seed(1234) dat1 <- simdata(a, d, N, itemtype = 'dich', mu=.50, sigma=matrix(1.5)) dat2 <- simdata(a + c(numeric(15), rnorm(n-15, 1, .25)), d + c(numeric(15), rnorm(n-15, 1, .5)), N, itemtype = 'dich') dat <- rbind(dat1, dat2) mod3 <- multipleGroup(dat, model, group=group, SE=TRUE, invariance=c('free_means', 'free_var')) plot(mod3) #visable DTF happening # DIF(mod3, c('a1', 'd'), items2test=16:30) DRF(mod3) #unsigned bias. Signed bias (group 2 scores higher on average) DRF(mod3, draws=500) DRF(mod3, draws=500, plot=TRUE) #multiple DRF areas along Theta # plot the DIF DRF(mod3, draws=500, DIF=TRUE, plot=TRUE) # evaluate specific values for sDRF Theta_nodes <- matrix(seq(-6,6,length.out = 100)) sDTF <- DRF(mod3, Theta_nodes=Theta_nodes, draws=200) head(sDTF) # DIF sDIF <- DRF(mod3, Theta_nodes=Theta_nodes, focal_items = 30, draws=200) car::some(sDIF) ## ---------------------------------------------------------------- # polytomous example # simulate data where group 2 has a different slopes/intercepts set.seed(4321) a1 <- a2 <- matrix(rlnorm(20,.2,.3)) a2[c(16:17, 19:20),] <- a1[c(16:17, 19:20),] + c(-.5, -.25, .25, .5) # for the graded model, ensure that there is enough space between the intercepts, # otherwise closer categories will not be selected often diffs <- t(apply(matrix(runif(20*4, .3, 1), 20), 1, cumsum)) diffs <- -(diffs - rowMeans(diffs)) d1 <- d2 <- diffs + rnorm(20) rownames(d1) <- rownames(d2) <- paste0('Item.', 1:20) d2[16:20,] <- d1[16:20,] + matrix(c(-.5, -.5, -.5, -.5, 1, 0, 0, -1, .5, .5, -.5, -.5, 1, .5, 0, -1, .5, .5, .5, .5), byrow=TRUE, nrow=5) tail(data.frame(a.group1 = a1, a.group2 = a2), 6) list(d.group1 = d1[15:20,], d.group2 = d2[15:20,]) itemtype <- rep('graded', nrow(a1)) N <- 600 dataset1 <- simdata(a1, d1, N, itemtype) dataset2 <- simdata(a2, d2, N, itemtype, mu = -.25, sigma = matrix(1.25)) dat <- rbind(dataset1, dataset2) group <- c(rep('D1', N), rep('D2', N)) # item 1-10 as anchors mod <- multipleGroup(dat, group=group, SE=TRUE, invariance=c(colnames(dat)[1:10], 'free_means', 'free_var')) coef(mod, simplify=TRUE) plot(mod) plot(mod, type='itemscore') # DIF tests vis Wald method DIF(mod, items2test=11:20, which.par=c('a1', paste0('d', 1:4)), Wald=TRUE, p.adjust='holm') DRF(mod) DRF(mod, DIF=TRUE, focal_items=11:20) DRF(mod, DIF.cats=TRUE, focal_items=11:20) ## ---------------------------------------------------------------- ### multidimensional DTF set.seed(1234) n <- 50 N <- 1000 # only first 5 items as anchors within each dimension model <- 'F1 = 1-25 F2 = 26-50 COV = F1*F2 CONSTRAINB = (1-5, a1), (1-5, 26-30, d), (26-30, a2)' a <- matrix(c(rep(1, 25), numeric(50), rep(1, 25)), n) d <- matrix(rnorm(n), n) group <- c(rep('Group_1', N), rep('Group_2', N)) Cov <- matrix(c(1, .5, .5, 1.5), 2) Mean <- c(0, 0.5) # groups completely equal dat1 <- simdata(a, d, N, itemtype = 'dich', sigma = cov2cor(Cov)) dat2 <- simdata(a, d, N, itemtype = 'dich', sigma = Cov, mu = Mean) dat <- rbind(dat1, dat2) mod <- multipleGroup(dat, model, group=group, SE=TRUE, invariance=c('free_means', 'free_var')) coef(mod, simplify=TRUE) plot(mod, degrees = c(45,45)) DRF(mod) # some intercepts slightly higher in Group 2 d2 <- d d2[c(10:15, 31:35)] <- d2[c(10:15, 31:35)] + 1 dat1 <- simdata(a, d, N, itemtype = 'dich', sigma = cov2cor(Cov)) dat2 <- simdata(a, d2, N, itemtype = 'dich', sigma = Cov, mu = Mean) dat <- rbind(dat1, dat2) mod <- multipleGroup(dat, model, group=group, SE=TRUE, invariance=c('free_means', 'free_var')) coef(mod, simplify=TRUE) plot(mod, degrees = c(45,45)) DRF(mod) DRF(mod, draws = 500) ## End(Not run)
Function performs various omnibus differential test functioning procedures on an object
estimated with multipleGroup()
. If the latent means/covariances are suspected to differ
then the input object should contain a set of 'anchor' items to ensure that only differential
test features are being detected rather than group differences. Returns signed (average area
above and below) and unsigned (total area) statistics, with descriptives such as the percent
average bias between group total scores for each statistic. If a grid of Theta values is passed,
these can be evaluated as well to determine specific DTF location effects. For best results,
the baseline model should contain a set of 'anchor' items and have freely estimated
hyper-parameters in the focal groups. See DIF
for details.
DTF( mod, draws = NULL, CI = 0.95, npts = 1000, theta_lim = c(-6, 6), Theta_nodes = NULL, plot = "none", auto.key = list(space = "right", points = FALSE, lines = TRUE), ... )
DTF( mod, draws = NULL, CI = 0.95, npts = 1000, theta_lim = c(-6, 6), Theta_nodes = NULL, plot = "none", auto.key = list(space = "right", points = FALSE, lines = TRUE), ... )
mod |
a multipleGroup object which estimated only 2 groups |
draws |
a number indicating how many draws to take to form a suitable multiple imputation estimate of the expected test scores (usually 100 or more). Returns a list containing the imputation distribution and null hypothesis test for the sDTF statistic |
CI |
range of confidence interval when using draws input |
npts |
number of points to use in the integration. Default is 1000 |
theta_lim |
lower and upper limits of the latent trait (theta) to be evaluated, and is
used in conjunction with |
Theta_nodes |
an optional matrix of Theta values to be evaluated in the draws for the sDTF statistic. However, these values are not averaged across, and instead give the bootstrap confidence intervals at the respective Theta nodes. Useful when following up a large uDTF/sDTF statistic to determine where the difference between the test curves are large (while still accounting for sampling variability). Returns a matrix with observed variability |
plot |
a character vector indicating which plot to draw. Possible values are 'none', 'func' for the test score functions, and 'sDTF' for the evaluated sDTF values across the integration grid. Each plot is drawn with imputed confidence envelopes |
auto.key |
logical; automatically generate key in lattice plot? |
... |
additional arguments to be passed to |
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Chalmers, R. P., Counsell, A., and Flora, D. B. (2016). It might not make a big DIF: Improved Differential Test Functioning statistics that account for sampling variability. Educational and Psychological Measurement, 76, 114-140. doi:10.1177/0013164415584576
## Not run: set.seed(1234) n <- 30 N <- 500 # only first 5 items as anchors model <- 'F = 1-30 CONSTRAINB = (1-5, a1), (1-5, d)' a <- matrix(1, n) d <- matrix(rnorm(n), n) group <- c(rep('Group_1', N), rep('Group_2', N)) ## ------------- # groups completely equal dat1 <- simdata(a, d, N, itemtype = '2PL') dat2 <- simdata(a, d, N, itemtype = '2PL') dat <- rbind(dat1, dat2) mod <- multipleGroup(dat, model, group=group, SE=TRUE, invariance=c('free_means', 'free_var')) plot(mod) DTF(mod) if(interactive()) mirtCluster() DTF(mod, draws = 1000) #95% C.I. for sDTF containing 0. uDTF is very small DTF(mod, draws = 1000, plot='sDTF') #sDTF 95% C.I.'s across Theta always include 0 ## ------------- ## random slopes and intercepts for 15 items, and latent mean difference ## (no systematic DTF should exist, but DIF will be present) set.seed(1234) dat1 <- simdata(a, d, N, itemtype = '2PL', mu=.50, sigma=matrix(1.5)) dat2 <- simdata(a + c(numeric(15), runif(n-15, -.2, .2)), d + c(numeric(15), runif(n-15, -.5, .5)), N, itemtype = '2PL') dat <- rbind(dat1, dat2) mod1 <- multipleGroup(dat, 1, group=group) plot(mod1) #does not account for group differences! Need anchors mod2 <- multipleGroup(dat, model, group=group, SE=TRUE, invariance=c('free_means', 'free_var')) plot(mod2) # significant DIF in multiple items.... # DIF(mod2, which.par=c('a1', 'd'), items2test=16:30) DTF(mod2) DTF(mod2, draws=1000) #non-sig DTF due to item cancellation ## ------------- ## systematic differing slopes and intercepts (clear DTF) dat1 <- simdata(a, d, N, itemtype = '2PL', mu=.50, sigma=matrix(1.5)) dat2 <- simdata(a + c(numeric(15), rnorm(n-15, 1, .25)), d + c(numeric(15), rnorm(n-15, 1, .5)), N, itemtype = '2PL') dat <- rbind(dat1, dat2) mod3 <- multipleGroup(dat, model, group=group, SE=TRUE, invariance=c('free_means', 'free_var')) plot(mod3) #visable DTF happening # DIF(mod3, c('a1', 'd'), items2test=16:30) DTF(mod3) #unsigned bias. Signed bias indicates group 2 scores generally higher on average DTF(mod3, draws=1000) DTF(mod3, draws=1000, plot='func') DTF(mod3, draws=1000, plot='sDTF') #multiple DTF areas along Theta # evaluate specific values for sDTF Theta_nodes <- matrix(seq(-6,6,length.out = 100)) sDTF <- DTF(mod3, Theta_nodes=Theta_nodes) head(sDTF) sDTF <- DTF(mod3, Theta_nodes=Theta_nodes, draws=100) head(sDTF) ## End(Not run)
## Not run: set.seed(1234) n <- 30 N <- 500 # only first 5 items as anchors model <- 'F = 1-30 CONSTRAINB = (1-5, a1), (1-5, d)' a <- matrix(1, n) d <- matrix(rnorm(n), n) group <- c(rep('Group_1', N), rep('Group_2', N)) ## ------------- # groups completely equal dat1 <- simdata(a, d, N, itemtype = '2PL') dat2 <- simdata(a, d, N, itemtype = '2PL') dat <- rbind(dat1, dat2) mod <- multipleGroup(dat, model, group=group, SE=TRUE, invariance=c('free_means', 'free_var')) plot(mod) DTF(mod) if(interactive()) mirtCluster() DTF(mod, draws = 1000) #95% C.I. for sDTF containing 0. uDTF is very small DTF(mod, draws = 1000, plot='sDTF') #sDTF 95% C.I.'s across Theta always include 0 ## ------------- ## random slopes and intercepts for 15 items, and latent mean difference ## (no systematic DTF should exist, but DIF will be present) set.seed(1234) dat1 <- simdata(a, d, N, itemtype = '2PL', mu=.50, sigma=matrix(1.5)) dat2 <- simdata(a + c(numeric(15), runif(n-15, -.2, .2)), d + c(numeric(15), runif(n-15, -.5, .5)), N, itemtype = '2PL') dat <- rbind(dat1, dat2) mod1 <- multipleGroup(dat, 1, group=group) plot(mod1) #does not account for group differences! Need anchors mod2 <- multipleGroup(dat, model, group=group, SE=TRUE, invariance=c('free_means', 'free_var')) plot(mod2) # significant DIF in multiple items.... # DIF(mod2, which.par=c('a1', 'd'), items2test=16:30) DTF(mod2) DTF(mod2, draws=1000) #non-sig DTF due to item cancellation ## ------------- ## systematic differing slopes and intercepts (clear DTF) dat1 <- simdata(a, d, N, itemtype = '2PL', mu=.50, sigma=matrix(1.5)) dat2 <- simdata(a + c(numeric(15), rnorm(n-15, 1, .25)), d + c(numeric(15), rnorm(n-15, 1, .5)), N, itemtype = '2PL') dat <- rbind(dat1, dat2) mod3 <- multipleGroup(dat, model, group=group, SE=TRUE, invariance=c('free_means', 'free_var')) plot(mod3) #visable DTF happening # DIF(mod3, c('a1', 'd'), items2test=16:30) DTF(mod3) #unsigned bias. Signed bias indicates group 2 scores generally higher on average DTF(mod3, draws=1000) DTF(mod3, draws=1000, plot='func') DTF(mod3, draws=1000, plot='sDTF') #multiple DTF areas along Theta # evaluate specific values for sDTF Theta_nodes <- matrix(seq(-6,6,length.out = 100)) sDTF <- DTF(mod3, Theta_nodes=Theta_nodes) head(sDTF) sDTF <- DTF(mod3, Theta_nodes=Theta_nodes, draws=100) head(sDTF) ## End(Not run)
Computes effect size measures of differential item functioning and differential test/bundle functioning based on expected scores from Meade (2010). Item parameters from both reference and focal group are used in conjunction with focal group empirical theta estimates (and an assumed normally distributed theta) to compute expected scores.
empirical_ES( mod, Theta.focal = NULL, focal_items = 1L:extract.mirt(mod, "nitems"), DIF = TRUE, npts = 61, theta_lim = c(-6, 6), plot = FALSE, type = "b", par.strip.text = list(cex = 0.7), par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col = "black")), ... )
empirical_ES( mod, Theta.focal = NULL, focal_items = 1L:extract.mirt(mod, "nitems"), DIF = TRUE, npts = 61, theta_lim = c(-6, 6), plot = FALSE, type = "b", par.strip.text = list(cex = 0.7), par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col = "black")), ... )
mod |
a multipleGroup object which estimated only 2 groups. The first group in this object
is assumed to be the reference group by default (i.e., |
Theta.focal |
an optional matrix of Theta values from the focal group to be evaluated. If not supplied
the default values to |
focal_items |
a numeric vector indicating which items to include the tests. The
default uses all of the items. Selecting fewer items will result in tests of
'differential bundle functioning' when |
DIF |
logical; return a data.frame of item-level imputation properties? If |
npts |
number of points to use in the integration. Default is 61 |
theta_lim |
lower and upper limits of the latent trait (theta) to be evaluated, and is
used in conjunction with |
plot |
logical; plot expected scores of items/test where expected scores are computed using focal group thetas and both focal and reference group item parameters |
type |
type of objects to draw in |
par.strip.text |
plotting argument passed to |
par.settings |
plotting argument passed to |
... |
The default DIF = TRUE
produces several effect sizes indices at the item level.
Signed indices allow DIF favoring the focal group at one point on the theta
distribution to cancel DIF favoring the reference group at another point on the theta
distribution. Unsigned indices take the absolute value before summing or averaging,
thus not allowing cancellation of DIF across theta.
Signed Item Difference in the Sample. The average difference in expected scores across the focal sample using both focal and reference group item parameters.
Unsigned Item Difference in the Sample. Same as SIDS except absolute value of expected scores is taken prior to averaging across the sample.
The maximum difference in expected scores in the sample.
Expected Score Standardized Difference. Cohen's D for difference in expected scores.
Signed Item Difference in a Normal distribution. Identical to SIDS but averaged across a normal distribution rather than the sample.
Unsigned Item Difference in a Normal distribution. Identical to UIDS but averaged across a normal distribution rather than the sample.
DIF = FALSE
produces a series of test/bundle-level indices that are based on item-level
indices.
Signed Test Differences in the Sample. The sum of the SIDS across items.
Unsigned Test Differences in the Sample. The sum of the UIDS across items.
Stark's version of STDS using a normal distribution rather than sample estimated thetas.
Unsigned Expected Test Scores Differences in the Sample. The difference in observed summed scale scores expected, on average, across a hypothetical focal group with a normally distributed theta, had DF been uniform in nature for all items
Unsigned Expected Test Score Differences in the Sample. The hypothetical difference expected scale scores that would have been present if scale-level DF had been uniform across respondents (i.e., always favoring the focal group).
Identical to UETSDS but computed using a normal distribution.
Maximum expected test score differences in the sample.
Expected Test Score Standardized Difference. Cohen's D for expected test scores.
Adam Meade, with contributions by Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Meade, A. W. (2010). A taxonomy of effect size measures for the differential functioning of items and scales. Journal of Applied Psychology, 95, 728-743.
## Not run: # no DIF set.seed(12345) a <- matrix(abs(rnorm(15,1,.3)), ncol=1) d <- matrix(rnorm(15,0,.7),ncol=1) itemtype <- rep('2PL', nrow(a)) N <- 1000 dataset1 <- simdata(a, d, N, itemtype) dataset2 <- simdata(a, d, N, itemtype, mu = .1, sigma = matrix(1.5)) dat <- rbind(dataset1, dataset2) # ensure 'Ref' is the first group (and therefore reference group during estimation) group <- factor(c(rep('Ref', N), rep('Focal', N)), levels = c('Ref', 'Focal')) mod <- multipleGroup(dat, 1, group = group, invariance = c(colnames(dat)[1:5], 'free_means', 'free_var')) coef(mod, simplify=TRUE) empirical_ES(mod) empirical_ES(mod, DIF=FALSE) empirical_ES(mod, DIF=FALSE, focal_items = 10:15) empirical_ES(mod, plot=TRUE) empirical_ES(mod, plot=TRUE, DIF=FALSE) ###--------------------------------------------- # DIF set.seed(12345) a1 <- a2 <- matrix(abs(rnorm(15,1,.3)), ncol=1) d1 <- d2 <- matrix(rnorm(15,0,.7),ncol=1) a2[10:15,] <- a2[10:15,] + rnorm(6, 0, .3) d2[10:15,] <- d2[10:15,] + rnorm(6, 0, .3) itemtype <- rep('dich', nrow(a1)) N <- 1000 dataset1 <- simdata(a1, d1, N, itemtype) dataset2 <- simdata(a2, d2, N, itemtype, mu = .1, sigma = matrix(1.5)) dat <- rbind(dataset1, dataset2) group <- factor(c(rep('Ref', N), rep('Focal', N)), levels = c('Ref', 'Focal')) mod <- multipleGroup(dat, 1, group = group, invariance = c(colnames(dat)[1:5], 'free_means', 'free_var')) coef(mod, simplify=TRUE) empirical_ES(mod) empirical_ES(mod, DIF = FALSE) empirical_ES(mod, plot=TRUE) empirical_ES(mod, plot=TRUE, DIF=FALSE) ## End(Not run)
## Not run: # no DIF set.seed(12345) a <- matrix(abs(rnorm(15,1,.3)), ncol=1) d <- matrix(rnorm(15,0,.7),ncol=1) itemtype <- rep('2PL', nrow(a)) N <- 1000 dataset1 <- simdata(a, d, N, itemtype) dataset2 <- simdata(a, d, N, itemtype, mu = .1, sigma = matrix(1.5)) dat <- rbind(dataset1, dataset2) # ensure 'Ref' is the first group (and therefore reference group during estimation) group <- factor(c(rep('Ref', N), rep('Focal', N)), levels = c('Ref', 'Focal')) mod <- multipleGroup(dat, 1, group = group, invariance = c(colnames(dat)[1:5], 'free_means', 'free_var')) coef(mod, simplify=TRUE) empirical_ES(mod) empirical_ES(mod, DIF=FALSE) empirical_ES(mod, DIF=FALSE, focal_items = 10:15) empirical_ES(mod, plot=TRUE) empirical_ES(mod, plot=TRUE, DIF=FALSE) ###--------------------------------------------- # DIF set.seed(12345) a1 <- a2 <- matrix(abs(rnorm(15,1,.3)), ncol=1) d1 <- d2 <- matrix(rnorm(15,0,.7),ncol=1) a2[10:15,] <- a2[10:15,] + rnorm(6, 0, .3) d2[10:15,] <- d2[10:15,] + rnorm(6, 0, .3) itemtype <- rep('dich', nrow(a1)) N <- 1000 dataset1 <- simdata(a1, d1, N, itemtype) dataset2 <- simdata(a2, d2, N, itemtype, mu = .1, sigma = matrix(1.5)) dat <- rbind(dataset1, dataset2) group <- factor(c(rep('Ref', N), rep('Focal', N)), levels = c('Ref', 'Focal')) mod <- multipleGroup(dat, 1, group = group, invariance = c(colnames(dat)[1:5], 'free_means', 'free_var')) coef(mod, simplify=TRUE) empirical_ES(mod) empirical_ES(mod, DIF = FALSE) empirical_ES(mod, plot=TRUE) empirical_ES(mod, plot=TRUE, DIF=FALSE) ## End(Not run)
Given a dataset containing item responses this function will construct empirical graphics using the observed responses to each item conditioned on the total score. When individual item plots are requested then the total score will be formed without the item of interest (i.e., the total score without that item).
empirical_plot( data, which.items = NULL, type = "prop", smooth = FALSE, formula = resp ~ s(TS, k = 5), main = NULL, par.strip.text = list(cex = 0.7), par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col = "black")), auto.key = list(space = "right", points = FALSE, lines = TRUE), ... )
empirical_plot( data, which.items = NULL, type = "prop", smooth = FALSE, formula = resp ~ s(TS, k = 5), main = NULL, par.strip.text = list(cex = 0.7), par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col = "black")), auto.key = list(space = "right", points = FALSE, lines = TRUE), ... )
data |
a |
which.items |
a numeric vector indicating which items to plot in a faceted image plot. If NULL then empirical test plots will be constructed instead |
type |
character vector specifying type of plot to draw. When |
smooth |
logical; include a GAM smoother instead of the raw proportions? Default is FALSE |
formula |
formula used for the GAM smoother |
main |
the main title for the plot. If NULL an internal default will be used |
par.strip.text |
plotting argument passed to |
par.settings |
plotting argument passed to |
auto.key |
plotting argument passed to |
... |
additional arguments to be passed to |
Note that these types of plots should only be used for unidimensional tests with monotonically increasing item response functions. If monotonicity is not true for all items, however, then these plots may serve as a visual diagnostic tool so long as the majority of items are indeed monotonic.
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: SAT12[SAT12 == 8] <- NA data <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) # test plot empirical_plot(data) empirical_plot(data, type = 'hist') empirical_plot(data, type = 'hist', breaks=20) # items 1, 2 and 5 empirical_plot(data, c(1, 2, 5)) empirical_plot(data, c(1, 2, 5), smooth = TRUE) empirical_plot(data, c(1, 2, 5), type = 'boxplot') # replace weird looking items with unscored versions for diagnostics empirical_plot(data, 32) data[,32] <- SAT12[,32] empirical_plot(data, 32) empirical_plot(data, 32, smooth = TRUE) ## End(Not run)
## Not run: SAT12[SAT12 == 8] <- NA data <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) # test plot empirical_plot(data) empirical_plot(data, type = 'hist') empirical_plot(data, type = 'hist', breaks=20) # items 1, 2 and 5 empirical_plot(data, c(1, 2, 5)) empirical_plot(data, c(1, 2, 5), smooth = TRUE) empirical_plot(data, c(1, 2, 5), type = 'boxplot') # replace weird looking items with unscored versions for diagnostics empirical_plot(data, 32) data[,32] <- SAT12[,32] empirical_plot(data, 32) empirical_plot(data, 32, smooth = TRUE) ## End(Not run)
Given secondary latent trait estimates and their associated standard errors
returned from fscores
, compute the empirical reliability.
empirical_rxx(Theta_SE, T_as_X = FALSE)
empirical_rxx(Theta_SE, T_as_X = FALSE)
Theta_SE |
a matrix of latent trait estimates returned from |
T_as_X |
logical; should the observed variance be equal to
|
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: dat <- expand.table(deAyala) itemstats(dat) mod <- mirt(dat) theta_se <- fscores(mod, full.scores.SE = TRUE) empirical_rxx(theta_se) theta_se <- fscores(mod, full.scores.SE = TRUE, method = 'ML') empirical_rxx(theta_se) empirical_rxx(theta_se, T_as_X = TRUE) ## End(Not run)
## Not run: dat <- expand.table(deAyala) itemstats(dat) mod <- mirt(dat) theta_se <- fscores(mod, full.scores.SE = TRUE) empirical_rxx(theta_se) theta_se <- fscores(mod, full.scores.SE = TRUE, method = 'ML') empirical_rxx(theta_se) empirical_rxx(theta_se, T_as_X = TRUE) ## End(Not run)
A function for extracting the empirical estimating functions of a fitted
mirt
, multipleGroup
, bfactor
, or
mdirt
model. This is the derivative of the log-likelihood with respect to the
parameter vector, evaluated at the observed (case-wise) data. In other
words, this function returns the case-wise scores, evaluated at the fitted
model parameters. Currently, models fitted via the EM
or BL
method are supported. For the computations, the internal Theta
grid of
the model is being used which was already used during the estimation of
the model itself along with its matching normalized density.
estfun.AllModelClass( x, weights = extract.mirt(x, "survey.weights"), centering = FALSE )
estfun.AllModelClass( x, weights = extract.mirt(x, "survey.weights"), centering = FALSE )
x |
a fitted model object of class |
weights |
by default, the |
centering |
a boolean variable that allows the centering of the case-wise scores (i.e., setting their expected values to 0). If the case-wise scores were obtained from maximum likelihood estimates, this setting does not affect the result. |
An n x k matrix corresponding to n observations and k parameters
Lennart Schneider [email protected] and Phil Chalmers; centering argument contributed by Rudolf Debelak ([email protected])
mirt
, multipleGroup
,
bfactor
, mdirt
## Not run: # fit a 2PL on the LSAT7 data and get the scores mod1 <- mirt(expand.table(LSAT7), 1, SE = TRUE, SE.type = "crossprod") sc1 <- estfun.AllModelClass(mod1) # get the gradient colSums(sc1) # calculate the OPG estimate of the variance-covariance matrix "by hand" vc1 <- vcov(mod1) all.equal(crossprod(sc1), chol2inv(chol(vc1)), check.attributes = FALSE) # Discrete group modd <- mdirt(expand.table(LSAT7), 2, SE = TRUE, SE.type = "crossprod") sc1 <- estfun.AllModelClass(modd) # get the gradient colSums(sc1) # calculate the OPG estimate of the variance-covariance matrix "by hand" vc1 <- vcov(modd) all.equal(crossprod(sc1), chol2inv(chol(vc1)), check.attributes = FALSE) # fit a multiple group 2PL and do the same as above group <- rep(c("G1", "G2"), 500) mod2 <- multipleGroup(expand.table(LSAT7), 1, group, SE = TRUE, SE.type = "crossprod") sc2 <- estfun.AllModelClass(mod2) colSums(sc2) vc2 <- vcov(mod2) all.equal(crossprod(sc2), chol2inv(chol(vc2)), check.attributes = FALSE) # fit a bifactor model with 2 specific factors and do the same as above mod3 <- bfactor(expand.table(LSAT7), c(2, 2, 1, 1, 2), SE = TRUE, SE.type = "crossprod") sc3 <- estfun.AllModelClass(mod3) colSums(sc3) vc3 <- vcov(mod3) all.equal(crossprod(sc3), chol2inv(chol(vc3)), check.attributes = FALSE) # fit a 2PL not weighting all cases equally survey.weights <- c(rep(2, sum(LSAT7$freq) / 2), rep(1, sum(LSAT7$freq) / 2)) survey.weights <- survey.weights / sum(survey.weights) * sum(LSAT7$freq) mod4 <- mirt(expand.table(LSAT7), 1, SE = TRUE, SE.type = "crossprod", survey.weights = survey.weights) sc4 <- estfun.AllModelClass(mod4, weights = extract.mirt(mod4, "survey.weights")) # get the gradient colSums(sc4) # to calculate the OPG estimate of the variance-covariance matrix "by hand", # the weights must be adjusted by taking their square root sc4_crp <- estfun.AllModelClass(mod4, weights = sqrt(extract.mirt(mod4, "survey.weights"))) vc4 <- vcov(mod4) all.equal(crossprod(sc4_crp), chol2inv(chol(vc4)), check.attributes = FALSE) ## End(Not run)
## Not run: # fit a 2PL on the LSAT7 data and get the scores mod1 <- mirt(expand.table(LSAT7), 1, SE = TRUE, SE.type = "crossprod") sc1 <- estfun.AllModelClass(mod1) # get the gradient colSums(sc1) # calculate the OPG estimate of the variance-covariance matrix "by hand" vc1 <- vcov(mod1) all.equal(crossprod(sc1), chol2inv(chol(vc1)), check.attributes = FALSE) # Discrete group modd <- mdirt(expand.table(LSAT7), 2, SE = TRUE, SE.type = "crossprod") sc1 <- estfun.AllModelClass(modd) # get the gradient colSums(sc1) # calculate the OPG estimate of the variance-covariance matrix "by hand" vc1 <- vcov(modd) all.equal(crossprod(sc1), chol2inv(chol(vc1)), check.attributes = FALSE) # fit a multiple group 2PL and do the same as above group <- rep(c("G1", "G2"), 500) mod2 <- multipleGroup(expand.table(LSAT7), 1, group, SE = TRUE, SE.type = "crossprod") sc2 <- estfun.AllModelClass(mod2) colSums(sc2) vc2 <- vcov(mod2) all.equal(crossprod(sc2), chol2inv(chol(vc2)), check.attributes = FALSE) # fit a bifactor model with 2 specific factors and do the same as above mod3 <- bfactor(expand.table(LSAT7), c(2, 2, 1, 1, 2), SE = TRUE, SE.type = "crossprod") sc3 <- estfun.AllModelClass(mod3) colSums(sc3) vc3 <- vcov(mod3) all.equal(crossprod(sc3), chol2inv(chol(vc3)), check.attributes = FALSE) # fit a 2PL not weighting all cases equally survey.weights <- c(rep(2, sum(LSAT7$freq) / 2), rep(1, sum(LSAT7$freq) / 2)) survey.weights <- survey.weights / sum(survey.weights) * sum(LSAT7$freq) mod4 <- mirt(expand.table(LSAT7), 1, SE = TRUE, SE.type = "crossprod", survey.weights = survey.weights) sc4 <- estfun.AllModelClass(mod4, weights = extract.mirt(mod4, "survey.weights")) # get the gradient colSums(sc4) # to calculate the OPG estimate of the variance-covariance matrix "by hand", # the weights must be adjusted by taking their square root sc4_crp <- estfun.AllModelClass(mod4, weights = sqrt(extract.mirt(mod4, "survey.weights"))) vc4 <- vcov(mod4) all.equal(crossprod(sc4_crp), chol2inv(chol(vc4)), check.attributes = FALSE) ## End(Not run)
The expand.table
function expands a summary table of unique response
patterns to a full sized data-set. By default the response frequencies are
assumed to be on rightmost column of the input data, though this can be modified.
expand.table(tabdata, freq = colnames(tabdata)[ncol(tabdata)], sample = FALSE)
expand.table(tabdata, freq = colnames(tabdata)[ncol(tabdata)], sample = FALSE)
tabdata |
An object of class |
freq |
either a character vector specifying the column in |
sample |
logical; randomly switch the rows in the expanded table? This does not change the expanded data, only the row locations |
Returns a numeric matrix with all the response patterns.
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
data(LSAT7) head(LSAT7) # frequency in right-most column LSAT7full <- expand.table(LSAT7) head(LSAT7full) dim(LSAT7full) # randomly switch rows in the expanded response table LSAT7samp <- expand.table(LSAT7, sample = TRUE) head(LSAT7samp) colMeans(LSAT7full) colMeans(LSAT7samp) #equal #-------- ## Not run: # Generate data from separate response pattern matrix and freq vector # The following uses Table 2.1 from de Ayala (2009) f <- c(691,2280,242,235,158,184,1685,1053,134,462,92,65,571,79,87,41,1682,702, 370,63,626,412,166,52,28,15,2095,1219,500,187,40,3385) pat <- matrix(c( 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1), ncol=5, byrow=TRUE) colnames(pat) <- paste0('Item.', 1:5) head(pat) table2.1 <- expand.table(pat, freq = f) dim(table2.1) ## End(Not run)
data(LSAT7) head(LSAT7) # frequency in right-most column LSAT7full <- expand.table(LSAT7) head(LSAT7full) dim(LSAT7full) # randomly switch rows in the expanded response table LSAT7samp <- expand.table(LSAT7, sample = TRUE) head(LSAT7samp) colMeans(LSAT7full) colMeans(LSAT7samp) #equal #-------- ## Not run: # Generate data from separate response pattern matrix and freq vector # The following uses Table 2.1 from de Ayala (2009) f <- c(691,2280,242,235,158,184,1685,1053,134,462,92,65,571,79,87,41,1682,702, 370,63,626,412,166,52,28,15,2095,1219,500,187,40,3385) pat <- matrix(c( 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1), ncol=5, byrow=TRUE) colnames(pat) <- paste0('Item.', 1:5) head(pat) table2.1 <- expand.table(pat, freq = f) dim(table2.1) ## End(Not run)
Given an internal mirt object extracted from an estimated model compute the expected value for an item given the ability parameter(s).
expected.item(x, Theta, min = 0, include.var = FALSE)
expected.item(x, Theta, min = 0, include.var = FALSE)
x |
an extracted internal mirt object containing item information (see |
Theta |
a vector (unidimensional) or matrix (multidimensional) of latent trait values |
min |
a constant value added to the expected values indicating the lowest theoretical category. Default is 0 |
include.var |
logical; include the model-implied variance of the expected scores as well?
When |
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
mod <- mirt(Science, 1) extr.2 <- extract.item(mod, 2) Theta <- matrix(seq(-6,6, length.out=200)) expected <- expected.item(extr.2, Theta, min(Science[,1])) #min() of first item head(data.frame(expected, Theta=Theta)) expected.item(extr.2, Theta, min(Science[,1]), include.var=TRUE)
mod <- mirt(Science, 1) extr.2 <- extract.item(mod, 2) Theta <- matrix(seq(-6,6, length.out=200)) expected <- expected.item(extr.2, Theta, min(Science[,1])) #min() of first item head(data.frame(expected, Theta=Theta)) expected.item(extr.2, Theta, min(Science[,1]), include.var=TRUE)
Given an estimated model compute the expected test score. Returns the expected values in the same form as the data used to estimate the model.
expected.test( x, Theta, group = NULL, mins = TRUE, individual = FALSE, which.items = NULL, probs.only = FALSE )
expected.test( x, Theta, group = NULL, mins = TRUE, individual = FALSE, which.items = NULL, probs.only = FALSE )
x |
an estimated mirt object |
Theta |
a matrix of latent trait values (if a vector is supplied, will be coerced to a matrix with one column) |
group |
a number or character signifying which group the item should be extracted from (applies to 'MultipleGroupClass' objects only) |
mins |
logical; include the minimum value constants in the dataset. If FALSE, the expected values for each item are determined from the scoring 0:(ncat-1) |
individual |
logical; return tracelines for individual items? |
which.items |
an integer vector indicating which items to include in the expected test score. Default uses all possible items |
probs.only |
logical; return the probability for each category instead of
traceline score functions? Only useful when |
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: dat <- expand.table(deAyala) model <- 'F = 1-5 CONSTRAIN = (1-5, a1)' mod <- mirt(dat, model) Theta <- matrix(seq(-6,6,.01)) tscore <- expected.test(mod, Theta) tail(cbind(Theta, tscore)) # use only first two items (i.e., a bundle) bscore <- expected.test(mod, Theta, which.items = 1:2) tail(cbind(Theta, bscore)) # more low-level output (score and probabilty elements) expected.test(mod, Theta, individual=TRUE) expected.test(mod, Theta, individual=TRUE, probs.only=TRUE) ## End(Not run)
## Not run: dat <- expand.table(deAyala) model <- 'F = 1-5 CONSTRAIN = (1-5, a1)' mod <- mirt(dat, model) Theta <- matrix(seq(-6,6,.01)) tscore <- expected.test(mod, Theta) tail(cbind(Theta, tscore)) # use only first two items (i.e., a bundle) bscore <- expected.test(mod, Theta, which.items = 1:2) tail(cbind(Theta, bscore)) # more low-level output (score and probabilty elements) expected.test(mod, Theta, individual=TRUE) expected.test(mod, Theta, individual=TRUE, probs.only=TRUE) ## End(Not run)
Extract a single group from an object defined by multipleGroup
.
extract.group(x, group)
extract.group(x, group)
x |
mirt model of class 'MultipleGroupClass' |
group |
the name of the group to extract |
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: set.seed(12345) a <- matrix(abs(rnorm(15,1,.3)), ncol=1) d <- matrix(rnorm(15,0,.7),ncol=1) itemtype <- rep('2PL', nrow(a)) N <- 1000 dataset1 <- simdata(a, d, N, itemtype) dataset2 <- simdata(a, d, N, itemtype, mu = .1, sigma = matrix(1.5)) dat <- rbind(dataset1, dataset2) group <- c(rep('D1', N), rep('D2', N)) models <- 'F1 = 1-15' mod_configural <- multipleGroup(dat, models, group = group) group.1 <- extract.group(mod_configural, 'D1') #extract first group summary(group.1) plot(group.1) ## End(Not run)
## Not run: set.seed(12345) a <- matrix(abs(rnorm(15,1,.3)), ncol=1) d <- matrix(rnorm(15,0,.7),ncol=1) itemtype <- rep('2PL', nrow(a)) N <- 1000 dataset1 <- simdata(a, d, N, itemtype) dataset2 <- simdata(a, d, N, itemtype, mu = .1, sigma = matrix(1.5)) dat <- rbind(dataset1, dataset2) group <- c(rep('D1', N), rep('D2', N)) models <- 'F1 = 1-15' mod_configural <- multipleGroup(dat, models, group = group) group.1 <- extract.group(mod_configural, 'D1') #extract first group summary(group.1) plot(group.1) ## End(Not run)
Extract the internal mirt objects from any estimated model.
extract.item(x, item, group = NULL, drop.zeros = FALSE)
extract.item(x, item, group = NULL, drop.zeros = FALSE)
x |
mirt model of class 'SingleGroupClass' or 'MultipleGroupClass' |
item |
a number or character signifying which item to extract |
group |
a number signifying which group the item should be extracted from (applies to 'MultipleGroupClass' only) |
drop.zeros |
logical; drop slope values that are numerically close to zero to reduce
dimensionality? Useful in objects returned from |
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: mod <- mirt(Science, 1) extr.1 <- extract.item(mod, 1) ## End(Not run)
## Not run: mod <- mirt(Science, 1) extr.1 <- extract.item(mod, 1) ## End(Not run)
A generic function to extract the internal objects from estimated models.
extract.mirt(x, what, item = 1)
extract.mirt(x, what, item = 1)
x |
mirt model of class 'SingleGroupClass', 'MultipleGroupClass', 'MixedClass' or 'DiscreteGroupClass' |
what |
a string indicating what to extract |
item |
if necessary, which item to extract information from. Defaults to 1 if not specified |
Objects which can be extracted from mirt objects include:
observed log-likelihood
log term contributed by prior parameter distributions
goodness of fit statistic
degrees of freedom
p-value for G2 statistic
root mean-square error of approximation based on G2
CFI fit statistic
TLI fit statistic
AIC
BIC
sample size adjusted BIC
HQ
unrotated standardized loadings matrix
factor communality estimates
EM log-likelihood history
a tabular version of the raw response data input. Frequencies are stored
in freq
frequencies associated with tabdata
an integer vector indicating the number of unique elements for each item
an integer vector indicating the lowest category found in the input data
input model syntax
estimation method used
a vector of item types for each respective item (e.g., 'graded', '2PL', etc)
a vector of item names from the input data
a vector of factor names from the model definition
an integer vector indicating all valid row numbers used in the model estimation
(when all cases are used this will be 1:nrow(data)
)
raw input data of item responses
raw input data of data used as covariates
similar to tabdata
, however the responses have been transformed into
dummy coded variables
analogous to tabdatafull
, but for the raw input data instead of the
tabulated frequencies
if saved, extract the EM iteration history
expected probability of the unique response patterns
if supplied, the vector of survey weights used during estimation (NULL if missing)
a logical value indicating whether the model terminated within the convergence criteria
number of iterations it took to reach the convergence criteria
number of freely estimated parameters
vector containing uniquely estimated parameters
parameter covariance matrix (associated with parvec)
the condition number of the Hessian (if computed). Otherwise NA
a list of item parameter constraints to indicate which item parameters were equal during estimation
prior density distribution for the latent traits
posterior distribution for latent traits when using EM algorithm
if supplied, the data scoring key
number of latent traits/factors
number of items
number of groups
character vector of unique group names
a character vector indicating the group membership
a character vector indicating invariance
input from multipleGroup
a logical indicating whether the model passed the second-order test based on the Hessian matrix. Indicates whether model is a potential local maximum solution
logical; check whether the supplemented EM information matrix converged. Will be NA
if not applicable
estimation time, broken into different sections
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
extract.group
, extract.item
, mod2values
## Not run: mod <- mirt(Science, 1) extract.mirt(mod, 'logLik') extract.mirt(mod, 'F') #multiple group model grp <- rep(c('G1', 'G2'), each = nrow(Science)/2) mod2 <- multipleGroup(Science, 1, grp) grp1 <- extract.group(mod2, 1) #extract single group model extract.mirt(mod2, 'parvec') extract.mirt(grp1, 'parvec') ## End(Not run)
## Not run: mod <- mirt(Science, 1) extract.mirt(mod, 'logLik') extract.mirt(mod, 'F') #multiple group model grp <- rep(c('G1', 'G2'), each = nrow(Science)/2) mod2 <- multipleGroup(Science, 1, grp) grp1 <- extract.group(mod2, 1) #extract single group model extract.mirt(mod2, 'parvec') extract.mirt(grp1, 'parvec') ## End(Not run)
Implements the set of fixed-item calibration methods described by Kim (2006). The initial
calibrated model must be fitted via mirt
, is currently limited to
unidimensional models only, and should only be utilized when the new set of responses
are obtained from a population with similar distributional characteristics in the latent traits.
For more flexible calibration of items, including a fixed-item calibration variant involving
anchor items for equating, see multipleGroup
.
fixedCalib( data, model = 1, old_mod, PAU = "MWU", NEMC = "MEM", technical = list(), ... )
fixedCalib( data, model = 1, old_mod, PAU = "MWU", NEMC = "MEM", technical = list(), ... )
data |
new data to be used for calibration. Note that to be consistent
with the |
model |
type of model to fit for the complete dataset (not that for the fixed items
in |
old_mod |
a model of class SingleGroupClass fitted using |
PAU |
prior ability update (PAU) approach. Supports none ( |
NEMC |
number of EM cycles (NEMC) to use for the to-be-estimated parameters.
Supports one ( |
technical |
list of technical estimation arguments
(see |
... |
additional arguments to pass to |
Kim, S. (2006). A comparative study of IRT fixed parameter calibration methods. Journal of Educational Measurement, 4(43), 355-381.
## Not run: # single factor set.seed(12345) J <- 50 a <- matrix(abs(rnorm(J,1,.3)), ncol=1) d <- matrix(rnorm(J,0,.7),ncol=1) itemtype <- rep('2PL', nrow(a)) # calibration data theta ~ N(0,1) N <- 3000 dataset1 <- simdata(a, d, N = N, itemtype=itemtype) # new data (again, theta ~ N(0,1)) dataset2 <- simdata(a, d, N = 1000, itemtype=itemtype) # last 40% of experimental items not given to calibration group # (unobserved; hence removed) dataset1 <- dataset1[,-c(J:(J*.6))] head(dataset1) #-------------------------------------- # calibrated model from dataset1 only mod <- mirt(dataset1, model = 1) coef(mod, simplify=TRUE) # No Prior Weights Updating and One EM Cycle (NWU-OEM) NWU_OEM <- fixedCalib(dataset2, model=1, old_mod=mod, PAU='NWU', NEMC='OEM') coef(NWU_OEM, simplify=TRUE) data.frame(coef(NWU_OEM, simplify=TRUE)$items[,c('a1','d')], pop_a1=a, pop_d=d) plot(NWU_OEM, type = 'empiricalhist') # No Prior Weights Updating and Multiple EM Cycles (NWU-MEM) NWU_MEM <- fixedCalib(dataset2, model = 1, old_mod = mod, PAU = 'NWU') coef(NWU_MEM, simplify=TRUE) data.frame(coef(NWU_MEM, simplify=TRUE)$items[,c('a1','d')], pop_a1=a, pop_d=d) plot(NWU_MEM, type = 'empiricalhist') # One Prior Weights Updating and One EM Cycle (OWU-OEM) OWU_OEM <- fixedCalib(dataset2, model=1, old_mod=mod, PAU='OWU', NEMC="OEM") coef(OWU_OEM, simplify=TRUE) data.frame(coef(OWU_OEM, simplify=TRUE)$items[,c('a1','d')], pop_a1=a, pop_d=d) plot(OWU_OEM, type = 'empiricalhist') # One Prior Weights Updating and Multiple EM Cycles (OWU-MEM) OWU_MEM <- fixedCalib(dataset2, model = 1, old_mod = mod, PAU = 'OWU') coef(OWU_MEM, simplify=TRUE) data.frame(coef(OWU_MEM, simplify=TRUE)$items[,c('a1','d')], pop_a1=a, pop_d=d) plot(OWU_MEM, type = 'empiricalhist') # Multiple Prior Weights Updating and Multiple EM Cycles (MWU-MEM) MWU_MEM <- fixedCalib(dataset2, model = 1, old_mod = mod) coef(MWU_MEM, simplify=TRUE) data.frame(coef(MWU_MEM, simplify=TRUE)$items[,c('a1','d')], pop_a1=a, pop_d=d) plot(MWU_MEM, type = 'empiricalhist') # factor scores distribution check fs <- fscores(MWU_MEM) hist(fs) c(mean_calib=mean(fs[1:N, ]), sd_calib=sd(fs[1:N, ])) c(mean_exper=mean(fs[-c(1:N), ]), sd_exper=sd(fs[-c(1:N), ])) ############################ ## Item length constraint example for each participant in the experimental ## items group. In this example, all participants were forced to have a test ## length of J=30, though the item pool had J=50 total items. # new experimental data (relatively extreme, theta ~ N(.5,1.5)) dataset2 <- simdata(a, d, N = 1000, itemtype=itemtype, mu=.5, sigma=matrix(1.5)) # Add missing values to each participant in new dataset where individuals # were randomly administered 10 experimental items, subject to the constraint # that each participant received a test with J=30 items. dataset2 <- t(apply(dataset2, 1, function(x){ NA_precalib <- sample(1:30, 10) NA_experimental <- sample(31:50, 10) x[c(NA_precalib, NA_experimental)] <- NA x })) head(dataset2) # check that all individuals had 30 items all(rowSums(!is.na(dataset2)) == 30) # Multiple Prior Weights Updating and Multiple EM Cycles (MWU-MEM) MWU_MEM <- fixedCalib(dataset2, model = 1, old_mod = mod) coef(MWU_MEM, simplify=TRUE) data.frame(coef(MWU_MEM, simplify=TRUE)$items[,c('a1','d')], pop_a1=a, pop_d=d) plot(MWU_MEM, type = 'empiricalhist') ## factor scores check fs <- fscores(MWU_MEM) hist(fs) c(mean_calib=mean(fs[1:N, ]), sd_calib=sd(fs[1:N, ])) ## shrinkage, but generally different from calibrated sample c(mean_exper=mean(fs[-c(1:N), ]), sd_exper=sd(fs[-c(1:N), ])) ## End(Not run)
## Not run: # single factor set.seed(12345) J <- 50 a <- matrix(abs(rnorm(J,1,.3)), ncol=1) d <- matrix(rnorm(J,0,.7),ncol=1) itemtype <- rep('2PL', nrow(a)) # calibration data theta ~ N(0,1) N <- 3000 dataset1 <- simdata(a, d, N = N, itemtype=itemtype) # new data (again, theta ~ N(0,1)) dataset2 <- simdata(a, d, N = 1000, itemtype=itemtype) # last 40% of experimental items not given to calibration group # (unobserved; hence removed) dataset1 <- dataset1[,-c(J:(J*.6))] head(dataset1) #-------------------------------------- # calibrated model from dataset1 only mod <- mirt(dataset1, model = 1) coef(mod, simplify=TRUE) # No Prior Weights Updating and One EM Cycle (NWU-OEM) NWU_OEM <- fixedCalib(dataset2, model=1, old_mod=mod, PAU='NWU', NEMC='OEM') coef(NWU_OEM, simplify=TRUE) data.frame(coef(NWU_OEM, simplify=TRUE)$items[,c('a1','d')], pop_a1=a, pop_d=d) plot(NWU_OEM, type = 'empiricalhist') # No Prior Weights Updating and Multiple EM Cycles (NWU-MEM) NWU_MEM <- fixedCalib(dataset2, model = 1, old_mod = mod, PAU = 'NWU') coef(NWU_MEM, simplify=TRUE) data.frame(coef(NWU_MEM, simplify=TRUE)$items[,c('a1','d')], pop_a1=a, pop_d=d) plot(NWU_MEM, type = 'empiricalhist') # One Prior Weights Updating and One EM Cycle (OWU-OEM) OWU_OEM <- fixedCalib(dataset2, model=1, old_mod=mod, PAU='OWU', NEMC="OEM") coef(OWU_OEM, simplify=TRUE) data.frame(coef(OWU_OEM, simplify=TRUE)$items[,c('a1','d')], pop_a1=a, pop_d=d) plot(OWU_OEM, type = 'empiricalhist') # One Prior Weights Updating and Multiple EM Cycles (OWU-MEM) OWU_MEM <- fixedCalib(dataset2, model = 1, old_mod = mod, PAU = 'OWU') coef(OWU_MEM, simplify=TRUE) data.frame(coef(OWU_MEM, simplify=TRUE)$items[,c('a1','d')], pop_a1=a, pop_d=d) plot(OWU_MEM, type = 'empiricalhist') # Multiple Prior Weights Updating and Multiple EM Cycles (MWU-MEM) MWU_MEM <- fixedCalib(dataset2, model = 1, old_mod = mod) coef(MWU_MEM, simplify=TRUE) data.frame(coef(MWU_MEM, simplify=TRUE)$items[,c('a1','d')], pop_a1=a, pop_d=d) plot(MWU_MEM, type = 'empiricalhist') # factor scores distribution check fs <- fscores(MWU_MEM) hist(fs) c(mean_calib=mean(fs[1:N, ]), sd_calib=sd(fs[1:N, ])) c(mean_exper=mean(fs[-c(1:N), ]), sd_exper=sd(fs[-c(1:N), ])) ############################ ## Item length constraint example for each participant in the experimental ## items group. In this example, all participants were forced to have a test ## length of J=30, though the item pool had J=50 total items. # new experimental data (relatively extreme, theta ~ N(.5,1.5)) dataset2 <- simdata(a, d, N = 1000, itemtype=itemtype, mu=.5, sigma=matrix(1.5)) # Add missing values to each participant in new dataset where individuals # were randomly administered 10 experimental items, subject to the constraint # that each participant received a test with J=30 items. dataset2 <- t(apply(dataset2, 1, function(x){ NA_precalib <- sample(1:30, 10) NA_experimental <- sample(31:50, 10) x[c(NA_precalib, NA_experimental)] <- NA x })) head(dataset2) # check that all individuals had 30 items all(rowSums(!is.na(dataset2)) == 30) # Multiple Prior Weights Updating and Multiple EM Cycles (MWU-MEM) MWU_MEM <- fixedCalib(dataset2, model = 1, old_mod = mod) coef(MWU_MEM, simplify=TRUE) data.frame(coef(MWU_MEM, simplify=TRUE)$items[,c('a1','d')], pop_a1=a, pop_d=d) plot(MWU_MEM, type = 'empiricalhist') ## factor scores check fs <- fscores(MWU_MEM) hist(fs) c(mean_calib=mean(fs[1:N, ]), sd_calib=sd(fs[1:N, ])) ## shrinkage, but generally different from calibrated sample c(mean_exper=mean(fs[-c(1:N), ]), sd_exper=sd(fs[-c(1:N), ])) ## End(Not run)
Create expected values for fixed effects parameters in latent regression models.
fixef(x)
fixef(x)
x |
an estimated model object from the |
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Chalmers, R. P. (2015). Extended Mixed-Effects Item Response Models with the MH-RM Algorithm. Journal of Educational Measurement, 52, 200-222. doi:10.1111/jedm.12072
## Not run: #simulate data set.seed(1234) N <- 1000 # covariates X1 <- rnorm(N); X2 <- rnorm(N) covdata <- data.frame(X1, X2) Theta <- matrix(0.5 * X1 + -1 * X2 + rnorm(N, sd = 0.5)) #items and response data a <- matrix(1, 20); d <- matrix(rnorm(20)) dat <- simdata(a, d, 1000, itemtype = '2PL', Theta=Theta) #conditional model using X1 and X2 as predictors of Theta mod1 <- mirt(dat, 1, 'Rasch', covdata=covdata, formula = ~ X1 + X2) #latent regression fixed effects (i.e., expected values) fe <- fixef(mod1) head(fe) # with mixedmirt() mod1b <- mixedmirt(dat, covdata, 1, lr.fixed = ~ X1 + X2, fixed = ~ 0 + items) fe2 <- fixef(mod1b) head(fe2) ## End(Not run)
## Not run: #simulate data set.seed(1234) N <- 1000 # covariates X1 <- rnorm(N); X2 <- rnorm(N) covdata <- data.frame(X1, X2) Theta <- matrix(0.5 * X1 + -1 * X2 + rnorm(N, sd = 0.5)) #items and response data a <- matrix(1, 20); d <- matrix(rnorm(20)) dat <- simdata(a, d, 1000, itemtype = '2PL', Theta=Theta) #conditional model using X1 and X2 as predictors of Theta mod1 <- mirt(dat, 1, 'Rasch', covdata=covdata, formula = ~ X1 + X2) #latent regression fixed effects (i.e., expected values) fe <- fixef(mod1) head(fe) # with mixedmirt() mod1b <- mixedmirt(dat, covdata, 1, lr.fixed = ~ X1 + X2, fixed = ~ 0 + items) fe2 <- fixef(mod1b) head(fe2) ## End(Not run)
Computes MAP, EAP, ML (Embretson & Reise, 2000), EAP for sum-scores (Thissen et al., 1995),
or WLE (Warm, 1989) factor scores with a multivariate normal
prior distribution using equally spaced quadrature. EAP scores for models with more than
three factors are generally not recommended since the integration grid becomes very large,
resulting in slower estimation and less precision if the quadpts
are too low.
Therefore, MAP scores should be used instead of EAP scores for higher dimensional models.
Multiple imputation variants are possible for each estimator if a parameter
information matrix was computed, which are useful if the sample size/number of items were small.
As well, if the model contained latent regression predictors this information will
be used in computing MAP and EAP estimates (for these models, full.scores=TRUE
will always be used). Finally, plausible value imputation is also available, and will also account
for latent regression predictor effects.
fscores( object, method = "EAP", full.scores = TRUE, rotate = "oblimin", Target = NULL, response.pattern = NULL, append_response.pattern = FALSE, na.rm = FALSE, plausible.draws = 0, plausible.type = "normal", quadpts = NULL, item_weights = rep(1, extract.mirt(object, "nitems")), returnER = FALSE, T_as_X = FALSE, EAPsum.scores = FALSE, return.acov = FALSE, mean = NULL, cov = NULL, covdata = NULL, verbose = TRUE, full.scores.SE = FALSE, theta_lim = c(-6, 6), MI = 0, use_dentype_estimate = FALSE, QMC = FALSE, custom_den = NULL, custom_theta = NULL, min_expected = 1, max_theta = 20, start = NULL, ... )
fscores( object, method = "EAP", full.scores = TRUE, rotate = "oblimin", Target = NULL, response.pattern = NULL, append_response.pattern = FALSE, na.rm = FALSE, plausible.draws = 0, plausible.type = "normal", quadpts = NULL, item_weights = rep(1, extract.mirt(object, "nitems")), returnER = FALSE, T_as_X = FALSE, EAPsum.scores = FALSE, return.acov = FALSE, mean = NULL, cov = NULL, covdata = NULL, verbose = TRUE, full.scores.SE = FALSE, theta_lim = c(-6, 6), MI = 0, use_dentype_estimate = FALSE, QMC = FALSE, custom_den = NULL, custom_theta = NULL, min_expected = 1, max_theta = 20, start = NULL, ... )
object |
a computed model object of class |
method |
type of factor score estimation method. Can be:
|
full.scores |
if |
rotate |
prior rotation to be used when estimating the factor scores. See
|
Target |
target rotation; see |
response.pattern |
an optional argument used to calculate the factor scores and standard errors for a given response vector or matrix/data.frame |
append_response.pattern |
logical; should the inputs from |
na.rm |
logical; remove rows with any missing values? This is generally not required due to the nature of computing factors scores, however for the "EAPsum" method this may be necessary to ensure that the sum-scores correspond to the same composite score |
plausible.draws |
number of plausible values to draw for future researchers
to perform secondary analyses of the latent trait scores. Typically used in conjunction
with latent regression predictors (see |
plausible.type |
type of plausible values to obtain. Can be either |
quadpts |
number of quadrature to use per dimension. If not specified, a suitable
one will be created which decreases as the number of dimensions increases
(and therefore for estimates such as EAP, will be less accurate). This is determined from
the switch statement
|
item_weights |
a user-defined weight vector used in the likelihood expressions to add more/less weight for a given observed response. Default is a vector of 1's, indicating that all the items receive the same weight |
returnER |
logical; return empirical reliability (also known as marginal reliability) estimates as a numeric values? |
T_as_X |
logical; should the observed variance be equal to
|
EAPsum.scores |
logical; include the model-implied expected values and variance for the item
and total scores when using |
return.acov |
logical; return a list containing covariance matrices instead of factors
scores? |
mean |
a vector for custom latent variable means. If NULL, the default for 'group' values from the computed mirt object will be used |
cov |
a custom matrix of the latent variable covariance matrix. If NULL, the default for 'group' values from the computed mirt object will be used |
covdata |
when latent regression model has been fitted, and the |
verbose |
logical; print verbose output messages? |
full.scores.SE |
logical; when |
theta_lim |
lower and upper range to evaluate latent trait integral for each dimension. If omitted, a range will be generated automatically based on the number of dimensions |
MI |
a number indicating how many multiple imputation draws to perform. Default is 0, indicating that no MI draws will be performed |
use_dentype_estimate |
logical; if the density of the latent trait was estimated in the model (e.g., via Davidian curves or empirical histograms), should this information be used to compute the latent trait estimates? Only applicable for EAP-based estimates (EAP, EAPsum, and plausible) |
QMC |
logical; use quasi-Monte Carlo integration? If |
custom_den |
a function used to define the integration density (if required). The NULL default assumes that the multivariate normal distribution with the 'GroupPars' hyper-parameters are used. At the minimum must be of the form:
where Theta is a matrix of latent trait values (will be a grid of values
if |
custom_theta |
a matrix of custom integration nodes to use instead of the default, where each column corresponds to the respective dimension in the model |
min_expected |
when computing goodness of fit tests when |
max_theta |
the maximum/minimum value any given factor score estimate will achieve using any modal estimator method (e.g., MAP, WLE, ML) |
start |
a matrix of starting values to use for iterative estimation methods. Default
will start at a vector of 0's for each response pattern, or will start at the EAP
estimates (unidimensional models only). Must be in the form that matches
|
... |
additional arguments to be passed to |
The function will return either a table with the computed scores and standard errors,
the original data matrix with scores appended to the rightmost column, or the scores only. By
default the latent means and covariances are determined from the estimated object,
though these can be overwritten. Iterative estimation methods can be estimated
in parallel to decrease estimation times if a mirtCluster
object is available.
If the input object is a discrete latent class object estimated from mdirt
then the returned results will be with respect to the posterior classification for each
individual. The method inputs for 'DiscreteClass'
objects may only be 'EAP'
,
for posterior classification of each response pattern, or 'EAPsum'
for posterior
classification based on the raw sum-score. For more information on these algorithms refer to
the mirtCAT
package and the associated JSS paper (Chalmers, 2016).
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Chalmers, R. P. (2016). Generating Adaptive and Non-Adaptive Test Interfaces for Multidimensional Item Response Theory Applications. Journal of Statistical Software, 71(5), 1-39. doi:10.18637/jss.v071.i05
Embretson, S. E. & Reise, S. P. (2000). Item Response Theory for Psychologists. Erlbaum.
Thissen, D., Pommerich, M., Billeaud, K., & Williams, V. S. L. (1995). Item Response Theory for Scores on Tests Including Polytomous Items with Ordered Responses. Applied Psychological Measurement, 19, 39-49.
Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54, 427-450.
mod <- mirt(Science) tabscores <- fscores(mod, full.scores = FALSE) head(tabscores) # convert scores into expected total score information with 95% CIs E.total <- expected.test(mod, Theta=tabscores[,'F1']) E.total_2.5 <- expected.test(mod, Theta=tabscores[,'F1'] + tabscores[,'SE_F1'] * qnorm(.05/2)) E.total_97.5 <- expected.test(mod, Theta=tabscores[,'F1'] + tabscores[,'SE_F1'] * qnorm(1-.05/2)) data.frame(Total_score=rowSums(tabscores[,1:4]), E.total, E.total_2.5, E.total_97.5) |> head() ## Not run: fullscores <- fscores(mod) fullscores_with_SE <- fscores(mod, full.scores.SE=TRUE) head(fullscores) head(fullscores_with_SE) # convert scores into expected total score information with 95% CIs E.total <- expected.test(mod, Theta=fullscores[,'F1']) E.total_2.5 <- expected.test(mod, Theta=fullscores_with_SE[,'F1'] + fullscores_with_SE[,'SE_F1'] * qnorm(.05/2)) E.total_97.5 <- expected.test(mod, Theta=fullscores_with_SE[,'F1'] + fullscores_with_SE[,'SE_F1'] * qnorm(1-.05/2)) data.frame(Total_score=rowSums(Science), E.total, E.total_2.5, E.total_97.5) |> head() # change method argument to use MAP estimates fullscores <- fscores(mod, method='MAP') head(fullscores) # calculate MAP for a given response vector fscores(mod, method='MAP', response.pattern = c(1,2,3,4)) # or matrix fscores(mod, method='MAP', response.pattern = rbind(c(1,2,3,4), c(2,2,1,3))) # return only the scores and their SEs fscores(mod, method='MAP', response.pattern = c(1,2,3,4)) # use custom latent variable properties (diffuse prior for MAP is very close to ML) fscores(mod, method='MAP', cov = matrix(1000), full.scores = FALSE) fscores(mod, method='ML', full.scores = FALSE) # EAPsum table of values based on total scores (fs <- fscores(mod, method = 'EAPsum', full.scores = FALSE)) # convert expected counts back into marginal probability distribution within(fs, `P(y)` <- expected / sum(observed)) # list of error VCOV matrices for EAPsum (works for other estimators as well) acovs <- fscores(mod, method = 'EAPsum', full.scores = FALSE, return.acov = TRUE) acovs # WLE estimation, run in parallel using available cores if(interactive()) mirtCluster() head(fscores(mod, method='WLE', full.scores = FALSE)) # multiple imputation using 30 draws for EAP scores. Requires information matrix mod <- mirt(Science, 1, SE=TRUE) fs <- fscores(mod, MI = 30) head(fs) # plausible values for future work pv <- fscores(mod, plausible.draws = 5) lapply(pv, function(x) c(mean=mean(x), var=var(x), min=min(x), max=max(x))) ## define a custom_den function (*must* return a numeric vector). # EAP with a uniform prior between -3 and 3 fun <- function(Theta, ...) as.numeric(dunif(Theta, min = -3, max = 3)) head(fscores(mod, custom_den = fun)) # compare EAP estimators with same modified prior fun <- function(Theta, ...) as.numeric(dnorm(Theta, mean=.5)) head(fscores(mod, custom_den = fun)) head(fscores(mod, method = 'EAP', mean=.5)) # custom MAP prior: standard truncated normal between 5 and -2 library(msm) # need the :: scope for parallel to see the function (not require if no mirtCluster() defined) fun <- function(Theta, ...) msm::dtnorm(Theta, mean = 0, sd = 1, lower = -2, upper = 5) head(fscores(mod, custom_den = fun, method = 'MAP', full.scores = FALSE)) #################### # scoring via response.pattern input (with latent regression structure) # simulate data set.seed(1234) N <- 1000 # covariates X1 <- rnorm(N); X2 <- rnorm(N) covdata <- data.frame(X1, X2) Theta <- matrix(0.5 * X1 + -1 * X2 + rnorm(N, sd = 0.5)) # items and response data a <- matrix(1, 20); d <- matrix(rnorm(20)) dat <- simdata(a, d, 1000, itemtype = '2PL', Theta=Theta) # conditional model using X1 and X2 as predictors of Theta mod <- mirt(dat, 1, 'Rasch', covdata=covdata, formula = ~ X1 + X2) coef(mod, simplify=TRUE) # all EAP estimates that include latent regression information fs <- fscores(mod, full.scores.SE=TRUE) head(fs) # score only two response patterns rp <- dat[1:2, ] cd <- covdata[1:2, ] fscores(mod, response.pattern=rp, covdata=cd) fscores(mod, response.pattern=rp[2,], covdata=cd[2,]) # just one pattern ## End(Not run)
mod <- mirt(Science) tabscores <- fscores(mod, full.scores = FALSE) head(tabscores) # convert scores into expected total score information with 95% CIs E.total <- expected.test(mod, Theta=tabscores[,'F1']) E.total_2.5 <- expected.test(mod, Theta=tabscores[,'F1'] + tabscores[,'SE_F1'] * qnorm(.05/2)) E.total_97.5 <- expected.test(mod, Theta=tabscores[,'F1'] + tabscores[,'SE_F1'] * qnorm(1-.05/2)) data.frame(Total_score=rowSums(tabscores[,1:4]), E.total, E.total_2.5, E.total_97.5) |> head() ## Not run: fullscores <- fscores(mod) fullscores_with_SE <- fscores(mod, full.scores.SE=TRUE) head(fullscores) head(fullscores_with_SE) # convert scores into expected total score information with 95% CIs E.total <- expected.test(mod, Theta=fullscores[,'F1']) E.total_2.5 <- expected.test(mod, Theta=fullscores_with_SE[,'F1'] + fullscores_with_SE[,'SE_F1'] * qnorm(.05/2)) E.total_97.5 <- expected.test(mod, Theta=fullscores_with_SE[,'F1'] + fullscores_with_SE[,'SE_F1'] * qnorm(1-.05/2)) data.frame(Total_score=rowSums(Science), E.total, E.total_2.5, E.total_97.5) |> head() # change method argument to use MAP estimates fullscores <- fscores(mod, method='MAP') head(fullscores) # calculate MAP for a given response vector fscores(mod, method='MAP', response.pattern = c(1,2,3,4)) # or matrix fscores(mod, method='MAP', response.pattern = rbind(c(1,2,3,4), c(2,2,1,3))) # return only the scores and their SEs fscores(mod, method='MAP', response.pattern = c(1,2,3,4)) # use custom latent variable properties (diffuse prior for MAP is very close to ML) fscores(mod, method='MAP', cov = matrix(1000), full.scores = FALSE) fscores(mod, method='ML', full.scores = FALSE) # EAPsum table of values based on total scores (fs <- fscores(mod, method = 'EAPsum', full.scores = FALSE)) # convert expected counts back into marginal probability distribution within(fs, `P(y)` <- expected / sum(observed)) # list of error VCOV matrices for EAPsum (works for other estimators as well) acovs <- fscores(mod, method = 'EAPsum', full.scores = FALSE, return.acov = TRUE) acovs # WLE estimation, run in parallel using available cores if(interactive()) mirtCluster() head(fscores(mod, method='WLE', full.scores = FALSE)) # multiple imputation using 30 draws for EAP scores. Requires information matrix mod <- mirt(Science, 1, SE=TRUE) fs <- fscores(mod, MI = 30) head(fs) # plausible values for future work pv <- fscores(mod, plausible.draws = 5) lapply(pv, function(x) c(mean=mean(x), var=var(x), min=min(x), max=max(x))) ## define a custom_den function (*must* return a numeric vector). # EAP with a uniform prior between -3 and 3 fun <- function(Theta, ...) as.numeric(dunif(Theta, min = -3, max = 3)) head(fscores(mod, custom_den = fun)) # compare EAP estimators with same modified prior fun <- function(Theta, ...) as.numeric(dnorm(Theta, mean=.5)) head(fscores(mod, custom_den = fun)) head(fscores(mod, method = 'EAP', mean=.5)) # custom MAP prior: standard truncated normal between 5 and -2 library(msm) # need the :: scope for parallel to see the function (not require if no mirtCluster() defined) fun <- function(Theta, ...) msm::dtnorm(Theta, mean = 0, sd = 1, lower = -2, upper = 5) head(fscores(mod, custom_den = fun, method = 'MAP', full.scores = FALSE)) #################### # scoring via response.pattern input (with latent regression structure) # simulate data set.seed(1234) N <- 1000 # covariates X1 <- rnorm(N); X2 <- rnorm(N) covdata <- data.frame(X1, X2) Theta <- matrix(0.5 * X1 + -1 * X2 + rnorm(N, sd = 0.5)) # items and response data a <- matrix(1, 20); d <- matrix(rnorm(20)) dat <- simdata(a, d, 1000, itemtype = '2PL', Theta=Theta) # conditional model using X1 and X2 as predictors of Theta mod <- mirt(dat, 1, 'Rasch', covdata=covdata, formula = ~ X1 + X2) coef(mod, simplify=TRUE) # all EAP estimates that include latent regression information fs <- fscores(mod, full.scores.SE=TRUE) head(fs) # score only two response patterns rp <- dat[1:2, ] cd <- covdata[1:2, ] fscores(mod, response.pattern=rp, covdata=cd) fscores(mod, response.pattern=rp[2,], covdata=cd[2,]) # just one pattern ## End(Not run)
Function provides the four generalized item difficulty representations for polytomous response models described by Ali, Chang, and Anderson (2015). These estimates are used to gauge how difficult a polytomous item may be.
gen.difficulty(mod, type = "IRF", interval = c(-30, 30), ...)
gen.difficulty(mod, type = "IRF", interval = c(-30, 30), ...)
mod |
a single factor model estimated by |
type |
type of generalized difficulty parameter to report.
Can be |
interval |
interval range to search for |
... |
additional arguments to pass to |
Phil Chalmers [email protected]
Ali, U. S., Chang, H.-H., & Anderson, C. J. (2015). Location indices for ordinal polytomous items based on item response theory (Research Report No. RR-15-20). Princeton, NJ: Educational Testing Service. http://dx.doi.org/10.1002/ets2.12065
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: mod <- mirt(Science, 1) coef(mod, simplify=TRUE, IRTpars = TRUE)$items gen.difficulty(mod) gen.difficulty(mod, type = 'mean') # also works for dichotomous items (though this is unnecessary) dat <- expand.table(LSAT7) mod <- mirt(dat, 1) coef(mod, simplify=TRUE, IRTpars = TRUE)$items gen.difficulty(mod) gen.difficulty(mod, type = 'mean') ## End(Not run)
## Not run: mod <- mirt(Science, 1) coef(mod, simplify=TRUE, IRTpars = TRUE)$items gen.difficulty(mod) gen.difficulty(mod, type = 'mean') # also works for dichotomous items (though this is unnecessary) dat <- expand.table(LSAT7) mod <- mirt(dat, 1) coef(mod, simplify=TRUE, IRTpars = TRUE)$items gen.difficulty(mod) gen.difficulty(mod, type = 'mean') ## End(Not run)
Given an estimated model from any of mirt's model fitting functions and an estimate of the
latent trait, impute plausible missing data values. Returns the original data in a
data.frame
without any NA values. If a list of Theta
values is supplied then a
list of complete datasets is returned instead.
imputeMissing(x, Theta, warn = TRUE, ...)
imputeMissing(x, Theta, warn = TRUE, ...)
x |
an estimated model x from the mirt package |
Theta |
a matrix containing the estimates of the latent trait scores
(e.g., via |
warn |
logical; print warning messages? |
... |
additional arguments to pass |
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: dat <- expand.table(LSAT7) (original <- mirt(dat, 1)) NAperson <- sample(1:nrow(dat), 20, replace = TRUE) NAitem <- sample(1:ncol(dat), 20, replace = TRUE) for(i in 1:20) dat[NAperson[i], NAitem[i]] <- NA (mod <- mirt(dat, 1)) scores <- fscores(mod, method = 'MAP') # re-estimate imputed dataset (good to do this multiple times and average over) fulldata <- imputeMissing(mod, scores) (fullmod <- mirt(fulldata, 1)) # with multipleGroup set.seed(1) group <- sample(c('group1', 'group2'), 1000, TRUE) mod2 <- multipleGroup(dat, 1, group, TOL=1e-2) fs <- fscores(mod2) fulldata2 <- imputeMissing(mod2, fs) ## End(Not run)
## Not run: dat <- expand.table(LSAT7) (original <- mirt(dat, 1)) NAperson <- sample(1:nrow(dat), 20, replace = TRUE) NAitem <- sample(1:ncol(dat), 20, replace = TRUE) for(i in 1:20) dat[NAperson[i], NAitem[i]] <- NA (mod <- mirt(dat, 1)) scores <- fscores(mod, method = 'MAP') # re-estimate imputed dataset (good to do this multiple times and average over) fulldata <- imputeMissing(mod, scores) (fullmod <- mirt(fulldata, 1)) # with multipleGroup set.seed(1) group <- sample(c('group1', 'group2'), 1000, TRUE) mod2 <- multipleGroup(dat, 1, group, TOL=1e-2) fs <- fscores(mod2) fulldata2 <- imputeMissing(mod2, fs) ## End(Not run)
Computes item-fit statistics for a variety of unidimensional and multidimensional models.
Poorly fitting items should be inspected with the empirical plots/tables
for unidimensional models, otherwise itemGAM
can be used to diagnose
where the functional form of the IRT model was misspecified, or models can be refit using
more flexible semi-parametric response models (e.g., itemtype = 'spline'
).
If the latent trait density was approximated (e.g., Davidian curves, Empirical histograms, etc)
then passing use_dentype_estimate = TRUE
will use the internally saved quadrature and
density components (where applicable). Currently, only S-X2 statistic supported for
mixture IRT models. Finally, where applicable the root mean-square error of approximation (RMSEA)
is reported to help gauge the magnitude of item misfit.
itemfit( x, fit_stats = "S_X2", which.items = 1:extract.mirt(x, "nitems"), na.rm = FALSE, p.adjust = "none", group.bins = 10, group.size = NA, group.fun = mean, mincell = 1, mincell.X2 = 2, return.tables = FALSE, pv_draws = 30, boot = 1000, boot_dfapprox = 200, S_X2.plot = NULL, S_X2.plot_raw.score = TRUE, ETrange = c(-2, 2), ETpoints = 11, empirical.plot = NULL, empirical.CI = 0.95, empirical.poly.collapse = FALSE, method = "EAP", Theta = NULL, par.strip.text = list(cex = 0.7), par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col = "black")), auto.key = list(space = "right", points = FALSE, lines = TRUE), ... )
itemfit( x, fit_stats = "S_X2", which.items = 1:extract.mirt(x, "nitems"), na.rm = FALSE, p.adjust = "none", group.bins = 10, group.size = NA, group.fun = mean, mincell = 1, mincell.X2 = 2, return.tables = FALSE, pv_draws = 30, boot = 1000, boot_dfapprox = 200, S_X2.plot = NULL, S_X2.plot_raw.score = TRUE, ETrange = c(-2, 2), ETpoints = 11, empirical.plot = NULL, empirical.CI = 0.95, empirical.poly.collapse = FALSE, method = "EAP", Theta = NULL, par.strip.text = list(cex = 0.7), par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col = "black")), auto.key = list(space = "right", points = FALSE, lines = TRUE), ... )
x |
a computed model object of class |
fit_stats |
a character vector indicating which fit statistics should be computed. Supported inputs are:
Note that 'S_X2' and 'Zh' cannot be computed when there are missing response data (i.e., will require multiple-imputation/row-removal techniques). |
which.items |
an integer vector indicating which items to test for fit. Default tests all possible items |
na.rm |
logical; remove rows with any missing values? This is required for methods such
as S-X2 because they require the "EAPsum" method from |
p.adjust |
method to use for adjusting all p-values for each respective item fit
statistic (see |
group.bins |
the number of bins to use for X2 and G2. For example,
setting |
group.size |
approximate size of each group to be used in calculating the |
group.fun |
function used when |
mincell |
the minimum expected cell size to be used in the S-X2 computations. Tables will be collapsed across items first if polytomous, and then across scores if necessary |
mincell.X2 |
the minimum expected cell size to be used in the X2 computations. Tables will be collapsed if polytomous, however if this condition can not be met then the group block will be omitted in the computations |
return.tables |
logical; return tables when investigating |
pv_draws |
number of plausible-value draws to obtain for PV_Q1 and PV_Q1* |
boot |
number of parametric bootstrap samples to create for PV_Q1* and X2* |
boot_dfapprox |
number of parametric bootstrap samples to create for the X2*_df statistic to approximate the scaling factor for X2* as well as the scaled degrees of freedom estimates |
S_X2.plot |
argument input is the same as |
S_X2.plot_raw.score |
logical; use the raw-score information in the plot in stead of the latent
trait scale score? Default is |
ETrange |
range of integration nodes for Stone's X2* statistic |
ETpoints |
number of integration nodes to use for Stone's X2* statistic |
empirical.plot |
a single numeric value or character of the item name indicating which
item to plot (via |
empirical.CI |
a numeric value indicating the width of the empirical confidence interval
ranging between 0 and 1 (default of 0 plots not interval). For example, a 95
interval would be plotted when |
empirical.poly.collapse |
logical; collapse polytomous item categories to for expected scoring
functions for empirical plots? Default is |
method |
type of factor score estimation method. See |
Theta |
a matrix of factor scores for each person used for statistics that require
empirical estimates. If supplied, arguments typically passed to |
par.strip.text |
plotting argument passed to |
par.settings |
plotting argument passed to |
auto.key |
plotting argument passed to |
... |
additional arguments to be passed to |
Phil Chalmers [email protected]
Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37, 29-51.
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Chalmers, R. P. & Ng, V. (2017). Plausible-Value Imputation Statistics for Detecting Item Misfit. Applied Psychological Measurement, 41, 372-387. doi:10.1177/0146621617692079
Drasgow, F., Levine, M. V., & Williams, E. A. (1985). Appropriateness measurement with polychotomous item response models and standardized indices. British Journal of Mathematical and Statistical Psychology, 38, 67-86.
Kang, T. & Chen, Troy, T. (2007). An investigation of the performance of the generalized S-X2 item-fit index for polytomous IRT models. ACT
McKinley, R., & Mills, C. (1985). A comparison of several goodness-of-fit statistics. Applied Psychological Measurement, 9, 49-57.
Orlando, M. & Thissen, D. (2000). Likelihood-based item fit indices for dichotomous item response theory models. Applied Psychological Measurement, 24, 50-64.
Reise, S. P. (1990). A comparison of item- and person-fit methods of assessing model-data fit in IRT. Applied Psychological Measurement, 14, 127-137.
Stone, C. A. (2000). Monte Carlo Based Null Distribution for an Alternative Goodness-of-Fit Test Statistics in IRT Models. Journal of Educational Measurement, 37, 58-75.
Wright B. D. & Masters, G. N. (1982). Rating scale analysis. MESA Press.
Yen, W. M. (1981). Using simulation results to choose a latent trait model. Applied Psychological Measurement, 5, 245-262.
## Not run: P <- function(Theta){exp(Theta^2 * 1.2 - 1) / (1 + exp(Theta^2 * 1.2 - 1))} #make some data set.seed(1234) a <- matrix(rlnorm(20, meanlog=0, sdlog = .1),ncol=1) d <- matrix(rnorm(20),ncol=1) Theta <- matrix(rnorm(2000)) items <- rep('2PL', 20) ps <- P(Theta) baditem <- numeric(2000) for(i in 1:2000) baditem[i] <- sample(c(0,1), 1, prob = c(1-ps[i], ps[i])) data <- cbind(simdata(a,d, 2000, items, Theta=Theta), baditem=baditem) x <- mirt(data, 1) raschfit <- mirt(data, 1, itemtype='Rasch') fit <- itemfit(x) fit # p-value adjustment itemfit(x, p.adjust='fdr') # two different fit stats (with/without p-value adjustment) itemfit(x, c('S_X2' ,'X2'), p.adjust='fdr') itemfit(x, c('S_X2' ,'X2')) # Conditional sum-score plot from S-X2 information itemfit(x, S_X2.plot = 1) # good fit itemfit(x, S_X2.plot = 2) # good fit itemfit(x, S_X2.plot = 21) # bad fit itemfit(x, 'X2') # just X2 itemfit(x, 'X2', method = 'ML') # X2 with maximum-likelihood estimates for traits itemfit(x, group.bins=15, empirical.plot = 1, method = 'ML') #empirical item plot with 15 points itemfit(x, group.bins=15, empirical.plot = 21, method = 'ML') # PV and X2* statistics (parametric bootstrap stats not run to save time) itemfit(x, 'PV_Q1') if(interactive()) mirtCluster() # improve speed of bootstrap samples by running in parallel # itemfit(x, 'PV_Q1*') # itemfit(x, 'X2*') # Stone's 1993 statistic # itemfit(x, 'X2*_df') # Stone's 2000 scaled statistic with df estimate # empirical tables for X2 statistic tabs <- itemfit(x, 'X2', return.tables=TRUE, which.items = 1) tabs #infit/outfit statistics. method='ML' agrees better with eRm package itemfit(raschfit, 'infit', method = 'ML') #infit and outfit stats #same as above, but inputting ML estimates instead (saves time for re-use) Theta <- fscores(raschfit, method = 'ML') itemfit(raschfit, 'infit', Theta=Theta) itemfit(raschfit, empirical.plot=1, Theta=Theta) itemfit(raschfit, 'X2', return.tables=TRUE, Theta=Theta, which.items=1) # fit a new more flexible model for the mis-fitting item itemtype <- c(rep('2PL', 20), 'spline') x2 <- mirt(data, 1, itemtype=itemtype) itemfit(x2) itemplot(x2, 21) anova(x, x2) #------------------------------------------------------------ #similar example to Kang and Chen 2007 a <- matrix(c(.8,.4,.7, .8, .4, .7, 1, 1, 1, 1)) d <- matrix(rep(c(2.0,0.0,-1,-1.5),10), ncol=4, byrow=TRUE) dat <- simdata(a,d,2000, itemtype = rep('graded', 10)) head(dat) mod <- mirt(dat, 1) itemfit(mod) itemfit(mod, 'X2') # less useful given inflated Type I error rates itemfit(mod, empirical.plot = 1) itemfit(mod, empirical.plot = 1, empirical.poly.collapse=TRUE) # collapsed tables (see mincell.X2) for X2 and G2 itemfit(mod, 'X2', return.tables = TRUE, which.items = 1) mod2 <- mirt(dat, 1, 'Rasch') itemfit(mod2, 'infit', method = 'ML') # massive list of tables for S-X2 tables <- itemfit(mod, return.tables = TRUE) #observed and expected total score patterns for item 1 (post collapsing) tables$O[[1]] tables$E[[1]] # can also select specific items # itemfit(mod, return.tables = TRUE, which.items=1) # fit stats with missing data (run in parallel using all cores) dat[sample(1:prod(dim(dat)), 100)] <- NA raschfit <- mirt(dat, 1, itemtype='Rasch') # use only valid data by removing rows with missing terms itemfit(raschfit, c('S_X2', 'infit'), na.rm = TRUE) # note that X2, G2, PV-Q1, and X2* do not require complete datasets thetas <- fscores(raschfit, method = 'ML') # save for faster computations itemfit(raschfit, c('X2', 'G2'), Theta=thetas) itemfit(raschfit, empirical.plot=1, Theta=thetas) itemfit(raschfit, 'X2', return.tables=TRUE, which.items=1, Theta=thetas) ## End(Not run)
## Not run: P <- function(Theta){exp(Theta^2 * 1.2 - 1) / (1 + exp(Theta^2 * 1.2 - 1))} #make some data set.seed(1234) a <- matrix(rlnorm(20, meanlog=0, sdlog = .1),ncol=1) d <- matrix(rnorm(20),ncol=1) Theta <- matrix(rnorm(2000)) items <- rep('2PL', 20) ps <- P(Theta) baditem <- numeric(2000) for(i in 1:2000) baditem[i] <- sample(c(0,1), 1, prob = c(1-ps[i], ps[i])) data <- cbind(simdata(a,d, 2000, items, Theta=Theta), baditem=baditem) x <- mirt(data, 1) raschfit <- mirt(data, 1, itemtype='Rasch') fit <- itemfit(x) fit # p-value adjustment itemfit(x, p.adjust='fdr') # two different fit stats (with/without p-value adjustment) itemfit(x, c('S_X2' ,'X2'), p.adjust='fdr') itemfit(x, c('S_X2' ,'X2')) # Conditional sum-score plot from S-X2 information itemfit(x, S_X2.plot = 1) # good fit itemfit(x, S_X2.plot = 2) # good fit itemfit(x, S_X2.plot = 21) # bad fit itemfit(x, 'X2') # just X2 itemfit(x, 'X2', method = 'ML') # X2 with maximum-likelihood estimates for traits itemfit(x, group.bins=15, empirical.plot = 1, method = 'ML') #empirical item plot with 15 points itemfit(x, group.bins=15, empirical.plot = 21, method = 'ML') # PV and X2* statistics (parametric bootstrap stats not run to save time) itemfit(x, 'PV_Q1') if(interactive()) mirtCluster() # improve speed of bootstrap samples by running in parallel # itemfit(x, 'PV_Q1*') # itemfit(x, 'X2*') # Stone's 1993 statistic # itemfit(x, 'X2*_df') # Stone's 2000 scaled statistic with df estimate # empirical tables for X2 statistic tabs <- itemfit(x, 'X2', return.tables=TRUE, which.items = 1) tabs #infit/outfit statistics. method='ML' agrees better with eRm package itemfit(raschfit, 'infit', method = 'ML') #infit and outfit stats #same as above, but inputting ML estimates instead (saves time for re-use) Theta <- fscores(raschfit, method = 'ML') itemfit(raschfit, 'infit', Theta=Theta) itemfit(raschfit, empirical.plot=1, Theta=Theta) itemfit(raschfit, 'X2', return.tables=TRUE, Theta=Theta, which.items=1) # fit a new more flexible model for the mis-fitting item itemtype <- c(rep('2PL', 20), 'spline') x2 <- mirt(data, 1, itemtype=itemtype) itemfit(x2) itemplot(x2, 21) anova(x, x2) #------------------------------------------------------------ #similar example to Kang and Chen 2007 a <- matrix(c(.8,.4,.7, .8, .4, .7, 1, 1, 1, 1)) d <- matrix(rep(c(2.0,0.0,-1,-1.5),10), ncol=4, byrow=TRUE) dat <- simdata(a,d,2000, itemtype = rep('graded', 10)) head(dat) mod <- mirt(dat, 1) itemfit(mod) itemfit(mod, 'X2') # less useful given inflated Type I error rates itemfit(mod, empirical.plot = 1) itemfit(mod, empirical.plot = 1, empirical.poly.collapse=TRUE) # collapsed tables (see mincell.X2) for X2 and G2 itemfit(mod, 'X2', return.tables = TRUE, which.items = 1) mod2 <- mirt(dat, 1, 'Rasch') itemfit(mod2, 'infit', method = 'ML') # massive list of tables for S-X2 tables <- itemfit(mod, return.tables = TRUE) #observed and expected total score patterns for item 1 (post collapsing) tables$O[[1]] tables$E[[1]] # can also select specific items # itemfit(mod, return.tables = TRUE, which.items=1) # fit stats with missing data (run in parallel using all cores) dat[sample(1:prod(dim(dat)), 100)] <- NA raschfit <- mirt(dat, 1, itemtype='Rasch') # use only valid data by removing rows with missing terms itemfit(raschfit, c('S_X2', 'infit'), na.rm = TRUE) # note that X2, G2, PV-Q1, and X2* do not require complete datasets thetas <- fscores(raschfit, method = 'ML') # save for faster computations itemfit(raschfit, c('X2', 'G2'), Theta=thetas) itemfit(raschfit, empirical.plot=1, Theta=thetas) itemfit(raschfit, 'X2', return.tables=TRUE, which.items=1, Theta=thetas) ## End(Not run)
This function uses a generalized additive model (GAM) to estimate response curves for items that do not seem to fit well in a given model. Using a stable axillary model, traceline functions for poorly fitting dichotomous or polytomous items can be inspected using point estimates (or plausible values) of the latent trait. Plots of the tracelines and their associated standard errors are available to help interpret the misfit. This function may also be useful when adding new items to an existing, well established set of items, especially when the parametric form of the items under investigation are unknown.
itemGAM( item, Theta, formula = resp ~ s(Theta, k = 10), CI = 0.95, theta_lim = c(-3, 3), return.models = FALSE, ... ) ## S3 method for class 'itemGAM' plot( x, y = NULL, par.strip.text = list(cex = 0.7), par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col = "black")), auto.key = list(space = "right", points = FALSE, lines = TRUE), ... )
itemGAM( item, Theta, formula = resp ~ s(Theta, k = 10), CI = 0.95, theta_lim = c(-3, 3), return.models = FALSE, ... ) ## S3 method for class 'itemGAM' plot( x, y = NULL, par.strip.text = list(cex = 0.7), par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col = "black")), auto.key = list(space = "right", points = FALSE, lines = TRUE), ... )
item |
a single poorly fitting item to be investigated. Can be a vector or matrix |
Theta |
a list or matrix of latent trait estimates typically returned from |
formula |
an R formula to be passed to the |
CI |
a number ranging from 0 to 1 indicating the confidence interval range. Default provides the 95 percent interval |
theta_lim |
range of latent trait scores to be evaluated |
return.models |
logical; return a list of GAM models for each category? Useful when the GAMs should be inspected directly, but also when fitting multidimensional models (this is set to TRUE automatically for multidimensional models) |
... |
additional arguments to be passed to |
x |
an object of class 'itemGAM' |
y |
a |
par.strip.text |
plotting argument passed to |
par.settings |
plotting argument passed to |
auto.key |
plotting argument passed to |
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: set.seed(10) N <- 1000 J <- 30 a <- matrix(1, J) d <- matrix(rnorm(J)) Theta <- matrix(rnorm(N, 0, 1.5)) dat <- simdata(a, d, N, itemtype = '2PL', Theta=Theta) # make a bad item ps <- exp(Theta^2 + Theta) / (1 + exp(Theta^2 + Theta)) item1 <- sapply(ps, function(x) sample(c(0,1), size = 1, prob = c(1-x, x))) ps2 <- exp(2 * Theta^2 + Theta + .5 * Theta^3) / (1 + exp(2 * Theta^2 + Theta + .5 * Theta^3)) item2 <- sapply(ps2, function(x) sample(c(0,1), size = 1, prob = c(1-x, x))) # how the actual item looks in the population plot(Theta, ps, ylim = c(0,1)) plot(Theta, ps2, ylim = c(0,1)) baditems <- cbind(item1, item2) newdat <- cbind(dat, baditems) badmod <- mirt(newdat, 1) itemfit(badmod) #clearly a bad fit for the last two items mod <- mirt(dat, 1) #fit a model that does not contain the bad items itemfit(mod) #### Pure non-parametric way of investigating the items library(KernSmoothIRT) ks <- ksIRT(newdat, rep(1, ncol(newdat)), 1) plot(ks, item=c(1,31,32)) par(ask=FALSE) # Using point estimates from the model Theta <- fscores(mod) IG0 <- itemGAM(dat[,1], Theta) #good item IG1 <- itemGAM(baditems[,1], Theta) IG2 <- itemGAM(baditems[,2], Theta) plot(IG0) plot(IG1) plot(IG2) # same as above, but with plausible values to obtain the standard errors set.seed(4321) ThetaPV <- fscores(mod, plausible.draws=10) IG0 <- itemGAM(dat[,1], ThetaPV) #good item IG1 <- itemGAM(baditems[,1], ThetaPV) IG2 <- itemGAM(baditems[,2], ThetaPV) plot(IG0) plot(IG1) plot(IG2) ## for polytomous test items SAT12[SAT12 == 8] <- NA dat <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) dat <- dat[,-32] mod <- mirt(dat, 1) # Kernal smoothing is very sensitive to which category is selected as 'correct' # 5th category as correct ks <- ksIRT(cbind(dat, SAT12[,32]), c(rep(1, 31), 5), 1) plot(ks, items = c(1,2,32)) # 3rd category as correct ks <- ksIRT(cbind(dat, SAT12[,32]), c(rep(1, 31), 3), 1) plot(ks, items = c(1,2,32)) # splines approach Theta <- fscores(mod) IG <- itemGAM(SAT12[,32], Theta) plot(IG) set.seed(1423) ThetaPV <- fscores(mod, plausible.draws=10) IG2 <- itemGAM(SAT12[,32], ThetaPV) plot(IG2) # assuming a simple increasing parametric form (like in a standard IRT model) IG3 <- itemGAM(SAT12[,32], Theta, formula = resp ~ Theta) plot(IG3) IG3 <- itemGAM(SAT12[,32], ThetaPV, formula = resp ~ Theta) plot(IG3) ### multidimensional example by returning the GAM objects mod2 <- mirt(dat, 2) Theta <- fscores(mod2) IG4 <- itemGAM(SAT12[,32], Theta, formula = resp ~ s(Theta1, k=10) + s(Theta2, k=10), return.models=TRUE) names(IG4) plot(IG4[[1L]], main = 'Category 1') plot(IG4[[2L]], main = 'Category 2') plot(IG4[[3L]], main = 'Category 3') ## End(Not run)
## Not run: set.seed(10) N <- 1000 J <- 30 a <- matrix(1, J) d <- matrix(rnorm(J)) Theta <- matrix(rnorm(N, 0, 1.5)) dat <- simdata(a, d, N, itemtype = '2PL', Theta=Theta) # make a bad item ps <- exp(Theta^2 + Theta) / (1 + exp(Theta^2 + Theta)) item1 <- sapply(ps, function(x) sample(c(0,1), size = 1, prob = c(1-x, x))) ps2 <- exp(2 * Theta^2 + Theta + .5 * Theta^3) / (1 + exp(2 * Theta^2 + Theta + .5 * Theta^3)) item2 <- sapply(ps2, function(x) sample(c(0,1), size = 1, prob = c(1-x, x))) # how the actual item looks in the population plot(Theta, ps, ylim = c(0,1)) plot(Theta, ps2, ylim = c(0,1)) baditems <- cbind(item1, item2) newdat <- cbind(dat, baditems) badmod <- mirt(newdat, 1) itemfit(badmod) #clearly a bad fit for the last two items mod <- mirt(dat, 1) #fit a model that does not contain the bad items itemfit(mod) #### Pure non-parametric way of investigating the items library(KernSmoothIRT) ks <- ksIRT(newdat, rep(1, ncol(newdat)), 1) plot(ks, item=c(1,31,32)) par(ask=FALSE) # Using point estimates from the model Theta <- fscores(mod) IG0 <- itemGAM(dat[,1], Theta) #good item IG1 <- itemGAM(baditems[,1], Theta) IG2 <- itemGAM(baditems[,2], Theta) plot(IG0) plot(IG1) plot(IG2) # same as above, but with plausible values to obtain the standard errors set.seed(4321) ThetaPV <- fscores(mod, plausible.draws=10) IG0 <- itemGAM(dat[,1], ThetaPV) #good item IG1 <- itemGAM(baditems[,1], ThetaPV) IG2 <- itemGAM(baditems[,2], ThetaPV) plot(IG0) plot(IG1) plot(IG2) ## for polytomous test items SAT12[SAT12 == 8] <- NA dat <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) dat <- dat[,-32] mod <- mirt(dat, 1) # Kernal smoothing is very sensitive to which category is selected as 'correct' # 5th category as correct ks <- ksIRT(cbind(dat, SAT12[,32]), c(rep(1, 31), 5), 1) plot(ks, items = c(1,2,32)) # 3rd category as correct ks <- ksIRT(cbind(dat, SAT12[,32]), c(rep(1, 31), 3), 1) plot(ks, items = c(1,2,32)) # splines approach Theta <- fscores(mod) IG <- itemGAM(SAT12[,32], Theta) plot(IG) set.seed(1423) ThetaPV <- fscores(mod, plausible.draws=10) IG2 <- itemGAM(SAT12[,32], ThetaPV) plot(IG2) # assuming a simple increasing parametric form (like in a standard IRT model) IG3 <- itemGAM(SAT12[,32], Theta, formula = resp ~ Theta) plot(IG3) IG3 <- itemGAM(SAT12[,32], ThetaPV, formula = resp ~ Theta) plot(IG3) ### multidimensional example by returning the GAM objects mod2 <- mirt(dat, 2) Theta <- fscores(mod2) IG4 <- itemGAM(SAT12[,32], Theta, formula = resp ~ s(Theta1, k=10) + s(Theta2, k=10), return.models=TRUE) names(IG4) plot(IG4[[1L]], main = 'Category 1') plot(IG4[[2L]], main = 'Category 2') plot(IG4[[3L]], main = 'Category 3') ## End(Not run)
Given an internal mirt item object extracted by using extract.item
,
compute the item information.
iteminfo(x, Theta, degrees = NULL, total.info = TRUE, multidim_matrix = FALSE)
iteminfo(x, Theta, degrees = NULL, total.info = TRUE, multidim_matrix = FALSE)
x |
an extracted internal mirt object containing item information (see |
Theta |
a vector (unidimensional) or matrix (multidimensional) of latent trait values |
degrees |
a vector of angles in degrees that are between 0 and 90. Only applicable when the input object is multidimensional |
total.info |
logical; return the total information curve for the item? If |
multidim_matrix |
logical; compute the information matrix for each row in |
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
mod <- mirt(Science, 1) extr.2 <- extract.item(mod, 2) Theta <- matrix(seq(-4,4, by = .1)) info.2 <- iteminfo(extr.2, Theta) #do something with the info? plot(Theta, info.2, type = 'l', main = 'Item information') ## Not run: #category information curves cat.info <- iteminfo(extr.2, Theta, total.info = FALSE) plot(Theta, cat.info[,1], type = 'l', ylim = c(0, max(cat.info)), ylab = 'info', main = 'Category information') for(i in 2:ncol(cat.info)) lines(Theta, cat.info[,i], col = i) ## Customized test information plot T1 <- T2 <- 0 dat <- expand.table(LSAT7) mod1 <- mirt(dat, 1) mod2 <- mirt(dat, 1, 'Rasch') for(i in 1:5){ T1 <- T1 + iteminfo(extract.item(mod1, i), Theta) T2 <- T2 + iteminfo(extract.item(mod2, i), Theta) } plot(Theta, T2/T1, type = 'l', ylab = 'Relative Test Information', las = 1) lines(Theta, T1/T1, col = 'red') # multidimensional mod <- mirt(dat, 2, TOL=1e-2) ii <- extract.item(mod, 1) Theta <- as.matrix(expand.grid(-4:4, -4:4)) iteminfo(ii, Theta, degrees=c(45,45)) # equal angle iteminfo(ii, Theta, degrees=c(90,0)) # first dimension only # information matrices iteminfo(ii, Theta, multidim_matrix = TRUE) iteminfo(ii, Theta[1, , drop=FALSE], multidim_matrix = TRUE) ## End(Not run)
mod <- mirt(Science, 1) extr.2 <- extract.item(mod, 2) Theta <- matrix(seq(-4,4, by = .1)) info.2 <- iteminfo(extr.2, Theta) #do something with the info? plot(Theta, info.2, type = 'l', main = 'Item information') ## Not run: #category information curves cat.info <- iteminfo(extr.2, Theta, total.info = FALSE) plot(Theta, cat.info[,1], type = 'l', ylim = c(0, max(cat.info)), ylab = 'info', main = 'Category information') for(i in 2:ncol(cat.info)) lines(Theta, cat.info[,i], col = i) ## Customized test information plot T1 <- T2 <- 0 dat <- expand.table(LSAT7) mod1 <- mirt(dat, 1) mod2 <- mirt(dat, 1, 'Rasch') for(i in 1:5){ T1 <- T1 + iteminfo(extract.item(mod1, i), Theta) T2 <- T2 + iteminfo(extract.item(mod2, i), Theta) } plot(Theta, T2/T1, type = 'l', ylab = 'Relative Test Information', las = 1) lines(Theta, T1/T1, col = 'red') # multidimensional mod <- mirt(dat, 2, TOL=1e-2) ii <- extract.item(mod, 1) Theta <- as.matrix(expand.grid(-4:4, -4:4)) iteminfo(ii, Theta, degrees=c(45,45)) # equal angle iteminfo(ii, Theta, degrees=c(90,0)) # first dimension only # information matrices iteminfo(ii, Theta, multidim_matrix = TRUE) iteminfo(ii, Theta[1, , drop=FALSE], multidim_matrix = TRUE) ## End(Not run)
itemplot
displays various item based IRT plots, with special options for plotting items
that contain several 0 slope parameters. Supports up to three dimensional models.
itemplot( object, item, type = "trace", degrees = 45, CE = FALSE, CEalpha = 0.05, CEdraws = 1000, drop.zeros = FALSE, theta_lim = c(-6, 6), shiny = FALSE, rot = list(xaxis = -70, yaxis = 30, zaxis = 10), par.strip.text = list(cex = 0.7), npts = 200, par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col = "black")), auto.key = list(space = "right", points = FALSE, lines = TRUE), ... )
itemplot( object, item, type = "trace", degrees = 45, CE = FALSE, CEalpha = 0.05, CEdraws = 1000, drop.zeros = FALSE, theta_lim = c(-6, 6), shiny = FALSE, rot = list(xaxis = -70, yaxis = 30, zaxis = 10), par.strip.text = list(cex = 0.7), npts = 200, par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col = "black")), auto.key = list(space = "right", points = FALSE, lines = TRUE), ... )
object |
a computed model object of class |
item |
a single numeric value, or the item name, indicating which item to plot |
type |
plot type to use, information ( |
degrees |
the degrees argument to be used if there are two or three factors.
See |
CE |
logical; plot confidence envelope? |
CEalpha |
area remaining in the tail for confidence envelope. Default gives 95% confidence region |
CEdraws |
draws number of draws to use for confidence envelope |
drop.zeros |
logical; drop slope values that are numerically close to zero to reduce
dimensionality? Useful in objects returned from |
theta_lim |
lower and upper limits of the latent trait (theta) to be evaluated, and is
used in conjunction with |
shiny |
logical; run interactive display for item plots using the |
rot |
a list of rotation coordinates to be used for 3 dimensional plots |
par.strip.text |
plotting argument passed to |
npts |
number of quadrature points to be used for plotting features. Larger values make plots look smoother |
par.settings |
plotting argument passed to |
auto.key |
plotting argument passed to |
... |
additional arguments to be passed to |
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: data(LSAT7) fulldata <- expand.table(LSAT7) mod1 <- mirt(fulldata,1,SE=TRUE) mod2 <- mirt(fulldata,1, itemtype = 'Rasch') mod3 <- mirt(fulldata,2) itemplot(mod1, 2) itemplot(mod1, 2, CE = TRUE) itemplot(mod1, 2, type = 'info') itemplot(mod1, 2, type = 'info', CE = TRUE) mods <- list(twoPL = mod1, onePL = mod2) itemplot(mods, 1, type = 'RE') # multidimensional itemplot(mod3, 4, type = 'info') itemplot(mod3, 4, type = 'info', col.regions = colorRampPalette(c("white", "red"))(100)) itemplot(mod3, 4, type = 'infocontour') itemplot(mod3, 4, type = 'tracecontour') # polytomous items pmod <- mirt(Science, 1, SE=TRUE) itemplot(pmod, 3) itemplot(pmod, 3, type = 'threshold') itemplot(pmod, 3, CE = TRUE) itemplot(pmod, 3, type = 'score') itemplot(pmod, 3, type = 'score', CE = TRUE) itemplot(pmod, 3, type = 'infotrace') itemplot(pmod, 3, type = 'infocat') # use the directlabels package to put labels on tracelines library(directlabels) plt <- itemplot(pmod, 3) direct.label(plt, 'top.points') # change colour theme of plots bwtheme <- standard.theme("pdf", color=FALSE) plot(pmod, type='trace', par.settings=bwtheme) itemplot(pmod, 1, type = 'trace', par.settings=bwtheme) # additional modifications can be made via update(). # See ?update.trellis for further documentation (plt <- itemplot(pmod, 1)) update(plt, ylab = expression(Prob(theta))) # ylab changed # infoSE plot itemplot(pmod, 1, type = 'infoSE') # uncomment to run interactive shiny applet # itemplot(shiny = TRUE) ## End(Not run)
## Not run: data(LSAT7) fulldata <- expand.table(LSAT7) mod1 <- mirt(fulldata,1,SE=TRUE) mod2 <- mirt(fulldata,1, itemtype = 'Rasch') mod3 <- mirt(fulldata,2) itemplot(mod1, 2) itemplot(mod1, 2, CE = TRUE) itemplot(mod1, 2, type = 'info') itemplot(mod1, 2, type = 'info', CE = TRUE) mods <- list(twoPL = mod1, onePL = mod2) itemplot(mods, 1, type = 'RE') # multidimensional itemplot(mod3, 4, type = 'info') itemplot(mod3, 4, type = 'info', col.regions = colorRampPalette(c("white", "red"))(100)) itemplot(mod3, 4, type = 'infocontour') itemplot(mod3, 4, type = 'tracecontour') # polytomous items pmod <- mirt(Science, 1, SE=TRUE) itemplot(pmod, 3) itemplot(pmod, 3, type = 'threshold') itemplot(pmod, 3, CE = TRUE) itemplot(pmod, 3, type = 'score') itemplot(pmod, 3, type = 'score', CE = TRUE) itemplot(pmod, 3, type = 'infotrace') itemplot(pmod, 3, type = 'infocat') # use the directlabels package to put labels on tracelines library(directlabels) plt <- itemplot(pmod, 3) direct.label(plt, 'top.points') # change colour theme of plots bwtheme <- standard.theme("pdf", color=FALSE) plot(pmod, type='trace', par.settings=bwtheme) itemplot(pmod, 1, type = 'trace', par.settings=bwtheme) # additional modifications can be made via update(). # See ?update.trellis for further documentation (plt <- itemplot(pmod, 1)) update(plt, ylab = expression(Prob(theta))) # ylab changed # infoSE plot itemplot(pmod, 1, type = 'infoSE') # uncomment to run interactive shiny applet # itemplot(shiny = TRUE) ## End(Not run)
Function to compute generic item summary statistics that do not require prior fitting of IRT models. Contains information about coefficient alpha (and alpha if an item is deleted), mean/SD and frequency of total scores, reduced item-total correlations, average/sd of the correlation between items, response frequencies, and conditional mean/sd information given the unweighted sum scores.
itemstats( data, group = NULL, use_ts = TRUE, proportions = TRUE, ts.tables = FALSE )
itemstats( data, group = NULL, use_ts = TRUE, proportions = TRUE, ts.tables = FALSE )
data |
An object of class |
group |
optional grouping variable to condition on when computing summary information |
use_ts |
logical; include information that is conditional on a meaningful total score? |
proportions |
logical; include response proportion information for each item? |
ts.tables |
logical; include mean/sd summary information pertaining to the unweighted total score? |
Returns a list containing the summary statistics
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
# dichotomous data example LSAT7full <- expand.table(LSAT7) head(LSAT7full) itemstats(LSAT7full) # behaviour with missing data LSAT7full[1:5,1] <- NA itemstats(LSAT7full) # data with no meaningful total score head(SAT12) itemstats(SAT12, use_ts=FALSE) # extra total scores tables dat <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1, 5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) itemstats(dat, ts.tables=TRUE) # grouping information group <- gl(2, 300, labels=c('G1', 'G2')) itemstats(dat, group=group) ##### # polytomous data example itemstats(Science) # polytomous data with missing newScience <- Science newScience[1:5,1] <- NA itemstats(newScience) # unequal categories newScience[,1] <- ifelse(Science[,1] == 1, NA, Science[,1]) itemstats(newScience) merged <- data.frame(LSAT7full[1:392,], Science) itemstats(merged)
# dichotomous data example LSAT7full <- expand.table(LSAT7) head(LSAT7full) itemstats(LSAT7full) # behaviour with missing data LSAT7full[1:5,1] <- NA itemstats(LSAT7full) # data with no meaningful total score head(SAT12) itemstats(SAT12, use_ts=FALSE) # extra total scores tables dat <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1, 5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) itemstats(dat, ts.tables=TRUE) # grouping information group <- gl(2, 300, labels=c('G1', 'G2')) itemstats(dat, group=group) ##### # polytomous data example itemstats(Science) # polytomous data with missing newScience <- Science newScience[1:5,1] <- NA itemstats(newScience) # unequal categories newScience[,1] <- ifelse(Science[,1] == 1, NA, Science[,1]) itemstats(newScience) merged <- data.frame(LSAT7full[1:392,], Science) itemstats(merged)
The key2binary
function will convert response pattern data to a
dichotomous format, given a response key.
key2binary(fulldata, key, score_missing = FALSE)
key2binary(fulldata, key, score_missing = FALSE)
fulldata |
an object of class |
key |
a vector or matrix consisting of the 'correct' response to the items. Each
value/row corresponds to each column in |
score_missing |
logical; should missing data elements be returned as incorrect (i.e., 0)?
If |
Returns a numeric matrix with all the response patterns in dichotomous format
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
data(SAT12) head(SAT12) key <- c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5) dicho.SAT12 <- key2binary(SAT12, key) head(dicho.SAT12) # multiple scoring keys key2 <- cbind(c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5), c(2,3,NA,1,rep(NA, 28))) dicho.SAT12 <- key2binary(SAT12, key2) # keys from raw character responses resp <- as.data.frame(matrix(c( "B","B","D","D","E", "B","A","D","D","E", "B","A","D","C","E", "D","D","D","C","E", "B","C","A","D","A"), ncol=5, byrow=TRUE)) key <- c("B", "D", "D", "C", "E") d01 <- key2binary(resp, key) head(d01) # score/don't score missing values resp[1,1] <- NA d01NA <- key2binary(resp, key) # without scoring d01NA d01 <- key2binary(resp, key, score_missing = TRUE) # with scoring d01
data(SAT12) head(SAT12) key <- c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5) dicho.SAT12 <- key2binary(SAT12, key) head(dicho.SAT12) # multiple scoring keys key2 <- cbind(c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5), c(2,3,NA,1,rep(NA, 28))) dicho.SAT12 <- key2binary(SAT12, key2) # keys from raw character responses resp <- as.data.frame(matrix(c( "B","B","D","D","E", "B","A","D","D","E", "B","A","D","C","E", "D","D","D","C","E", "B","C","A","D","A"), ncol=5, byrow=TRUE)) key <- c("B", "D", "D", "C", "E") d01 <- key2binary(resp, key) head(d01) # score/don't score missing values resp[1,1] <- NA d01NA <- key2binary(resp, key) # without scoring d01NA d01 <- key2binary(resp, key, score_missing = TRUE) # with scoring d01
Lagrange (i.e., score) test to test whether parameters should be freed from a more constrained baseline model.
lagrange(mod, parnum, SE.type = "Oakes", type = "Richardson", ...)
lagrange(mod, parnum, SE.type = "Oakes", type = "Richardson", ...)
mod |
an estimated model |
parnum |
a vector, or list of vectors, containing one or more parameter
locations/sets of locations to be tested.
See objects returned from |
SE.type |
type of information matrix estimator to use. See |
type |
type of numerical algorithm passed to |
... |
additional arguments to pass to |
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: dat <- expand.table(LSAT7) mod <- mirt(dat, 1, 'Rasch') (values <- mod2values(mod)) # test all fixed slopes individually parnum <- values$parnum[values$name == 'a1'] lagrange(mod, parnum) # compare to LR test for first two slopes mod2 <- mirt(dat, 'F = 1-5 FREE = (1, a1)', 'Rasch') coef(mod2, simplify=TRUE)$items anova(mod, mod2) mod2 <- mirt(dat, 'F = 1-5 FREE = (2, a1)', 'Rasch') coef(mod2, simplify=TRUE)$items anova(mod, mod2) mod2 <- mirt(dat, 'F = 1-5 FREE = (3, a1)', 'Rasch') coef(mod2, simplify=TRUE)$items anova(mod, mod2) # test slopes first two slopes and last three slopes jointly lagrange(mod, list(parnum[1:2], parnum[3:5])) # test all 5 slopes and first + last jointly lagrange(mod, list(parnum[1:5], parnum[c(1, 5)])) ## End(Not run)
## Not run: dat <- expand.table(LSAT7) mod <- mirt(dat, 1, 'Rasch') (values <- mod2values(mod)) # test all fixed slopes individually parnum <- values$parnum[values$name == 'a1'] lagrange(mod, parnum) # compare to LR test for first two slopes mod2 <- mirt(dat, 'F = 1-5 FREE = (1, a1)', 'Rasch') coef(mod2, simplify=TRUE)$items anova(mod, mod2) mod2 <- mirt(dat, 'F = 1-5 FREE = (2, a1)', 'Rasch') coef(mod2, simplify=TRUE)$items anova(mod, mod2) mod2 <- mirt(dat, 'F = 1-5 FREE = (3, a1)', 'Rasch') coef(mod2, simplify=TRUE)$items anova(mod, mod2) # test slopes first two slopes and last three slopes jointly lagrange(mod, list(parnum[1:2], parnum[3:5])) # test all 5 slopes and first + last jointly lagrange(mod, list(parnum[1:5], parnum[c(1, 5)])) ## End(Not run)
Given a matrix or data.frame object consisting of Likert responses return an object of the same dimensions with integer values.
likert2int(x, levels = NULL)
likert2int(x, levels = NULL)
x |
a matrix of character values or data.frame of character/factor vectors |
levels |
a named character vector indicating which integer values
should be assigned to which elements. If omitted, the order of the elements
will be determined after converting each column in |
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: # simulate data dat1 <- matrix(sample(c('Disagree', 'Strongly Disagree', 'Agree', 'Neutral', 'Strongly Agree'), 1000*5, replace=TRUE), nrow=1000, ncol=5) dat1[2,2] <- dat1[3,3] <- dat1[1,3] <- NA # NAs added for flavour dat2 <- matrix(sample(c('D', 'SD', 'A', 'N', 'SA'), 1000*5, replace=TRUE), nrow=1000, ncol=5) dat <- cbind(dat1, dat2) # separately intdat1 <- likert2int(dat1) head(dat1) head(intdat1) # more useful with explicit levels lvl1 <- c('Strongly Disagree'=1, 'Disagree'=2, 'Neutral'=3, 'Agree'=4, 'Strongly Agree'=5) intdat1 <- likert2int(dat1, levels = lvl1) head(dat1) head(intdat1) # second data lvl2 <- c('SD'=1, 'D'=2, 'N'=3, 'A'=4, 'SA'=5) intdat2 <- likert2int(dat2, levels = lvl2) head(dat2) head(intdat2) # full dataset (using both mapping schemes) intdat <- likert2int(dat, levels = c(lvl1, lvl2)) head(dat) head(intdat) ##### # data.frame as input with ordered factors dat1 <- data.frame(dat1) dat2 <- data.frame(dat2) dat.old <- cbind(dat1, dat2) colnames(dat.old) <- paste0('Item_', 1:10) str(dat.old) # factors are leveled alphabetically by default # create explicit ordering in factor variables for(i in 1:ncol(dat1)) levels(dat1[[i]]) <- c('Strongly Disagree', 'Disagree', 'Neutral', 'Agree', 'Strongly Agree') for(i in 1:ncol(dat2)) levels(dat2[[i]]) <- c('SD', 'D', 'N', 'A', 'SA') dat <- cbind(dat1, dat2) colnames(dat) <- colnames(dat.old) str(dat) # note ordering intdat <- likert2int(dat) head(dat) head(intdat) ## End(Not run)
## Not run: # simulate data dat1 <- matrix(sample(c('Disagree', 'Strongly Disagree', 'Agree', 'Neutral', 'Strongly Agree'), 1000*5, replace=TRUE), nrow=1000, ncol=5) dat1[2,2] <- dat1[3,3] <- dat1[1,3] <- NA # NAs added for flavour dat2 <- matrix(sample(c('D', 'SD', 'A', 'N', 'SA'), 1000*5, replace=TRUE), nrow=1000, ncol=5) dat <- cbind(dat1, dat2) # separately intdat1 <- likert2int(dat1) head(dat1) head(intdat1) # more useful with explicit levels lvl1 <- c('Strongly Disagree'=1, 'Disagree'=2, 'Neutral'=3, 'Agree'=4, 'Strongly Agree'=5) intdat1 <- likert2int(dat1, levels = lvl1) head(dat1) head(intdat1) # second data lvl2 <- c('SD'=1, 'D'=2, 'N'=3, 'A'=4, 'SA'=5) intdat2 <- likert2int(dat2, levels = lvl2) head(dat2) head(intdat2) # full dataset (using both mapping schemes) intdat <- likert2int(dat, levels = c(lvl1, lvl2)) head(dat) head(intdat) ##### # data.frame as input with ordered factors dat1 <- data.frame(dat1) dat2 <- data.frame(dat2) dat.old <- cbind(dat1, dat2) colnames(dat.old) <- paste0('Item_', 1:10) str(dat.old) # factors are leveled alphabetically by default # create explicit ordering in factor variables for(i in 1:ncol(dat1)) levels(dat1[[i]]) <- c('Strongly Disagree', 'Disagree', 'Neutral', 'Agree', 'Strongly Agree') for(i in 1:ncol(dat2)) levels(dat2[[i]]) <- c('SD', 'D', 'N', 'A', 'SA') dat <- cbind(dat1, dat2) colnames(dat) <- colnames(dat.old) str(dat) # note ordering intdat <- likert2int(dat) head(dat) head(intdat) ## End(Not run)
Extract the observed-data log-likelihood.
## S4 method for signature 'SingleGroupClass' logLik(object)
## S4 method for signature 'SingleGroupClass' logLik(object)
object |
an object of class |
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: x <- mirt(Science, 1) logLik(x) ## End(Not run)
## Not run: x <- mirt(Science, 1) logLik(x) ## End(Not run)
Data from Thissen (1982); contains 5 dichotomously scored items obtained from the Law School Admissions Test, section 6.
Phil Chalmers [email protected]
Thissen, D. (1982). Marginal maximum likelihood estimation for the one-parameter logistic model. Psychometrika, 47, 175-186.
## Not run: dat <- expand.table(LSAT6) head(dat) itemstats(dat) model <- 'F = 1-5 CONSTRAIN = (1-5, a1)' (mod <- mirt(dat, model)) M2(mod) itemfit(mod) coef(mod, simplify=TRUE) # equivalentely, but with a different parameterization mod2 <- mirt(dat, 1, itemtype = 'Rasch') anova(mod, mod2) #equal M2(mod2) itemfit(mod2) coef(mod2, simplify=TRUE) sqrt(coef(mod2)$GroupPars[2]) #latent SD equal to the slope in mod ## End(Not run)
## Not run: dat <- expand.table(LSAT6) head(dat) itemstats(dat) model <- 'F = 1-5 CONSTRAIN = (1-5, a1)' (mod <- mirt(dat, model)) M2(mod) itemfit(mod) coef(mod, simplify=TRUE) # equivalentely, but with a different parameterization mod2 <- mirt(dat, 1, itemtype = 'Rasch') anova(mod, mod2) #equal M2(mod2) itemfit(mod2) coef(mod2, simplify=TRUE) sqrt(coef(mod2)$GroupPars[2]) #latent SD equal to the slope in mod ## End(Not run)
Data from Bock & Lieberman (1970); contains 5 dichotomously scored items obtained from the Law School Admissions Test, section 7.
Data from
Phil Chalmers [email protected]
Bock, R. D., & Lieberman, M. (1970). Fitting a response model for n dichotomously scored items. Psychometrika, 35(2), 179-197.
Bock, R. D., & Lieberman, M. (1970). Fitting a response model for n dichotomously scored items. Psychometrika, 35(2), 179-197.
## Not run: dat <- expand.table(LSAT7) head(dat) itemstats(dat) (mod <- mirt(dat, 1)) coef(mod) ## End(Not run) ## Not run: dat <- expand.table(LSAT7) head(dat) itemstats(dat) (mod <- mirt(dat, 1)) coef(mod) ## End(Not run)
## Not run: dat <- expand.table(LSAT7) head(dat) itemstats(dat) (mod <- mirt(dat, 1)) coef(mod) ## End(Not run) ## Not run: dat <- expand.table(LSAT7) head(dat) itemstats(dat) (mod <- mirt(dat, 1)) coef(mod) ## End(Not run)
Computes the M2 (Maydeu-Olivares & Joe, 2006) statistic when all data are dichotomous,
the collapsed M2* statistic (collapsing over univariate and bivariate response categories;
see Cai and Hansen, 2013), and the hybrid C2 statistic which only collapses only the bivariate
moments (Cai and Monro, 2014). The C2 variant is mainly useful when polytomous response models
do not have sufficient degrees of freedom to compute M2*. This function
also computes associated fit indices that are based on
fitting the null model. Supports single and multiple-group models.
If the latent trait density was approximated (e.g., Davidian curves, Empirical histograms, etc)
then passing use_dentype_estimate = TRUE
will use the internally saved quadrature and
density components (where applicable).
M2( obj, type = "M2*", calcNull = TRUE, quadpts = NULL, theta_lim = c(-6, 6), CI = 0.9, residmat = FALSE, QMC = FALSE, suppress = 1, ... )
M2( obj, type = "M2*", calcNull = TRUE, quadpts = NULL, theta_lim = c(-6, 6), CI = 0.9, residmat = FALSE, QMC = FALSE, suppress = 1, ... )
obj |
an estimated model object from the mirt package |
type |
type of fit statistic to compute. Options are "M2", "M2*" for the univariate and bivariate collapsed version of the M2 statistic ("M2" currently limited to dichotomous response data only), and "C2" for a hybrid between M2 and M2* where only the bivariate moments are collapsed |
calcNull |
logical; calculate statistics for the null model as well?
Allows for statistics such as the limited information TLI and CFI. Only valid when items all
have a suitable null model (e.g., those created via |
quadpts |
number of quadrature points to use during estimation. If |
theta_lim |
lower and upper range to evaluate latent trait integral for each dimension |
CI |
numeric value from 0 to 1 indicating the range of the confidence interval for RMSEA. Default returns the 90% interval |
residmat |
logical; return the residual matrix used to compute the SRMSR statistic? Only the lower triangle of the residual correlation matrix will be returned (the upper triangle is filled with NA's) |
QMC |
logical; use quasi-Monte Carlo integration? Useful for higher dimensional models.
If |
suppress |
a numeric value indicating which parameter residual dependency combinations
to flag as being too high. Absolute values for the standardized residuals greater than
this value will be returned, while all values less than this value will be set to NA.
Must be used in conjunction with the argument |
... |
additional arguments to pass |
Returns a data.frame object with the M2-type statistic, along with the degrees of freedom,
p-value, RMSEA (with 90% confidence interval), SRMSR for each group,
and optionally the TLI and CFI model fit statistics if calcNull = TRUE
.
Phil Chalmers [email protected]
Cai, L. & Hansen, M. (2013). Limited-information goodness-of-fit testing of hierarchical item factor models. British Journal of Mathematical and Statistical Psychology, 66, 245-276.
Cai, L. & Monro, S. (2014). A new statistic for evaluating item response theory models for ordinal data. National Center for Research on Evaluation, Standards, & Student Testing. Technical Report.
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Maydeu-Olivares, A. & Joe, H. (2006). Limited information goodness-of-fit testing in multidimensional contingency tables. Psychometrika, 71, 713-732.
## Not run: dat <- as.matrix(expand.table(LSAT7)) (mod1 <- mirt(dat, 1)) M2(mod1) resids <- M2(mod1, residmat=TRUE) #lower triangle of residual correlation matrix resids summary(resids[lower.tri(resids)]) # M2 with missing data present dat[sample(1:prod(dim(dat)), 250)] <- NA mod2 <- mirt(dat, 1) M2(mod2) # C2 statistic (useful when polytomous IRT models have too few df) pmod <- mirt(Science, 1) # This fails with too few df: # M2(pmod) # This, however, works: M2(pmod, type = 'C2') ## End(Not run)
## Not run: dat <- as.matrix(expand.table(LSAT7)) (mod1 <- mirt(dat, 1)) M2(mod1) resids <- M2(mod1, residmat=TRUE) #lower triangle of residual correlation matrix resids summary(resids[lower.tri(resids)]) # M2 with missing data present dat[sample(1:prod(dim(dat)), 250)] <- NA mod2 <- mirt(dat, 1) M2(mod2) # C2 statistic (useful when polytomous IRT models have too few df) pmod <- mirt(Science, 1) # This fails with too few df: # M2(pmod) # This, however, works: M2(pmod, type = 'C2') ## End(Not run)
Given an estimated model and a prior density function, compute the marginal reliability (Thissen and Wainer, 2001). This is only available for unidimensional tests.
marginal_rxx(mod, density = dnorm, ...)
marginal_rxx(mod, density = dnorm, ...)
mod |
an object of class |
density |
a density function to use for integration. Default assumes the latent traits are from a normal (Gaussian) distribution |
... |
additional arguments passed to the density function |
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Thissen, D. and Wainer, H. (2001). Test Scoring. Lawrence Erlbaum Associates.
empirical_rxx
, extract.group
, testinfo
dat <- expand.table(deAyala) mod <- mirt(dat) # marginal estimate treating item parameters as known marginal_rxx(mod) # compare to alpha itemstats(dat)$overall$alpha ## Not run: # empirical estimate (assuming the same prior) fscores(mod, returnER = TRUE) # empirical rxx the alternative way, given theta scores and SEs fs <- fscores(mod, full.scores.SE=TRUE) head(fs) empirical_rxx(fs) ## End(Not run)
dat <- expand.table(deAyala) mod <- mirt(dat) # marginal estimate treating item parameters as known marginal_rxx(mod) # compare to alpha itemstats(dat)$overall$alpha ## Not run: # empirical estimate (assuming the same prior) fscores(mod, returnER = TRUE) # empirical rxx the alternative way, given theta scores and SEs fs <- fscores(mod, full.scores.SE=TRUE) head(fs) empirical_rxx(fs) ## End(Not run)
Returns a matrix containing the MDIFF values (Reckase, 2009). Only supported for items of class 'dich' and 'graded'.
MDIFF(x, which.items = NULL, group = NULL)
MDIFF(x, which.items = NULL, group = NULL)
x |
an object of class 'SingleGroupClass', or an object of class 'MultipleGroupClass' if a suitable
|
which.items |
a vector indicating which items to select. If NULL is used (the default) then MDISC will be computed for all items |
group |
group argument to pass to |
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Reckase, M. D. (2009). Multidimensional Item Response Theory. Springer.
## Not run: mod <- mirt(Science, 2) MDIFF(mod) mod <- mirt(expand.table(LSAT7), 2) MDIFF(mod) ## End(Not run)
## Not run: mod <- mirt(Science, 2) MDIFF(mod) mod <- mirt(expand.table(LSAT7), 2) MDIFF(mod) ## End(Not run)
mdirt
fits a variety of item response models with discrete latent variables.
These include, but are not limited to, latent class analysis, multidimensional latent
class models, multidimensional discrete latent class models, DINA/DINO models,
grade of measurement models, C-RUM, and so on. If response models are not defined explicitly
then customized models can defined using the createItem
function.
mdirt( data, model, customTheta = NULL, structure = NULL, item.Q = NULL, nruns = 1, method = "EM", covdata = NULL, formula = NULL, itemtype = "lca", optimizer = "nlminb", return_max = TRUE, group = NULL, GenRandomPars = FALSE, verbose = TRUE, pars = NULL, technical = list(), ... )
mdirt( data, model, customTheta = NULL, structure = NULL, item.Q = NULL, nruns = 1, method = "EM", covdata = NULL, formula = NULL, itemtype = "lca", optimizer = "nlminb", return_max = TRUE, group = NULL, GenRandomPars = FALSE, verbose = TRUE, pars = NULL, technical = list(), ... )
data |
a |
model |
number of mutually exclusive classes to fit, or alternatively a more specific
|
customTheta |
input passed to |
structure |
an R formula allowing the profile probability patterns (i.e., the structural component of
the model) to be fitted according to a log-linear model. When |
item.Q |
a list of item-level Q-matrices indicating how the respective categories should be
modeled by the underlying attributes. Each matrix must represent a |
nruns |
a numeric value indicating how many times the model should be fit to the data
when using random starting values. If greater than 1, |
method |
estimation method. Can be 'EM' or 'BL' (see |
covdata |
a data.frame of data used for latent regression models |
formula |
an R formula (or list of formulas) indicating how the latent traits
can be regressed using external covariates in |
itemtype |
a vector indicating the itemtype associated with each item.
For discrete models this is limited to only 'lca' or items defined using a
|
optimizer |
optimizer used for the M-step, set to |
return_max |
logical; when |
group |
a factor variable indicating group membership used for multiple group analyses |
GenRandomPars |
logical; use random starting values |
verbose |
logical; turn on messages to the R console |
pars |
used for modifying starting values; see |
technical |
list of lower-level inputs. See |
... |
additional arguments to be passed to the estimation engine. See |
Posterior classification accuracy for each response pattern may be obtained
via the fscores
function. The summary()
function will display
the category probability values given the class membership, which can also
be displayed graphically with plot()
, while coef()
displays the raw coefficient values (and their standard errors, if estimated). Finally,
anova()
is used to compare nested models, while
M2
and itemfit
may be used for model fitting purposes.
The latent class IRT model with two latent classes has the form
where the values generally take on discrete points (such as 0 or 1).
For proper identification, the first category slope parameters
(
and
) are never freely estimated. Alternatively, supplying a different
grid of
values will allow the estimation of similar models (multidimensional
discrete models, grade of membership, etc.). See the examples below.
When the item.Q
for is utilized, the above equation can be understood as
where by construction Q
is a matrix indicating whether the category should
be modeled according to the latent class structure. For the standard latent class model, the Q-matrix
has as many rows as categories, as many columns as the number of classes/attributes modeled,
and consist of 0's in the first row and 1's elsewhere. This of course can be over-written by passing
an alternative
item.Q
definition for each respective item.
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29.
Proctor, C. H. (1970). A probabilistic formulation and statistical analysis for Guttman scaling. Psychometrika, 35, 73-78. doi:10.18637/jss.v048.i06
thetaComb
, fscores
, mirt.model
, M2
,
itemfit
, boot.mirt
, mirtCluster
,
wald
, coef-method
, summary-method
,
anova-method
, residuals-method
# LSAT6 dataset dat <- expand.table(LSAT6) # fit with 2-3 latent classes (mod2 <- mdirt(dat, 2)) ## Not run: (mod3 <- mdirt(dat, 3)) summary(mod2) residuals(mod2) residuals(mod2, type = 'exp') anova(mod2, mod3) M2(mod2) itemfit(mod2) # generate classification plots plot(mod2) plot(mod2, facet_items = FALSE) plot(mod2, profile = TRUE) # available for polytomous data mod <- mdirt(Science, 2) summary(mod) plot(mod) plot(mod, profile=TRUE) # classification based on response patterns fscores(mod2, full.scores = FALSE) # classify individuals either with the largest posterior probability..... fs <- fscores(mod2) head(fs) classes <- 1:2 class_max <- classes[apply(apply(fs, 1, max) == fs, 1, which)] table(class_max) # ... or by probability sampling (i.e., plausible value draws) class_prob <- apply(fs, 1, function(x) sample(1:2, 1, prob=x)) table(class_prob) # plausible value imputations for stochastic classification in both classes pvs <- fscores(mod2, plausible.draws=10) tabs <- lapply(pvs, function(x) apply(x, 2, table)) tabs[[1]] # fit with random starting points (run in parallel to save time) if(interactive()) mirtCluster() mod <- mdirt(dat, 2, nruns=10) #-------------------------- # Grade of measurement model # define a custom Theta grid for including a 'fuzzy' class membership (Theta <- matrix(c(1, 0, .5, .5, 0, 1), nrow=3 , ncol=2, byrow=TRUE)) (mod_gom <- mdirt(dat, 2, customTheta = Theta)) summary(mod_gom) #----------------- # Multidimensional discrete latent class model dat <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) # define Theta grid for three latent classes (Theta <- thetaComb(0:1, 3)) (mod_discrete <- mdirt(dat, 3, customTheta = Theta)) summary(mod_discrete) # Located latent class model model <- mirt.model('C1 = 1-32 C2 = 1-32 C3 = 1-32 CONSTRAIN = (1-32, a1), (1-32, a2), (1-32, a3)') (mod_located <- mdirt(dat, model, customTheta = diag(3))) summary(mod_located) #----------------- ### DINA model example # generate some suitable data for a two dimensional DINA application # (first columns are intercepts) set.seed(1) Theta <- expand.table(matrix(c(1,0,0,0, 1,1,0,0, 1,0,1,0, 1,1,1,1), 4, 4, byrow=TRUE), freq = c(200,200,100,500)) a <- matrix(c(rnorm(15, -1.5, .5), rlnorm(5, .2, .3), numeric(15), rlnorm(5, .2, .3), numeric(15), rlnorm(5, .2, .3)), 15, 4) guess <- plogis(a[11:15,1]) # population guess slip <- 1 - plogis(rowSums(a[11:15,])) # population slip dat <- simdata(a, Theta=Theta, itemtype = 'lca') # first column is the intercept, 2nd and 3rd are attributes theta <- cbind(1, thetaComb(0:1, 2)) theta <- cbind(theta, theta[,2] * theta[,3]) #DINA interaction of main attributes model <- mirt.model('Intercept = 1-15 A1 = 1-5 A2 = 6-10 A1A2 = 11-15') # last 5 items are DINA (first 10 are unidimensional C-RUMs) DINA <- mdirt(dat, model, customTheta = theta) coef(DINA, simplify=TRUE) summary(DINA) M2(DINA) # fits well (as it should) cfs <- coef(DINA, simplify=TRUE)$items[11:15,] cbind(guess, estguess = plogis(cfs[,1])) cbind(slip, estslip = 1 - plogis(rowSums(cfs))) ### DINO model example theta <- cbind(1, thetaComb(0:1, 2)) # define theta matrix with negative interaction term (theta <- cbind(theta, -theta[,2] * theta[,3])) model <- mirt.model('Intercept = 1-15 A1 = 1-5, 11-15 A2 = 6-15 Yoshi = 11-15 CONSTRAIN = (11,a2,a3,a4), (12,a2,a3,a4), (13,a2,a3,a4), (14,a2,a3,a4), (15,a2,a3,a4)') # last five items are DINOs (first 10 are unidimensional C-RUMs) DINO <- mdirt(dat, model, customTheta = theta) coef(DINO, simplify=TRUE) summary(DINO) M2(DINO) #doesn't fit as well, because not the generating model ## C-RUM (analogous to MIRT model) theta <- cbind(1, thetaComb(0:1, 2)) model <- mirt.model('Intercept = 1-15 A1 = 1-5, 11-15 A2 = 6-15') CRUM <- mdirt(dat, model, customTheta = theta) coef(CRUM, simplify=TRUE) summary(CRUM) # good fit, but over-saturated (main effects for items 11-15 can be set to 0) M2(CRUM) #------------------ # multidimensional latent class model dat <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) # 5 latent classes within 2 different sets of items model <- mirt.model('C1 = 1-16 C2 = 1-16 C3 = 1-16 C4 = 1-16 C5 = 1-16 C6 = 17-32 C7 = 17-32 C8 = 17-32 C9 = 17-32 C10 = 17-32 CONSTRAIN = (1-16, a1), (1-16, a2), (1-16, a3), (1-16, a4), (1-16, a5), (17-32, a6), (17-32, a7), (17-32, a8), (17-32, a9), (17-32, a10)') theta <- diag(10) # defined explicitly. Otherwise, this profile is assumed mod <- mdirt(dat, model, customTheta = theta) coef(mod, simplify=TRUE) summary(mod) #------------------ # multiple group with constrained group probabilities dat <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) group <- rep(c('G1', 'G2'), each = nrow(SAT12)/2) Theta <- diag(2) # the latent class parameters are technically located in the (nitems + 1) location model <- mirt.model('A1 = 1-32 A2 = 1-32 CONSTRAINB = (33, c1)') mod <- mdirt(dat, model, group = group, customTheta = Theta) coef(mod, simplify=TRUE) summary(mod) #------------------ # Probabilistic Guttman Model (Proctor, 1970) # example analysis can also be found in the sirt package (see ?prob.guttman) data(data.read, package = 'sirt') head(data.read) Theta <- matrix(c(1,0,0,0, 1,1,0,0, 1,1,1,0, 1,1,1,1), 4, byrow=TRUE) model <- mirt.model("INTERCEPT = 1-12 C1 = 1,7,9,11 C2 = 2,5,8,10,12 C3 = 3,4,6") mod <- mdirt(data.read, model, customTheta=Theta) summary(mod) M2(mod) itemfit(mod) ## End(Not run)
# LSAT6 dataset dat <- expand.table(LSAT6) # fit with 2-3 latent classes (mod2 <- mdirt(dat, 2)) ## Not run: (mod3 <- mdirt(dat, 3)) summary(mod2) residuals(mod2) residuals(mod2, type = 'exp') anova(mod2, mod3) M2(mod2) itemfit(mod2) # generate classification plots plot(mod2) plot(mod2, facet_items = FALSE) plot(mod2, profile = TRUE) # available for polytomous data mod <- mdirt(Science, 2) summary(mod) plot(mod) plot(mod, profile=TRUE) # classification based on response patterns fscores(mod2, full.scores = FALSE) # classify individuals either with the largest posterior probability..... fs <- fscores(mod2) head(fs) classes <- 1:2 class_max <- classes[apply(apply(fs, 1, max) == fs, 1, which)] table(class_max) # ... or by probability sampling (i.e., plausible value draws) class_prob <- apply(fs, 1, function(x) sample(1:2, 1, prob=x)) table(class_prob) # plausible value imputations for stochastic classification in both classes pvs <- fscores(mod2, plausible.draws=10) tabs <- lapply(pvs, function(x) apply(x, 2, table)) tabs[[1]] # fit with random starting points (run in parallel to save time) if(interactive()) mirtCluster() mod <- mdirt(dat, 2, nruns=10) #-------------------------- # Grade of measurement model # define a custom Theta grid for including a 'fuzzy' class membership (Theta <- matrix(c(1, 0, .5, .5, 0, 1), nrow=3 , ncol=2, byrow=TRUE)) (mod_gom <- mdirt(dat, 2, customTheta = Theta)) summary(mod_gom) #----------------- # Multidimensional discrete latent class model dat <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) # define Theta grid for three latent classes (Theta <- thetaComb(0:1, 3)) (mod_discrete <- mdirt(dat, 3, customTheta = Theta)) summary(mod_discrete) # Located latent class model model <- mirt.model('C1 = 1-32 C2 = 1-32 C3 = 1-32 CONSTRAIN = (1-32, a1), (1-32, a2), (1-32, a3)') (mod_located <- mdirt(dat, model, customTheta = diag(3))) summary(mod_located) #----------------- ### DINA model example # generate some suitable data for a two dimensional DINA application # (first columns are intercepts) set.seed(1) Theta <- expand.table(matrix(c(1,0,0,0, 1,1,0,0, 1,0,1,0, 1,1,1,1), 4, 4, byrow=TRUE), freq = c(200,200,100,500)) a <- matrix(c(rnorm(15, -1.5, .5), rlnorm(5, .2, .3), numeric(15), rlnorm(5, .2, .3), numeric(15), rlnorm(5, .2, .3)), 15, 4) guess <- plogis(a[11:15,1]) # population guess slip <- 1 - plogis(rowSums(a[11:15,])) # population slip dat <- simdata(a, Theta=Theta, itemtype = 'lca') # first column is the intercept, 2nd and 3rd are attributes theta <- cbind(1, thetaComb(0:1, 2)) theta <- cbind(theta, theta[,2] * theta[,3]) #DINA interaction of main attributes model <- mirt.model('Intercept = 1-15 A1 = 1-5 A2 = 6-10 A1A2 = 11-15') # last 5 items are DINA (first 10 are unidimensional C-RUMs) DINA <- mdirt(dat, model, customTheta = theta) coef(DINA, simplify=TRUE) summary(DINA) M2(DINA) # fits well (as it should) cfs <- coef(DINA, simplify=TRUE)$items[11:15,] cbind(guess, estguess = plogis(cfs[,1])) cbind(slip, estslip = 1 - plogis(rowSums(cfs))) ### DINO model example theta <- cbind(1, thetaComb(0:1, 2)) # define theta matrix with negative interaction term (theta <- cbind(theta, -theta[,2] * theta[,3])) model <- mirt.model('Intercept = 1-15 A1 = 1-5, 11-15 A2 = 6-15 Yoshi = 11-15 CONSTRAIN = (11,a2,a3,a4), (12,a2,a3,a4), (13,a2,a3,a4), (14,a2,a3,a4), (15,a2,a3,a4)') # last five items are DINOs (first 10 are unidimensional C-RUMs) DINO <- mdirt(dat, model, customTheta = theta) coef(DINO, simplify=TRUE) summary(DINO) M2(DINO) #doesn't fit as well, because not the generating model ## C-RUM (analogous to MIRT model) theta <- cbind(1, thetaComb(0:1, 2)) model <- mirt.model('Intercept = 1-15 A1 = 1-5, 11-15 A2 = 6-15') CRUM <- mdirt(dat, model, customTheta = theta) coef(CRUM, simplify=TRUE) summary(CRUM) # good fit, but over-saturated (main effects for items 11-15 can be set to 0) M2(CRUM) #------------------ # multidimensional latent class model dat <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) # 5 latent classes within 2 different sets of items model <- mirt.model('C1 = 1-16 C2 = 1-16 C3 = 1-16 C4 = 1-16 C5 = 1-16 C6 = 17-32 C7 = 17-32 C8 = 17-32 C9 = 17-32 C10 = 17-32 CONSTRAIN = (1-16, a1), (1-16, a2), (1-16, a3), (1-16, a4), (1-16, a5), (17-32, a6), (17-32, a7), (17-32, a8), (17-32, a9), (17-32, a10)') theta <- diag(10) # defined explicitly. Otherwise, this profile is assumed mod <- mdirt(dat, model, customTheta = theta) coef(mod, simplify=TRUE) summary(mod) #------------------ # multiple group with constrained group probabilities dat <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) group <- rep(c('G1', 'G2'), each = nrow(SAT12)/2) Theta <- diag(2) # the latent class parameters are technically located in the (nitems + 1) location model <- mirt.model('A1 = 1-32 A2 = 1-32 CONSTRAINB = (33, c1)') mod <- mdirt(dat, model, group = group, customTheta = Theta) coef(mod, simplify=TRUE) summary(mod) #------------------ # Probabilistic Guttman Model (Proctor, 1970) # example analysis can also be found in the sirt package (see ?prob.guttman) data(data.read, package = 'sirt') head(data.read) Theta <- matrix(c(1,0,0,0, 1,1,0,0, 1,1,1,0, 1,1,1,1), 4, byrow=TRUE) model <- mirt.model("INTERCEPT = 1-12 C1 = 1,7,9,11 C2 = 2,5,8,10,12 C3 = 3,4,6") mod <- mdirt(data.read, model, customTheta=Theta) summary(mod) M2(mod) itemfit(mod) ## End(Not run)
Returns a vector containing the MDISC values for each item in the model input object (Reckase, 2009).
MDISC(x, group = NULL)
MDISC(x, group = NULL)
x |
an object of class 'SingleGroupClass', or an object of class 'MultipleGroupClass' if a suitable
|
group |
group argument to pass to |
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Reckase, M. D. (2009). Multidimensional Item Response Theory. Springer.
## Not run: mod <- mirt(Science, 2) MDISC(mod) ## End(Not run)
## Not run: mod <- mirt(Science, 2) MDISC(mod) ## End(Not run)
mirt
fits a maximum likelihood (or maximum a posteriori) factor analysis model
to any mixture of dichotomous and polytomous data under the item response theory paradigm
using either Cai's (2010) Metropolis-Hastings Robbins-Monro (MHRM) algorithm, with
an EM algorithm approach outlined by Bock and Aitkin (1981) using rectangular or
quasi-Monte Carlo integration grids, or with the stochastic EM (i.e., the first two stages
of the MH-RM algorithm). Models containing 'explanatory' person or item level predictors
can only be included by using the mixedmirt
function, though latent
regression models can be fit using the formula
input in this function.
Tests that form a two-tier or bi-factor structure should be estimated with the
bfactor
function, which uses a dimension reduction EM algorithm for
modeling item parcels. Multiple group analyses (useful for DIF and DTF testing) are
also available using the multipleGroup
function.
mirt( data, model = 1, itemtype = NULL, guess = 0, upper = 1, SE = FALSE, covdata = NULL, formula = NULL, itemdesign = NULL, item.formula = NULL, SE.type = "Oakes", method = "EM", optimizer = NULL, dentype = "Gaussian", pars = NULL, constrain = NULL, calcNull = FALSE, draws = 5000, survey.weights = NULL, quadpts = NULL, TOL = NULL, gpcm_mats = list(), grsm.block = NULL, rsm.block = NULL, monopoly.k = 1L, key = NULL, large = FALSE, GenRandomPars = FALSE, accelerate = "Ramsay", verbose = TRUE, solnp_args = list(), nloptr_args = list(), spline_args = list(), control = list(), technical = list(), ... )
mirt( data, model = 1, itemtype = NULL, guess = 0, upper = 1, SE = FALSE, covdata = NULL, formula = NULL, itemdesign = NULL, item.formula = NULL, SE.type = "Oakes", method = "EM", optimizer = NULL, dentype = "Gaussian", pars = NULL, constrain = NULL, calcNull = FALSE, draws = 5000, survey.weights = NULL, quadpts = NULL, TOL = NULL, gpcm_mats = list(), grsm.block = NULL, rsm.block = NULL, monopoly.k = 1L, key = NULL, large = FALSE, GenRandomPars = FALSE, accelerate = "Ramsay", verbose = TRUE, solnp_args = list(), nloptr_args = list(), spline_args = list(), control = list(), technical = list(), ... )
data |
a |
model |
a string to be passed (or an object returned from) |
itemtype |
type of items to be modeled, declared as either a) a single value to be
recycled for each item, b) a vector for each respective item, or c) if applicable,
a matrix with columns equal to the number of items and rows equal to the number of
latent classes. The
Additionally, user defined item classes can also be defined using the |
guess |
fixed pseudo-guessing parameters. Can be entered as a single value to assign a global guessing parameter or may be entered as a numeric vector corresponding to each item |
upper |
fixed upper bound parameters for 4-PL model. Can be entered as a single value to assign a global guessing parameter or may be entered as a numeric vector corresponding to each item |
SE |
logical; estimate the standard errors by computing the parameter information matrix?
See |
covdata |
a data.frame of data used for latent regression models |
formula |
an R formula (or list of formulas) indicating how the latent traits
can be regressed using external covariates in |
itemdesign |
a |
item.formula |
an R formula used to specify any intercept decomposition (e.g., the LLTM; Fischer, 1983). Note that only the right-hand side of the formula is required for compensatory models. For non-compensatory |
SE.type |
type of estimation method to use for calculating the parameter information matrix
for computing standard errors and
Note that both the |
method |
a character object specifying the estimation algorithm to be used. The default is
The |
optimizer |
a character indicating which numerical optimizer to use. By default, the EM
algorithm will use the Other options include the Newton-Raphson ( Additionally, estimation subroutines from the |
dentype |
type of density form to use for the latent trait parameters. Current options include
Note that when |
pars |
a data.frame with the structure of how the starting values, parameter numbers,
estimation logical values, etc, are defined. The user may observe how the model defines the
values by using |
constrain |
a list of user declared equality constraints. To see how to define the
parameters correctly use |
calcNull |
logical; calculate the Null model for additional fit statistics (e.g., TLI)? Only applicable if the data contains no NA's and the data is not overly sparse |
draws |
the number of Monte Carlo draws to estimate the log-likelihood for the MH-RM algorithm. Default is 5000 |
survey.weights |
a optional numeric vector of survey weights to apply for each case in the
data (EM estimation only). If not specified, all cases are weighted equally (the standard IRT
approach). The sum of the |
quadpts |
number of quadrature points per dimension (must be larger than 2).
By default the number of quadrature uses the following scheme:
|
TOL |
convergence threshold for EM or MH-RM; defaults are .0001 and .001. If
|
gpcm_mats |
a list of matrices specifying how the scoring coefficients in the (generalized)
partial credit model should be constructed. If omitted, the standard gpcm format will be used
(i.e., |
grsm.block |
an optional numeric vector indicating where the blocking should occur when
using the grsm, NA represents items that do not belong to the grsm block (other items that may
be estimated in the test data). For example, to specify two blocks of 3 with a 2PL item for
the last item: |
rsm.block |
same as |
monopoly.k |
a vector of values (or a single value to repeated for each item) which indicate
the degree of the monotone polynomial fitted, where the monotone polynomial
corresponds to |
key |
a numeric vector of the response scoring key. Required when using nested logit item
types, and must be the same length as the number of items used. Items that are not nested logit
will ignore this vector, so use |
large |
a Alternatively, if the collapse table of frequencies is desired for the purpose of saving computations
(i.e., only computing the collapsed frequencies for the data onte-time) then a character vector can
be passed with the arguement
|
GenRandomPars |
logical; generate random starting values prior to optimization instead of using the fixed internal starting values? |
accelerate |
a character vector indicating the type of acceleration to use. Default
is |
verbose |
logical; print observed- (EM) or complete-data (MHRM) log-likelihood after each iteration cycle? Default is TRUE |
solnp_args |
a list of arguments to be passed to the |
nloptr_args |
a list of arguments to be passed to the |
spline_args |
a named list of lists containing information to be passed to the
This code input changes the |
control |
a list passed to the respective optimizers (i.e., |
technical |
a list containing lower level technical parameters for estimation. May be:
|
... |
additional arguments to be passed |
function returns an object of class SingleGroupClass
(SingleGroupClass-class)
Specification of the confirmatory item factor analysis model follows many of
the rules in the structural equation modeling framework for confirmatory factor analysis. The
variances of the latent factors are automatically fixed to 1 to help
facilitate model identification. All parameters may be fixed to constant
values or set equal to other parameters using the appropriate declarations.
Confirmatory models may also contain 'explanatory' person or item level predictors, though
including predictors is currently limited to the mixedmirt
function.
When specifying a single number greater than 1 as the model
input to mirt
an exploratory IRT model will be estimated. Rotation and target matrix options are available
if they are passed to generic functions such as summary-method
and
fscores
. Factor means and variances are fixed to ensure proper identification.
If the model is an exploratory item factor analysis estimation will begin
by computing a matrix of quasi-polychoric correlations. A
factor analysis with nfact
is then extracted and item parameters are
estimated by , where
is the factor
loading for the jth item on the ith factor, and
is
the square root of the factor uniqueness,
. The
initial intercept parameters are determined by calculating the inverse
normal of the item facility (i.e., item easiness),
, to obtain
. A similar implementation is also used for obtaining
initial values for polytomous items.
Internally the and
parameters are transformed using a logit
transformation (
), and can be reversed by using
following convergence. This also applies when computing confidence intervals for these
parameters, and is done so automatically if
coef(mod, rawug = FALSE)
.
As such, when applying prior distributions to these parameters it is recommended to use a prior
that ranges from negative infinity to positive infinity, such as the normally distributed
prior via the 'norm'
input (see mirt.model
).
Unrestricted full-information factor analysis is known to have problems with convergence, and some items may need to be constrained or removed entirely to allow for an acceptable solution. As a general rule dichotomous items with means greater than .95, or items that are only .05 greater than the guessing parameter, should be considered for removal from the analysis or treated with prior parameter distributions. The same type of reasoning is applicable when including upper bound parameters as well. For polytomous items, if categories are rarely endorsed then this will cause similar issues. Also, increasing the number of quadrature points per dimension, or using the quasi-Monte Carlo integration method, may help to stabilize the estimation process in higher dimensions. Finally, solutions that are not well defined also will have difficulty converging, and can indicate that the model has been misspecified (e.g., extracting too many dimensions).
For the MH-RM algorithm, when the number of iterations grows very high (e.g., greater than 1500)
or when Max Change = .2500
values are repeatedly printed
to the console too often (indicating that the parameters were being constrained since they are
naturally moving in steps greater than 0.25) then the model may either be ill defined or have a
very flat likelihood surface, and genuine maximum-likelihood parameter estimates may be difficult
to find. Standard errors are computed following the model convergence by passing
SE = TRUE
, to perform an addition MH-RM stage but treating the maximum-likelihood
estimates as fixed points.
Additional functions are available in the package which can be useful pre- and post-estimation. These are:
mirt.model
Define the IRT model specification use special syntax. Useful for defining between and within group parameter constraints, prior parameter distributions, and specifying the slope coefficients for each factor
coef-method
Extract raw coefficients from the model, along with their standard errors and confidence intervals
summary-method
Extract standardized loadings from model. Accepts a rotate
argument for exploratory
item response model
anova-method
Compare nested models using likelihood ratio statistics as well as information criteria such as the AIC and BIC
residuals-method
Compute pairwise residuals between each item using methods such as the LD statistic (Chen & Thissen, 1997), as well as response pattern residuals
plot-method
Plot various types of test level plots including the test score and information functions and more
itemplot
Plot various types of item level plots, including the score, standard error, and information functions, and more
createItem
Create a customized itemtype
that does not currently exist in the package
imputeMissing
Impute missing data given some computed Theta matrix
fscores
Find predicted scores for the latent traits using estimation methods such as EAP, MAP, ML, WLE, and EAPsum
wald
Compute Wald statistics follow the convergence of a model with a suitable information matrix
M2
Limited information goodness of fit test statistic based to determine how well the model fits the data
itemfit
and personfit
Goodness of fit statistics at the item and person levels, such as the S-X2, infit, outfit, and more
boot.mirt
Compute estimated parameter confidence intervals via the bootstrap methods
mirtCluster
Define a cluster for the package functions to use for capitalizing on multi-core architecture to utilize available CPUs when possible. Will help to decrease estimation times for tasks that can be run in parallel
The parameter labels use the follow convention, here using two factors and as the total
number of categories (using
for specific category instances).
Only one intercept estimated, and the latent variance of is freely estimated. If
the data have more than two categories then a partial credit model is used instead (see
'gpcm' below).
Depending on the model may be equal to 1 (e.g., 3PL),
may be equal to 0 (e.g., 2PL),
or the
a
s may be fixed to 1 (e.g., 1PL).
Currently restricted to unidimensional models
where allows for asymmetry in the response function and
is transformation constrained to be greater than 0 (i.e.,
log(S)
is estimated rather than S
)
Complementary log-log model (see Shim, Bonifay, and Wiedermann, 2022)
Currently restricted to unidimensional dichotomous data.
The graded model consists of sequential 2PL models,
Note that while
The unipolar log-logistic model (ULL; Lucke, 2015) is defined the same as the graded response model, however
.
Internally the parameters are exponentiated to keep them positive, and should
therefore the reported estimates should be interpreted in log units
A more constrained version of the graded model where graded spacing is equal across item
blocks and only adjusted by a single 'difficulty' parameter (c) while the latent variance
of is freely estimated (see Muraki, 1990 for this exact form).
This is restricted to unidimensional models only.
For the gpcm the values are treated as fixed and ordered values
from
(in the nominal model
is also set to 0). Additionally, for
identification in the nominal model
,
.
For the partial credit model (when itemtype = 'Rasch'
; unidimensional only) the above
model is further constrained so that ,
, and the
latent variance of
is freely estimated. Alternatively, the partial credit model
can be obtained by containing all the slope parameters in the gpcms to be equal.
More specific scoring function may be included by passing a suitable list or matrices
to the
gpcm_mats
input argument.
In the nominal model this parametrization helps to identify the empirical ordering of the
categories by inspecting the values. Larger values indicate that the item category
is more positively related to the latent trait(s) being measured. For instance, if an item
was truly ordinal (such as a Likert scale), and had 4 response categories, we would expect
to see
following estimation. If on the other hand
then it would appear that the second category is less related to to the
trait than the first, and therefore the second category should be understood as the
'lowest score'.
NOTE: The nominal model can become numerical unstable if poor choices for the high and low
values are chosen, resulting in ak
values greater than abs(10)
or more. It is
recommended to choose high and low anchors that cause the estimated parameters to fall
between 0 and either by theoretical means or by re-estimating
the model with better values following convergence.
The gpcmIRT model is the classical generalized partial credit model for unidimensional response
data. It will obtain the same fit as the gpcm
presented above, however the parameterization
allows for the Rasch/generalized rating scale model as a special case.
E.g., for a K = 4 category response model,
where
Here is the slope parameter, the
parameters are the threshold
values for each adjacent category, and
is the so-called difficulty parameter when
a rating scale model is fitted (otherwise,
and it drops out of the computations).
The gpcmIRT can be constrained to the partial credit IRT model by either constraining all the slopes to be equal, or setting the slopes to 1 and freeing the latent variance parameter.
Finally, the rsm is a more constrained version of the (generalized) partial credit model where the spacing is equal across item blocks and only adjusted by a single 'difficulty' parameter (c). Note that this is analogous to the relationship between the graded model and the grsm (with an additional constraint regarding the fixed discrimination parameters).
The multidimensional sequential response model has the form
where is the cumulative logistic function.
The Tutz variant of this model (Tutz, 1990) (via
itemtype = 'Tutz'
)
assumes that the slope terms are all equal to 1 and the latent
variance terms are estimated (i.e., is a Rasch variant).
The ideal point model has the form, with the upper bound constraint on set to 0:
Partially compensatory models consist of the product of 2PL probability curves.
where $c_1$ and $c_2$ are binary indicator variables reflecting whether the item should include the select compensatory component (1) or not (0). Note that constraining the slopes to be equal across items will reduce the model to Embretson's (Whitely's) multicomponent model (1980).
Nested logistic curves for modeling distractor items. Requires a scoring key. The model is broken into two components for the probability of endorsement. For successful endorsement the probability trace is the 1-4PL model, while for unsuccessful endorsement:
which is the product of the complement of the dichotomous trace line with the nominal
response model. In the nominal model, the slope parameters defined above are constrained
to be 1's, while the last value of the is freely estimated.
The (multidimensional) generalized graded unfolding model is a class of ideal point models useful for ordinal response data. The form is
where is the location of the
th individual on the
th dimension,
is the difficulty location of the
th item on the
th dimension,
is the discrimination of the
th individual on the
th dimension
(where the discrimination values are constrained to be positive),
is the
th subjective response category threshold for the
th item,
assumed to be symmetric about the item and constant across dimensions, where
(where
is the number of categories minus 1),
and
.
Spline response models attempt to model the response curves uses non-linear and potentially non-monotonic patterns. The form is
where the are from the spline design matrix
organized from the grid of
values. B-splines with a natural or polynomial basis are supported, and the
intercept
input is
set to TRUE
by default.
Monotone polynomial model for polytomous response data of the form
where is the monotone polynomial function without the intercept.
To access examples, vignettes, and exercise files that have been generated with knitr please visit https://github.com/philchalmers/mirt/wiki.
Phil Chalmers [email protected]
Andrich, D. (1978). A rating scale formulation for ordered response categories. Psychometrika, 43, 561-573.
Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46(4), 443-459.
Bock, R. D., Gibbons, R., & Muraki, E. (1988). Full-Information Item Factor Analysis. Applied Psychological Measurement, 12(3), 261-280.
Bock, R. D. & Lieberman, M. (1970). Fitting a response model for n dichotomously scored items. Psychometrika, 35, 179-197.
Cai, L. (2010a). High-Dimensional exploratory item factor analysis by a Metropolis-Hastings Robbins-Monro algorithm. Psychometrika, 75, 33-57.
Cai, L. (2010b). Metropolis-Hastings Robbins-Monro algorithm for confirmatory item factor analysis. Journal of Educational and Behavioral Statistics, 35, 307-335.
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Chalmers, R. P. (2015). Extended Mixed-Effects Item Response Models with the MH-RM Algorithm. Journal of Educational Measurement, 52, 200-222. doi:10.1111/jedm.12072
Chalmers, R. P. (2018). Numerical Approximation of the Observed Information Matrix with Oakes' Identity. British Journal of Mathematical and Statistical Psychology DOI: 10.1111/bmsp.12127
Chalmers, R., P. & Flora, D. (2014). Maximum-likelihood Estimation of Noncompensatory IRT Models with the MH-RM Algorithm. Applied Psychological Measurement, 38, 339-358. doi:10.1177/0146621614520958
Chen, W. H. & Thissen, D. (1997). Local dependence indices for item pairs using item response theory. Journal of Educational and Behavioral Statistics, 22, 265-289.
Embretson, S. E. (1984). A general latent trait model for response processes. Psychometrika, 49, 175-186.
Falk, C. F. & Cai, L. (2016). Maximum Marginal Likelihood Estimation of a Monotonic Polynomial Generalized Partial Credit Model with Applications to Multiple Group Analysis. Psychometrika, 81, 434-460.
Fischer, G. H. (1983). Logistic latent trait models with linear constraints. Psychometrika, 48, 3-26.
Lord, F. M. & Novick, M. R. (1968). Statistical theory of mental test scores. Addison-Wesley.
Lucke, J. F. (2015). Unipolar item response models. In S. P. Reise & D. A. Revicki (Eds.), Handbook of item response theory modeling: Applications to typical performance assessment (pp. 272-284). New York, NY: Routledge/Taylor & Francis Group.
Ramsay, J. O. (1975). Solving implicit equations in psychometric data analysis. Psychometrika, 40, 337-360.
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Danish Institute for Educational Research.
Roberts, J. S., Donoghue, J. R., & Laughlin, J. E. (2000). A General Item Response Theory Model for Unfolding Unidimensional Polytomous Responses. Applied Psychological Measurement, 24, 3-32.
Shim, H., Bonifay, W., & Wiedermann, W. (2022). Parsimonious asymmetric item response theory modeling with the complementary log-log link. Behavior Research Methods, 55, 200-219.
Maydeu-Olivares, A., Hernandez, A. & McDonald, R. P. (2006). A Multidimensional Ideal Point Item Response Theory Model for Binary Data. Multivariate Behavioral Research, 41, 445-471.
Muraki, E. (1990). Fitting a polytomous item response model to Likert-type data. Applied Psychological Measurement, 14, 59-71.
Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psychological Measurement, 16, 159-176.
Muraki, E. & Carlson, E. B. (1995). Full-information factor analysis for polytomous item responses. Applied Psychological Measurement, 19, 73-90.
Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monographs, 34.
Suh, Y. & Bolt, D. (2010). Nested logit models for multiple-choice item response data. Psychometrika, 75, 454-473.
Sympson, J. B. (1977). A model for testing with multidimensional items. Proceedings of the 1977 Computerized Adaptive Testing Conference.
Thissen, D. (1982). Marginal maximum likelihood estimation for the one-parameter logistic model. Psychometrika, 47, 175-186.
Tutz, G. (1990). Sequential item response models with ordered response. British Journal of Mathematical and Statistical Psychology, 43, 39-55.
Varadhan, R. & Roland, C. (2008). Simple and Globally Convergent Methods for Accelerating the Convergence of Any EM Algorithm. Scandinavian Journal of Statistics, 35, 335-353.
Whitely, S. E. (1980). Multicomponent latent trait models for ability tests. Psychometrika, 45(4), 470-494.
Wood, R., Wilson, D. T., Gibbons, R. D., Schilling, S. G., Muraki, E., & Bock, R. D. (2003). TESTFACT 4 for Windows: Test Scoring, Item Statistics, and Full-information Item Factor Analysis [Computer software]. Lincolnwood, IL: Scientific Software International.
Woods, C. M., and Lin, N. (2009). Item Response Theory With Estimation of the Latent Density Using Davidian Curves. Applied Psychological Measurement,33(2), 102-117.
bfactor
, multipleGroup
, mixedmirt
,
expand.table
, key2binary
, mod2values
,
extract.item
, iteminfo
, testinfo
,
probtrace
, simdata
, averageMI
,
fixef
, extract.mirt
, itemstats
# load LSAT section 7 data and compute 1 and 2 factor models data <- expand.table(LSAT7) itemstats(data) (mod1 <- mirt(data, 1)) coef(mod1) summary(mod1) plot(mod1) plot(mod1, type = 'trace') ## Not run: (mod2 <- mirt(data, 1, SE = TRUE)) #standard errors via the Oakes method (mod2 <- mirt(data, 1, SE = TRUE, SE.type = 'SEM')) #standard errors with SEM method coef(mod2) (mod3 <- mirt(data, 1, SE = TRUE, SE.type = 'Richardson')) #with numerical Richardson method residuals(mod1) plot(mod1) #test score function plot(mod1, type = 'trace') #trace lines plot(mod2, type = 'info') #test information plot(mod2, MI=200) #expected total score with 95% confidence intervals # estimated 3PL model for item 5 only (mod1.3PL <- mirt(data, 1, itemtype = c('2PL', '2PL', '2PL', '2PL', '3PL'))) coef(mod1.3PL) # internally g and u pars are stored as logits, so usually a good idea to include normal prior # to help stabilize the parameters. For a value around .182 use a mean # of -1.5 (since 1 / (1 + exp(-(-1.5))) == .182) model <- 'F = 1-5 PRIOR = (5, g, norm, -1.5, 3)' mod1.3PL.norm <- mirt(data, model, itemtype = c('2PL', '2PL', '2PL', '2PL', '3PL')) coef(mod1.3PL.norm) #limited information fit statistics M2(mod1.3PL.norm) # unidimensional ideal point model idealpt <- mirt(data, 1, itemtype = 'ideal') plot(idealpt, type = 'trace', facet_items = TRUE) plot(idealpt, type = 'trace', facet_items = FALSE) # two factors (exploratory) mod2 <- mirt(data, 2) coef(mod2) summary(mod2, rotate = 'oblimin') #oblimin rotation residuals(mod2) plot(mod2) plot(mod2, rotate = 'oblimin') anova(mod1, mod2) #compare the two models scoresfull <- fscores(mod2) #factor scores for each response pattern head(scoresfull) scorestable <- fscores(mod2, full.scores = FALSE) #save factor score table head(scorestable) # confirmatory (as an example, model is not identified since you need 3 items per factor) # Two ways to define a confirmatory model: with mirt.model, or with a string # these model definitions are equivalent cmodel <- mirt.model(' F1 = 1,4,5 F2 = 2,3') cmodel2 <- 'F1 = 1,4,5 F2 = 2,3' cmod <- mirt(data, cmodel) # cmod <- mirt(data, cmodel2) # same as above coef(cmod) anova(cmod, mod2) # check if identified by computing information matrix (cmod <- mirt(data, cmodel, SE = TRUE)) ########### # data from the 'ltm' package in numeric format itemstats(Science) pmod1 <- mirt(Science, 1) plot(pmod1) plot(pmod1, type = 'trace') plot(pmod1, type = 'itemscore') summary(pmod1) # Constrain all slopes to be equal with the constrain = list() input or mirt.model() syntax # first obtain parameter index values <- mirt(Science,1, pars = 'values') values #note that slopes are numbered 1,5,9,13, or index with values$parnum[values$name == 'a1'] (pmod1_equalslopes <- mirt(Science, 1, constrain = list(c(1,5,9,13)))) coef(pmod1_equalslopes) # using mirt.model syntax, constrain all item slopes to be equal model <- 'F = 1-4 CONSTRAIN = (1-4, a1)' (pmod1_equalslopes <- mirt(Science, model)) coef(pmod1_equalslopes) coef(pmod1_equalslopes) anova(pmod1_equalslopes, pmod1) #significantly worse fit with almost all criteria pmod2 <- mirt(Science, 2) summary(pmod2) plot(pmod2, rotate = 'oblimin') itemplot(pmod2, 1, rotate = 'oblimin') anova(pmod1, pmod2) # unidimensional fit with a generalized partial credit and nominal model (gpcmod <- mirt(Science, 1, 'gpcm')) coef(gpcmod) # for the nominal model the lowest and highest categories are assumed to be the # theoretically lowest and highest categories that related to the latent trait(s) (nomod <- mirt(Science, 1, 'nominal')) coef(nomod) #ordering of ak values suggest that the items are indeed ordinal anova(gpcmod, nomod) itemplot(nomod, 3) # generalized graded unfolding model (ggum <- mirt(Science, 1, 'ggum')) coef(ggum, simplify=TRUE) plot(ggum) plot(ggum, type = 'trace') plot(ggum, type = 'itemscore') # monotonic polyomial models (monopoly <- mirt(Science, 1, 'monopoly')) coef(monopoly, simplify=TRUE) plot(monopoly) plot(monopoly, type = 'trace') plot(monopoly, type = 'itemscore') # unipolar IRT model unimod <- mirt(Science, itemtype = 'ULL') coef(unimod, simplify=TRUE) plot(unimod) plot(unimod, type = 'trace') itemplot(unimod, 1) # following use the correct log-normal density for latent trait itemfit(unimod) M2(unimod, type = 'C2') fs <- fscores(unimod) hist(fs, 20) fscores(unimod, method = 'EAPsum', full.scores = FALSE) ## example applying survey weights. # weight the first half of the cases to be more representative of population survey.weights <- c(rep(2, nrow(Science)/2), rep(1, nrow(Science)/2)) survey.weights <- survey.weights/sum(survey.weights) * nrow(Science) unweighted <- mirt(Science, 1) weighted <- mirt(Science, 1, survey.weights=survey.weights) ########### # empirical dimensionality testing that includes 'guessing' data(SAT12) data <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) itemstats(data) mod1 <- mirt(data, 1) extract.mirt(mod1, 'time') #time elapsed for each estimation component # optionally use Newton-Raphson for (generally) faster convergence in the M-step's mod1 <- mirt(data, 1, optimizer = 'NR') extract.mirt(mod1, 'time') mod2 <- mirt(data, 2, optimizer = 'NR') # difficulty converging with reduced quadpts, reduce TOL mod3 <- mirt(data, 3, TOL = .001, optimizer = 'NR') anova(mod1,mod2) anova(mod2, mod3) #negative AIC, 2 factors probably best # same as above, but using the QMCEM method for generally better accuracy in mod3 mod3 <- mirt(data, 3, method = 'QMCEM', TOL = .001, optimizer = 'NR') anova(mod2, mod3) # with fixed guessing parameters mod1g <- mirt(data, 1, guess = .1) coef(mod1g) ########### # graded rating scale example # make some data set.seed(1234) a <- matrix(rep(1, 10)) d <- matrix(c(1,0.5,-.5,-1), 10, 4, byrow = TRUE) c <- seq(-1, 1, length.out=10) data <- simdata(a, d + c, 2000, itemtype = rep('graded',10)) itemstats(data) mod1 <- mirt(data, 1) mod2 <- mirt(data, 1, itemtype = 'grsm') coef(mod2) anova(mod2, mod1) #not sig, mod2 should be preferred itemplot(mod2, 1) itemplot(mod2, 5) itemplot(mod2, 10) ########### # 2PL nominal response model example (Suh and Bolt, 2010) data(SAT12) SAT12[SAT12 == 8] <- NA #set 8 as a missing value head(SAT12) # correct answer key key <- c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5) scoredSAT12 <- key2binary(SAT12, key) mod0 <- mirt(scoredSAT12, 1) # for first 5 items use 2PLNRM and nominal scoredSAT12[,1:5] <- as.matrix(SAT12[,1:5]) mod1 <- mirt(scoredSAT12, 1, c(rep('nominal',5),rep('2PL', 27))) mod2 <- mirt(scoredSAT12, 1, c(rep('2PLNRM',5),rep('2PL', 27)), key=key) coef(mod0)$Item.1 coef(mod1)$Item.1 coef(mod2)$Item.1 itemplot(mod0, 1) itemplot(mod1, 1) itemplot(mod2, 1) # compare added information from distractors Theta <- matrix(seq(-4,4,.01)) par(mfrow = c(2,3)) for(i in 1:5){ info <- iteminfo(extract.item(mod0,i), Theta) info2 <- iteminfo(extract.item(mod2,i), Theta) plot(Theta, info2, type = 'l', main = paste('Information for item', i), ylab = 'Information') lines(Theta, info, col = 'red') } par(mfrow = c(1,1)) # test information plot(Theta, testinfo(mod2, Theta), type = 'l', main = 'Test information', ylab = 'Information') lines(Theta, testinfo(mod0, Theta), col = 'red') ########### # using the MH-RM algorithm data(LSAT7) fulldata <- expand.table(LSAT7) (mod1 <- mirt(fulldata, 1, method = 'MHRM')) # Confirmatory models # simulate data a <- matrix(c( 1.5,NA, 0.5,NA, 1.0,NA, 1.0,0.5, NA,1.5, NA,0.5, NA,1.0, NA,1.0),ncol=2,byrow=TRUE) d <- matrix(c( -1.0,NA,NA, -1.5,NA,NA, 1.5,NA,NA, 0.0,NA,NA, 3.0,2.0,-0.5, 2.5,1.0,-1, 2.0,0.0,NA, 1.0,NA,NA),ncol=3,byrow=TRUE) sigma <- diag(2) sigma[1,2] <- sigma[2,1] <- .4 items <- c(rep('2PL',4), rep('graded',3), '2PL') dataset <- simdata(a,d,2000,items,sigma) # analyses # CIFA for 2 factor crossed structure model.1 <- ' F1 = 1-4 F2 = 4-8 COV = F1*F2' # compute model, and use parallel computation of the log-likelihood if(interactive()) mirtCluster() mod1 <- mirt(dataset, model.1, method = 'MHRM') coef(mod1) summary(mod1) residuals(mod1) ##### # bifactor model.3 <- ' G = 1-8 F1 = 1-4 F2 = 5-8' mod3 <- mirt(dataset,model.3, method = 'MHRM') coef(mod3) summary(mod3) residuals(mod3) anova(mod1,mod3) ##### # polynomial/combinations data(SAT12) data <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) model.quad <- ' F1 = 1-32 (F1*F1) = 1-32' model.combo <- ' F1 = 1-16 F2 = 17-32 (F1*F2) = 1-8' (mod.quad <- mirt(data, model.quad)) summary(mod.quad) (mod.combo <- mirt(data, model.combo)) anova(mod.combo, mod.quad) # non-linear item and test plots plot(mod.quad) plot(mod.combo, type = 'SE') itemplot(mod.quad, 1, type = 'score') itemplot(mod.combo, 2, type = 'score') itemplot(mod.combo, 2, type = 'infocontour') ## empirical histogram examples (normal, skew and bimodality) # make some data set.seed(1234) a <- matrix(rlnorm(50, .2, .2)) d <- matrix(rnorm(50)) ThetaNormal <- matrix(rnorm(2000)) ThetaBimodal <- scale(matrix(c(rnorm(1000, -2), rnorm(1000,2)))) #bimodal ThetaSkew <- scale(matrix(rchisq(2000, 3))) #positive skew datNormal <- simdata(a, d, 2000, itemtype = '2PL', Theta=ThetaNormal) datBimodal <- simdata(a, d, 2000, itemtype = '2PL', Theta=ThetaBimodal) datSkew <- simdata(a, d, 2000, itemtype = '2PL', Theta=ThetaSkew) normal <- mirt(datNormal, 1, dentype = "empiricalhist") plot(normal, type = 'empiricalhist') histogram(ThetaNormal, breaks=30) bimodal <- mirt(datBimodal, 1, dentype = "empiricalhist") plot(bimodal, type = 'empiricalhist') histogram(ThetaBimodal, breaks=30) skew <- mirt(datSkew, 1, dentype = "empiricalhist") plot(skew, type = 'empiricalhist') histogram(ThetaSkew, breaks=30) ##### # non-linear parameter constraints with Rsolnp package (nloptr supported as well): # Find Rasch model subject to the constraint that the intercepts sum to 0 dat <- expand.table(LSAT6) itemstats(dat) # free latent mean and variance terms model <- 'Theta = 1-5 MEAN = Theta COV = Theta*Theta' # view how vector of parameters is organized internally sv <- mirt(dat, model, itemtype = 'Rasch', pars = 'values') sv[sv$est, ] # constraint: create function for solnp to compute constraint, and declare value in eqB eqfun <- function(p, optim_args) sum(p[1:5]) #could use browser() here, if it helps LB <- c(rep(-15, 6), 1e-4) # more reasonable lower bound for variance term mod <- mirt(dat, model, sv=sv, itemtype = 'Rasch', optimizer = 'solnp', solnp_args=list(eqfun=eqfun, eqB=0, LB=LB)) print(mod) coef(mod) (ds <- sapply(coef(mod)[1:5], function(x) x[,'d'])) sum(ds) # same likelihood location as: mirt(dat, 1, itemtype = 'Rasch') ####### # latent regression Rasch model # simulate data set.seed(1234) N <- 1000 # covariates X1 <- rnorm(N); X2 <- rnorm(N) covdata <- data.frame(X1, X2, X3 = rnorm(N)) Theta <- matrix(0.5 * X1 + -1 * X2 + rnorm(N, sd = 0.5)) # items and response data a <- matrix(1, 20); d <- matrix(rnorm(20)) dat <- simdata(a, d, 1000, itemtype = '2PL', Theta=Theta) # unconditional Rasch model mod0 <- mirt(dat, 1, 'Rasch', SE=TRUE) coef(mod0, printSE=TRUE) # conditional model using X1, X2, and X3 (bad) as predictors of Theta mod1 <- mirt(dat, 1, 'Rasch', covdata=covdata, formula = ~ X1 + X2 + X3, SE=TRUE) coef(mod1, printSE=TRUE) coef(mod1, simplify=TRUE) anova(mod0, mod1) # jointly significant predictors of theta # large sample z-ratios and p-values (if one cares) cfs <- coef(mod1, printSE=TRUE) (z <- cfs$lr.betas[[1]] / cfs$lr.betas[[2]]) round(pnorm(abs(z[,1]), lower.tail=FALSE)*2, 3) # drop predictor for nested comparison mod1b <- mirt(dat, 1, 'Rasch', covdata=covdata, formula = ~ X1 + X2) anova(mod1b, mod1) # compare to mixedmirt() version of the same model mod1.mixed <- mixedmirt(dat, 1, itemtype='Rasch', covdata=covdata, lr.fixed = ~ X1 + X2 + X3, SE=TRUE) coef(mod1.mixed) coef(mod1.mixed, printSE=TRUE) # draw plausible values for secondary analyses pv <- fscores(mod1, plausible.draws = 10) pvmods <- lapply(pv, function(x, covdata) lm(x ~ covdata$X1 + covdata$X2), covdata=covdata) # population characteristics recovered well, and can be averaged over so <- lapply(pvmods, summary) so # compute Rubin's multiple imputation average par <- lapply(so, function(x) x$coefficients[, 'Estimate']) SEpar <- lapply(so, function(x) x$coefficients[, 'Std. Error']) averageMI(par, SEpar) ############ # Example using Gauss-Hermite quadrature with custom input functions library(fastGHQuad) data(SAT12) data <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) GH <- gaussHermiteData(50) Theta <- matrix(GH$x) # This prior works for uni- and multi-dimensional models prior <- function(Theta, Etable){ P <- grid <- GH$w / sqrt(pi) if(ncol(Theta) > 1) for(i in 2:ncol(Theta)) P <- expand.grid(P, grid) if(!is.vector(P)) P <- apply(P, 1, prod) P } GHmod1 <- mirt(data, 1, optimizer = 'NR', technical = list(customTheta = Theta, customPriorFun = prior)) coef(GHmod1, simplify=TRUE) Theta2 <- as.matrix(expand.grid(Theta, Theta)) GHmod2 <- mirt(data, 2, optimizer = 'NR', TOL = .0002, technical = list(customTheta = Theta2, customPriorFun = prior)) summary(GHmod2, suppress=.2) ############ # Davidian curve example dat <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) dav <- mirt(dat, 1, dentype = 'Davidian-4') # use four smoothing parameters plot(dav, type = 'Davidian') # shape of latent trait distribution coef(dav, simplify=TRUE) fs <- fscores(dav) # assume normal prior fs2 <- fscores(dav, use_dentype_estimate=TRUE) # use Davidian estimated prior shape head(cbind(fs, fs2)) itemfit(dav) # assume normal prior itemfit(dav, use_dentype_estimate=TRUE) # use Davidian estimated prior shape ########### # 5PL and restricted 5PL example dat <- expand.table(LSAT7) mod2PL <- mirt(dat) mod2PL # Following does not converge without including strong priors # mod5PL <- mirt(dat, itemtype = '5PL') # mod5PL # restricted version of 5PL (asymmetric 2PL) model <- 'Theta = 1-5 FIXED = (1-5, g), (1-5, u)' mod2PL_asym <- mirt(dat, model=model, itemtype = '5PL') mod2PL_asym coef(mod2PL_asym, simplify=TRUE) coef(mod2PL_asym, simplify=TRUE, IRTpars=TRUE) # no big difference statistically or visually anova(mod2PL, mod2PL_asym) plot(mod2PL, type = 'trace') plot(mod2PL_asym, type = 'trace') ################### # LLTM example a <- matrix(rep(1,30)) d <- rep(c(1,0, -1),each = 10) # first easy, then medium, last difficult dat <- simdata(a, d, 1000, itemtype = '2PL') # unconditional model for intercept comparisons mod <- mirt(dat, itemtype = 'Rasch') coef(mod, simplify=TRUE) # Suppose that the first 10 items were suspected to be easy, followed by 10 medium difficulty items, # then finally the last 10 items are difficult, # and we wish to test this item structure hypothesis (more intercept designs are possible # by including more columns). itemdesign <- data.frame(difficulty = factor(c(rep('easy', 10), rep('medium', 10), rep('hard', 10)))) rownames(itemdesign) <- colnames(dat) itemdesign # LLTM with mirt() lltm <- mirt(dat, itemtype = 'Rasch', SE=TRUE, item.formula = ~ 0 + difficulty, itemdesign=itemdesign) coef(lltm, simplify=TRUE) coef(lltm, printSE=TRUE) anova(lltm, mod) # models fit effectively the same; hence, intercept variability well captured # additional information for LLTM plot(lltm) plot(lltm, type = 'trace') itemplot(lltm, item=1) itemfit(lltm) head(fscores(lltm)) #EAP estimates fscores(lltm, method='EAPsum', full.scores=FALSE) M2(lltm) # goodness of fit head(personfit(lltm)) residuals(lltm) # intercept across items also possible by removing ~ 0 portion, just interpreted differently lltm.int <- mirt(dat, itemtype = 'Rasch', item.formula = ~ difficulty, itemdesign=itemdesign) anova(lltm, lltm.int) # same coef(lltm.int, simplify=TRUE) # using unconditional modeling for first four items itemdesign.sub <- itemdesign[5:nrow(itemdesign), , drop=FALSE] itemdesign.sub # note that rownames are required in this case lltm.4 <- mirt(dat, itemtype = 'Rasch', item.formula = ~ 0 + difficulty, itemdesign=itemdesign.sub) coef(lltm.4, simplify=TRUE) # first four items are the standard Rasch anova(lltm, lltm.4) # similar fit, hence more constrained model preferred # LLTM with mixedmirt() (more flexible in general, but slower) LLTM <- mixedmirt(dat, model=1, fixed = ~ 0 + difficulty, itemdesign=itemdesign, SE=FALSE) summary(LLTM) coef(LLTM) # LLTM with random error estimate (not supported with mirt() ) LLTM.e <- mixedmirt(dat, model=1, fixed = ~ 0 + difficulty, random = ~ 1|items, itemdesign=itemdesign, SE=FALSE) coef(LLTM.e) ################### # General MLTM example (Embretson, 1984) set.seed(42) as <- matrix(rep(1,60), ncol=2) as[11:18,1] <- as[1:9,2] <- 0 d1 <- rep(c(3,1),each = 6) # first easy, then medium, last difficult for first trait d2 <- rep(c(0,1,2),times = 4) # difficult to easy d <- rnorm(18) ds <- rbind(cbind(d1=NA, d2=d), cbind(d1, d2)) (pars <- data.frame(a=as, d=ds)) dat <- simdata(as, ds, 2500, itemtype = c(rep('dich', 18), rep('partcomp', 12))) itemstats(dat) # unconditional model syntax <- "theta1 = 1-9, 19-30 theta2 = 10-30 COV = theta1*theta2" itemtype <- c(rep('Rasch', 18), rep('PC1PL', 12)) mod <- mirt(dat, syntax, itemtype=itemtype) coef(mod, simplify=TRUE) data.frame(est=coef(mod, simplify=TRUE)$items, pop=data.frame(a=as, d=ds)) itemplot(mod, 1) itemplot(mod, 30) # MLTM design only for PC1PL items itemdesign <- data.frame(t1_difficulty= factor(d1, labels=c('medium', 'easy')), t2_difficulty=factor(d2, labels=c('hard', 'medium', 'easy'))) rownames(itemdesign) <- colnames(dat)[19:30] itemdesign # fit MLTM design, leaving first 18 items as 'Rasch' type mltm <- mirt(dat, syntax, itemtype=itemtype, itemdesign=itemdesign, item.formula = list(theta1 ~ 0 + t1_difficulty, theta2 ~ 0 + t2_difficulty), SE=TRUE) coef(mltm, simplify=TRUE) coef(mltm, printSE=TRUE) anova(mltm, mod) # similar fit; hence more constrained version preferred M2(mltm) # goodness of fit head(personfit(mltm)) residuals(mltm) # EAP estimates fscores(mltm) |> head() ## End(Not run)
# load LSAT section 7 data and compute 1 and 2 factor models data <- expand.table(LSAT7) itemstats(data) (mod1 <- mirt(data, 1)) coef(mod1) summary(mod1) plot(mod1) plot(mod1, type = 'trace') ## Not run: (mod2 <- mirt(data, 1, SE = TRUE)) #standard errors via the Oakes method (mod2 <- mirt(data, 1, SE = TRUE, SE.type = 'SEM')) #standard errors with SEM method coef(mod2) (mod3 <- mirt(data, 1, SE = TRUE, SE.type = 'Richardson')) #with numerical Richardson method residuals(mod1) plot(mod1) #test score function plot(mod1, type = 'trace') #trace lines plot(mod2, type = 'info') #test information plot(mod2, MI=200) #expected total score with 95% confidence intervals # estimated 3PL model for item 5 only (mod1.3PL <- mirt(data, 1, itemtype = c('2PL', '2PL', '2PL', '2PL', '3PL'))) coef(mod1.3PL) # internally g and u pars are stored as logits, so usually a good idea to include normal prior # to help stabilize the parameters. For a value around .182 use a mean # of -1.5 (since 1 / (1 + exp(-(-1.5))) == .182) model <- 'F = 1-5 PRIOR = (5, g, norm, -1.5, 3)' mod1.3PL.norm <- mirt(data, model, itemtype = c('2PL', '2PL', '2PL', '2PL', '3PL')) coef(mod1.3PL.norm) #limited information fit statistics M2(mod1.3PL.norm) # unidimensional ideal point model idealpt <- mirt(data, 1, itemtype = 'ideal') plot(idealpt, type = 'trace', facet_items = TRUE) plot(idealpt, type = 'trace', facet_items = FALSE) # two factors (exploratory) mod2 <- mirt(data, 2) coef(mod2) summary(mod2, rotate = 'oblimin') #oblimin rotation residuals(mod2) plot(mod2) plot(mod2, rotate = 'oblimin') anova(mod1, mod2) #compare the two models scoresfull <- fscores(mod2) #factor scores for each response pattern head(scoresfull) scorestable <- fscores(mod2, full.scores = FALSE) #save factor score table head(scorestable) # confirmatory (as an example, model is not identified since you need 3 items per factor) # Two ways to define a confirmatory model: with mirt.model, or with a string # these model definitions are equivalent cmodel <- mirt.model(' F1 = 1,4,5 F2 = 2,3') cmodel2 <- 'F1 = 1,4,5 F2 = 2,3' cmod <- mirt(data, cmodel) # cmod <- mirt(data, cmodel2) # same as above coef(cmod) anova(cmod, mod2) # check if identified by computing information matrix (cmod <- mirt(data, cmodel, SE = TRUE)) ########### # data from the 'ltm' package in numeric format itemstats(Science) pmod1 <- mirt(Science, 1) plot(pmod1) plot(pmod1, type = 'trace') plot(pmod1, type = 'itemscore') summary(pmod1) # Constrain all slopes to be equal with the constrain = list() input or mirt.model() syntax # first obtain parameter index values <- mirt(Science,1, pars = 'values') values #note that slopes are numbered 1,5,9,13, or index with values$parnum[values$name == 'a1'] (pmod1_equalslopes <- mirt(Science, 1, constrain = list(c(1,5,9,13)))) coef(pmod1_equalslopes) # using mirt.model syntax, constrain all item slopes to be equal model <- 'F = 1-4 CONSTRAIN = (1-4, a1)' (pmod1_equalslopes <- mirt(Science, model)) coef(pmod1_equalslopes) coef(pmod1_equalslopes) anova(pmod1_equalslopes, pmod1) #significantly worse fit with almost all criteria pmod2 <- mirt(Science, 2) summary(pmod2) plot(pmod2, rotate = 'oblimin') itemplot(pmod2, 1, rotate = 'oblimin') anova(pmod1, pmod2) # unidimensional fit with a generalized partial credit and nominal model (gpcmod <- mirt(Science, 1, 'gpcm')) coef(gpcmod) # for the nominal model the lowest and highest categories are assumed to be the # theoretically lowest and highest categories that related to the latent trait(s) (nomod <- mirt(Science, 1, 'nominal')) coef(nomod) #ordering of ak values suggest that the items are indeed ordinal anova(gpcmod, nomod) itemplot(nomod, 3) # generalized graded unfolding model (ggum <- mirt(Science, 1, 'ggum')) coef(ggum, simplify=TRUE) plot(ggum) plot(ggum, type = 'trace') plot(ggum, type = 'itemscore') # monotonic polyomial models (monopoly <- mirt(Science, 1, 'monopoly')) coef(monopoly, simplify=TRUE) plot(monopoly) plot(monopoly, type = 'trace') plot(monopoly, type = 'itemscore') # unipolar IRT model unimod <- mirt(Science, itemtype = 'ULL') coef(unimod, simplify=TRUE) plot(unimod) plot(unimod, type = 'trace') itemplot(unimod, 1) # following use the correct log-normal density for latent trait itemfit(unimod) M2(unimod, type = 'C2') fs <- fscores(unimod) hist(fs, 20) fscores(unimod, method = 'EAPsum', full.scores = FALSE) ## example applying survey weights. # weight the first half of the cases to be more representative of population survey.weights <- c(rep(2, nrow(Science)/2), rep(1, nrow(Science)/2)) survey.weights <- survey.weights/sum(survey.weights) * nrow(Science) unweighted <- mirt(Science, 1) weighted <- mirt(Science, 1, survey.weights=survey.weights) ########### # empirical dimensionality testing that includes 'guessing' data(SAT12) data <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) itemstats(data) mod1 <- mirt(data, 1) extract.mirt(mod1, 'time') #time elapsed for each estimation component # optionally use Newton-Raphson for (generally) faster convergence in the M-step's mod1 <- mirt(data, 1, optimizer = 'NR') extract.mirt(mod1, 'time') mod2 <- mirt(data, 2, optimizer = 'NR') # difficulty converging with reduced quadpts, reduce TOL mod3 <- mirt(data, 3, TOL = .001, optimizer = 'NR') anova(mod1,mod2) anova(mod2, mod3) #negative AIC, 2 factors probably best # same as above, but using the QMCEM method for generally better accuracy in mod3 mod3 <- mirt(data, 3, method = 'QMCEM', TOL = .001, optimizer = 'NR') anova(mod2, mod3) # with fixed guessing parameters mod1g <- mirt(data, 1, guess = .1) coef(mod1g) ########### # graded rating scale example # make some data set.seed(1234) a <- matrix(rep(1, 10)) d <- matrix(c(1,0.5,-.5,-1), 10, 4, byrow = TRUE) c <- seq(-1, 1, length.out=10) data <- simdata(a, d + c, 2000, itemtype = rep('graded',10)) itemstats(data) mod1 <- mirt(data, 1) mod2 <- mirt(data, 1, itemtype = 'grsm') coef(mod2) anova(mod2, mod1) #not sig, mod2 should be preferred itemplot(mod2, 1) itemplot(mod2, 5) itemplot(mod2, 10) ########### # 2PL nominal response model example (Suh and Bolt, 2010) data(SAT12) SAT12[SAT12 == 8] <- NA #set 8 as a missing value head(SAT12) # correct answer key key <- c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5) scoredSAT12 <- key2binary(SAT12, key) mod0 <- mirt(scoredSAT12, 1) # for first 5 items use 2PLNRM and nominal scoredSAT12[,1:5] <- as.matrix(SAT12[,1:5]) mod1 <- mirt(scoredSAT12, 1, c(rep('nominal',5),rep('2PL', 27))) mod2 <- mirt(scoredSAT12, 1, c(rep('2PLNRM',5),rep('2PL', 27)), key=key) coef(mod0)$Item.1 coef(mod1)$Item.1 coef(mod2)$Item.1 itemplot(mod0, 1) itemplot(mod1, 1) itemplot(mod2, 1) # compare added information from distractors Theta <- matrix(seq(-4,4,.01)) par(mfrow = c(2,3)) for(i in 1:5){ info <- iteminfo(extract.item(mod0,i), Theta) info2 <- iteminfo(extract.item(mod2,i), Theta) plot(Theta, info2, type = 'l', main = paste('Information for item', i), ylab = 'Information') lines(Theta, info, col = 'red') } par(mfrow = c(1,1)) # test information plot(Theta, testinfo(mod2, Theta), type = 'l', main = 'Test information', ylab = 'Information') lines(Theta, testinfo(mod0, Theta), col = 'red') ########### # using the MH-RM algorithm data(LSAT7) fulldata <- expand.table(LSAT7) (mod1 <- mirt(fulldata, 1, method = 'MHRM')) # Confirmatory models # simulate data a <- matrix(c( 1.5,NA, 0.5,NA, 1.0,NA, 1.0,0.5, NA,1.5, NA,0.5, NA,1.0, NA,1.0),ncol=2,byrow=TRUE) d <- matrix(c( -1.0,NA,NA, -1.5,NA,NA, 1.5,NA,NA, 0.0,NA,NA, 3.0,2.0,-0.5, 2.5,1.0,-1, 2.0,0.0,NA, 1.0,NA,NA),ncol=3,byrow=TRUE) sigma <- diag(2) sigma[1,2] <- sigma[2,1] <- .4 items <- c(rep('2PL',4), rep('graded',3), '2PL') dataset <- simdata(a,d,2000,items,sigma) # analyses # CIFA for 2 factor crossed structure model.1 <- ' F1 = 1-4 F2 = 4-8 COV = F1*F2' # compute model, and use parallel computation of the log-likelihood if(interactive()) mirtCluster() mod1 <- mirt(dataset, model.1, method = 'MHRM') coef(mod1) summary(mod1) residuals(mod1) ##### # bifactor model.3 <- ' G = 1-8 F1 = 1-4 F2 = 5-8' mod3 <- mirt(dataset,model.3, method = 'MHRM') coef(mod3) summary(mod3) residuals(mod3) anova(mod1,mod3) ##### # polynomial/combinations data(SAT12) data <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) model.quad <- ' F1 = 1-32 (F1*F1) = 1-32' model.combo <- ' F1 = 1-16 F2 = 17-32 (F1*F2) = 1-8' (mod.quad <- mirt(data, model.quad)) summary(mod.quad) (mod.combo <- mirt(data, model.combo)) anova(mod.combo, mod.quad) # non-linear item and test plots plot(mod.quad) plot(mod.combo, type = 'SE') itemplot(mod.quad, 1, type = 'score') itemplot(mod.combo, 2, type = 'score') itemplot(mod.combo, 2, type = 'infocontour') ## empirical histogram examples (normal, skew and bimodality) # make some data set.seed(1234) a <- matrix(rlnorm(50, .2, .2)) d <- matrix(rnorm(50)) ThetaNormal <- matrix(rnorm(2000)) ThetaBimodal <- scale(matrix(c(rnorm(1000, -2), rnorm(1000,2)))) #bimodal ThetaSkew <- scale(matrix(rchisq(2000, 3))) #positive skew datNormal <- simdata(a, d, 2000, itemtype = '2PL', Theta=ThetaNormal) datBimodal <- simdata(a, d, 2000, itemtype = '2PL', Theta=ThetaBimodal) datSkew <- simdata(a, d, 2000, itemtype = '2PL', Theta=ThetaSkew) normal <- mirt(datNormal, 1, dentype = "empiricalhist") plot(normal, type = 'empiricalhist') histogram(ThetaNormal, breaks=30) bimodal <- mirt(datBimodal, 1, dentype = "empiricalhist") plot(bimodal, type = 'empiricalhist') histogram(ThetaBimodal, breaks=30) skew <- mirt(datSkew, 1, dentype = "empiricalhist") plot(skew, type = 'empiricalhist') histogram(ThetaSkew, breaks=30) ##### # non-linear parameter constraints with Rsolnp package (nloptr supported as well): # Find Rasch model subject to the constraint that the intercepts sum to 0 dat <- expand.table(LSAT6) itemstats(dat) # free latent mean and variance terms model <- 'Theta = 1-5 MEAN = Theta COV = Theta*Theta' # view how vector of parameters is organized internally sv <- mirt(dat, model, itemtype = 'Rasch', pars = 'values') sv[sv$est, ] # constraint: create function for solnp to compute constraint, and declare value in eqB eqfun <- function(p, optim_args) sum(p[1:5]) #could use browser() here, if it helps LB <- c(rep(-15, 6), 1e-4) # more reasonable lower bound for variance term mod <- mirt(dat, model, sv=sv, itemtype = 'Rasch', optimizer = 'solnp', solnp_args=list(eqfun=eqfun, eqB=0, LB=LB)) print(mod) coef(mod) (ds <- sapply(coef(mod)[1:5], function(x) x[,'d'])) sum(ds) # same likelihood location as: mirt(dat, 1, itemtype = 'Rasch') ####### # latent regression Rasch model # simulate data set.seed(1234) N <- 1000 # covariates X1 <- rnorm(N); X2 <- rnorm(N) covdata <- data.frame(X1, X2, X3 = rnorm(N)) Theta <- matrix(0.5 * X1 + -1 * X2 + rnorm(N, sd = 0.5)) # items and response data a <- matrix(1, 20); d <- matrix(rnorm(20)) dat <- simdata(a, d, 1000, itemtype = '2PL', Theta=Theta) # unconditional Rasch model mod0 <- mirt(dat, 1, 'Rasch', SE=TRUE) coef(mod0, printSE=TRUE) # conditional model using X1, X2, and X3 (bad) as predictors of Theta mod1 <- mirt(dat, 1, 'Rasch', covdata=covdata, formula = ~ X1 + X2 + X3, SE=TRUE) coef(mod1, printSE=TRUE) coef(mod1, simplify=TRUE) anova(mod0, mod1) # jointly significant predictors of theta # large sample z-ratios and p-values (if one cares) cfs <- coef(mod1, printSE=TRUE) (z <- cfs$lr.betas[[1]] / cfs$lr.betas[[2]]) round(pnorm(abs(z[,1]), lower.tail=FALSE)*2, 3) # drop predictor for nested comparison mod1b <- mirt(dat, 1, 'Rasch', covdata=covdata, formula = ~ X1 + X2) anova(mod1b, mod1) # compare to mixedmirt() version of the same model mod1.mixed <- mixedmirt(dat, 1, itemtype='Rasch', covdata=covdata, lr.fixed = ~ X1 + X2 + X3, SE=TRUE) coef(mod1.mixed) coef(mod1.mixed, printSE=TRUE) # draw plausible values for secondary analyses pv <- fscores(mod1, plausible.draws = 10) pvmods <- lapply(pv, function(x, covdata) lm(x ~ covdata$X1 + covdata$X2), covdata=covdata) # population characteristics recovered well, and can be averaged over so <- lapply(pvmods, summary) so # compute Rubin's multiple imputation average par <- lapply(so, function(x) x$coefficients[, 'Estimate']) SEpar <- lapply(so, function(x) x$coefficients[, 'Std. Error']) averageMI(par, SEpar) ############ # Example using Gauss-Hermite quadrature with custom input functions library(fastGHQuad) data(SAT12) data <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) GH <- gaussHermiteData(50) Theta <- matrix(GH$x) # This prior works for uni- and multi-dimensional models prior <- function(Theta, Etable){ P <- grid <- GH$w / sqrt(pi) if(ncol(Theta) > 1) for(i in 2:ncol(Theta)) P <- expand.grid(P, grid) if(!is.vector(P)) P <- apply(P, 1, prod) P } GHmod1 <- mirt(data, 1, optimizer = 'NR', technical = list(customTheta = Theta, customPriorFun = prior)) coef(GHmod1, simplify=TRUE) Theta2 <- as.matrix(expand.grid(Theta, Theta)) GHmod2 <- mirt(data, 2, optimizer = 'NR', TOL = .0002, technical = list(customTheta = Theta2, customPriorFun = prior)) summary(GHmod2, suppress=.2) ############ # Davidian curve example dat <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) dav <- mirt(dat, 1, dentype = 'Davidian-4') # use four smoothing parameters plot(dav, type = 'Davidian') # shape of latent trait distribution coef(dav, simplify=TRUE) fs <- fscores(dav) # assume normal prior fs2 <- fscores(dav, use_dentype_estimate=TRUE) # use Davidian estimated prior shape head(cbind(fs, fs2)) itemfit(dav) # assume normal prior itemfit(dav, use_dentype_estimate=TRUE) # use Davidian estimated prior shape ########### # 5PL and restricted 5PL example dat <- expand.table(LSAT7) mod2PL <- mirt(dat) mod2PL # Following does not converge without including strong priors # mod5PL <- mirt(dat, itemtype = '5PL') # mod5PL # restricted version of 5PL (asymmetric 2PL) model <- 'Theta = 1-5 FIXED = (1-5, g), (1-5, u)' mod2PL_asym <- mirt(dat, model=model, itemtype = '5PL') mod2PL_asym coef(mod2PL_asym, simplify=TRUE) coef(mod2PL_asym, simplify=TRUE, IRTpars=TRUE) # no big difference statistically or visually anova(mod2PL, mod2PL_asym) plot(mod2PL, type = 'trace') plot(mod2PL_asym, type = 'trace') ################### # LLTM example a <- matrix(rep(1,30)) d <- rep(c(1,0, -1),each = 10) # first easy, then medium, last difficult dat <- simdata(a, d, 1000, itemtype = '2PL') # unconditional model for intercept comparisons mod <- mirt(dat, itemtype = 'Rasch') coef(mod, simplify=TRUE) # Suppose that the first 10 items were suspected to be easy, followed by 10 medium difficulty items, # then finally the last 10 items are difficult, # and we wish to test this item structure hypothesis (more intercept designs are possible # by including more columns). itemdesign <- data.frame(difficulty = factor(c(rep('easy', 10), rep('medium', 10), rep('hard', 10)))) rownames(itemdesign) <- colnames(dat) itemdesign # LLTM with mirt() lltm <- mirt(dat, itemtype = 'Rasch', SE=TRUE, item.formula = ~ 0 + difficulty, itemdesign=itemdesign) coef(lltm, simplify=TRUE) coef(lltm, printSE=TRUE) anova(lltm, mod) # models fit effectively the same; hence, intercept variability well captured # additional information for LLTM plot(lltm) plot(lltm, type = 'trace') itemplot(lltm, item=1) itemfit(lltm) head(fscores(lltm)) #EAP estimates fscores(lltm, method='EAPsum', full.scores=FALSE) M2(lltm) # goodness of fit head(personfit(lltm)) residuals(lltm) # intercept across items also possible by removing ~ 0 portion, just interpreted differently lltm.int <- mirt(dat, itemtype = 'Rasch', item.formula = ~ difficulty, itemdesign=itemdesign) anova(lltm, lltm.int) # same coef(lltm.int, simplify=TRUE) # using unconditional modeling for first four items itemdesign.sub <- itemdesign[5:nrow(itemdesign), , drop=FALSE] itemdesign.sub # note that rownames are required in this case lltm.4 <- mirt(dat, itemtype = 'Rasch', item.formula = ~ 0 + difficulty, itemdesign=itemdesign.sub) coef(lltm.4, simplify=TRUE) # first four items are the standard Rasch anova(lltm, lltm.4) # similar fit, hence more constrained model preferred # LLTM with mixedmirt() (more flexible in general, but slower) LLTM <- mixedmirt(dat, model=1, fixed = ~ 0 + difficulty, itemdesign=itemdesign, SE=FALSE) summary(LLTM) coef(LLTM) # LLTM with random error estimate (not supported with mirt() ) LLTM.e <- mixedmirt(dat, model=1, fixed = ~ 0 + difficulty, random = ~ 1|items, itemdesign=itemdesign, SE=FALSE) coef(LLTM.e) ################### # General MLTM example (Embretson, 1984) set.seed(42) as <- matrix(rep(1,60), ncol=2) as[11:18,1] <- as[1:9,2] <- 0 d1 <- rep(c(3,1),each = 6) # first easy, then medium, last difficult for first trait d2 <- rep(c(0,1,2),times = 4) # difficult to easy d <- rnorm(18) ds <- rbind(cbind(d1=NA, d2=d), cbind(d1, d2)) (pars <- data.frame(a=as, d=ds)) dat <- simdata(as, ds, 2500, itemtype = c(rep('dich', 18), rep('partcomp', 12))) itemstats(dat) # unconditional model syntax <- "theta1 = 1-9, 19-30 theta2 = 10-30 COV = theta1*theta2" itemtype <- c(rep('Rasch', 18), rep('PC1PL', 12)) mod <- mirt(dat, syntax, itemtype=itemtype) coef(mod, simplify=TRUE) data.frame(est=coef(mod, simplify=TRUE)$items, pop=data.frame(a=as, d=ds)) itemplot(mod, 1) itemplot(mod, 30) # MLTM design only for PC1PL items itemdesign <- data.frame(t1_difficulty= factor(d1, labels=c('medium', 'easy')), t2_difficulty=factor(d2, labels=c('hard', 'medium', 'easy'))) rownames(itemdesign) <- colnames(dat)[19:30] itemdesign # fit MLTM design, leaving first 18 items as 'Rasch' type mltm <- mirt(dat, syntax, itemtype=itemtype, itemdesign=itemdesign, item.formula = list(theta1 ~ 0 + t1_difficulty, theta2 ~ 0 + t2_difficulty), SE=TRUE) coef(mltm, simplify=TRUE) coef(mltm, printSE=TRUE) anova(mltm, mod) # similar fit; hence more constrained version preferred M2(mltm) # goodness of fit head(personfit(mltm)) residuals(mltm) # EAP estimates fscores(mltm) |> head() ## End(Not run)
The mirt.model
function scans/reads user input to specify the
confirmatory model. Item locations must be used in the specifications if no
itemnames
argument is supplied. This is called implicitly by estimation functions
when a string is passed to the model
argument.
mirt.model( input = NULL, itemnames = NULL, file = "", COV = NULL, quiet = TRUE, ... )
mirt.model( input = NULL, itemnames = NULL, file = "", COV = NULL, quiet = TRUE, ... )
input |
input for writing out the model syntax. Can either be a string declaration of
class character or the so-called Q-matrix or class |
itemnames |
a character vector or factor indicating the item names. If a data.frame or
matrix object is supplied the names will be extracted using |
file |
a input specifying an external file that declares the input. |
COV |
a symmetric, logical matrix used to declare which covariance terms are estimated |
quiet |
logical argument passed to |
... |
additional arguments for |
Factors are first named and then specify which numerical items they affect
(i.e., where the slope is not equal to 0), separated either by commas or by
- to indicate a range of items. Products between factors may be specified
by enclosing the left hand term within brackets. To finish the declaration of
a model simply enter a blank line with only a carriage return (i.e., the
'enter' or 'return' key), or instead read in an input version of the model syntax.
The associated slopes throughout the package label these coefficients as
a1, a2, ..., ak
, where the associated number is assigned according to the
respective order of the defined factors.
For example, if the syntax were
"G = 1-10
F = 1-5
A = 6-10"
then the G
factor would be assigned the slopes a1
for each item, F
assigned
the slopes a2
, and A
assigned the slopes a3
. The same principle applies to the
bfactor
function whereby the slopes are automatically included for the specific factors
after the general factor structure has been assigned.
There is an optional keyword for specifying the correlation between relationships between factors
called COV
, and non-linear factor products can be included by enclosing the product
combination on the left hand side of the declaration (e.g., (F1*F1)
would create a
quadratic factor for F1
).
The keywords CONSTRAIN, CONSTRAINB, PRIOR, FIXED, FREE, START, UBOUND, LBOUND
can
be applied to specific sub-groups in multiple-group models by included square brackets before the
= sign, where groups are separated by commas. For example, to apply within-group equality
constraints to a group called "male", then specifying:
CONSTRAIN [male] = (1-5, a1)
is appropriate, while specifying the same constraints to the sub-groups "male" and "female" would appear as
CONSTRAIN [male, female] = (1-5, a1)
For all other groups in the multi-group model, these within-group equality constraints would not appear. Therefore, these bracketed group specifications are useful when modifying priors, starting values, between/within group equality constraints, and so on when the specifications for each sub-group may differ.
Additionally, the use of negations can be used to omit specific groups in the constraint specifications
by prefixing the string with a -
operator, such as the following which applies between-group constraints
to all groups except "Group2" and "Group3":
CONSTRAINB [-Group2, -Group3] = (1-5, a1)
Finally, the keyword GROUP
can be used to specify the group-level
hyper-parameter terms, such as the means and variance of the default Gaussian
distribution. For example, to set the starting value of the variance
parameter (COV_11
) to 1.5:
START = (GROUP, COV_11, 1.5)
Specify the relationship between the latent factors. Estimating a correlation between factors is declared by joining the two factors with an asterisk (e.g., F1*F2), or with an asterisk between three or more factors to estimate all the possible correlations (e.g., F1*F2*F3). Specifications with the same factor (e.g., F1*F1) will free the variance of said factor instead
A comma separated list specifying which latent factor means to freely estimate.
E.g., MEAN = F1, F2
will free the latent means for factors F1 and F2
A bracketed, comma separated list specifying equality constrains between items.
The input format is
CONSTRAIN = (items, ..., parameterName(s)),
(items, ..., parameterName)
.
For example, in a single group 10-item dichotomous tests, using the default 2PL model,
the first and last 5 item slopes (a1) can be constrained to be equal by using
CONSTRAIN = (1-5, a1), (6-10, a1)
, or some combination
such as CONSTRAIN = (1-3,4,5,a1), (6,7,8-10,a1)
.
When constraining parameters to be equal across items with different parameter names, a
balanced bracketed vector must be supplied. E.g., setting the first slope for item 1 equal to
the second slope in item 3 would be CONSTRAIN = (1, 3, a1, a2)
A bracketed, comma separate list specifying equality constrains between groups.
The input format is CONSTRAINB = (items, ..., parameterName),
(items, ..., parameterName)
.
For example, in a two group 10-item dichotomous tests, using the default 2PL model, the first
5 item slopes (a1) can be constrained to be equal across both groups by using
CONSTRAINB = (1-5, a1)
, or some combination such as CONSTRAINB = (1-3,4,5,a1)
A bracketed, comma separate list specifying prior parameter distributions.
The input format is
PRIOR = (items, ..., parameterName, priorType, val1, val2),
(items, ..., parameterName, priorType, val1, val2)
.
For example, in a single group 10-item dichotomous tests, using the default 2PL model,
defining a normal prior of N(0,2) for the first 5 item intercepts (d) can be defined by
PRIOR = (1-5, d, norm, 0, 2)
Currently supported priors are of the form: (items, norm, mean, sd)
for the normal/Gaussian, (items, lnorm, log_mean, log_sd)
for log-normal,
(items, beta, alpha, beta)
for beta, and (items, expbeta, alpha, beta)
for the beta distribution after applying the
function plogis
to the input value (note, this is specifically for applying a beta
prior to the lower-bound parameters in 3/4PL models)
A bracketed, comma separate list specifying lower bounds for estimated
parameters (used in optimizers such as L-BFGS-B
and nlminb
).
The input format is LBOUND = (items, ..., parameterName, value),
(items, ..., parameterName, value)
.
For example, in a single group 10-item dichotomous tests, using the 3PL model and
setting lower bounds for the 'g' parameters for the first 5 items to 0.2 is accomplished with
LBOUND = (1-5, g, 0.2)
same as LBOUND, but specifying upper bounds in estimated parameters
A bracketed, comma separate list specifying the starting values for individual parameters.
The input is of the form (items, ..., parameterName, value)
. For instance, setting the 10th and
12th to 15th item slope parameters (a1) to 1.0 is specified with START = (10, 12-15, a1, 1.0)
For more hands on control of the starting values pass the argument pars = 'values'
through
whatever estimation function is being used
A bracketed, comma separate list specifying which parameters should be fixed at their
starting values (i.e., not freely estimated).
The input is of the form (items, ..., parameterName)
. For instance, fixing the 10th and
12th to 15th item slope parameters (a1) is accomplished with FIXED = (10, 12-15, a1)
For more hands on control of the estimated values pass the argument pars = 'values'
through
whatever estimation function is being used
Equivalent to the FIXED
input, except that parameters are freely estimated instead
of fixed at their starting value
Number of exploratory factors to extract. Usually this is not required
because passing a numeric value to the model
argument in the estimation function
will generate an exploratory factor analysis model, however if different start values,
priors, lower and upper bounds, etc, are desired then this input can be used
Returns a model specification object to be used in
mirt
, bfactor
, multipleGroup
, or
mixedmirt
Phil Chalmers [email protected] and Alexander Robitzsch
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: # interactively through the console (not run) #model <- mirt.model() # F1 = 1,2,3,4-10 # F2 = 10-20 # (F1*F2) = 1,2,3,4-10 # COV = F1*F2 # Or alternatively with a string input s <- 'F1 = 1,2,3,4-10 F2 = 10-20 (F1*F2) = 1,2,3,4-10 COV = F1*F2' model <- mirt.model(s) # strings can also be passed to the estimation functions directly, # which silently calls mirt.model(). E.g., using the string above: # mod <- mirt(data, s) # Q-matrix specification Q <- matrix(c(1,1,1,0,0,0,0,0,0,1,1,1), ncol=2, dimnames = list(NULL, c('Factor1', 'Factor2'))) COV <- matrix(c(FALSE, TRUE, TRUE, FALSE), 2) model <- mirt.model(Q, COV=COV) ## constrain various items slopes and all intercepts in single group model to be equal, # and use a log-normal prior for all the slopes s <- 'F = 1-10 CONSTRAIN = (1-3, 5, 6, a1), (1-10, d) PRIOR = (1-10, a1, lnorm, .2, .2)' model <- mirt.model(s) ## constrain various items slopes and intercepts across groups for use in multipleGroup(), # and constrain first two slopes within 'group1' to be equal s <- 'F = 1-10 CONSTRAIN = (1-2, a1) CONSTRAINB = (1-3, 5, 6, a1), (1-10, d)' model <- mirt.model(s) ## specify model using raw item names data(data.read, package = 'sirt') dat <- data.read # syntax with variable names mirtsyn2 <- " F1 = A1,B2,B3,C4 F2 = A1-A4,C2,C4 MEAN = F1 COV = F1*F1, F1*F2 CONSTRAIN=(A2-A4,a2),(A3,C2,d) PRIOR = (C3,A2-A4,a2,lnorm, .2, .2),(B3,d,norm,0,.0001)" # create a mirt model mirtmodel <- mirt.model(mirtsyn2, itemnames=dat) # or equivalently: # mirtmodel <- mirt.model(mirtsyn2, itemnames=colnames(dat)) # mod <- mirt(dat , mirtmodel) # using sprintf() to functionally fill in information (useful for long tests # or more complex specifications) nitems <- 100 s <- sprintf('F = 1-%i CONSTRAIN = (%s, a1) CONSTRAINB = (%s, a1), (1-%i, d)', nitems, "1,2,4,50,100", paste0(1:45, collapse=','), nitems) cat(s) model <- mirt.model(s) ## End(Not run)
## Not run: # interactively through the console (not run) #model <- mirt.model() # F1 = 1,2,3,4-10 # F2 = 10-20 # (F1*F2) = 1,2,3,4-10 # COV = F1*F2 # Or alternatively with a string input s <- 'F1 = 1,2,3,4-10 F2 = 10-20 (F1*F2) = 1,2,3,4-10 COV = F1*F2' model <- mirt.model(s) # strings can also be passed to the estimation functions directly, # which silently calls mirt.model(). E.g., using the string above: # mod <- mirt(data, s) # Q-matrix specification Q <- matrix(c(1,1,1,0,0,0,0,0,0,1,1,1), ncol=2, dimnames = list(NULL, c('Factor1', 'Factor2'))) COV <- matrix(c(FALSE, TRUE, TRUE, FALSE), 2) model <- mirt.model(Q, COV=COV) ## constrain various items slopes and all intercepts in single group model to be equal, # and use a log-normal prior for all the slopes s <- 'F = 1-10 CONSTRAIN = (1-3, 5, 6, a1), (1-10, d) PRIOR = (1-10, a1, lnorm, .2, .2)' model <- mirt.model(s) ## constrain various items slopes and intercepts across groups for use in multipleGroup(), # and constrain first two slopes within 'group1' to be equal s <- 'F = 1-10 CONSTRAIN = (1-2, a1) CONSTRAINB = (1-3, 5, 6, a1), (1-10, d)' model <- mirt.model(s) ## specify model using raw item names data(data.read, package = 'sirt') dat <- data.read # syntax with variable names mirtsyn2 <- " F1 = A1,B2,B3,C4 F2 = A1-A4,C2,C4 MEAN = F1 COV = F1*F1, F1*F2 CONSTRAIN=(A2-A4,a2),(A3,C2,d) PRIOR = (C3,A2-A4,a2,lnorm, .2, .2),(B3,d,norm,0,.0001)" # create a mirt model mirtmodel <- mirt.model(mirtsyn2, itemnames=dat) # or equivalently: # mirtmodel <- mirt.model(mirtsyn2, itemnames=colnames(dat)) # mod <- mirt(dat , mirtmodel) # using sprintf() to functionally fill in information (useful for long tests # or more complex specifications) nitems <- 100 s <- sprintf('F = 1-%i CONSTRAIN = (%s, a1) CONSTRAINB = (%s, a1), (1-%i, d)', nitems, "1,2,4,50,100", paste0(1:45, collapse=','), nitems) cat(s) model <- mirt.model(s) ## End(Not run)
This function defines a object that is placed in a relevant internal environment defined in mirt.
Internal functions such as calcLogLik
, fscores
, etc, will utilize this object
automatically to capitalize on parallel
processing architecture. The object defined is a call from parallel::makeCluster()
.
Note that if you are defining other parallel objects (for simulation designs, for example)
it is not recommended to define a mirtCluster.
mirtCluster(spec, omp_threads, remove = FALSE, ...)
mirtCluster(spec, omp_threads, remove = FALSE, ...)
spec |
input that is passed to |
omp_threads |
number of OpenMP threads to use (currently applies to E-step computations only). Not used when argument input is missing |
remove |
logical; remove previously defined |
... |
additional arguments to pass to |
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: if(interactive()){ # use all available cores mirtCluster() mirtCluster(remove = TRUE) # make 4 cores available for parallel computing mirtCluster(4) mirtCluster(remove = TRUE) # create 3 core architecture in R, and 4 thread architecture with OpenMP mirtCluster(spec = 3, omp_threads = 4) # leave previous multicore objects, but change omp_threads mirtCluster(spec = NULL, omp_threads = 2) } ## End(Not run)
## Not run: if(interactive()){ # use all available cores mirtCluster() mirtCluster(remove = TRUE) # make 4 cores available for parallel computing mirtCluster(4) mirtCluster(remove = TRUE) # create 3 core architecture in R, and 4 thread architecture with OpenMP mirtCluster(spec = 3, omp_threads = 4) # leave previous multicore objects, but change omp_threads mirtCluster(spec = NULL, omp_threads = 2) } ## End(Not run)
Defines the object returned from mixedmirt
.
Call
:function call
Data
:list of data, sometimes in different forms
Options
:list of estimation options
Fit
:a list of fit information
Model
:a list of model-based information
ParObjects
:a list of the S4 objects used during estimation
OptimInfo
:a list of arguments from the optimization process
Internals
:a list of internal arguments for secondary computations (inspecting this object is generally not required)
vcov
:a matrix represented the asymptotic covariance matrix of the parameter estimates
time
:a data.frame indicating the breakdown of computation times in seconds
signature(object = "MixedClass")
signature(x = "MixedClass")
signature(object = "MixedClass")
signature(object = "MixedClass")
signature(object = "MixedClass")
signature(object = "MixedClass")
signature(object = "MixedClass")
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
mixedmirt
fits MIRT models using FIML estimation to dichotomous and polytomous
IRT models conditional on fixed and random effect of person and item level covariates.
This can also be understood as 'explanatory IRT' if only fixed effects are modeled, or
multilevel/mixed IRT if random and fixed effects are included. The method uses the MH-RM
algorithm exclusively. Additionally, computation of the log-likelihood can be sped up by
using parallel estimation via mirtCluster
.
mixedmirt( data, covdata = NULL, model = 1, fixed = ~1, random = NULL, itemtype = "Rasch", lr.fixed = ~1, lr.random = NULL, itemdesign = NULL, constrain = NULL, pars = NULL, return.design = FALSE, SE = TRUE, internal_constraints = TRUE, technical = list(SEtol = 1e-04), ... )
mixedmirt( data, covdata = NULL, model = 1, fixed = ~1, random = NULL, itemtype = "Rasch", lr.fixed = ~1, lr.random = NULL, itemdesign = NULL, constrain = NULL, pars = NULL, return.design = FALSE, SE = TRUE, internal_constraints = TRUE, technical = list(SEtol = 1e-04), ... )
data |
a |
covdata |
a |
model |
an object returned from, or a string to be passed to, |
fixed |
a right sided R formula for specifying the fixed effect (aka 'explanatory')
predictors from |
random |
a right sided formula or list of formulas containing crossed random effects
of the form |
itemtype |
same as itemtype in |
lr.fixed |
an R formula (or list of formulas) to specify regression
effects in the latent variables from the variables in |
lr.random |
a list of random effect terms for modeling variability in the
latent trait scores, where the syntax uses the same style as in the |
itemdesign |
a |
constrain |
a list indicating parameter equality constrains. See |
pars |
used for parameter starting values. See |
return.design |
logical; return the design matrices before they have (potentially) been reassigned? |
SE |
logical; compute the standard errors by approximating the information matrix using the MHRM algorithm? Default is TRUE |
internal_constraints |
logical; use the internally defined constraints for constraining effects across persons and items? Default is TRUE. Setting this to FALSE runs the risk of under-identification |
technical |
the technical list passed to the MH-RM estimation engine, with the
SEtol default increased to .0001. Additionally, the argument |
... |
additional arguments to be passed to the MH-RM estimation engine. See
|
For dichotomous response models, mixedmirt
follows the general form
where X is a design matrix with associated fixed effect intercept coefficients,
and Z is a design matrix with associated
random effects for the intercepts.
For simplicity and easier interpretation, the unique item intercept values typically found in
are extracted and reassigned within mirt's 'intercept' parameters (e.g.,
'd'
).
To observe how the design matrices are structured prior to reassignment and estimation pass
the argument return.design = TRUE
.
Polytomous IRT models follow a similar format except the item intercepts are automatically
estimated internally, rendering the items
argument in the fixed formula redundant and
therefore must be omitted from the specification. If there are a mixture of dichotomous and
polytomous items the intercepts for the dichotomous models are also estimated for consistency.
The decomposition of the parameters is also possible to form
latent regression and multilevel IRT models by using the
lr.fixed
and lr.random
inputs. These effects decompose such that
where V and W are fixed and random effects design matrices for the associated coefficients.
To simulate expected a posteriori predictions for the random effect terms
use the randef
function.
function returns an object of class MixedClass
(MixedClass-class).
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Chalmers, R. P. (2015). Extended Mixed-Effects Item Response Models with the MH-RM Algorithm. Journal of Educational Measurement, 52, 200-222. doi:10.1111/jedm.12072
mirt
, randef
, fixef
, boot.mirt
## Not run: # make some data set.seed(1234) N <- 750 a <- matrix(rlnorm(10,.3,1),10,1) d <- matrix(rnorm(10), 10) Theta <- matrix(sort(rnorm(N))) pseudoIQ <- Theta * 5 + 100 + rnorm(N, 0 , 5) pseudoIQ <- (pseudoIQ - mean(pseudoIQ))/10 #rescale variable for numerical stability group <- factor(rep(c('G1','G2','G3'), each = N/3)) data <- simdata(a,d,N, itemtype = rep('2PL',10), Theta=Theta) covdata <- data.frame(group, pseudoIQ) itemstats(data) # use parallel computing if(interactive()) mirtCluster() # specify IRT model model <- 'Theta = 1-10' # model with no person predictors mod0 <- mirt(data, model, itemtype = 'Rasch') # group as a fixed effect predictor (aka, uniform dif) mod1 <- mixedmirt(data, covdata, model, fixed = ~ 0 + group + items) anova(mod0, mod1) summary(mod1) coef(mod1) # same model as above in lme4 wide <- data.frame(id=1:nrow(data),data,covdata) long <- reshape2::melt(wide, id.vars = c('id', 'group', 'pseudoIQ')) library(lme4) lmod0 <- glmer(value ~ 0 + variable + (1|id), long, family = binomial) lmod1 <- glmer(value ~ 0 + group + variable + (1|id), long, family = binomial) anova(lmod0, lmod1) # model using 2PL items instead of Rasch mod1b <- mixedmirt(data, covdata, model, fixed = ~ 0 + group + items, itemtype = '2PL') anova(mod1, mod1b) #better with 2PL models using all criteria (as expected, given simdata pars) # continuous predictor with group mod2 <- mixedmirt(data, covdata, model, fixed = ~ 0 + group + items + pseudoIQ) summary(mod2) anova(mod1b, mod2) # view fixed design matrix with and without unique item level intercepts withint <- mixedmirt(data, covdata, model, fixed = ~ 0 + items + group, return.design = TRUE) withoutint <- mixedmirt(data, covdata, model, fixed = ~ 0 + group, return.design = TRUE) # notice that in result above, the intercepts 'items1 to items 10' were reassigned to 'd' head(withint$X) tail(withint$X) head(withoutint$X) # no intercepts design here to be reassigned into item intercepts tail(withoutint$X) ################################################### ### random effects # make the number of groups much larger covdata$group <- factor(rep(paste0('G',1:50), each = N/50)) # random groups rmod1 <- mixedmirt(data, covdata, 1, fixed = ~ 0 + items, random = ~ 1|group) summary(rmod1) coef(rmod1) # random groups and random items rmod2 <- mixedmirt(data, covdata, 1, random = list(~ 1|group, ~ 1|items)) summary(rmod2) eff <- randef(rmod2) #estimate random effects # random slopes with fixed intercepts (suppressed correlation) rmod3 <- mixedmirt(data, covdata, 1, fixed = ~ 0 + items, random = ~ -1 + pseudoIQ|group) summary(rmod3) eff <- randef(rmod3) str(eff) ################################################### ## LLTM, and 2PL version of LLTM data(SAT12) data <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) model <- 'Theta = 1-32' # for unconditional intercept comparison mod <- mirt(data, model, itemtype='Rasch') coef(mod, simplify=TRUE) # Suppose that the first 16 items were suspected to be easier than the last 16 items, # and we wish to test this item structure hypothesis (more intercept designs are possible # by including more columns). itemdesign <- data.frame(itemorder = factor(c(rep('easier', 16), rep('harder', 16)))) rownames(itemdesign) <- colnames(data) itemdesign # notice that the 'fixed = ~ ... + items' argument is omitted LLTM <- mixedmirt(data, model = model, fixed = ~ 0 + itemorder, itemdesign = itemdesign, SE = TRUE) # SE argument ensures that the information matrix is computed accurately summary(LLTM) coef(LLTM) wald(LLTM) L <- matrix(c(-1, 1, 0), 1) wald(LLTM, L) #first half different from second # compare to items with estimated slopes (2PL) twoPL <- mixedmirt(data, model = model, fixed = ~ 0 + itemorder, itemtype = '2PL', itemdesign = itemdesign) # twoPL not mixing too well (AR should be between .2 and .5), decrease MHcand twoPL <- mixedmirt(data, model = model, fixed = ~ 0 + itemorder, itemtype = '2PL', itemdesign = itemdesign, technical = list(MHcand = 0.8)) anova(twoPL, LLTM) #much better fit summary(twoPL) coef(twoPL) wald(twoPL) L <- matrix(0, 1, 34) L[1, 1] <- 1 L[1, 2] <- -1 wald(twoPL, L) # n.s., which is the correct conclusion. Rasch approach gave wrong inference ## LLTM with item error term LLTMwithError <- mixedmirt(data, model = model, fixed = ~ 0 + itemorder, random = ~ 1|items, itemdesign = itemdesign) summary(LLTMwithError) # large item level variance after itemorder is regressed; not a great predictor of item difficulty coef(LLTMwithError) ################################################### ### Polytomous example # make an arbitrary group difference covdat <- data.frame(group = rep(c('m', 'f'), nrow(Science)/2)) # partial credit model mod <- mixedmirt(Science, covdat, model=1, fixed = ~ 0 + group) coef(mod) # gpcm to estimate slopes mod2 <- mixedmirt(Science, covdat, model=1, fixed = ~ 0 + group, itemtype = 'gpcm') summary(mod2) anova(mod, mod2) # graded model mod3 <- mixedmirt(Science, covdat, model=1, fixed = ~ 0 + group, itemtype = 'graded') coef(mod3) ################################################### # latent regression with Rasch and 2PL models set.seed(1) n <- 300 a <- matrix(1, 10) d <- matrix(rnorm(10)) Theta <- matrix(c(rnorm(n, 0), rnorm(n, 1), rnorm(n, 2))) covdata <- data.frame(group=rep(c('g1','g2','g3'), each=n)) dat <- simdata(a, d, N=n*3, Theta=Theta, itemtype = '2PL') itemstats(dat) # had we known the latent abilities, we could have computed the regression coefs summary(lm(Theta ~ covdata$group)) # but all we have is observed test data. Latent regression helps to recover these coefs # Rasch model approach (and mirt equivalent) rmod0 <- mirt(dat, 1, 'Rasch') # unconditional # these two models are equivalent rmod1a <- mirt(dat, 1, 'Rasch', covdata = covdata, formula = ~ group) rmod1b <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items + group) anova(rmod0, rmod1b) coef(rmod1a, simplify=TRUE) summary(rmod1b) # 2PL, requires different input to allow Theta variance to remain fixed mod0 <- mirt(dat, 1) # unconditional mod1a <- mirt(dat, 1, covdata = covdata, formula = ~ group, itemtype = '2PL') mod1b <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items, lr.fixed = ~group, itemtype = '2PL') anova(mod0, mod1b) coef(mod1a)$lr.betas summary(mod1b) # specifying specific regression effects is accomplished by passing a list of formula model <- 'F1 = 1-5 F2 = 6-10' covdata$contvar <- rnorm(nrow(covdata)) mod2 <- mirt(dat, model, itemtype = 'Rasch', covdata=covdata, formula = list(F1 = ~ group + contvar, F2 = ~ group)) coef(mod2)[11:12] mod2b <- mixedmirt(dat, covdata, model, fixed = ~ 0 + items, lr.fixed = list(F1 = ~ group + contvar, F2 = ~ group)) summary(mod2b) #################################################### ## Simulated Multilevel Rasch Model set.seed(1) N <- 2000 a <- matrix(rep(1,10),10,1) d <- matrix(rnorm(10)) cluster = 100 random_intercept = rnorm(cluster,0,1) Theta = numeric() for (i in 1:cluster) Theta <- c(Theta, rnorm(N/cluster,0,1) + random_intercept[i]) group = factor(rep(paste0('G',1:cluster), each = N/cluster)) covdata <- data.frame(group) dat <- simdata(a,d,N, itemtype = rep('2PL',10), Theta=matrix(Theta)) itemstats(dat) # null model mod1 <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items, random = ~ 1|group) summary(mod1) # include level 2 predictor for 'group' variance covdata$group_pred <- rep(random_intercept, each = N/cluster) mod2 <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items + group_pred, random = ~ 1|group) # including group means predicts nearly all variability in 'group' summary(mod2) anova(mod1, mod2) # can also be fit for Rasch/non-Rasch models with the lr.random input mod1b <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items, lr.random = ~ 1|group) summary(mod1b) mod2b <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items + group_pred, lr.random = ~ 1|group) summary(mod2b) anova(mod1b, mod2b) mod3 <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items, lr.random = ~ 1|group, itemtype = '2PL') summary(mod3) anova(mod1b, mod3) head(cbind(randef(mod3)$group, random_intercept)) ## End(Not run)
## Not run: # make some data set.seed(1234) N <- 750 a <- matrix(rlnorm(10,.3,1),10,1) d <- matrix(rnorm(10), 10) Theta <- matrix(sort(rnorm(N))) pseudoIQ <- Theta * 5 + 100 + rnorm(N, 0 , 5) pseudoIQ <- (pseudoIQ - mean(pseudoIQ))/10 #rescale variable for numerical stability group <- factor(rep(c('G1','G2','G3'), each = N/3)) data <- simdata(a,d,N, itemtype = rep('2PL',10), Theta=Theta) covdata <- data.frame(group, pseudoIQ) itemstats(data) # use parallel computing if(interactive()) mirtCluster() # specify IRT model model <- 'Theta = 1-10' # model with no person predictors mod0 <- mirt(data, model, itemtype = 'Rasch') # group as a fixed effect predictor (aka, uniform dif) mod1 <- mixedmirt(data, covdata, model, fixed = ~ 0 + group + items) anova(mod0, mod1) summary(mod1) coef(mod1) # same model as above in lme4 wide <- data.frame(id=1:nrow(data),data,covdata) long <- reshape2::melt(wide, id.vars = c('id', 'group', 'pseudoIQ')) library(lme4) lmod0 <- glmer(value ~ 0 + variable + (1|id), long, family = binomial) lmod1 <- glmer(value ~ 0 + group + variable + (1|id), long, family = binomial) anova(lmod0, lmod1) # model using 2PL items instead of Rasch mod1b <- mixedmirt(data, covdata, model, fixed = ~ 0 + group + items, itemtype = '2PL') anova(mod1, mod1b) #better with 2PL models using all criteria (as expected, given simdata pars) # continuous predictor with group mod2 <- mixedmirt(data, covdata, model, fixed = ~ 0 + group + items + pseudoIQ) summary(mod2) anova(mod1b, mod2) # view fixed design matrix with and without unique item level intercepts withint <- mixedmirt(data, covdata, model, fixed = ~ 0 + items + group, return.design = TRUE) withoutint <- mixedmirt(data, covdata, model, fixed = ~ 0 + group, return.design = TRUE) # notice that in result above, the intercepts 'items1 to items 10' were reassigned to 'd' head(withint$X) tail(withint$X) head(withoutint$X) # no intercepts design here to be reassigned into item intercepts tail(withoutint$X) ################################################### ### random effects # make the number of groups much larger covdata$group <- factor(rep(paste0('G',1:50), each = N/50)) # random groups rmod1 <- mixedmirt(data, covdata, 1, fixed = ~ 0 + items, random = ~ 1|group) summary(rmod1) coef(rmod1) # random groups and random items rmod2 <- mixedmirt(data, covdata, 1, random = list(~ 1|group, ~ 1|items)) summary(rmod2) eff <- randef(rmod2) #estimate random effects # random slopes with fixed intercepts (suppressed correlation) rmod3 <- mixedmirt(data, covdata, 1, fixed = ~ 0 + items, random = ~ -1 + pseudoIQ|group) summary(rmod3) eff <- randef(rmod3) str(eff) ################################################### ## LLTM, and 2PL version of LLTM data(SAT12) data <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) model <- 'Theta = 1-32' # for unconditional intercept comparison mod <- mirt(data, model, itemtype='Rasch') coef(mod, simplify=TRUE) # Suppose that the first 16 items were suspected to be easier than the last 16 items, # and we wish to test this item structure hypothesis (more intercept designs are possible # by including more columns). itemdesign <- data.frame(itemorder = factor(c(rep('easier', 16), rep('harder', 16)))) rownames(itemdesign) <- colnames(data) itemdesign # notice that the 'fixed = ~ ... + items' argument is omitted LLTM <- mixedmirt(data, model = model, fixed = ~ 0 + itemorder, itemdesign = itemdesign, SE = TRUE) # SE argument ensures that the information matrix is computed accurately summary(LLTM) coef(LLTM) wald(LLTM) L <- matrix(c(-1, 1, 0), 1) wald(LLTM, L) #first half different from second # compare to items with estimated slopes (2PL) twoPL <- mixedmirt(data, model = model, fixed = ~ 0 + itemorder, itemtype = '2PL', itemdesign = itemdesign) # twoPL not mixing too well (AR should be between .2 and .5), decrease MHcand twoPL <- mixedmirt(data, model = model, fixed = ~ 0 + itemorder, itemtype = '2PL', itemdesign = itemdesign, technical = list(MHcand = 0.8)) anova(twoPL, LLTM) #much better fit summary(twoPL) coef(twoPL) wald(twoPL) L <- matrix(0, 1, 34) L[1, 1] <- 1 L[1, 2] <- -1 wald(twoPL, L) # n.s., which is the correct conclusion. Rasch approach gave wrong inference ## LLTM with item error term LLTMwithError <- mixedmirt(data, model = model, fixed = ~ 0 + itemorder, random = ~ 1|items, itemdesign = itemdesign) summary(LLTMwithError) # large item level variance after itemorder is regressed; not a great predictor of item difficulty coef(LLTMwithError) ################################################### ### Polytomous example # make an arbitrary group difference covdat <- data.frame(group = rep(c('m', 'f'), nrow(Science)/2)) # partial credit model mod <- mixedmirt(Science, covdat, model=1, fixed = ~ 0 + group) coef(mod) # gpcm to estimate slopes mod2 <- mixedmirt(Science, covdat, model=1, fixed = ~ 0 + group, itemtype = 'gpcm') summary(mod2) anova(mod, mod2) # graded model mod3 <- mixedmirt(Science, covdat, model=1, fixed = ~ 0 + group, itemtype = 'graded') coef(mod3) ################################################### # latent regression with Rasch and 2PL models set.seed(1) n <- 300 a <- matrix(1, 10) d <- matrix(rnorm(10)) Theta <- matrix(c(rnorm(n, 0), rnorm(n, 1), rnorm(n, 2))) covdata <- data.frame(group=rep(c('g1','g2','g3'), each=n)) dat <- simdata(a, d, N=n*3, Theta=Theta, itemtype = '2PL') itemstats(dat) # had we known the latent abilities, we could have computed the regression coefs summary(lm(Theta ~ covdata$group)) # but all we have is observed test data. Latent regression helps to recover these coefs # Rasch model approach (and mirt equivalent) rmod0 <- mirt(dat, 1, 'Rasch') # unconditional # these two models are equivalent rmod1a <- mirt(dat, 1, 'Rasch', covdata = covdata, formula = ~ group) rmod1b <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items + group) anova(rmod0, rmod1b) coef(rmod1a, simplify=TRUE) summary(rmod1b) # 2PL, requires different input to allow Theta variance to remain fixed mod0 <- mirt(dat, 1) # unconditional mod1a <- mirt(dat, 1, covdata = covdata, formula = ~ group, itemtype = '2PL') mod1b <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items, lr.fixed = ~group, itemtype = '2PL') anova(mod0, mod1b) coef(mod1a)$lr.betas summary(mod1b) # specifying specific regression effects is accomplished by passing a list of formula model <- 'F1 = 1-5 F2 = 6-10' covdata$contvar <- rnorm(nrow(covdata)) mod2 <- mirt(dat, model, itemtype = 'Rasch', covdata=covdata, formula = list(F1 = ~ group + contvar, F2 = ~ group)) coef(mod2)[11:12] mod2b <- mixedmirt(dat, covdata, model, fixed = ~ 0 + items, lr.fixed = list(F1 = ~ group + contvar, F2 = ~ group)) summary(mod2b) #################################################### ## Simulated Multilevel Rasch Model set.seed(1) N <- 2000 a <- matrix(rep(1,10),10,1) d <- matrix(rnorm(10)) cluster = 100 random_intercept = rnorm(cluster,0,1) Theta = numeric() for (i in 1:cluster) Theta <- c(Theta, rnorm(N/cluster,0,1) + random_intercept[i]) group = factor(rep(paste0('G',1:cluster), each = N/cluster)) covdata <- data.frame(group) dat <- simdata(a,d,N, itemtype = rep('2PL',10), Theta=matrix(Theta)) itemstats(dat) # null model mod1 <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items, random = ~ 1|group) summary(mod1) # include level 2 predictor for 'group' variance covdata$group_pred <- rep(random_intercept, each = N/cluster) mod2 <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items + group_pred, random = ~ 1|group) # including group means predicts nearly all variability in 'group' summary(mod2) anova(mod1, mod2) # can also be fit for Rasch/non-Rasch models with the lr.random input mod1b <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items, lr.random = ~ 1|group) summary(mod1b) mod2b <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items + group_pred, lr.random = ~ 1|group) summary(mod2b) anova(mod1b, mod2b) mod3 <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items, lr.random = ~ 1|group, itemtype = '2PL') summary(mod3) anova(mod1b, mod3) head(cbind(randef(mod3)$group, random_intercept)) ## End(Not run)
Defines the object returned from multipleGroup
when estimated with
mixture distributions.
Call
:function call
Data
:list of data, sometimes in different forms
Options
:list of estimation options
Fit
:a list of fit information
Model
:a list of model-based information
ParObjects
:a list of the S4 objects used during estimation
OptimInfo
:a list of arguments from the optimization process
Internals
:a list of internal arguments for secondary computations (inspecting this object is generally not required)
vcov
:a matrix represented the asymptotic covariance matrix of the parameter estimates
time
:a data.frame indicating the breakdown of computation times in seconds
signature(object = "MixtureClass")
signature(x = "MixtureClass")
signature(object = "MixtureClass")
signature(object = "MixtureClass")
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Given an estimated model from any of mirt's model fitting functions this function will convert
the model parameters into the design data frame of starting values and other parameter
characteristics (similar to using the pars = 'values'
for obtaining starting values).
mod2values(x)
mod2values(x)
x |
an estimated model x from the mirt package |
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: dat <- expand.table(LSAT7) mod <- mirt(dat, "F=1-5 CONSTRAIN=(1-5, a1)") values <- mod2values(mod) values # use the converted values as starting values in a new model, and reduce TOL mod2 <- mirt(dat, 1, pars = values, TOL=1e-5) coef(mod2, simplify=TRUE) # use parameters on different dataset mod3 <- mirt(expand.table(LSAT6), pars=values) coef(mod3, simplify=TRUE) # supports differing itemtypes on second model sv <- mirt(Science, itemtype=c('graded', rep('gpcm', 3)), pars='values') mod3 <- mirt(Science, pars = sv) # itemtype omitted coef(mod3, simplify=TRUE)$items extract.mirt(mod3, 'itemtype') ## End(Not run)
## Not run: dat <- expand.table(LSAT7) mod <- mirt(dat, "F=1-5 CONSTRAIN=(1-5, a1)") values <- mod2values(mod) values # use the converted values as starting values in a new model, and reduce TOL mod2 <- mirt(dat, 1, pars = values, TOL=1e-5) coef(mod2, simplify=TRUE) # use parameters on different dataset mod3 <- mirt(expand.table(LSAT6), pars=values) coef(mod3, simplify=TRUE) # supports differing itemtypes on second model sv <- mirt(Science, itemtype=c('graded', rep('gpcm', 3)), pars='values') mod3 <- mirt(Science, pars = sv) # itemtype omitted coef(mod3, simplify=TRUE)$items extract.mirt(mod3, 'itemtype') ## End(Not run)
multipleGroup
performs a full-information
maximum-likelihood multiple group analysis for any combination of dichotomous and polytomous
data under the item response theory paradigm using either Cai's (2010)
Metropolis-Hastings Robbins-Monro (MHRM) algorithm or with an EM algorithm approach. This
function may be used for detecting differential item functioning (DIF), thought the
DIF
function may provide a more convenient approach. If the grouping
variable is not specified then the dentype
input can be modified to fit
mixture models to estimate any latent group components.
multipleGroup( data, model = 1, group, itemtype = NULL, invariance = "", method = "EM", dentype = "Gaussian", itemdesign = NULL, item.formula = NULL, ... )
multipleGroup( data, model = 1, group, itemtype = NULL, invariance = "", method = "EM", dentype = "Gaussian", itemdesign = NULL, item.formula = NULL, ... )
data |
a |
model |
string to be passed to, or a model object returned from, |
group |
a |
itemtype |
can be same type of input as is documented in |
invariance |
a character vector containing the following possible options:
Additionally, specifying specific item name bundles (from |
method |
a character object that is either |
dentype |
type of density form to use for the latent trait parameters. Current options include
all of the methods described in
|
itemdesign |
see |
item.formula |
see |
... |
additional arguments to be passed to the estimation engine. See |
By default the estimation in multipleGroup
assumes that the models are maximally
independent, and therefore could initially be performed by sub-setting the data and running
identical models with mirt
and aggregating the results (e.g., log-likelihood).
However, constrains may be automatically imposed across groups by invoking various
invariance
keywords. Users may also supply a list of parameter equality constraints
to by constrain
argument, of define equality constraints using the
mirt.model
syntax (recommended).
function returns an object of class MultipleGroupClass
(MultipleGroupClass-class).
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Magnus, B. E. and Garnier-Villarreal (2022). A multidimensional zero-inflated graded response model for ordinal symptom data. Psychological Methods, 27, 261-279.
Wall, M., M., Park, J., Y., and Moustaki I. (2015). IRT modeling in the presence of zero-inflation with application to psychiatric disorder severity. Applied Psychological Measurement 39: 583-597.
mirt
, DIF
, extract.group
, DRF
## Not run: # single factor set.seed(12345) a <- matrix(abs(rnorm(15,1,.3)), ncol=1) d <- matrix(rnorm(15,0,.7),ncol=1) itemtype <- rep('2PL', nrow(a)) N <- 1000 dataset1 <- simdata(a, d, N, itemtype) dataset2 <- simdata(a, d, N, itemtype, mu = .1, sigma = matrix(1.5)) dat <- rbind(dataset1, dataset2) group <- c(rep('D1', N), rep('D2', N)) # marginal information itemstats(dat) # conditional information itemstats(dat, group=group) mod_configural <- multipleGroup(dat, 1, group = group) #completely separate analyses # limited information fit statistics M2(mod_configural) mod_metric <- multipleGroup(dat, 1, group = group, invariance=c('slopes')) #equal slopes # equal intercepts, free variance and means mod_scalar2 <- multipleGroup(dat, 1, group = group, invariance=c('slopes', 'intercepts', 'free_var','free_means')) mod_scalar1 <- multipleGroup(dat, 1, group = group, #fixed means invariance=c('slopes', 'intercepts', 'free_var')) mod_fullconstrain <- multipleGroup(dat, 1, group = group, invariance=c('slopes', 'intercepts')) extract.mirt(mod_fullconstrain, 'time') #time of estimation components # optionally use Newton-Raphson for (generally) faster convergence in the # M-step's, though occasionally less stable mod_fullconstrain <- multipleGroup(dat, 1, group = group, optimizer = 'NR', invariance=c('slopes', 'intercepts')) extract.mirt(mod_fullconstrain, 'time') #time of estimation components summary(mod_scalar2) coef(mod_scalar2, simplify=TRUE) residuals(mod_scalar2) plot(mod_configural) plot(mod_configural, type = 'info') plot(mod_configural, type = 'trace') plot(mod_configural, type = 'trace', which.items = 1:4) itemplot(mod_configural, 2) itemplot(mod_configural, 2, type = 'RE') anova(mod_metric, mod_configural) #equal slopes only anova(mod_scalar2, mod_metric) #equal intercepts, free variance and mean anova(mod_scalar1, mod_scalar2) #fix mean anova(mod_fullconstrain, mod_scalar1) #fix variance # compared all at once (in order of most constrained to least) anova(mod_fullconstrain, mod_scalar2, mod_configural) # test whether first 6 slopes should be equal across groups values <- multipleGroup(dat, 1, group = group, pars = 'values') values constrain <- list(c(1, 63), c(5,67), c(9,71), c(13,75), c(17,79), c(21,83)) equalslopes <- multipleGroup(dat, 1, group = group, constrain = constrain) anova(equalslopes, mod_configural) # same as above, but using mirt.model syntax newmodel <- ' F = 1-15 CONSTRAINB = (1-6, a1)' equalslopes <- multipleGroup(dat, newmodel, group = group) coef(equalslopes, simplify=TRUE) ############ # vertical scaling (i.e., equating when groups answer items others do not) dat2 <- dat dat2[group == 'D1', 1:2] <- dat2[group != 'D1', 14:15] <- NA head(dat2) tail(dat2) # items with missing responses need to be constrained across groups for identification nms <- colnames(dat2) mod <- multipleGroup(dat2, 1, group, invariance = nms[c(1:2, 14:15)]) # this will throw an error without proper constraints (SEs cannot be computed either) # mod <- multipleGroup(dat2, 1, group) # model still does not have anchors, therefore need to add a few (here use items 3-5) mod_anchor <- multipleGroup(dat2, 1, group, invariance = c(nms[c(1:5, 14:15)], 'free_means', 'free_var')) coef(mod_anchor, simplify=TRUE) # check if identified by computing information matrix mod_anchor <- multipleGroup(dat2, 1, group, pars = mod2values(mod_anchor), TOL=NaN, SE=TRUE, invariance = c(nms[c(1:5, 14:15)], 'free_means', 'free_var')) mod_anchor coef(mod_anchor) coef(mod_anchor, printSE=TRUE) ############# # DIF test for each item (using all other items as anchors) itemnames <- colnames(dat) refmodel <- multipleGroup(dat, 1, group = group, SE=TRUE, invariance=c('free_means', 'free_var', itemnames)) # loop over items (in practice, run in parallel to increase speed). May be better to use ?DIF estmodels <- vector('list', ncol(dat)) for(i in 1:ncol(dat)) estmodels[[i]] <- multipleGroup(dat, 1, group = group, verbose = FALSE, invariance=c('free_means', 'free_var', itemnames[-i])) anova(refmodel, estmodels[[1]]) (anovas <- lapply(estmodels, function(x, refmodel) anova(refmodel, x), refmodel=refmodel)) # family-wise error control p <- do.call(rbind, lapply(anovas, function(x) x[2, 'p'])) p.adjust(p, method = 'BH') # same as above, except only test if slopes vary (1 df) # constrain all intercepts estmodels <- vector('list', ncol(dat)) for(i in 1:ncol(dat)) estmodels[[i]] <- multipleGroup(dat, 1, group = group, verbose = FALSE, invariance=c('free_means', 'free_var', 'intercepts', itemnames[-i])) (anovas <- lapply(estmodels, function(x, refmodel) anova(refmodel, x), refmodel=refmodel)) # quickly test with Wald test using DIF() mod_configural2 <- multipleGroup(dat, 1, group = group, SE=TRUE) DIF(mod_configural2, which.par = c('a1', 'd'), Wald=TRUE, p.adjust = 'fdr') ############# # Three group model where the latent variable parameters are constrained to # be equal in the focal groups set.seed(12345) a <- matrix(abs(rnorm(15,1,.3)), ncol=1) d <- matrix(rnorm(15,0,.7),ncol=1) itemtype <- rep('2PL', nrow(a)) N <- 1000 dataset1 <- simdata(a, d, N, itemtype) dataset2 <- simdata(a, d, N, itemtype, mu = .1, sigma = matrix(1.5)) dataset3 <- simdata(a, d, N, itemtype, mu = .1, sigma = matrix(1.5)) dat <- rbind(dataset1, dataset2, dataset3) group <- rep(c('D1', 'D2', 'D3'), each=N) # marginal information itemstats(dat) # conditional information itemstats(dat, group=group) model <- 'F1 = 1-15 FREE[D2, D3] = (GROUP, MEAN_1), (GROUP, COV_11) CONSTRAINB[D2,D3] = (GROUP, MEAN_1), (GROUP, COV_11)' mod <- multipleGroup(dat, model, group = group, invariance = colnames(dat)) coef(mod, simplify=TRUE) ############# # Testing main effects in multiple independent grouping variables set.seed(1234) a <- matrix(abs(rnorm(15,1,.3)), ncol=1) d <- matrix(rnorm(15,0,.7),ncol=1) itemtype <- rep('2PL', nrow(a)) N <- 500 # generated data have interaction effect for latent means, as well as a # main effect across D but no main effect across G d11 <- simdata(a, d, N, itemtype, mu = 0) d12 <- simdata(a, d, N, itemtype, mu = 0) d13 <- simdata(a, d, N, itemtype, mu = 0) d21 <- simdata(a, d, N, itemtype, mu = 1/2) d22 <- simdata(a, d, N, itemtype, mu = 1/2) d23 <- simdata(a, d, N, itemtype, mu = -1) dat <- do.call(rbind, list(d11, d12, d13, d21, d22, d23)) group <- rep(c('G1.D1', 'G1.D2', 'G1.D3', 'G2.D1', 'G2.D2', 'G2.D3'), each=N) table(group) # in practice, group would be organized in a data.frame as follows df <- data.frame(group) dfw <- tidyr::separate_wider_delim(df, group, delim='.', names = c('G', 'D')) head(dfw) # for use with multipleGroup() combine into a single long group group <- with(dfw, factor(G):factor(D)) # conditional information itemstats(dat, group=group) mod <- multipleGroup(dat, group = group, SE=TRUE, invariance = c(colnames(dat), 'free_mean', 'free_var')) coef(mod, simplify=TRUE) sapply(coef(mod, simplify=TRUE), \(x) unname(x$means)) # mean estimates wald(mod) # view parameter names for later testing # test for main effect over G group (manually compute marginal mean) wald(mod, "0 + MEAN_1.123 + MEAN_1.185 = MEAN_1.247 + MEAN_1.309 + MEAN_1.371") # test for main effect over D group (manually compute marginal means) wald(mod, c("0 + MEAN_1.247 = MEAN_1.123 + MEAN_1.309", "0 + MEAN_1.247 = MEAN_1.185 + MEAN_1.371")) # post-hoc tests (better practice would include p.adjust() ) wald(mod, "0 + MEAN_1.247 = MEAN_1.123 + MEAN_1.309") # D1 vs D2 wald(mod, "0 + MEAN_1.247 = MEAN_1.185 + MEAN_1.371") # D1 vs D3 wald(mod, "MEAN_1.123 + MEAN_1.309 = MEAN_1.185 + MEAN_1.371") # D2 vs D3 ############# # multiple factors a <- matrix(c(abs(rnorm(5,1,.3)), rep(0,15),abs(rnorm(5,1,.3)), rep(0,15),abs(rnorm(5,1,.3))), 15, 3) d <- matrix(rnorm(15,0,.7),ncol=1) mu <- c(-.4, -.7, .1) sigma <- matrix(c(1.21,.297,1.232,.297,.81,.252,1.232,.252,1.96),3,3) itemtype <- rep('2PL', nrow(a)) N <- 1000 dataset1 <- simdata(a, d, N, itemtype) dataset2 <- simdata(a, d, N, itemtype, mu = mu, sigma = sigma) dat <- rbind(dataset1, dataset2) group <- c(rep('D1', N), rep('D2', N)) # group models model <- ' F1 = 1-5 F2 = 6-10 F3 = 11-15' # define mirt cluster to use parallel architecture if(interactive()) mirtCluster() # EM approach (not as accurate with 3 factors, but generally good for quick model comparisons) mod_configural <- multipleGroup(dat, model, group = group) #completely separate analyses mod_metric <- multipleGroup(dat, model, group = group, invariance=c('slopes')) #equal slopes mod_fullconstrain <- multipleGroup(dat, model, group = group, #equal means, slopes, intercepts invariance=c('slopes', 'intercepts')) anova(mod_metric, mod_configural) anova(mod_fullconstrain, mod_metric) # same as above, but with MHRM (generally more accurate with 3+ factors, but slower) mod_configural <- multipleGroup(dat, model, group = group, method = 'MHRM') mod_metric <- multipleGroup(dat, model, group = group, invariance=c('slopes'), method = 'MHRM') mod_fullconstrain <- multipleGroup(dat, model, group = group, method = 'MHRM', invariance=c('slopes', 'intercepts')) anova(mod_metric, mod_configural) anova(mod_fullconstrain, mod_metric) ############ # polytomous item example set.seed(12345) a <- matrix(abs(rnorm(15,1,.3)), ncol=1) d <- matrix(rnorm(15,0,.7),ncol=1) d <- cbind(d, d-1, d-2) itemtype <- rep('graded', nrow(a)) N <- 1000 dataset1 <- simdata(a, d, N, itemtype) dataset2 <- simdata(a, d, N, itemtype, mu = .1, sigma = matrix(1.5)) dat <- rbind(dataset1, dataset2) group <- c(rep('D1', N), rep('D2', N)) model <- 'F1 = 1-15' mod_configural <- multipleGroup(dat, model, group = group) plot(mod_configural) plot(mod_configural, type = 'SE') itemplot(mod_configural, 1) itemplot(mod_configural, 1, type = 'info') plot(mod_configural, type = 'trace') # messy, score function typically better plot(mod_configural, type = 'itemscore') fs <- fscores(mod_configural, full.scores = FALSE) head(fs[["D1"]]) fscores(mod_configural, method = 'EAPsum', full.scores = FALSE) # constrain slopes within each group to be equal (but not across groups) model2 <- 'F1 = 1-15 CONSTRAIN = (1-15, a1)' mod_configural2 <- multipleGroup(dat, model2, group = group) plot(mod_configural2, type = 'SE') plot(mod_configural2, type = 'RE') itemplot(mod_configural2, 10) ############ ## empirical histogram example (normal and bimodal groups) set.seed(1234) a <- matrix(rlnorm(50, .2, .2)) d <- matrix(rnorm(50)) ThetaNormal <- matrix(rnorm(2000)) ThetaBimodal <- scale(matrix(c(rnorm(1000, -2), rnorm(1000,2)))) #bimodal Theta <- rbind(ThetaNormal, ThetaBimodal) dat <- simdata(a, d, 4000, itemtype = '2PL', Theta=Theta) group <- rep(c('G1', 'G2'), each=2000) EH <- multipleGroup(dat, 1, group=group, dentype="empiricalhist", invariance = colnames(dat)) coef(EH, simplify=TRUE) plot(EH, type = 'empiricalhist', npts = 60) # DIF test for item 1 EH1 <- multipleGroup(dat, 1, group=group, dentype="empiricalhist", invariance = colnames(dat)[-1]) anova(EH, EH1) #-------------------------------- # Mixture model (no prior group variable specified) set.seed(12345) nitems <- 20 a1 <- matrix(.75, ncol=1, nrow=nitems) a2 <- matrix(1.25, ncol=1, nrow=nitems) d1 <- matrix(rnorm(nitems,0,1),ncol=1) d2 <- matrix(rnorm(nitems,0,1),ncol=1) itemtype <- rep('2PL', nrow(a1)) N1 <- 500 N2 <- N1*2 # second class twice as large dataset1 <- simdata(a1, d1, N1, itemtype) dataset2 <- simdata(a2, d2, N2, itemtype) dat <- rbind(dataset1, dataset2) # group <- c(rep('D1', N1), rep('D2', N2)) # Mixture Rasch model (Rost, 1990) models <- 'F1 = 1-20 CONSTRAIN = (1-20, a1)' mod_mix <- multipleGroup(dat, models, dentype = 'mixture-2', GenRandomPars = TRUE) coef(mod_mix, simplify=TRUE) summary(mod_mix) plot(mod_mix) plot(mod_mix, type = 'trace') itemplot(mod_mix, 1, type = 'info') head(fscores(mod_mix)) # theta estimates head(fscores(mod_mix, method = 'classify')) # classification probability itemfit(mod_mix) # Mixture 2PL model mod_mix2 <- multipleGroup(dat, 1, dentype = 'mixture-2', GenRandomPars = TRUE) anova(mod_mix, mod_mix2) coef(mod_mix2, simplify=TRUE) itemfit(mod_mix2) # Compare to single group mod <- mirt(dat) anova(mod, mod_mix2) ######################################## # Zero-inflated 2PL IRT model (Wall, Park, and Moustaki, 2015) n <- 1000 nitems <- 20 a <- rep(2, nitems) d <- rep(c(-2,-1,0,1,2), each=nitems/5) zi_p <- 0.2 # Proportion of people in zero class theta <- rnorm(n, 0, 1) zeros <- matrix(0, n*zi_p, nitems) nonzeros <- simdata(a, d, n*(1-zi_p), itemtype = '2PL', Theta = as.matrix(theta[1:(n*(1-zi_p))])) data <- rbind(nonzeros, zeros) # define class with extreme theta but fixed item parameters zi2PL <- "F = 1-20 START [MIXTURE_1] = (GROUP, MEAN_1, -100), (GROUP, COV_11, .00001), (1-20, a1, 1.0), (1-20, d, 0) FIXED [MIXTURE_1] = (GROUP, MEAN_1), (GROUP, COV_11), (1-20, a1), (1-20, d)" # define custom Theta integration grid that contains extreme theta + normal grid technical <- list(customTheta = matrix(c(-100, seq(-6,6,length.out=61)))) # fit ZIM-IRT zi2PL.fit <- multipleGroup(data, zi2PL, dentype = 'mixture-2', technical=technical) coef(zi2PL.fit, simplify=TRUE) # classification estimates pi_hat <- fscores(zi2PL.fit, method = 'classify') head(pi_hat) tail(pi_hat) # EAP estimates (not useful for zip class) fs <- fscores(zi2PL.fit) head(fs) tail(fs) ######################################## # Zero-inflated graded response model (Magnus and Garnier-Villarreal, 2022) n <- 1000 nitems <- 20 a <- matrix(rlnorm(20,.2,.3)) # for the graded model, ensure that there is enough space between the intercepts, # otherwise closer categories will not be selected often (minimum distance of 0.3 here) diffs <- t(apply(matrix(runif(20*4, .3, 1), 20), 1, cumsum)) diffs <- -(diffs - rowMeans(diffs)) d <- diffs + rnorm(20) zi_p <- 0.2 # Proportion of people in zero/lowest category class theta <- rnorm(n, 0, 1) zeros <- matrix(0, n*zi_p, nitems) nonzeros <- simdata(a, d, n*(1-zi_p), itemtype = 'graded', Theta = as.matrix(theta[1:(n*(1-zi_p))])) data <- rbind(nonzeros, zeros) # intercepts will be labelled as d1 through d4 apply(data, 2, table) # ignoring zero inflation (bad idea) modGRM <- mirt(data) coef(modGRM, simplify=TRUE) # Define class with extreme theta but fixed item parameters # For GRM in zero-inflated class the intercept values are arbitrary # as the model forces the responses all into the first category (hence, # spacing arbitrarily set to 1) ziGRM <- "F = 1-20 START [MIXTURE_1] = (GROUP, MEAN_1, -100), (GROUP, COV_11, .00001), (1-20, a1, 1.0), (1-20, d1, 2), (1-20, d2, 1), (1-20, d3, 0), (1-20, d4, -1) FIXED [MIXTURE_1] = (GROUP, MEAN_1), (GROUP, COV_11), (1-20, a1), (1-20, d1), (1-20, d2), (1-20, d3), (1-20, d4)" # define custom Theta integration grid that contains extreme theta + normal grid technical <- list(customTheta = matrix(c(-100, seq(-6,6,length.out=61)))) # fit zero-inflated GRM ziGRM.fit <- multipleGroup(data, ziGRM, dentype = 'mixture-2', technical=technical) coef(ziGRM.fit, simplify=TRUE) # classification estimates pi_hat <- fscores(ziGRM.fit, method = 'classify') head(pi_hat) tail(pi_hat) # EAP estimates (not useful for zip class) fs <- fscores(ziGRM.fit) head(fs) tail(fs) ## End(Not run)
## Not run: # single factor set.seed(12345) a <- matrix(abs(rnorm(15,1,.3)), ncol=1) d <- matrix(rnorm(15,0,.7),ncol=1) itemtype <- rep('2PL', nrow(a)) N <- 1000 dataset1 <- simdata(a, d, N, itemtype) dataset2 <- simdata(a, d, N, itemtype, mu = .1, sigma = matrix(1.5)) dat <- rbind(dataset1, dataset2) group <- c(rep('D1', N), rep('D2', N)) # marginal information itemstats(dat) # conditional information itemstats(dat, group=group) mod_configural <- multipleGroup(dat, 1, group = group) #completely separate analyses # limited information fit statistics M2(mod_configural) mod_metric <- multipleGroup(dat, 1, group = group, invariance=c('slopes')) #equal slopes # equal intercepts, free variance and means mod_scalar2 <- multipleGroup(dat, 1, group = group, invariance=c('slopes', 'intercepts', 'free_var','free_means')) mod_scalar1 <- multipleGroup(dat, 1, group = group, #fixed means invariance=c('slopes', 'intercepts', 'free_var')) mod_fullconstrain <- multipleGroup(dat, 1, group = group, invariance=c('slopes', 'intercepts')) extract.mirt(mod_fullconstrain, 'time') #time of estimation components # optionally use Newton-Raphson for (generally) faster convergence in the # M-step's, though occasionally less stable mod_fullconstrain <- multipleGroup(dat, 1, group = group, optimizer = 'NR', invariance=c('slopes', 'intercepts')) extract.mirt(mod_fullconstrain, 'time') #time of estimation components summary(mod_scalar2) coef(mod_scalar2, simplify=TRUE) residuals(mod_scalar2) plot(mod_configural) plot(mod_configural, type = 'info') plot(mod_configural, type = 'trace') plot(mod_configural, type = 'trace', which.items = 1:4) itemplot(mod_configural, 2) itemplot(mod_configural, 2, type = 'RE') anova(mod_metric, mod_configural) #equal slopes only anova(mod_scalar2, mod_metric) #equal intercepts, free variance and mean anova(mod_scalar1, mod_scalar2) #fix mean anova(mod_fullconstrain, mod_scalar1) #fix variance # compared all at once (in order of most constrained to least) anova(mod_fullconstrain, mod_scalar2, mod_configural) # test whether first 6 slopes should be equal across groups values <- multipleGroup(dat, 1, group = group, pars = 'values') values constrain <- list(c(1, 63), c(5,67), c(9,71), c(13,75), c(17,79), c(21,83)) equalslopes <- multipleGroup(dat, 1, group = group, constrain = constrain) anova(equalslopes, mod_configural) # same as above, but using mirt.model syntax newmodel <- ' F = 1-15 CONSTRAINB = (1-6, a1)' equalslopes <- multipleGroup(dat, newmodel, group = group) coef(equalslopes, simplify=TRUE) ############ # vertical scaling (i.e., equating when groups answer items others do not) dat2 <- dat dat2[group == 'D1', 1:2] <- dat2[group != 'D1', 14:15] <- NA head(dat2) tail(dat2) # items with missing responses need to be constrained across groups for identification nms <- colnames(dat2) mod <- multipleGroup(dat2, 1, group, invariance = nms[c(1:2, 14:15)]) # this will throw an error without proper constraints (SEs cannot be computed either) # mod <- multipleGroup(dat2, 1, group) # model still does not have anchors, therefore need to add a few (here use items 3-5) mod_anchor <- multipleGroup(dat2, 1, group, invariance = c(nms[c(1:5, 14:15)], 'free_means', 'free_var')) coef(mod_anchor, simplify=TRUE) # check if identified by computing information matrix mod_anchor <- multipleGroup(dat2, 1, group, pars = mod2values(mod_anchor), TOL=NaN, SE=TRUE, invariance = c(nms[c(1:5, 14:15)], 'free_means', 'free_var')) mod_anchor coef(mod_anchor) coef(mod_anchor, printSE=TRUE) ############# # DIF test for each item (using all other items as anchors) itemnames <- colnames(dat) refmodel <- multipleGroup(dat, 1, group = group, SE=TRUE, invariance=c('free_means', 'free_var', itemnames)) # loop over items (in practice, run in parallel to increase speed). May be better to use ?DIF estmodels <- vector('list', ncol(dat)) for(i in 1:ncol(dat)) estmodels[[i]] <- multipleGroup(dat, 1, group = group, verbose = FALSE, invariance=c('free_means', 'free_var', itemnames[-i])) anova(refmodel, estmodels[[1]]) (anovas <- lapply(estmodels, function(x, refmodel) anova(refmodel, x), refmodel=refmodel)) # family-wise error control p <- do.call(rbind, lapply(anovas, function(x) x[2, 'p'])) p.adjust(p, method = 'BH') # same as above, except only test if slopes vary (1 df) # constrain all intercepts estmodels <- vector('list', ncol(dat)) for(i in 1:ncol(dat)) estmodels[[i]] <- multipleGroup(dat, 1, group = group, verbose = FALSE, invariance=c('free_means', 'free_var', 'intercepts', itemnames[-i])) (anovas <- lapply(estmodels, function(x, refmodel) anova(refmodel, x), refmodel=refmodel)) # quickly test with Wald test using DIF() mod_configural2 <- multipleGroup(dat, 1, group = group, SE=TRUE) DIF(mod_configural2, which.par = c('a1', 'd'), Wald=TRUE, p.adjust = 'fdr') ############# # Three group model where the latent variable parameters are constrained to # be equal in the focal groups set.seed(12345) a <- matrix(abs(rnorm(15,1,.3)), ncol=1) d <- matrix(rnorm(15,0,.7),ncol=1) itemtype <- rep('2PL', nrow(a)) N <- 1000 dataset1 <- simdata(a, d, N, itemtype) dataset2 <- simdata(a, d, N, itemtype, mu = .1, sigma = matrix(1.5)) dataset3 <- simdata(a, d, N, itemtype, mu = .1, sigma = matrix(1.5)) dat <- rbind(dataset1, dataset2, dataset3) group <- rep(c('D1', 'D2', 'D3'), each=N) # marginal information itemstats(dat) # conditional information itemstats(dat, group=group) model <- 'F1 = 1-15 FREE[D2, D3] = (GROUP, MEAN_1), (GROUP, COV_11) CONSTRAINB[D2,D3] = (GROUP, MEAN_1), (GROUP, COV_11)' mod <- multipleGroup(dat, model, group = group, invariance = colnames(dat)) coef(mod, simplify=TRUE) ############# # Testing main effects in multiple independent grouping variables set.seed(1234) a <- matrix(abs(rnorm(15,1,.3)), ncol=1) d <- matrix(rnorm(15,0,.7),ncol=1) itemtype <- rep('2PL', nrow(a)) N <- 500 # generated data have interaction effect for latent means, as well as a # main effect across D but no main effect across G d11 <- simdata(a, d, N, itemtype, mu = 0) d12 <- simdata(a, d, N, itemtype, mu = 0) d13 <- simdata(a, d, N, itemtype, mu = 0) d21 <- simdata(a, d, N, itemtype, mu = 1/2) d22 <- simdata(a, d, N, itemtype, mu = 1/2) d23 <- simdata(a, d, N, itemtype, mu = -1) dat <- do.call(rbind, list(d11, d12, d13, d21, d22, d23)) group <- rep(c('G1.D1', 'G1.D2', 'G1.D3', 'G2.D1', 'G2.D2', 'G2.D3'), each=N) table(group) # in practice, group would be organized in a data.frame as follows df <- data.frame(group) dfw <- tidyr::separate_wider_delim(df, group, delim='.', names = c('G', 'D')) head(dfw) # for use with multipleGroup() combine into a single long group group <- with(dfw, factor(G):factor(D)) # conditional information itemstats(dat, group=group) mod <- multipleGroup(dat, group = group, SE=TRUE, invariance = c(colnames(dat), 'free_mean', 'free_var')) coef(mod, simplify=TRUE) sapply(coef(mod, simplify=TRUE), \(x) unname(x$means)) # mean estimates wald(mod) # view parameter names for later testing # test for main effect over G group (manually compute marginal mean) wald(mod, "0 + MEAN_1.123 + MEAN_1.185 = MEAN_1.247 + MEAN_1.309 + MEAN_1.371") # test for main effect over D group (manually compute marginal means) wald(mod, c("0 + MEAN_1.247 = MEAN_1.123 + MEAN_1.309", "0 + MEAN_1.247 = MEAN_1.185 + MEAN_1.371")) # post-hoc tests (better practice would include p.adjust() ) wald(mod, "0 + MEAN_1.247 = MEAN_1.123 + MEAN_1.309") # D1 vs D2 wald(mod, "0 + MEAN_1.247 = MEAN_1.185 + MEAN_1.371") # D1 vs D3 wald(mod, "MEAN_1.123 + MEAN_1.309 = MEAN_1.185 + MEAN_1.371") # D2 vs D3 ############# # multiple factors a <- matrix(c(abs(rnorm(5,1,.3)), rep(0,15),abs(rnorm(5,1,.3)), rep(0,15),abs(rnorm(5,1,.3))), 15, 3) d <- matrix(rnorm(15,0,.7),ncol=1) mu <- c(-.4, -.7, .1) sigma <- matrix(c(1.21,.297,1.232,.297,.81,.252,1.232,.252,1.96),3,3) itemtype <- rep('2PL', nrow(a)) N <- 1000 dataset1 <- simdata(a, d, N, itemtype) dataset2 <- simdata(a, d, N, itemtype, mu = mu, sigma = sigma) dat <- rbind(dataset1, dataset2) group <- c(rep('D1', N), rep('D2', N)) # group models model <- ' F1 = 1-5 F2 = 6-10 F3 = 11-15' # define mirt cluster to use parallel architecture if(interactive()) mirtCluster() # EM approach (not as accurate with 3 factors, but generally good for quick model comparisons) mod_configural <- multipleGroup(dat, model, group = group) #completely separate analyses mod_metric <- multipleGroup(dat, model, group = group, invariance=c('slopes')) #equal slopes mod_fullconstrain <- multipleGroup(dat, model, group = group, #equal means, slopes, intercepts invariance=c('slopes', 'intercepts')) anova(mod_metric, mod_configural) anova(mod_fullconstrain, mod_metric) # same as above, but with MHRM (generally more accurate with 3+ factors, but slower) mod_configural <- multipleGroup(dat, model, group = group, method = 'MHRM') mod_metric <- multipleGroup(dat, model, group = group, invariance=c('slopes'), method = 'MHRM') mod_fullconstrain <- multipleGroup(dat, model, group = group, method = 'MHRM', invariance=c('slopes', 'intercepts')) anova(mod_metric, mod_configural) anova(mod_fullconstrain, mod_metric) ############ # polytomous item example set.seed(12345) a <- matrix(abs(rnorm(15,1,.3)), ncol=1) d <- matrix(rnorm(15,0,.7),ncol=1) d <- cbind(d, d-1, d-2) itemtype <- rep('graded', nrow(a)) N <- 1000 dataset1 <- simdata(a, d, N, itemtype) dataset2 <- simdata(a, d, N, itemtype, mu = .1, sigma = matrix(1.5)) dat <- rbind(dataset1, dataset2) group <- c(rep('D1', N), rep('D2', N)) model <- 'F1 = 1-15' mod_configural <- multipleGroup(dat, model, group = group) plot(mod_configural) plot(mod_configural, type = 'SE') itemplot(mod_configural, 1) itemplot(mod_configural, 1, type = 'info') plot(mod_configural, type = 'trace') # messy, score function typically better plot(mod_configural, type = 'itemscore') fs <- fscores(mod_configural, full.scores = FALSE) head(fs[["D1"]]) fscores(mod_configural, method = 'EAPsum', full.scores = FALSE) # constrain slopes within each group to be equal (but not across groups) model2 <- 'F1 = 1-15 CONSTRAIN = (1-15, a1)' mod_configural2 <- multipleGroup(dat, model2, group = group) plot(mod_configural2, type = 'SE') plot(mod_configural2, type = 'RE') itemplot(mod_configural2, 10) ############ ## empirical histogram example (normal and bimodal groups) set.seed(1234) a <- matrix(rlnorm(50, .2, .2)) d <- matrix(rnorm(50)) ThetaNormal <- matrix(rnorm(2000)) ThetaBimodal <- scale(matrix(c(rnorm(1000, -2), rnorm(1000,2)))) #bimodal Theta <- rbind(ThetaNormal, ThetaBimodal) dat <- simdata(a, d, 4000, itemtype = '2PL', Theta=Theta) group <- rep(c('G1', 'G2'), each=2000) EH <- multipleGroup(dat, 1, group=group, dentype="empiricalhist", invariance = colnames(dat)) coef(EH, simplify=TRUE) plot(EH, type = 'empiricalhist', npts = 60) # DIF test for item 1 EH1 <- multipleGroup(dat, 1, group=group, dentype="empiricalhist", invariance = colnames(dat)[-1]) anova(EH, EH1) #-------------------------------- # Mixture model (no prior group variable specified) set.seed(12345) nitems <- 20 a1 <- matrix(.75, ncol=1, nrow=nitems) a2 <- matrix(1.25, ncol=1, nrow=nitems) d1 <- matrix(rnorm(nitems,0,1),ncol=1) d2 <- matrix(rnorm(nitems,0,1),ncol=1) itemtype <- rep('2PL', nrow(a1)) N1 <- 500 N2 <- N1*2 # second class twice as large dataset1 <- simdata(a1, d1, N1, itemtype) dataset2 <- simdata(a2, d2, N2, itemtype) dat <- rbind(dataset1, dataset2) # group <- c(rep('D1', N1), rep('D2', N2)) # Mixture Rasch model (Rost, 1990) models <- 'F1 = 1-20 CONSTRAIN = (1-20, a1)' mod_mix <- multipleGroup(dat, models, dentype = 'mixture-2', GenRandomPars = TRUE) coef(mod_mix, simplify=TRUE) summary(mod_mix) plot(mod_mix) plot(mod_mix, type = 'trace') itemplot(mod_mix, 1, type = 'info') head(fscores(mod_mix)) # theta estimates head(fscores(mod_mix, method = 'classify')) # classification probability itemfit(mod_mix) # Mixture 2PL model mod_mix2 <- multipleGroup(dat, 1, dentype = 'mixture-2', GenRandomPars = TRUE) anova(mod_mix, mod_mix2) coef(mod_mix2, simplify=TRUE) itemfit(mod_mix2) # Compare to single group mod <- mirt(dat) anova(mod, mod_mix2) ######################################## # Zero-inflated 2PL IRT model (Wall, Park, and Moustaki, 2015) n <- 1000 nitems <- 20 a <- rep(2, nitems) d <- rep(c(-2,-1,0,1,2), each=nitems/5) zi_p <- 0.2 # Proportion of people in zero class theta <- rnorm(n, 0, 1) zeros <- matrix(0, n*zi_p, nitems) nonzeros <- simdata(a, d, n*(1-zi_p), itemtype = '2PL', Theta = as.matrix(theta[1:(n*(1-zi_p))])) data <- rbind(nonzeros, zeros) # define class with extreme theta but fixed item parameters zi2PL <- "F = 1-20 START [MIXTURE_1] = (GROUP, MEAN_1, -100), (GROUP, COV_11, .00001), (1-20, a1, 1.0), (1-20, d, 0) FIXED [MIXTURE_1] = (GROUP, MEAN_1), (GROUP, COV_11), (1-20, a1), (1-20, d)" # define custom Theta integration grid that contains extreme theta + normal grid technical <- list(customTheta = matrix(c(-100, seq(-6,6,length.out=61)))) # fit ZIM-IRT zi2PL.fit <- multipleGroup(data, zi2PL, dentype = 'mixture-2', technical=technical) coef(zi2PL.fit, simplify=TRUE) # classification estimates pi_hat <- fscores(zi2PL.fit, method = 'classify') head(pi_hat) tail(pi_hat) # EAP estimates (not useful for zip class) fs <- fscores(zi2PL.fit) head(fs) tail(fs) ######################################## # Zero-inflated graded response model (Magnus and Garnier-Villarreal, 2022) n <- 1000 nitems <- 20 a <- matrix(rlnorm(20,.2,.3)) # for the graded model, ensure that there is enough space between the intercepts, # otherwise closer categories will not be selected often (minimum distance of 0.3 here) diffs <- t(apply(matrix(runif(20*4, .3, 1), 20), 1, cumsum)) diffs <- -(diffs - rowMeans(diffs)) d <- diffs + rnorm(20) zi_p <- 0.2 # Proportion of people in zero/lowest category class theta <- rnorm(n, 0, 1) zeros <- matrix(0, n*zi_p, nitems) nonzeros <- simdata(a, d, n*(1-zi_p), itemtype = 'graded', Theta = as.matrix(theta[1:(n*(1-zi_p))])) data <- rbind(nonzeros, zeros) # intercepts will be labelled as d1 through d4 apply(data, 2, table) # ignoring zero inflation (bad idea) modGRM <- mirt(data) coef(modGRM, simplify=TRUE) # Define class with extreme theta but fixed item parameters # For GRM in zero-inflated class the intercept values are arbitrary # as the model forces the responses all into the first category (hence, # spacing arbitrarily set to 1) ziGRM <- "F = 1-20 START [MIXTURE_1] = (GROUP, MEAN_1, -100), (GROUP, COV_11, .00001), (1-20, a1, 1.0), (1-20, d1, 2), (1-20, d2, 1), (1-20, d3, 0), (1-20, d4, -1) FIXED [MIXTURE_1] = (GROUP, MEAN_1), (GROUP, COV_11), (1-20, a1), (1-20, d1), (1-20, d2), (1-20, d3), (1-20, d4)" # define custom Theta integration grid that contains extreme theta + normal grid technical <- list(customTheta = matrix(c(-100, seq(-6,6,length.out=61)))) # fit zero-inflated GRM ziGRM.fit <- multipleGroup(data, ziGRM, dentype = 'mixture-2', technical=technical) coef(ziGRM.fit, simplify=TRUE) # classification estimates pi_hat <- fscores(ziGRM.fit, method = 'classify') head(pi_hat) tail(pi_hat) # EAP estimates (not useful for zip class) fs <- fscores(ziGRM.fit) head(fs) tail(fs) ## End(Not run)
Defines the object returned from multipleGroup
.
Call
:function call
Data
:list of data, sometimes in different forms
Options
:list of estimation options
Fit
:a list of fit information
Model
:a list of model-based information
ParObjects
:a list of the S4 objects used during estimation
OptimInfo
:a list of arguments from the optimization process
Internals
:a list of internal arguments for secondary computations (inspecting this object is generally not required)
vcov
:a matrix represented the asymptotic covariance matrix of the parameter estimates
time
:a data.frame indicating the breakdown of computation times in seconds
signature(object = "MultipleGroupClass")
signature(x = "MultipleGroupClass")
signature(object = "MultipleGroupClass")
signature(object = "MultipleGroupClass")
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Compute numerical derivatives using forward/backward difference, central difference, or Richardson extrapolation.
numerical_deriv( par, f, ..., delta = 1e-05, gradient = TRUE, type = "Richardson" )
numerical_deriv( par, f, ..., delta = 1e-05, gradient = TRUE, type = "Richardson" )
par |
a vector of parameters to find partial derivative at |
f |
the objective function being evaluated |
... |
additional arguments to be passed to |
delta |
the term used to perturb the |
gradient |
logical; compute the gradient terms? If FALSE then the Hessian is computed instead |
type |
type of difference to compute. Can be either |
Phil Chalmers [email protected]
## Not run: f <- function(x) 3*x[1]^3 - 4*x[2]^2 par <- c(3,8) # grad = 9 * x^2 , -8 * y (actual <- c(9 * par[1]^2, -8 * par[2])) numerical_deriv(par, f, type = 'forward') numerical_deriv(par, f, type = 'central') numerical_deriv(par, f, type = 'Richardson') # default # Hessian = h11 -> 18 * x, h22 -> -8, h12 -> h21 -> 0 (actual <- matrix(c(18 * par[1], 0, 0, -8), 2, 2)) numerical_deriv(par, f, type = 'forward', gradient = FALSE) numerical_deriv(par, f, type = 'central', gradient = FALSE) numerical_deriv(par, f, type = 'Richardson', gradient = FALSE) # default ## End(Not run)
## Not run: f <- function(x) 3*x[1]^3 - 4*x[2]^2 par <- c(3,8) # grad = 9 * x^2 , -8 * y (actual <- c(9 * par[1]^2, -8 * par[2])) numerical_deriv(par, f, type = 'forward') numerical_deriv(par, f, type = 'central') numerical_deriv(par, f, type = 'Richardson') # default # Hessian = h11 -> 18 * x, h22 -> -8, h12 -> h21 -> 0 (actual <- matrix(c(18 * par[1], 0, 0, -8), 2, 2)) numerical_deriv(par, f, type = 'forward', gradient = FALSE) numerical_deriv(par, f, type = 'central', gradient = FALSE) numerical_deriv(par, f, type = 'Richardson', gradient = FALSE) # default ## End(Not run)
personfit
calculates the Zh values from Drasgow, Levine and Williams (1985) for
unidimensional and multidimensional models, as well as the infit and outfit statistics.
The returned object is a data.frame
consisting either of the tabulated data or full data with the statistics appended to the
rightmost columns.
personfit( x, method = "EAP", Theta = NULL, stats.only = TRUE, return.resids = FALSE, ... )
personfit( x, method = "EAP", Theta = NULL, stats.only = TRUE, return.resids = FALSE, ... )
x |
a computed model object of class |
method |
type of factor score estimation method. See |
Theta |
a matrix of factor scores used for statistics that require empirical estimates. If
supplied, arguments typically passed to |
stats.only |
logical; return only the person fit statistics without their associated response pattern? |
return.resids |
logical; return the standardized and unstandardized
N by J matrices of person and item residuals? If |
... |
additional arguments to be passed to |
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Drasgow, F., Levine, M. V., & Williams, E. A. (1985). Appropriateness measurement with polychotomous item response models and standardized indices. British Journal of Mathematical and Statistical Psychology, 38, 67-86.
Reise, S. P. (1990). A comparison of item- and person-fit methods of assessing model-data fit in IRT. Applied Psychological Measurement, 14, 127-137.
Wright B. D. & Masters, G. N. (1982). Rating scale analysis. MESA Press.
## Not run: #make some data set.seed(1) a <- matrix(rlnorm(20),ncol=1) d <- matrix(rnorm(20),ncol=1) items <- rep('2PL', 20) data <- simdata(a,d, 2000, items) # first observation responds 1 for most difficult, 0 for easiest data[1,] <- ifelse(d > 0, 0, 1) # second observations answers first half as 1 second half as 0 data[2,] <- rep(1:0, each = 10) x <- mirt(data, 1) fit <- personfit(x) head(fit) # raw/standardized residuals resid_list <- personfit(x, return.resids=TRUE) head(resid_list$resid) # unstandardized head(resid_list$std.resid) # standardized (approximate z-scores) residuals(x, type = 'score') # with missing data data[3, c(1,3,5,7)] <- NA x.miss <- mirt(data, 1) fit.miss <- personfit(x.miss) head(fit.miss) head(personfit(x.miss, return.resids=TRUE)) #using precomputed Theta Theta <- fscores(x, method = 'MAP', full.scores = TRUE) head(personfit(x, Theta=Theta)) # multiple group Rasch model example set.seed(12345) a <- matrix(rep(1, 16), ncol=1) d <- matrix(rnorm(16,0,.7),ncol=1) itemtype <- rep('dich', nrow(a)) N <- 1000 dataset1 <- simdata(a, d, N, itemtype) dataset2 <- simdata(a, d, N, itemtype, sigma = matrix(1.5)) dat <- rbind(dataset1, dataset2) # first observation responds 1 for most difficult, 0 for easiest dat[1,] <- ifelse(d > 0, 0, 1) group <- c(rep('D1', N), rep('D2', N)) models <- 'F1 = 1-16' mod_Rasch <- multipleGroup(dat, models, itemtype = 'Rasch', group = group) coef(mod_Rasch, simplify=TRUE) pf <- personfit(mod_Rasch, method='MAP') head(pf) ## End(Not run)
## Not run: #make some data set.seed(1) a <- matrix(rlnorm(20),ncol=1) d <- matrix(rnorm(20),ncol=1) items <- rep('2PL', 20) data <- simdata(a,d, 2000, items) # first observation responds 1 for most difficult, 0 for easiest data[1,] <- ifelse(d > 0, 0, 1) # second observations answers first half as 1 second half as 0 data[2,] <- rep(1:0, each = 10) x <- mirt(data, 1) fit <- personfit(x) head(fit) # raw/standardized residuals resid_list <- personfit(x, return.resids=TRUE) head(resid_list$resid) # unstandardized head(resid_list$std.resid) # standardized (approximate z-scores) residuals(x, type = 'score') # with missing data data[3, c(1,3,5,7)] <- NA x.miss <- mirt(data, 1) fit.miss <- personfit(x.miss) head(fit.miss) head(personfit(x.miss, return.resids=TRUE)) #using precomputed Theta Theta <- fscores(x, method = 'MAP', full.scores = TRUE) head(personfit(x, Theta=Theta)) # multiple group Rasch model example set.seed(12345) a <- matrix(rep(1, 16), ncol=1) d <- matrix(rnorm(16,0,.7),ncol=1) itemtype <- rep('dich', nrow(a)) N <- 1000 dataset1 <- simdata(a, d, N, itemtype) dataset2 <- simdata(a, d, N, itemtype, sigma = matrix(1.5)) dat <- rbind(dataset1, dataset2) # first observation responds 1 for most difficult, 0 for easiest dat[1,] <- ifelse(d > 0, 0, 1) group <- c(rep('D1', N), rep('D2', N)) models <- 'F1 = 1-16' mod_Rasch <- multipleGroup(dat, models, itemtype = 'Rasch', group = group) coef(mod_Rasch, simplify=TRUE) pf <- personfit(mod_Rasch, method='MAP') head(pf) ## End(Not run)
Computes profiled-likelihood based confidence intervals. Supports the inclusion of equality constraints. Object returns the confidence intervals and whether the respective interval could be found.
PLCI.mirt( mod, parnum = NULL, alpha = 0.05, search_bound = TRUE, step = 0.5, lower = TRUE, upper = TRUE, inf2val = 30, NealeMiller = FALSE, verbose = TRUE, ... )
PLCI.mirt( mod, parnum = NULL, alpha = 0.05, search_bound = TRUE, step = 0.5, lower = TRUE, upper = TRUE, inf2val = 30, NealeMiller = FALSE, verbose = TRUE, ... )
mod |
a converged mirt model |
parnum |
a numeric vector indicating which parameters to estimate.
Use |
alpha |
two-tailed alpha critical level |
search_bound |
logical; use a fixed grid of values around the ML estimate to determine more suitable optimization bounds? Using this has much better behaviour than setting fixed upper/lower bound values and searching from more extreme ends |
step |
magnitude of steps used when |
lower |
logical; search for the lower CI? |
upper |
logical; search for the upper CI? |
inf2val |
a numeric used to change parameter bounds which are infinity to a finite number. Decreasing this too much may not allow a suitable bound to be located. Default is 30 |
NealeMiller |
logical; use the Neale and Miller 1997 approximation? Default is |
verbose |
logical; include additional information in the console? |
... |
additional arguments to pass to the estimation functions |
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Chalmers, R. P., Pek, J., & Liu, Y. (2017). Profile-likelihood Confidence Intervals in Item Response Theory Models. Multivariate Behavioral Research, 52, 533-550. doi:10.1080/00273171.2017.1329082
Neale, M. C. & Miller, M. B. (1997). The use of likelihood-based confidence intervals in genetic models. Behavior Genetics, 27, 113-120.
## Not run: if(interactive()) mirtCluster() #use all available cores to estimate CI's in parallel dat <- expand.table(LSAT7) mod <- mirt(dat, 1) result <- PLCI.mirt(mod) result # model with constraints mod <- mirt(dat, 'F = 1-5 CONSTRAIN = (1-5, a1)') result <- PLCI.mirt(mod) result mod2 <- mirt(Science, 1) result2 <- PLCI.mirt(mod2) result2 # only estimate CI's slopes sv <- mod2values(mod2) parnum <- sv$parnum[sv$name == 'a1'] result3 <- PLCI.mirt(mod2, parnum) result3 ## End(Not run)
## Not run: if(interactive()) mirtCluster() #use all available cores to estimate CI's in parallel dat <- expand.table(LSAT7) mod <- mirt(dat, 1) result <- PLCI.mirt(mod) result # model with constraints mod <- mirt(dat, 'F = 1-5 CONSTRAIN = (1-5, a1)') result <- PLCI.mirt(mod) result mod2 <- mirt(Science, 1) result2 <- PLCI.mirt(mod2) result2 # only estimate CI's slopes sv <- mod2values(mod2) parnum <- sv$parnum[sv$name == 'a1'] result3 <- PLCI.mirt(mod2, parnum) result3 ## End(Not run)
Plot various test implied response functions from models estimated in the mirt package.
## S4 method for signature 'MultipleGroupClass,missing' plot( x, y, type = "score", npts = 200, drop2 = TRUE, degrees = 45, which.items = 1:extract.mirt(x, "nitems"), rot = list(xaxis = -70, yaxis = 30, zaxis = 10), facet_items = TRUE, theta_lim = c(-6, 6), par.strip.text = list(cex = 0.7), par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col = "black")), auto.key = list(space = "right", points = FALSE, lines = TRUE), ... ) ## S4 method for signature 'SingleGroupClass,missing' plot( x, y, type = "score", npts = 200, drop2 = TRUE, degrees = 45, theta_lim = c(-6, 6), which.items = 1:extract.mirt(x, "nitems"), MI = 0, CI = 0.95, rot = list(xaxis = -70, yaxis = 30, zaxis = 10), facet_items = TRUE, main = NULL, drape = TRUE, colorkey = TRUE, ehist.cut = 1e-10, add.ylab2 = TRUE, par.strip.text = list(cex = 0.7), par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col = "black")), auto.key = list(space = "right", points = FALSE, lines = TRUE), profile = FALSE, ... )
## S4 method for signature 'MultipleGroupClass,missing' plot( x, y, type = "score", npts = 200, drop2 = TRUE, degrees = 45, which.items = 1:extract.mirt(x, "nitems"), rot = list(xaxis = -70, yaxis = 30, zaxis = 10), facet_items = TRUE, theta_lim = c(-6, 6), par.strip.text = list(cex = 0.7), par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col = "black")), auto.key = list(space = "right", points = FALSE, lines = TRUE), ... ) ## S4 method for signature 'SingleGroupClass,missing' plot( x, y, type = "score", npts = 200, drop2 = TRUE, degrees = 45, theta_lim = c(-6, 6), which.items = 1:extract.mirt(x, "nitems"), MI = 0, CI = 0.95, rot = list(xaxis = -70, yaxis = 30, zaxis = 10), facet_items = TRUE, main = NULL, drape = TRUE, colorkey = TRUE, ehist.cut = 1e-10, add.ylab2 = TRUE, par.strip.text = list(cex = 0.7), par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col = "black")), auto.key = list(space = "right", points = FALSE, lines = TRUE), profile = FALSE, ... )
x |
an object of class |
y |
an arbitrary missing argument required for |
type |
type of plot to view. Can be
Note that if |
npts |
number of quadrature points to be used for plotting features. Larger values make plots look smoother |
drop2 |
logical; where appropriate, for dichotomous response items drop the lowest category and provide information pertaining only to the second response option? |
degrees |
numeric value ranging from 0 to 90 used in |
which.items |
numeric vector indicating which items to be used when plotting. Default is to use all available items |
rot |
allows rotation of the 3D graphics |
facet_items |
logical; apply grid of plots across items? If |
theta_lim |
lower and upper limits of the latent trait (theta) to be evaluated, and is
used in conjunction with |
par.strip.text |
plotting argument passed to |
par.settings |
plotting argument passed to |
auto.key |
plotting argument passed to |
... |
additional arguments to be passed to lattice |
MI |
a single number indicating how many imputations to draw to form bootstrapped confidence intervals for the selected test statistic. If greater than 0 a plot will be drawn with a shaded region for the interval |
CI |
a number from 0 to 1 indicating the confidence interval to select when MI input is used. Default uses the 95% confidence (CI = .95) |
main |
argument passed to lattice. Default generated automatically |
drape |
logical argument passed to lattice. Default generated automatically |
colorkey |
logical argument passed to lattice. Default generated automatically |
ehist.cut |
a probability value indicating a threshold for excluding cases in empirical histogram plots. Values larger than the default will include more points in the tails of the plot, potentially squishing the 'meat' of the plot to take up less area than visually desired |
add.ylab2 |
logical argument passed to lattice. Default generated automatically |
profile |
logical; provide a profile plot of response probabilities (objects returned from
|
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: x <- mirt(Science, 1, SE=TRUE) plot(x) plot(x, type = 'info') plot(x, type = 'infotrace') plot(x, type = 'infotrace', facet_items = FALSE) plot(x, type = 'infoSE') plot(x, type = 'rxx') plot(x, type = 'posteriorTheta') # confidence interval plots when information matrix computed plot(x) plot(x, MI=100) plot(x, type='info', MI=100) plot(x, type='SE', MI=100) plot(x, type='rxx', MI=100) # use the directlabels package to put labels on tracelines library(directlabels) plt <- plot(x, type = 'trace') direct.label(plt, 'top.points') # additional modifications can be made via update(). # See ?update.trellis for further documentation plt update(plt, ylab = expression(Prob(theta)), main = "Item Traceline Functions") # ylab/main changed set.seed(1234) group <- sample(c('g1','g2'), nrow(Science), TRUE) x2 <- multipleGroup(Science, 1, group) plot(x2) plot(x2, type = 'trace') plot(x2, type = 'trace', which.items = 1:2) plot(x2, type = 'itemscore', which.items = 1:2) plot(x2, type = 'trace', which.items = 1, facet_items = FALSE) #facet by group plot(x2, type = 'info') x3 <- mirt(Science, 2) plot(x3, type = 'info') plot(x3, type = 'SE', theta_lim = c(-3,3)) ## End(Not run)
## Not run: x <- mirt(Science, 1, SE=TRUE) plot(x) plot(x, type = 'info') plot(x, type = 'infotrace') plot(x, type = 'infotrace', facet_items = FALSE) plot(x, type = 'infoSE') plot(x, type = 'rxx') plot(x, type = 'posteriorTheta') # confidence interval plots when information matrix computed plot(x) plot(x, MI=100) plot(x, type='info', MI=100) plot(x, type='SE', MI=100) plot(x, type='rxx', MI=100) # use the directlabels package to put labels on tracelines library(directlabels) plt <- plot(x, type = 'trace') direct.label(plt, 'top.points') # additional modifications can be made via update(). # See ?update.trellis for further documentation plt update(plt, ylab = expression(Prob(theta)), main = "Item Traceline Functions") # ylab/main changed set.seed(1234) group <- sample(c('g1','g2'), nrow(Science), TRUE) x2 <- multipleGroup(Science, 1, group) plot(x2) plot(x2, type = 'trace') plot(x2, type = 'trace', which.items = 1:2) plot(x2, type = 'itemscore', which.items = 1:2) plot(x2, type = 'trace', which.items = 1, facet_items = FALSE) #facet by group plot(x2, type = 'info') x3 <- mirt(Science, 2) plot(x3, type = 'info') plot(x3, type = 'SE', theta_lim = c(-3,3)) ## End(Not run)
Transforms a matrix of items into a new matrix where the select polytomous items have been converted into comparable dichotomous items with the same information.
poly2dich(data, which.items = 1:ncol(data), sep = "_cat.")
poly2dich(data, which.items = 1:ncol(data), sep = "_cat.")
data |
an object of class |
which.items |
a vector indicating which items should be transformed into the dichotomous form. Default uses all input items |
sep |
character vector pattern to append to each item name in |
Returns an integer matrix
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: data(Science) head(Science) newScience <- poly2dich(Science) head(newScience) newScience2 <- poly2dich(Science, which.items = 2) head(newScience2) ## End(Not run)
## Not run: data(Science) head(Science) newScience <- poly2dich(Science) head(newScience) newScience2 <- poly2dich(Science, which.items = 2) head(newScience2) ## End(Not run)
Print model object summaries to the console.
## S4 method for signature 'SingleGroupClass' print(x)
## S4 method for signature 'SingleGroupClass' print(x)
x |
an object of class |
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: x <- mirt(Science, 1) print(x) ## End(Not run)
## Not run: x <- mirt(Science, 1) print(x) ## End(Not run)
Provides a nicer output for most printed data.frame
objects
defined by functions in mirt
.
## S3 method for class 'mirt_df' print(x, digits = 3, ...)
## S3 method for class 'mirt_df' print(x, digits = 3, ...)
x |
object of class |
digits |
number of digits to round |
... |
additional arguments passed to |
Provides a nicer output for most printed list
objects
defined by functions in mirt
.
## S3 method for class 'mirt_list' print(x, digits = 3, ...)
## S3 method for class 'mirt_list' print(x, digits = 3, ...)
x |
object of class |
digits |
number of digits to round |
... |
additional arguments passed to |
Provides a nicer output for most printed matrix
objects defined by functions in mirt
.
## S3 method for class 'mirt_matrix' print(x, digits = 3, ...)
## S3 method for class 'mirt_matrix' print(x, digits = 3, ...)
x |
object of class |
digits |
number of digits to round |
... |
additional arguments passed to |
Given an internal mirt object extracted from an estimated model, or the single-group estimated model itself, compute the probability trace lines for all categories.
probtrace(x, Theta)
probtrace(x, Theta)
x |
either an extracted internal mirt object containing item information
(see |
Theta |
a vector (unidimensional) or matrix (unidimensional/multidimensional) of latent trait values |
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
mod <- mirt(Science, 1) # single item probabilty tracelines for Item 2 extr.2 <- extract.item(mod, 2) Theta <- matrix(seq(-4,4, by = .1)) traceline <- probtrace(extr.2, Theta) head(data.frame(traceline, Theta=Theta)) # probability tracelines for all items in test tracelines <- probtrace(mod, Theta) head(tracelines)
mod <- mirt(Science, 1) # single item probabilty tracelines for Item 2 extr.2 <- extract.item(mod, 2) Theta <- matrix(seq(-4,4, by = .1)) traceline <- probtrace(extr.2, Theta) head(data.frame(traceline, Theta=Theta)) # probability tracelines for all items in test tracelines <- probtrace(mod, Theta) head(tracelines)
Stochastically compute random effects for MixedClass
objects with Metropolis-Hastings
samplers and averaging over the draws to obtain expected a posteriori predictions.
Returns a list of the estimated effects.
randef(x, ndraws = 1000, thin = 10, return.draws = FALSE)
randef(x, ndraws = 1000, thin = 10, return.draws = FALSE)
x |
an estimated model object from the |
ndraws |
total number of draws to perform. Default is 1000 |
thin |
amount of thinning to apply. Default is to use every 10th draw |
return.draws |
logical; return a list containing the thinned draws of the posterior? |
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29.
Chalmers, R. P. (2015). Extended Mixed-Effects Item Response Models with the MH-RM Algorithm. Journal of Educational Measurement, 52, 200-222. doi:10.1111/jedm.12072 doi:10.18637/jss.v048.i06
## Not run: # make an arbitrary groups covdat <- data.frame(group = rep(paste0('group', 1:49), each=nrow(Science)/49)) # partial credit model mod <- mixedmirt(Science, covdat, model=1, random = ~ 1|group) summary(mod) effects <- randef(mod, ndraws = 2000, thin = 20) head(effects$Theta) head(effects$group) ## End(Not run)
## Not run: # make an arbitrary groups covdat <- data.frame(group = rep(paste0('group', 1:49), each=nrow(Science)/49)) # partial credit model mod <- mixedmirt(Science, covdat, model=1, random = ~ 1|group) summary(mod) effects <- randef(mod, ndraws = 2000, thin = 20) head(effects$Theta) head(effects$group) ## End(Not run)
Computes an IRT version of the "reliable change index" (RCI) proposed by Jacobson and Traux (1991) but modified to use IRT information about scores and measurement error (see Jabrayilov, Emons, and Sijtsma (2016). Main benefit of the IRT approach is the inclusion of response pattern information in the pre/post data score estimates, as well as conditional standard error of measurement information.
RCI( mod_pre, predat, postdat, mod_post = mod_pre, cutoffs = NULL, SEM.pre = NULL, SEM.post = NULL, Fisher = FALSE, shiny = FALSE, main = "Test Scores", ... )
RCI( mod_pre, predat, postdat, mod_post = mod_pre, cutoffs = NULL, SEM.pre = NULL, SEM.post = NULL, Fisher = FALSE, shiny = FALSE, main = "Test Scores", ... )
mod_pre |
single-group model fitted by |
predat |
a vector (if one individual) or matrix/data.frame of response data to be scored, where each individuals' responses are included in exactly one row |
postdat |
same as |
mod_post |
(optional) IRT model for post-test if different from pre-test; otherwise, the pre-test model will be used |
cutoffs |
optional vector of length 2 indicating the type of cut-offs to
report (e.g., |
SEM.pre |
standard error of measurement for the pretest. This can be used instead of
|
SEM.post |
(optional) standard error of measurement for the post-test.
Using this will create a pooled version of the SEM; otherwise, |
Fisher |
logical; use the Fisher/expected information function to compute the
SE terms? If |
shiny |
logical; launch an interactive shiny applications for real-time scoring
of supplied total-scores or response vectors? Only requires |
main |
main label to use when |
... |
additional arguments passed to |
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Jacobson, N. S., & Truax, P. (1991). Clinical significance: A statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting and Clinical Psychology, 59, 12-19.
Jabrayilov, R. , Emons, W. H. M., & Sijtsma, K. (2016). Comparison of Classical Test Theory and Item Response Theory in Individual Change Assessment. Applied Psychological Measurement, 40 (8), 559-572.
## Not run: # simulate some data N <- 1000 J <- 20 # number of items a <- matrix(rlnorm(J,.2,.3)) d <- rnorm(J) theta <- matrix(rnorm(N)) dat_pre <- simdata(a, d, itemtype = '2PL', Theta = theta) # first 3 cases decrease by 1/2 theta2 <- theta - c(1/2, 1/2, 1/2, numeric(N-3)) dat_post <- simdata(a, d, itemtype = '2PL', Theta = theta2) mod <- mirt(dat_pre) # all changes using fitted model from pre data RCI(mod, predat=dat_pre, postdat=dat_post) # single response pattern change using EAP information RCI(mod, predat=dat_pre[1,], postdat=dat_post[1,]) # WLE estimator with Fisher information for SE (see Jabrayilov et al. 2016) RCI(mod, predat = dat_pre[1,], postdat = dat_post[1,], method = 'WLE', Fisher = TRUE) # multiple respondents RCI(mod, predat = dat_pre[1:6,], postdat = dat_post[1:6,]) # include large-sample z-type cutoffs RCI(mod, predat = dat_pre[1:6,], postdat = dat_post[1:6,], cutoffs = c(-1.96, 1.96)) ###### # CTT version by omitting IRT model # Requires either sample or population SEM's as input (istats <- itemstats(dat_pre)$overall) SEM.alpha <- istats$SEM.alpha # SEM estimate of dat_pre # assumes SEM.post = SEM.pre RCI(predat = dat_pre, postdat = dat_post, SEM.pre=SEM.alpha) # include cutoffs RCI(predat = dat_pre, postdat = dat_post, SEM.pre=SEM.alpha, cutoffs=c(-1.96, 1.96)) # allows SEM.post != SEM.pre (istats.post <- itemstats(dat_post)$overall) SEM.alpha.post <- istats.post$SEM.alpha RCI(predat = dat_pre, postdat = dat_post, SEM.pre=SEM.alpha, SEM.post=SEM.alpha.post) ###### # interactive shiny interfaces for live scoring mod_pre <- mirt(Science) # (optional) setup mod_post to have medium effect size change (d = 0.5) sv <- mod2values(mod_pre) sv$value[sv$name == 'MEAN_1'] <- 0.5 mod_post <- mirt(Science, pars=sv, TOL=NA) # only use pre-test model for scoring RCI(mod_pre=mod_pre, shiny=TRUE) # use both pre-test and post-test models for including empirical priors RCI(mod_pre=mod_pre, mod_post=mod_post, shiny=TRUE, main='Perceptions of Science and Technology') ############################ # Example where individuals take completely different item set pre-post # but prior calibration has been performed to equate the items dat <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) mod <- mirt(dat) # with N=5 individuals under investigation predat <- postdat <- dat[1:5,] predat[, 17:32] <- NA postdat[, 1:16] <- NA head(predat) head(postdat) RCI(mod, predat, postdat) ## End(Not run)
## Not run: # simulate some data N <- 1000 J <- 20 # number of items a <- matrix(rlnorm(J,.2,.3)) d <- rnorm(J) theta <- matrix(rnorm(N)) dat_pre <- simdata(a, d, itemtype = '2PL', Theta = theta) # first 3 cases decrease by 1/2 theta2 <- theta - c(1/2, 1/2, 1/2, numeric(N-3)) dat_post <- simdata(a, d, itemtype = '2PL', Theta = theta2) mod <- mirt(dat_pre) # all changes using fitted model from pre data RCI(mod, predat=dat_pre, postdat=dat_post) # single response pattern change using EAP information RCI(mod, predat=dat_pre[1,], postdat=dat_post[1,]) # WLE estimator with Fisher information for SE (see Jabrayilov et al. 2016) RCI(mod, predat = dat_pre[1,], postdat = dat_post[1,], method = 'WLE', Fisher = TRUE) # multiple respondents RCI(mod, predat = dat_pre[1:6,], postdat = dat_post[1:6,]) # include large-sample z-type cutoffs RCI(mod, predat = dat_pre[1:6,], postdat = dat_post[1:6,], cutoffs = c(-1.96, 1.96)) ###### # CTT version by omitting IRT model # Requires either sample or population SEM's as input (istats <- itemstats(dat_pre)$overall) SEM.alpha <- istats$SEM.alpha # SEM estimate of dat_pre # assumes SEM.post = SEM.pre RCI(predat = dat_pre, postdat = dat_post, SEM.pre=SEM.alpha) # include cutoffs RCI(predat = dat_pre, postdat = dat_post, SEM.pre=SEM.alpha, cutoffs=c(-1.96, 1.96)) # allows SEM.post != SEM.pre (istats.post <- itemstats(dat_post)$overall) SEM.alpha.post <- istats.post$SEM.alpha RCI(predat = dat_pre, postdat = dat_post, SEM.pre=SEM.alpha, SEM.post=SEM.alpha.post) ###### # interactive shiny interfaces for live scoring mod_pre <- mirt(Science) # (optional) setup mod_post to have medium effect size change (d = 0.5) sv <- mod2values(mod_pre) sv$value[sv$name == 'MEAN_1'] <- 0.5 mod_post <- mirt(Science, pars=sv, TOL=NA) # only use pre-test model for scoring RCI(mod_pre=mod_pre, shiny=TRUE) # use both pre-test and post-test models for including empirical priors RCI(mod_pre=mod_pre, mod_post=mod_post, shiny=TRUE, main='Perceptions of Science and Technology') ############################ # Example where individuals take completely different item set pre-post # but prior calibration has been performed to equate the items dat <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) mod <- mirt(dat) # with N=5 individuals under investigation predat <- postdat <- dat[1:5,] predat[, 17:32] <- NA postdat[, 1:16] <- NA head(predat) head(postdat) RCI(mod, predat, postdat) ## End(Not run)
This function exports item parameters from the mirt
package to the
plink
package.
read.mirt(x, as.irt.pars = TRUE, ...)
read.mirt(x, as.irt.pars = TRUE, ...)
x |
a single object (or list of objects) returned from |
as.irt.pars |
if |
... |
additional arguments to be passed to |
Phil Chalmers [email protected]
## Not run: ## unidimensional library(plink) data <- expand.table(LSAT7) (mod1 <- mirt(data, 1)) plinkpars <- read.mirt(mod1) plot(plinkpars) plot(mod1, type = 'trace') # graded mod2 <- mirt(Science, 1) plinkpars <- read.mirt(mod2) plot(plinkpars) plot(mod2, type = 'trace') # gpcm mod3 <- mirt(Science, 1, itemtype = 'gpcm') plinkpars <- read.mirt(mod3) plot(plinkpars) plot(mod3, type = 'trace') # nominal mod4 <- mirt(Science, 1, itemtype = 'nominal') plinkpars <- read.mirt(mod4) plot(plinkpars) plot(mod4, type = 'trace') ## multidimensional data <- expand.table(LSAT7) (mod1 <- mirt(data, 2)) plinkpars <- read.mirt(mod1) plinkpars plot(plinkpars) plot(mod1, type = 'trace') cmod <- mirt.model(' F1 = 1,4,5 F2 = 2-4') model <- mirt(data, cmod) plot(read.mirt(model)) itemplot(model, 1) # graded mod2 <- mirt(Science, 2) plinkpars <- read.mirt(mod2) plinkpars plot(plinkpars) plot(mod2, type = 'trace') ### multiple group equating example set.seed(1234) dat <- expand.table(LSAT7) group <- sample(c('g1', 'g2'), nrow(dat), TRUE) dat1 <- dat[group == 'g1', ] dat2 <- dat[group == 'g2', ] mod1 <- mirt(dat1, 1) mod2 <- mirt(dat2, 1) # convert and combine pars plinkMG <- read.mirt(list(g1=mod1, g2=mod2)) # equivalently: # mod <- multipleGroup(dat, 1, group) # plinkMG <- read.mirt(mod) combine <- matrix(1:5, 5, 2) comb <- combine.pars(plinkMG, combine, grp.names=unique(group)) out <- plink(comb, rescale="SL") equate(out) equate(out, method = 'OSE') ## End(Not run)
## Not run: ## unidimensional library(plink) data <- expand.table(LSAT7) (mod1 <- mirt(data, 1)) plinkpars <- read.mirt(mod1) plot(plinkpars) plot(mod1, type = 'trace') # graded mod2 <- mirt(Science, 1) plinkpars <- read.mirt(mod2) plot(plinkpars) plot(mod2, type = 'trace') # gpcm mod3 <- mirt(Science, 1, itemtype = 'gpcm') plinkpars <- read.mirt(mod3) plot(plinkpars) plot(mod3, type = 'trace') # nominal mod4 <- mirt(Science, 1, itemtype = 'nominal') plinkpars <- read.mirt(mod4) plot(plinkpars) plot(mod4, type = 'trace') ## multidimensional data <- expand.table(LSAT7) (mod1 <- mirt(data, 2)) plinkpars <- read.mirt(mod1) plinkpars plot(plinkpars) plot(mod1, type = 'trace') cmod <- mirt.model(' F1 = 1,4,5 F2 = 2-4') model <- mirt(data, cmod) plot(read.mirt(model)) itemplot(model, 1) # graded mod2 <- mirt(Science, 2) plinkpars <- read.mirt(mod2) plinkpars plot(plinkpars) plot(mod2, type = 'trace') ### multiple group equating example set.seed(1234) dat <- expand.table(LSAT7) group <- sample(c('g1', 'g2'), nrow(dat), TRUE) dat1 <- dat[group == 'g1', ] dat2 <- dat[group == 'g2', ] mod1 <- mirt(dat1, 1) mod2 <- mirt(dat2, 1) # convert and combine pars plinkMG <- read.mirt(list(g1=mod1, g2=mod2)) # equivalently: # mod <- multipleGroup(dat, 1, group) # plinkMG <- read.mirt(mod) combine <- matrix(1:5, 5, 2) comb <- combine.pars(plinkMG, combine, grp.names=unique(group)) out <- plink(comb, rescale="SL") equate(out) equate(out, method = 'OSE') ## End(Not run)
The mirt package's estimation setup requires that all item responses have spaces
equal to 1 (e.g., a Likert scale scored from 1 through 5). In the event that categories
are missing the categories must be re-coded. This function is automatically called by
the package estimation functions (e.g., mirt
), however for convince this
function has been extracted for users to better understand the remapping consequences.
remap.distance(data, message = TRUE)
remap.distance(data, message = TRUE)
data |
the response data to remap as a data.frame or matrix |
message |
logical; print message information pertaining to which items were remapped? |
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
# category 2 for item 1 missing dat <- Science dat[,1] <- ifelse(Science[,1] == 2, 1, Science[,1]) apply(dat, 2, table) # mirt() automatically remaps categories mod <- mirt(dat, 1) coef(mod, simplify=TRUE) # this is the transformed data used by mirt() remap_dat <- remap.distance(dat) apply(remap_dat, 2, table)
# category 2 for item 1 missing dat <- Science dat[,1] <- ifelse(Science[,1] == 2, 1, Science[,1]) apply(dat, 2, table) # mirt() automatically remaps categories mod <- mirt(dat, 1) coef(mod, simplify=TRUE) # this is the transformed data used by mirt() remap_dat <- remap.distance(dat) apply(remap_dat, 2, table)
Return model implied residuals for linear dependencies between items or at the person level.
If the latent trait density was approximated (e.g., Davidian curves, Empirical histograms, etc)
then passing use_dentype_estimate = TRUE
will use the internally saved quadrature and
density components (where applicable).
## S4 method for signature 'SingleGroupClass' residuals( object, type = "LD", p.adjust = "none", df.p = FALSE, approx.z = FALSE, full.scores = FALSE, QMC = FALSE, printvalue = NULL, tables = FALSE, verbose = TRUE, Theta = NULL, suppress = NA, theta_lim = c(-6, 6), quadpts = NULL, fold = TRUE, upper = TRUE, technical = list(), ... )
## S4 method for signature 'SingleGroupClass' residuals( object, type = "LD", p.adjust = "none", df.p = FALSE, approx.z = FALSE, full.scores = FALSE, QMC = FALSE, printvalue = NULL, tables = FALSE, verbose = TRUE, Theta = NULL, suppress = NA, theta_lim = c(-6, 6), quadpts = NULL, fold = TRUE, upper = TRUE, technical = list(), ... )
object |
an object of class |
type |
type of residuals to be displayed.
Can be either |
p.adjust |
method to use for adjusting all p-values (see |
df.p |
logical; print the degrees of freedom and p-values? |
approx.z |
logical; transform |
full.scores |
logical; compute relevant statistics for each subject in the original data? |
QMC |
logical; use quasi-Monte Carlo integration? If |
printvalue |
a numeric value to be specified when using the |
tables |
logical; for LD type, return the observed, expected, and standardized residual tables for each item combination? |
verbose |
logical; allow information to be printed to the console? |
Theta |
a matrix of factor scores used for statistics that require empirical estimates (i.e., Q3).
If supplied, arguments typically passed to |
suppress |
a numeric value indicating which parameter local dependency combinations to flag as being too high (for LD, LDG2, and Q3 the standardize correlations are used; for JSI, the z-ratios are used). Absolute values for the standardized estimates greater than this value will be returned, while all values less than this value will be set to missing |
theta_lim |
range for the integration grid |
quadpts |
number of quadrature nodes to use. The default is extracted from model (if available) or generated automatically if not available |
fold |
logical; apply the sum 'folding' described by Edwards et al. (2018) for the JSI statistic? |
upper |
logical; which portion of the matrix (upper versus lower triangle)
should the |
technical |
list of technical arguments when models are re-estimated (see |
... |
additional arguments to be passed to |
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Chen, W. H. & Thissen, D. (1997). Local dependence indices for item pairs using item response theory. Journal of Educational and Behavioral Statistics, 22, 265-289.
Edwards, M. C., Houts, C. R. & Cai, L. (2018). A Diagnostic Procedure to Detect Departures From Local Independence in Item Response Theory Models. Psychological Methods, 23, 138-149.
Yen, W. (1984). Effects of local item dependence on the fit and equating performance of the three parameter logistic model. Applied Psychological Measurement, 8, 125-145.
## Not run: x <- mirt(Science, 1) residuals(x) residuals(x, tables = TRUE) residuals(x, type = 'exp') residuals(x, suppress = .15) residuals(x, df.p = TRUE) residuals(x, df.p = TRUE, p.adjust = 'fdr') # apply FWE control # Pearson's X2 estimate for goodness-of-fit full_table <- residuals(x, type = 'expfull') head(full_table) X2 <- with(full_table, sum((freq - exp)^2 / exp)) df <- nrow(full_table) - extract.mirt(x, 'nest') - 1 p <- pchisq(X2, df = df, lower.tail=FALSE) data.frame(X2, df, p, row.names='Pearson-X2') # above FOG test as a function PearsonX2 <- function(x){ full_table <- residuals(x, type = 'expfull') X2 <- with(full_table, sum((freq - exp)^2 / exp)) df <- nrow(full_table) - extract.mirt(x, 'nest') - 1 p <- pchisq(X2, df = df, lower.tail=FALSE) data.frame(X2, df, p, row.names='Pearson-X2') } PearsonX2(x) # extract results manually out <- residuals(x, df.p = TRUE, verbose=FALSE) str(out) out$df.p[1,2] # with and without supplied factor scores Theta <- fscores(x) residuals(x, type = 'Q3', Theta=Theta) residuals(x, type = 'Q3', method = 'ML') # Edwards et al. (2018) JSI statistic N <- 250 a <- rnorm(10, 1.7, 0.3) d <- rnorm(10) dat <- simdata(a, d, N=250, itemtype = '2PL') mod <- mirt(dat, 1) residuals(mod, type = 'JSI') residuals(mod, type = 'JSI', fold=FALSE) # unfolded # LD between items 1-2 aLD <- numeric(10) aLD[1:2] <- rnorm(2, 2.55, 0.15) a2 <- cbind(a, aLD) dat <- simdata(a2, d, N=250, itemtype = '2PL') mod <- mirt(dat, 1) # JSI executed in parallel over multiple cores if(interactive()) mirtCluster() residuals(mod, type = 'JSI') ## End(Not run)
## Not run: x <- mirt(Science, 1) residuals(x) residuals(x, tables = TRUE) residuals(x, type = 'exp') residuals(x, suppress = .15) residuals(x, df.p = TRUE) residuals(x, df.p = TRUE, p.adjust = 'fdr') # apply FWE control # Pearson's X2 estimate for goodness-of-fit full_table <- residuals(x, type = 'expfull') head(full_table) X2 <- with(full_table, sum((freq - exp)^2 / exp)) df <- nrow(full_table) - extract.mirt(x, 'nest') - 1 p <- pchisq(X2, df = df, lower.tail=FALSE) data.frame(X2, df, p, row.names='Pearson-X2') # above FOG test as a function PearsonX2 <- function(x){ full_table <- residuals(x, type = 'expfull') X2 <- with(full_table, sum((freq - exp)^2 / exp)) df <- nrow(full_table) - extract.mirt(x, 'nest') - 1 p <- pchisq(X2, df = df, lower.tail=FALSE) data.frame(X2, df, p, row.names='Pearson-X2') } PearsonX2(x) # extract results manually out <- residuals(x, df.p = TRUE, verbose=FALSE) str(out) out$df.p[1,2] # with and without supplied factor scores Theta <- fscores(x) residuals(x, type = 'Q3', Theta=Theta) residuals(x, type = 'Q3', method = 'ML') # Edwards et al. (2018) JSI statistic N <- 250 a <- rnorm(10, 1.7, 0.3) d <- rnorm(10) dat <- simdata(a, d, N=250, itemtype = '2PL') mod <- mirt(dat, 1) residuals(mod, type = 'JSI') residuals(mod, type = 'JSI', fold=FALSE) # unfolded # LD between items 1-2 aLD <- numeric(10) aLD[1:2] <- rnorm(2, 2.55, 0.15) a2 <- cbind(a, aLD) dat <- simdata(a2, d, N=250, itemtype = '2PL') mod <- mirt(dat, 1) # JSI executed in parallel over multiple cores if(interactive()) mirtCluster() residuals(mod, type = 'JSI') ## End(Not run)
Reverse score specific items given empirical range or specific scoring range.
reverse.score(data, which, range = NULL, append = ".RS")
reverse.score(data, which, range = NULL, append = ".RS")
data |
an object of class |
which |
names of items in |
range |
(optional) a named |
append |
character vector indicating what to append to the item names that have been rescored |
returns the original data
object with the specified
items reverse scored replacing the original scoring scheme
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
a <- rlnorm(20) a[c(1,5,10)] <- -a[c(1,5,10)] diffs <- t(apply(matrix(runif(20*4, .3, 1), 20), 1, cumsum)) diffs <- -(diffs - rowMeans(diffs)) d <- diffs + rnorm(20) dat <- simdata(a,d,itemtype='graded', N=300) head(dat) ## Not run: # fitted model has negative slopes due to flipped scoring mod <- mirt(dat) coef(mod, simplify=TRUE)$items plot(mod, type = 'itemscore') ## End(Not run) # reverse the scoring for items 1, 5, and 10 only using empirical min/max revdat <- reverse.score(dat, c('Item_1', 'Item_5', 'Item_10')) head(revdat) # compare apply(dat[,c(1,5,10)], 2, table) apply(revdat[,c(1,5,10)], 2, table) ## Not run: # slopes all positive now mod2 <- mirt(revdat) coef(mod2, simplify=TRUE)$items plot(mod2, type = 'itemscore') ## End(Not run) # use different empirical scoring information due to options not used # 0 score not observed for item 1, though should have been rescored to a 4 dat[dat[,1] == 0, 1] <- 1 table(dat[,1]) # 4 score not observed for item 5, though should have been rescored to a 0 dat[dat[,5] == 4, 5] <- 3 table(dat[,5]) # specify theoretical scoring values in the range list revdat2 <- reverse.score(dat, c('Item_1', 'Item_5', 'Item_10'), range = list(Item_1 = c(0,4), Item_5 = c(0,4))) head(revdat2) table(dat[,1]) table(revdat2[,1]) table(dat[,5]) table(revdat2[,5])
a <- rlnorm(20) a[c(1,5,10)] <- -a[c(1,5,10)] diffs <- t(apply(matrix(runif(20*4, .3, 1), 20), 1, cumsum)) diffs <- -(diffs - rowMeans(diffs)) d <- diffs + rnorm(20) dat <- simdata(a,d,itemtype='graded', N=300) head(dat) ## Not run: # fitted model has negative slopes due to flipped scoring mod <- mirt(dat) coef(mod, simplify=TRUE)$items plot(mod, type = 'itemscore') ## End(Not run) # reverse the scoring for items 1, 5, and 10 only using empirical min/max revdat <- reverse.score(dat, c('Item_1', 'Item_5', 'Item_10')) head(revdat) # compare apply(dat[,c(1,5,10)], 2, table) apply(revdat[,c(1,5,10)], 2, table) ## Not run: # slopes all positive now mod2 <- mirt(revdat) coef(mod2, simplify=TRUE)$items plot(mod2, type = 'itemscore') ## End(Not run) # use different empirical scoring information due to options not used # 0 score not observed for item 1, though should have been rescored to a 4 dat[dat[,1] == 0, 1] <- 1 table(dat[,1]) # 4 score not observed for item 5, though should have been rescored to a 0 dat[dat[,5] == 4, 5] <- 3 table(dat[,5]) # specify theoretical scoring values in the range list revdat2 <- reverse.score(dat, c('Item_1', 'Item_5', 'Item_10'), range = list(Item_1 = c(0,4), Item_5 = c(0,4))) head(revdat2) table(dat[,1]) table(revdat2[,1]) table(dat[,5]) table(revdat2[,5])
This function computes a set of RMSD "badness-of-fit" statistics when investing DIF across a set of grouping variables. In a first step, a (potentially highly constrained) multiple group model is fitted, while in a second step the item (and person) parameters are estimated based on all examines across all groups. Category level DIF is assessed based on how well the pseudo-table of counts match the (constrained) probability functions implied by the original multiple group model (while also weighing across the implied density function of the latent traits). If the RSMD fit is poor, indicating non-ignorable DIF, then the multiple-group model should be adjusted to better account for the large response bias due to using a pooled model. See Lee and von Davier (2020) and Buchholz and Hartig (2019) for details.
RMSD_DIF(pooled_mod, flag = 0, probfun = TRUE, dentype = "norm")
RMSD_DIF(pooled_mod, flag = 0, probfun = TRUE, dentype = "norm")
pooled_mod |
a multiple-group model (used to compute the model-implied probability in the goodness-of-fit test) |
flag |
a numeric value used as a cut-off to help flag larger RMSD values
(e.g., |
probfun |
logical; use probability functions to compute RMSD? If FALSE, the expected score functions will be integrated instead, which may be useful for collapsing across the categories in polytomous items |
dentype |
density to use for the latent trait.
Can be |
Phil Chalmers [email protected]
Buchholz, J., and Hartig, J. (2019). Comparing Attitudes Across Groups: An IRT-Based Item-Fit Statistic for the Analysis of Measurement Invariance. Applied Psychological Measurement, 43(3), 241-250. doi:10.1177/0146621617748323
Lee, S. S., and von Davier, M. (2020). Improving measurement properties of the PISA home possessions scale through partial invariance modeling. Psychological test and assessment modeling, 62(1):55-83.
DIF
, DRF
, multipleGroup
, empirical_ES
## Not run: #----- generate some data set.seed(12345) a <- a2 <- matrix(abs(rnorm(15,1,.3)), ncol=1) d <- d2 <- matrix(rnorm(15,0,.7),ncol=1) # item 1 has DIF d2[1] <- d[1] - .5 a2[1] <- a[1] + 1 itemtype <- rep('2PL', nrow(a)) N <- 1000 dataset1 <- simdata(a, d, N, itemtype) dataset2 <- simdata(a2, d2, N, itemtype) dat <- rbind(dataset1, dataset2) group <- c(rep('D1', N), rep('D2', N)) #----- # fully pooled model pooled_mod <- multipleGroup(dat, 1, group=group, invariance = c(colnames(dat), 'free_mean', 'free_var')) coef(pooled_mod, simplify=TRUE) RMSD_DIF(pooled_mod) RMSD_DIF(pooled_mod, dentype = 'empirical') RMSD_DIF(pooled_mod, flag = .03) # more freely estimated model (item 1 has 2 parameters estimated) MGmod <- multipleGroup(dat, 1, group=group, invariance = c(colnames(dat)[-1], 'free_mean', 'free_var')) coef(MGmod, simplify=TRUE) # RMSD in item.1 now reduced (MG model accounts for DIF) RMSD_DIF(MGmod) RMSD_DIF(MGmod, flag = .03) ################# # NA placeholders included when groups do not respond to specific items a1 <- a2 <- rlnorm(20) d <- d2 <- rnorm(20) # item 5 contains DIF a2[5] <- a1[5] + 1 d2[5] <- d[5] - 1/2 g <- rbeta(20, 5, 17) dat1 <- simdata(a1, d, guess = g, N=1000, itemtype = '3PL') dat1[, 11:13] <- NA # items 11:13 items NA for g1 dat2 <- simdata(a2, d2, guess = g, N=1000, itemtype = '3PL', mu=1/4, sigma=matrix(.75)) dat2[,1:3] <- NA # items 1:3 items NA for g2 dat <- rbind(dat1, dat2) group <- c(rep('g1', 1000), rep('g2', 1000)) mod <- multipleGroup(dat, "Theta = 1-20 PRIOR = (1-20, g, norm, -1, 0.5)", group=group, itemtype='3PL', invariance = c(colnames(dat), 'free_mean', 'free_var')) coef(mod, simplify = TRUE) RMSD_DIF(mod) RMSD_DIF(mod, flag = .03) ################# # polytomous example set.seed(12345) a <- a2 <- matrix(rlnorm(20,.2,.3)) # for the graded model, ensure that there is enough space between the intercepts, # otherwise closer categories will not be selected often (minimum distance of 0.3 here) diffs <- t(apply(matrix(runif(20*4, .3, 1), 20), 1, cumsum)) diffs <- -(diffs - rowMeans(diffs)) d <- d2 <- diffs + rnorm(20) # item 1 has slope + dif for first intercept parameter d2[1] <- d[1] - .5 a2[1] <- a[1] + 1 itemtype <- rep('graded', nrow(a)) N <- 1000 dataset1 <- simdata(a, d, N, itemtype) dataset2 <- simdata(a2, d2, N, itemtype) dat <- rbind(dataset1, dataset2) group <- c(rep('D1', N), rep('D2', N)) #----- # fully pooled model pooled_mod <- multipleGroup(dat, 1, group=group, invariance = c(colnames(dat), 'free_mean', 'free_var')) coef(pooled_mod, simplify=TRUE) # Item_1 fits poorly in several categories (RMSD > .05) RMSD_DIF(pooled_mod) RMSD_DIF(pooled_mod, flag = .05) RMSD_DIF(pooled_mod, flag = .1, probfun = FALSE) # use expected score function # more freely estimated model (item 1 has more parameters estimated) MGmod <- multipleGroup(dat, 1, group=group, invariance = c(colnames(dat)[-1], 'free_mean', 'free_var')) coef(MGmod, simplify=TRUE) # RMSDs in Item_1 now reduced (MG model better accounts for DIF) RMSD_DIF(MGmod) RMSD_DIF(MGmod, flag = .05) RMSD_DIF(MGmod, probfun = FALSE, flag = .1) # use expected score function ## End(Not run)
## Not run: #----- generate some data set.seed(12345) a <- a2 <- matrix(abs(rnorm(15,1,.3)), ncol=1) d <- d2 <- matrix(rnorm(15,0,.7),ncol=1) # item 1 has DIF d2[1] <- d[1] - .5 a2[1] <- a[1] + 1 itemtype <- rep('2PL', nrow(a)) N <- 1000 dataset1 <- simdata(a, d, N, itemtype) dataset2 <- simdata(a2, d2, N, itemtype) dat <- rbind(dataset1, dataset2) group <- c(rep('D1', N), rep('D2', N)) #----- # fully pooled model pooled_mod <- multipleGroup(dat, 1, group=group, invariance = c(colnames(dat), 'free_mean', 'free_var')) coef(pooled_mod, simplify=TRUE) RMSD_DIF(pooled_mod) RMSD_DIF(pooled_mod, dentype = 'empirical') RMSD_DIF(pooled_mod, flag = .03) # more freely estimated model (item 1 has 2 parameters estimated) MGmod <- multipleGroup(dat, 1, group=group, invariance = c(colnames(dat)[-1], 'free_mean', 'free_var')) coef(MGmod, simplify=TRUE) # RMSD in item.1 now reduced (MG model accounts for DIF) RMSD_DIF(MGmod) RMSD_DIF(MGmod, flag = .03) ################# # NA placeholders included when groups do not respond to specific items a1 <- a2 <- rlnorm(20) d <- d2 <- rnorm(20) # item 5 contains DIF a2[5] <- a1[5] + 1 d2[5] <- d[5] - 1/2 g <- rbeta(20, 5, 17) dat1 <- simdata(a1, d, guess = g, N=1000, itemtype = '3PL') dat1[, 11:13] <- NA # items 11:13 items NA for g1 dat2 <- simdata(a2, d2, guess = g, N=1000, itemtype = '3PL', mu=1/4, sigma=matrix(.75)) dat2[,1:3] <- NA # items 1:3 items NA for g2 dat <- rbind(dat1, dat2) group <- c(rep('g1', 1000), rep('g2', 1000)) mod <- multipleGroup(dat, "Theta = 1-20 PRIOR = (1-20, g, norm, -1, 0.5)", group=group, itemtype='3PL', invariance = c(colnames(dat), 'free_mean', 'free_var')) coef(mod, simplify = TRUE) RMSD_DIF(mod) RMSD_DIF(mod, flag = .03) ################# # polytomous example set.seed(12345) a <- a2 <- matrix(rlnorm(20,.2,.3)) # for the graded model, ensure that there is enough space between the intercepts, # otherwise closer categories will not be selected often (minimum distance of 0.3 here) diffs <- t(apply(matrix(runif(20*4, .3, 1), 20), 1, cumsum)) diffs <- -(diffs - rowMeans(diffs)) d <- d2 <- diffs + rnorm(20) # item 1 has slope + dif for first intercept parameter d2[1] <- d[1] - .5 a2[1] <- a[1] + 1 itemtype <- rep('graded', nrow(a)) N <- 1000 dataset1 <- simdata(a, d, N, itemtype) dataset2 <- simdata(a2, d2, N, itemtype) dat <- rbind(dataset1, dataset2) group <- c(rep('D1', N), rep('D2', N)) #----- # fully pooled model pooled_mod <- multipleGroup(dat, 1, group=group, invariance = c(colnames(dat), 'free_mean', 'free_var')) coef(pooled_mod, simplify=TRUE) # Item_1 fits poorly in several categories (RMSD > .05) RMSD_DIF(pooled_mod) RMSD_DIF(pooled_mod, flag = .05) RMSD_DIF(pooled_mod, flag = .1, probfun = FALSE) # use expected score function # more freely estimated model (item 1 has more parameters estimated) MGmod <- multipleGroup(dat, 1, group=group, invariance = c(colnames(dat)[-1], 'free_mean', 'free_var')) coef(MGmod, simplify=TRUE) # RMSDs in Item_1 now reduced (MG model better accounts for DIF) RMSD_DIF(MGmod) RMSD_DIF(MGmod, flag = .05) RMSD_DIF(MGmod, probfun = FALSE, flag = .1) # use expected score function ## End(Not run)
Data obtained from the TESTFACT (Woods et al., 2003) manual, with 32 response pattern scored items for a grade 12 science assessment test (SAT) measuring topics of chemistry, biology, and physics. The scoring key for these data is [1, 4, 5, 2, 3, 1, 2, 1, 3, 1, 2, 4, 2, 1, 5, 3, 4, 4, 1, 4, 3, 3, 4, 1, 3, 5, 1, 3, 1, 5, 4, 5], respectively. However, careful analysis using the nominal response model suggests that the scoring key for item 32 may be incorrect, and should be changed from 5 to 3.
Phil Chalmers [email protected]
Wood, R., Wilson, D. T., Gibbons, R. D., Schilling, S. G., Muraki, E., & Bock, R. D. (2003). TESTFACT 4 for Windows: Test Scoring, Item Statistics, and Full-information Item Factor Analysis [Computer software]. Lincolnwood, IL: Scientific Software International.
## Not run: itemstats(SAT12, use_ts = FALSE) # score the data (missing scored as 0) head(SAT12) dat <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) head(dat) itemstats(dat) # score the data, missing (value of 8) treated as NA SAT12missing <- SAT12 SAT12missing[SAT12missing == 8] <- NA dat <- key2binary(SAT12missing, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) head(dat) # potentially better scoring for item 32 (based on nominal model finding) dat <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,3)) ## End(Not run)
## Not run: itemstats(SAT12, use_ts = FALSE) # score the data (missing scored as 0) head(SAT12) dat <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) head(dat) itemstats(dat) # score the data, missing (value of 8) treated as NA SAT12missing <- SAT12 SAT12missing[SAT12missing == 8] <- NA dat <- key2binary(SAT12missing, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)) head(dat) # potentially better scoring for item 32 (based on nominal model finding) dat <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,3)) ## End(Not run)
A 4-item data set borrowed from ltm
package in R, first example
of the grm()
function. See more complete documentation therein, as
well as Karlheinz and Melich (1992).
Phil Chalmers [email protected]
Karlheinz, R. and Melich, A. (1992). Euro-Barometer 38.1: Consumer Protection and Perceptions of Science and Technology. INRA (Europe), Brussels. [computer file]
## Not run: itemstats(Science) mod <- mirt(Science, 1) plot(mod, type = 'trace') ## End(Not run)
## Not run: itemstats(Science) mod <- mirt(Science, 1) plot(mod, type = 'trace') ## End(Not run)
Test whether terminated estimation criteria for a given model passes
the second order test by checking the positive definiteness of the resulting
Hessian matrix. This function, which accepts the symmetric Hessian/information
matrix as the input, returns TRUE
if the matrix is positive definite
and FALSE
otherwise.
secondOrderTest(mat, ..., method = "eigen")
secondOrderTest(mat, ..., method = "eigen")
mat |
symmetric matrix to test for positive definiteness (typically the Hessian at the highest point of model estimator, such as MLE or MAP) |
... |
arguments passed to either |
method |
method to use to test positive definiteness. Default is |
a matrix with all possible combinations
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: # PD matrix mod <- mirt(Science, 1, SE=TRUE) info <- solve(vcov(mod)) ## observed information secondOrderTest(info) secondOrderTest(info, method = 'chol') secondOrderTest(info, method = 'det') # non-PD matrix mat <- matrix(c(1,0,0,0,1,1,0,1,1), ncol=3) mat secondOrderTest(mat) secondOrderTest(mat, method = 'chol') secondOrderTest(mat, method = 'det') ## End(Not run)
## Not run: # PD matrix mod <- mirt(Science, 1, SE=TRUE) info <- solve(vcov(mod)) ## observed information secondOrderTest(info) secondOrderTest(info, method = 'chol') secondOrderTest(info, method = 'det') # non-PD matrix mat <- matrix(c(1,0,0,0,1,1,0,1,1), ncol=3) mat secondOrderTest(mat) secondOrderTest(mat, method = 'chol') secondOrderTest(mat, method = 'det') ## End(Not run)
Print model object summaries to the console.
## S4 method for signature 'SingleGroupClass' show(object)
## S4 method for signature 'SingleGroupClass' show(object)
object |
an object of class |
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: x <- mirt(Science, 1) show(x) ## End(Not run)
## Not run: x <- mirt(Science, 1) show(x) ## End(Not run)
Classical test theory approach to detecting unidirectional and bidirectional (with one crossing location) DIF. This family of statistics is intended for unidimensional tests, and applies a regression-corrected matched-total score approach to quantify the response bias between two or more groups. Can be used for DIF, DBF, and DTF testing with two or more discrete groups.
SIBTEST( dat, group, suspect_set, match_set, focal_name = unique(group)[2], guess_correction = 0, Jmin = 5, na.rm = FALSE, randomize = FALSE, C = cbind(1, -diag(length(unique(group)) - 1L)), pairwise = FALSE, DIF = FALSE, p.adjust.method = "none", permute = 1000, pk_focal = FALSE, correction = TRUE, remove_cross = FALSE, details = FALSE, plot = "none", ... )
SIBTEST( dat, group, suspect_set, match_set, focal_name = unique(group)[2], guess_correction = 0, Jmin = 5, na.rm = FALSE, randomize = FALSE, C = cbind(1, -diag(length(unique(group)) - 1L)), pairwise = FALSE, DIF = FALSE, p.adjust.method = "none", permute = 1000, pk_focal = FALSE, correction = TRUE, remove_cross = FALSE, details = FALSE, plot = "none", ... )
dat |
integer-based dataset to be tested, containing dichotomous or polytomous responses |
group |
a (factor) vector indicating group membership
with the same length as the number of rows in |
suspect_set |
an integer vector indicating which items to inspect with SIBTEST. Including only one value will perform a DIF test, while including more than one will perform a simultaneous bundle test (DBF); including all non-matched items will perform DTF. If missing, a simultaneous test using all the items not listed in match_set will be used (i.e., DTF) |
match_set |
an integer vector indicating which items to use as the items which are matched
(i.e., contain no DIF). These are analogous to 'anchor' items in the likelihood method to locate
DIF. If missing, all items other than the items found in the |
focal_name |
name of the focal group; e.g., |
guess_correction |
a vector of numbers from 0 to 1 indicating how much to correct the items for guessing. It's length should be the same as ncol(dat) |
Jmin |
the minimum number of observations required when splitting the data into focal and reference groups conditioned on the matched set |
na.rm |
logical; remove rows in |
randomize |
logical; perform the crossing test for non-compensatory bias
using Li and Stout's (1996) permutation approach? Default is |
C |
a contrast matrix to use for pooled testing with more than two groups. Default uses an
effects coding approach, where the last group (last column of the matrix) is treated as the reference
group, and each column is associated with the respective name via |
pairwise |
logical; perform pairwise comparisons in multi-group applications? |
DIF |
logical; should the elements in |
p.adjust.method |
a character input dictating which |
permute |
number of permutations to perform when |
pk_focal |
logical; using the group weights from the focal group instead of the total sample? Default is FALSE as per Shealy and Stout's recommendation |
correction |
logical; apply the composite correction for the difference between focal
composite scores using the true-score regression technique? Default is |
remove_cross |
logical; remove the subtest information associated with the approximate crossing location? If TRUE this reflects the CSIBTEST definition of Li and Stout (1996); if FALSE, this reflects the version of CSIBTEST utilized by Chalmers (2018). Only applicable in two-group settings (in multi-group this is fixed to FALSE) |
details |
logical; return a data.frame containing the details required to compute SIBTEST? |
plot |
a character input indicating the type of plot to construct. Options are |
... |
additional plotting arguments to be passed |
SIBTEST is similar to the Mantel-Haenszel approach for detecting DIF but uses a regression correction based on the KR-20/coefficient alpha reliability index to correct the observed differences when the latent trait distributions are not equal. Function supports the standard SIBTEST for dichotomous and polytomous data (compensatory) and supports crossing DIF testing (i.e., non-compensatory/non-uniform) using the asymptotic sampling distribution version of the Crossing-SIBTEST (CSIBTEST) statistic described by Chalmers (2018) and the permutation method described by Li and Stout (1996). This function also supports the multi-group generalizations (GSIBTEST and GCSIBTEST) proposed by Chalmers and Zheng (2023), where users may specify alternative contrast matrices to evaluate specific comparisons between groups as well as perform joint hypothesis tests.
Phil Chalmers [email protected]
Chalmers, R. P. (2018). Improving the Crossing-SIBTEST statistic for detecting non-uniform DIF. Psychometrika, 83, 2, 376-386.
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Chalmers, R. P. & Zheng, G. (2023). Multi-group Generalizations of SIBTEST and Crossing-SIBTEST. Applied Measurement in Education, 36(2), 171-191, doi:10.1080/08957347.2023.2201703.
Chang, H. H., Mazzeo, J. & Roussos, L. (1996). DIF for Polytomously Scored Items: An Adaptation of the SIBTEST Procedure. Journal of Educational Measurement, 33, 333-353.
Li, H.-H. & Stout, W. (1996). A new procedure for detection of crossing DIF. Psychometrika, 61, 647-677.
Shealy, R. & Stout, W. (1993). A model-based standardization approach that separates true bias/DIF from group ability differences and detect test bias/DTF as well as item bias/DIF. Psychometrika, 58, 159-194.
## Not run: set.seed(1234) n <- 30 N <- 500 a <- matrix(1, n) d <- matrix(rnorm(n), n) group <- c(rep('reference', N), rep('focal', N*2)) ## ------------- # groups completely equal dat1 <- simdata(a, d, N, itemtype = 'dich') dat2 <- simdata(a, d, N*2, itemtype = 'dich') dat <- rbind(dat1, dat2) # DIF (all other items as anchors) SIBTEST(dat, group, suspect_set = 6) # Some plots depicting the above tests SIBTEST(dat, group, suspect_set = 6, plot = 'observed') SIBTEST(dat, group, suspect_set = 6, plot = 'weights') SIBTEST(dat, group, suspect_set = 6, plot = 'wdifference') # Include CSIBTEST with randomization method SIBTEST(dat, group, suspect_set = 6, randomize = TRUE) # remove crossing-location (identical to Li and Stout 1996 definition of CSIBTEST) SIBTEST(dat, group, suspect_set = 6, randomize = TRUE, remove_cross=TRUE) # DIF (specific anchors) SIBTEST(dat, group, match_set = 1:5, suspect_set = 6) SIBTEST(dat, group, match_set = 1:5, suspect_set = 6, randomize=TRUE) # DBF (all and specific anchors, respectively) SIBTEST(dat, group, suspect_set = 11:30) SIBTEST(dat, group, match_set = 1:5, suspect_set = 11:30) # DTF SIBTEST(dat, group, suspect_set = 11:30) SIBTEST(dat, group, match_set = 1:10) #equivalent # different hyper pars dat1 <- simdata(a, d, N, itemtype = 'dich') dat2 <- simdata(a, d, N*2, itemtype = 'dich', mu = .5, sigma = matrix(1.5)) dat <- rbind(dat1, dat2) SIBTEST(dat, group, 6:30) SIBTEST(dat, group, 11:30) # DIF testing with anchors 1 through 5 SIBTEST(dat, group, 6, match_set = 1:5) SIBTEST(dat, group, 7, match_set = 1:5) SIBTEST(dat, group, 8, match_set = 1:5) # DIF testing with all other items as anchors SIBTEST(dat, group, 6) SIBTEST(dat, group, 7) SIBTEST(dat, group, 8) ## ------------- ## systematic differing slopes and intercepts (clear DTF) dat1 <- simdata(a, d, N, itemtype = 'dich') dat2 <- simdata(a + c(numeric(15), rnorm(n-15, 1, .25)), d + c(numeric(15), rnorm(n-15, 1, 1)), N*2, itemtype = 'dich') dat <- rbind(dat1, dat2) SIBTEST(dat, group, 6:30) SIBTEST(dat, group, 11:30) # Some plots depicting the above tests SIBTEST(dat, group, suspect_set = 11:30, plot = 'observed') SIBTEST(dat, group, suspect_set = 11:30, plot = 'weights') SIBTEST(dat, group, suspect_set = 11:30, plot = 'wdifference') # DIF testing using valid anchors SIBTEST(dat, group, suspect_set = 6, match_set = 1:5) SIBTEST(dat, group, suspect_set = 7, match_set = 1:5) SIBTEST(dat, group, suspect_set = 30, match_set = 1:5) # test DIF using specific match_set SIBTEST(dat, group, suspect_set = 6:30, match_set = 1:5, DIF=TRUE) # test DIF using all-other-as-anchors method (not typically recommended) SIBTEST(dat, group, suspect_set = 1:30, DIF=TRUE) # randomization method is fairly poor when smaller matched-set used SIBTEST(dat, group, suspect_set = 30, match_set = 1:5, randomize=TRUE) SIBTEST(dat, group, suspect_set = 30, randomize=TRUE) ## ---------------------------------- # three group SIBTEST test set.seed(1234) n <- 30 N <- 1000 a <- matrix(1, n) d <- matrix(rnorm(n), n) group <- c(rep('group1', N), rep('group2', N), rep('group3', N)) # groups completely equal dat1 <- simdata(a, d, N, itemtype = 'dich') dat2 <- simdata(a, d, N, itemtype = 'dich') dat3 <- simdata(a, d, N, itemtype = 'dich') dat <- rbind(dat1, dat2, dat3) # omnibus test using effects-coding contrast matrix (default) SIBTEST(dat, group, suspect_set = 6) SIBTEST(dat, group, suspect_set = 6, randomize=TRUE) # explicit contrasts SIBTEST(dat, group, suspect_set = 6, randomize=TRUE, C = matrix(c(1,-1,0), 1)) # test all items for DIF SIBTEST(dat, group, suspect_set = 1:ncol(dat), DIF=TRUE) SIBTEST(dat, group, suspect_set = 16:ncol(dat), DIF=TRUE, match_set = 1:15) # specific anchors # post-hoc between two groups only pick <- group %in% c('group1', 'group2') SIBTEST(subset(dat, pick), group[pick], suspect_set = 1:ncol(dat), DIF=TRUE) # post-hoc pairwise comparison for all groups SIBTEST(dat, group, suspect_set = 1:ncol(dat), DIF=TRUE, pairwise = TRUE) ## systematic differing slopes and intercepts dat2 <- simdata(a + c(numeric(15), .5,.5,.5,.5,.5, numeric(10)), d + c(numeric(15), 0,.6,.7,.8,.9, numeric(10)), N, itemtype = 'dich') dat <- rbind(dat1, dat2, dat3) SIBTEST(dat, group, suspect_set = 16) SIBTEST(dat, group, suspect_set = 16, randomize=TRUE) SIBTEST(dat, group, suspect_set = 19) SIBTEST(dat, group, suspect_set = 19, randomize=TRUE) SIBTEST(dat, group, suspect_set = c(16, 19), DIF=TRUE) SIBTEST(dat, group, suspect_set = c(16, 19), DIF=TRUE, pairwise=TRUE) ## End(Not run)
## Not run: set.seed(1234) n <- 30 N <- 500 a <- matrix(1, n) d <- matrix(rnorm(n), n) group <- c(rep('reference', N), rep('focal', N*2)) ## ------------- # groups completely equal dat1 <- simdata(a, d, N, itemtype = 'dich') dat2 <- simdata(a, d, N*2, itemtype = 'dich') dat <- rbind(dat1, dat2) # DIF (all other items as anchors) SIBTEST(dat, group, suspect_set = 6) # Some plots depicting the above tests SIBTEST(dat, group, suspect_set = 6, plot = 'observed') SIBTEST(dat, group, suspect_set = 6, plot = 'weights') SIBTEST(dat, group, suspect_set = 6, plot = 'wdifference') # Include CSIBTEST with randomization method SIBTEST(dat, group, suspect_set = 6, randomize = TRUE) # remove crossing-location (identical to Li and Stout 1996 definition of CSIBTEST) SIBTEST(dat, group, suspect_set = 6, randomize = TRUE, remove_cross=TRUE) # DIF (specific anchors) SIBTEST(dat, group, match_set = 1:5, suspect_set = 6) SIBTEST(dat, group, match_set = 1:5, suspect_set = 6, randomize=TRUE) # DBF (all and specific anchors, respectively) SIBTEST(dat, group, suspect_set = 11:30) SIBTEST(dat, group, match_set = 1:5, suspect_set = 11:30) # DTF SIBTEST(dat, group, suspect_set = 11:30) SIBTEST(dat, group, match_set = 1:10) #equivalent # different hyper pars dat1 <- simdata(a, d, N, itemtype = 'dich') dat2 <- simdata(a, d, N*2, itemtype = 'dich', mu = .5, sigma = matrix(1.5)) dat <- rbind(dat1, dat2) SIBTEST(dat, group, 6:30) SIBTEST(dat, group, 11:30) # DIF testing with anchors 1 through 5 SIBTEST(dat, group, 6, match_set = 1:5) SIBTEST(dat, group, 7, match_set = 1:5) SIBTEST(dat, group, 8, match_set = 1:5) # DIF testing with all other items as anchors SIBTEST(dat, group, 6) SIBTEST(dat, group, 7) SIBTEST(dat, group, 8) ## ------------- ## systematic differing slopes and intercepts (clear DTF) dat1 <- simdata(a, d, N, itemtype = 'dich') dat2 <- simdata(a + c(numeric(15), rnorm(n-15, 1, .25)), d + c(numeric(15), rnorm(n-15, 1, 1)), N*2, itemtype = 'dich') dat <- rbind(dat1, dat2) SIBTEST(dat, group, 6:30) SIBTEST(dat, group, 11:30) # Some plots depicting the above tests SIBTEST(dat, group, suspect_set = 11:30, plot = 'observed') SIBTEST(dat, group, suspect_set = 11:30, plot = 'weights') SIBTEST(dat, group, suspect_set = 11:30, plot = 'wdifference') # DIF testing using valid anchors SIBTEST(dat, group, suspect_set = 6, match_set = 1:5) SIBTEST(dat, group, suspect_set = 7, match_set = 1:5) SIBTEST(dat, group, suspect_set = 30, match_set = 1:5) # test DIF using specific match_set SIBTEST(dat, group, suspect_set = 6:30, match_set = 1:5, DIF=TRUE) # test DIF using all-other-as-anchors method (not typically recommended) SIBTEST(dat, group, suspect_set = 1:30, DIF=TRUE) # randomization method is fairly poor when smaller matched-set used SIBTEST(dat, group, suspect_set = 30, match_set = 1:5, randomize=TRUE) SIBTEST(dat, group, suspect_set = 30, randomize=TRUE) ## ---------------------------------- # three group SIBTEST test set.seed(1234) n <- 30 N <- 1000 a <- matrix(1, n) d <- matrix(rnorm(n), n) group <- c(rep('group1', N), rep('group2', N), rep('group3', N)) # groups completely equal dat1 <- simdata(a, d, N, itemtype = 'dich') dat2 <- simdata(a, d, N, itemtype = 'dich') dat3 <- simdata(a, d, N, itemtype = 'dich') dat <- rbind(dat1, dat2, dat3) # omnibus test using effects-coding contrast matrix (default) SIBTEST(dat, group, suspect_set = 6) SIBTEST(dat, group, suspect_set = 6, randomize=TRUE) # explicit contrasts SIBTEST(dat, group, suspect_set = 6, randomize=TRUE, C = matrix(c(1,-1,0), 1)) # test all items for DIF SIBTEST(dat, group, suspect_set = 1:ncol(dat), DIF=TRUE) SIBTEST(dat, group, suspect_set = 16:ncol(dat), DIF=TRUE, match_set = 1:15) # specific anchors # post-hoc between two groups only pick <- group %in% c('group1', 'group2') SIBTEST(subset(dat, pick), group[pick], suspect_set = 1:ncol(dat), DIF=TRUE) # post-hoc pairwise comparison for all groups SIBTEST(dat, group, suspect_set = 1:ncol(dat), DIF=TRUE, pairwise = TRUE) ## systematic differing slopes and intercepts dat2 <- simdata(a + c(numeric(15), .5,.5,.5,.5,.5, numeric(10)), d + c(numeric(15), 0,.6,.7,.8,.9, numeric(10)), N, itemtype = 'dich') dat <- rbind(dat1, dat2, dat3) SIBTEST(dat, group, suspect_set = 16) SIBTEST(dat, group, suspect_set = 16, randomize=TRUE) SIBTEST(dat, group, suspect_set = 19) SIBTEST(dat, group, suspect_set = 19, randomize=TRUE) SIBTEST(dat, group, suspect_set = c(16, 19), DIF=TRUE) SIBTEST(dat, group, suspect_set = c(16, 19), DIF=TRUE, pairwise=TRUE) ## End(Not run)
Simulates response patterns for compensatory and noncompensatory MIRT models
from multivariate normally distributed factor () scores, or from
a user input matrix of
's.
simdata( a, d, N, itemtype, sigma = NULL, mu = NULL, guess = 0, upper = 1, nominal = NULL, t = NULL, Theta = NULL, gpcm_mats = list(), returnList = FALSE, model = NULL, equal.K = TRUE, which.items = NULL, mins = 0, lca_cats = NULL, prob.list = NULL )
simdata( a, d, N, itemtype, sigma = NULL, mu = NULL, guess = 0, upper = 1, nominal = NULL, t = NULL, Theta = NULL, gpcm_mats = list(), returnList = FALSE, model = NULL, equal.K = TRUE, which.items = NULL, mins = 0, lca_cats = NULL, prob.list = NULL )
a |
a matrix/vector of slope parameters. If slopes are to be constrained to
zero then use |
d |
a matrix/vector of intercepts. The matrix should have as many columns as
the item with the largest number of categories, and filled empty locations
with |
N |
sample size |
itemtype |
a character vector of length If the internal class of the object is specified instead, the inputs can
be |
sigma |
a covariance matrix of the underlying distribution. Default is
the identity matrix. Used when |
mu |
a mean vector of the underlying distribution. Default is a vector
of zeros. Used when |
guess |
a vector of guessing parameters for each item; only applicable for dichotomous items. Must be either a scalar value that will affect all of the dichotomous items, or a vector with as many values as to be simulated items |
upper |
same as |
nominal |
a matrix of specific item category slopes for nominal models.
Should be the dimensions as the intercept specification with one less column, with |
t |
matrix of t-values for the 'ggum' itemtype, where each row corresponds to a given item.
Also determines the number of categories, where |
Theta |
a user specified matrix of the underlying ability parameters,
where |
gpcm_mats |
a list of matrices specifying the scoring scheme for generalized partial
credit models (see |
returnList |
logical; return a list containing the data, item objects defined
by |
model |
a single group object, typically returned by functions such as |
equal.K |
logical; when a |
which.items |
an integer vector used to indicate which items to simulate when a
|
mins |
an integer vector (or single value to be used for each item) indicating what
the lowest category should be. If |
lca_cats |
a vector indicating how many categories each lca item should have. If not supplied then it is assumed that 2 categories should be generated for each item |
prob.list |
an optional list containing matrix/data.frames of probabilities values for each category to be simulated. This is useful when creating customized probability functions to be sampled from |
Returns a data matrix simulated from the parameters, or a list containing the data, item objects, and Theta matrix.
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Reckase, M. D. (2009). Multidimensional Item Response Theory. New York: Springer.
### Parameters from Reckase (2009), p. 153 set.seed(1234) a <- matrix(c( .7471, .0250, .1428, .4595, .0097, .0692, .8613, .0067, .4040, 1.0141, .0080, .0470, .5521, .0204, .1482, 1.3547, .0064, .5362, 1.3761, .0861, .4676, .8525, .0383, .2574, 1.0113, .0055, .2024, .9212, .0119, .3044, .0026, .0119, .8036, .0008, .1905,1.1945, .0575, .0853, .7077, .0182, .3307,2.1414, .0256, .0478, .8551, .0246, .1496, .9348, .0262, .2872,1.3561, .0038, .2229, .8993, .0039, .4720, .7318, .0068, .0949, .6416, .3073, .9704, .0031, .1819, .4980, .0020, .4115,1.1136, .2008, .1536,1.7251, .0345, .1530, .6688, .0020, .2890,1.2419, .0220, .1341,1.4882, .0050, .0524, .4754, .0012, .2139, .4612, .0063, .1761,1.1200, .0870),30,3,byrow=TRUE)*1.702 d <- matrix(c(.1826,-.1924,-.4656,-.4336,-.4428,-.5845,-1.0403, .6431,.0122,.0912,.8082,-.1867,.4533,-1.8398,.4139, -.3004,-.1824,.5125,1.1342,.0230,.6172,-.1955,-.3668, -1.7590,-.2434,.4925,-.3410,.2896,.006,.0329),ncol=1)*1.702 mu <- c(-.4, -.7, .1) sigma <- matrix(c(1.21,.297,1.232,.297,.81,.252,1.232,.252,1.96),3,3) dataset1 <- simdata(a, d, 2000, itemtype = '2PL') dataset2 <- simdata(a, d, 2000, itemtype = '2PL', mu = mu, sigma = sigma) #mod <- mirt(dataset1, 3, method = 'MHRM') #coef(mod) ## Not run: ### Unidimensional graded response model with 5 categories each a <- matrix(rlnorm(20,.2,.3)) # for the graded model, ensure that there is enough space between the intercepts, # otherwise closer categories will not be selected often (minimum distance of 0.3 here) diffs <- t(apply(matrix(runif(20*4, .3, 1), 20), 1, cumsum)) diffs <- -(diffs - rowMeans(diffs)) d <- diffs + rnorm(20) dat <- simdata(a, d, 500, itemtype = 'graded') # mod <- mirt(dat, 1) ### An example of a mixed item, bifactor loadings pattern with correlated specific factors a <- matrix(c( .8,.4,NA, .4,.4,NA, .7,.4,NA, .8,NA,.4, .4,NA,.4, .7,NA,.4),ncol=3,byrow=TRUE) d <- matrix(c( -1.0,NA,NA, 1.5,NA,NA, 0.0,NA,NA, 0.0,-1.0,1.5, #the first 0 here is the recommended constraint for nominal 0.0,1.0,-1, #the first 0 here is the recommended constraint for gpcm 2.0,0.0,NA),ncol=3,byrow=TRUE) nominal <- matrix(NA, nrow(d), ncol(d)) # the first 0 and last (ncat - 1) = 2 values are the recommended constraints nominal[4, ] <- c(0,1.2,2) sigma <- diag(3) sigma[2,3] <- sigma[3,2] <- .25 items <- c('2PL','2PL','2PL','nominal','gpcm','graded') dataset <- simdata(a,d,2000,items,sigma=sigma,nominal=nominal) #mod <- bfactor(dataset, c(1,1,1,2,2,2), itemtype=c(rep('2PL', 3), 'nominal', 'gpcm','graded')) #coef(mod) #### Convert standardized factor loadings to slopes F2a <- function(F, D=1.702){ h2 <- rowSums(F^2) a <- (F / sqrt(1 - h2)) * D a } (F <- matrix(c(rep(.7, 5), rep(.5,5)))) (a <- F2a(F)) d <- rnorm(10) dat <- simdata(a, d, 5000, itemtype = '2PL') mod <- mirt(dat, 1) coef(mod, simplify=TRUE)$items summary(mod) mod2 <- mirt(dat, 'F1 = 1-10 CONSTRAIN = (1-5, a1), (6-10, a1)') summary(mod2) anova(mod2, mod) #### Convert classical 3PL paramerization into slope-intercept form nitems <- 50 as <- rlnorm(nitems, .2, .2) bs <- rnorm(nitems, 0, 1) gs <- rbeta(nitems, 5, 17) # convert first item (only intercepts differ in resulting transformation) traditional2mirt(c('a'=as[1], 'b'=bs[1], 'g'=gs[1], 'u'=1), cls='3PL') # convert all difficulties to intercepts ds <- numeric(nitems) for(i in 1:nitems) ds[i] <- traditional2mirt(c('a'=as[i], 'b'=bs[i], 'g'=gs[i], 'u'=1), cls='3PL')[2] dat <- simdata(as, ds, N=5000, guess=gs, itemtype = '3PL') # estimate with beta prior for guessing parameters # mod <- mirt(dat, model="Theta = 1-50 # PRIOR = (1-50, g, expbeta, 5, 17)", itemtype = '3PL') # coef(mod, simplify=TRUE, IRTpars=TRUE)$items # data.frame(as, bs, gs, us=1) #### Unidimensional nonlinear factor pattern theta <- rnorm(2000) Theta <- cbind(theta,theta^2) a <- matrix(c( .8,.4, .4,.4, .7,.4, .8,NA, .4,NA, .7,NA),ncol=2,byrow=TRUE) d <- matrix(rnorm(6)) itemtype <- rep('2PL',6) nonlindata <- simdata(a=a, d=d, itemtype=itemtype, Theta=Theta) #model <- ' #F1 = 1-6 #(F1 * F1) = 1-3' #mod <- mirt(nonlindata, model) #coef(mod) #### 2PLNRM model for item 4 (with 4 categories), 2PL otherwise a <- matrix(rlnorm(4,0,.2)) # first column of item 4 is the intercept for the correct category of 2PL model, # otherwise nominal model configuration d <- matrix(c( -1.0,NA,NA,NA, 1.5,NA,NA,NA, 0.0,NA,NA,NA, 1, 0.0,-0.5,0.5),ncol=4,byrow=TRUE) nominal <- matrix(NA, nrow(d), ncol(d)) nominal[4, ] <- c(NA,0,.5,.6) items <- c(rep('2PL',3),'nestlogit') dataset <- simdata(a,d,2000,items,nominal=nominal) #mod <- mirt(dataset, 1, itemtype = c('2PL', '2PL', '2PL', '2PLNRM'), key=c(NA,NA,NA,0)) #coef(mod) #itemplot(mod,4) # return list of simulation parameters listobj <- simdata(a,d,2000,items,nominal=nominal, returnList=TRUE) str(listobj) # generate dataset from converged model mod <- mirt(Science, 1, itemtype = c(rep('gpcm', 3), 'nominal')) sim <- simdata(model=mod, N=1000) head(sim) Theta <- matrix(rnorm(100)) sim <- simdata(model=mod, Theta=Theta) head(sim) # alternatively, define a suitable object with functions from the mirtCAT package # help(generate.mirt_object) library(mirtCAT) nitems <- 50 a1 <- rlnorm(nitems, .2,.2) d <- rnorm(nitems) g <- rbeta(nitems, 20, 80) pars <- data.frame(a1=a1, d=d, g=g) head(pars) obj <- generate.mirt_object(pars, '3PL') dat <- simdata(N=200, model=obj) #### 10 item GGUMs test with 4 categories each a <- rlnorm(10, .2, .2) b <- rnorm(10) #passed to d= input, but used as the b parameters diffs <- t(apply(matrix(runif(10*3, .3, 1), 10), 1, cumsum)) t <- -(diffs - rowMeans(diffs)) dat <- simdata(a, b, 1000, 'ggum', t=t) apply(dat, 2, table) # mod <- mirt(dat, 1, 'ggum') # coef(mod) ###### # prob.list example # custom probability function that returns a matrix fun <- function(a, b, theta){ P <- 1 / (1 + exp(-a * (theta-b))) cbind(1-P, P) } set.seed(1) theta <- matrix(rnorm(100)) prob.list <- list() nitems <- 5 a <- rlnorm(nitems, .2, .2); b <- rnorm(nitems, 0, 1/2) for(i in 1:nitems) prob.list[[i]] <- fun(a[i], b[i], theta) str(prob.list) dat <- simdata(prob.list=prob.list) head(dat) # prob.list input is useful when defining custom items as well name <- 'old2PL' par <- c(a = .5, b = -2) est <- c(TRUE, TRUE) P.old2PL <- function(par,Theta, ncat){ a <- par[1] b <- par[2] P1 <- 1 / (1 + exp(-1*a*(Theta - b))) cbind(1-P1, P1) } x <- createItem(name, par=par, est=est, P=P.old2PL) prob.list[[1]] <- x@P(x@par, theta) ## End(Not run)
### Parameters from Reckase (2009), p. 153 set.seed(1234) a <- matrix(c( .7471, .0250, .1428, .4595, .0097, .0692, .8613, .0067, .4040, 1.0141, .0080, .0470, .5521, .0204, .1482, 1.3547, .0064, .5362, 1.3761, .0861, .4676, .8525, .0383, .2574, 1.0113, .0055, .2024, .9212, .0119, .3044, .0026, .0119, .8036, .0008, .1905,1.1945, .0575, .0853, .7077, .0182, .3307,2.1414, .0256, .0478, .8551, .0246, .1496, .9348, .0262, .2872,1.3561, .0038, .2229, .8993, .0039, .4720, .7318, .0068, .0949, .6416, .3073, .9704, .0031, .1819, .4980, .0020, .4115,1.1136, .2008, .1536,1.7251, .0345, .1530, .6688, .0020, .2890,1.2419, .0220, .1341,1.4882, .0050, .0524, .4754, .0012, .2139, .4612, .0063, .1761,1.1200, .0870),30,3,byrow=TRUE)*1.702 d <- matrix(c(.1826,-.1924,-.4656,-.4336,-.4428,-.5845,-1.0403, .6431,.0122,.0912,.8082,-.1867,.4533,-1.8398,.4139, -.3004,-.1824,.5125,1.1342,.0230,.6172,-.1955,-.3668, -1.7590,-.2434,.4925,-.3410,.2896,.006,.0329),ncol=1)*1.702 mu <- c(-.4, -.7, .1) sigma <- matrix(c(1.21,.297,1.232,.297,.81,.252,1.232,.252,1.96),3,3) dataset1 <- simdata(a, d, 2000, itemtype = '2PL') dataset2 <- simdata(a, d, 2000, itemtype = '2PL', mu = mu, sigma = sigma) #mod <- mirt(dataset1, 3, method = 'MHRM') #coef(mod) ## Not run: ### Unidimensional graded response model with 5 categories each a <- matrix(rlnorm(20,.2,.3)) # for the graded model, ensure that there is enough space between the intercepts, # otherwise closer categories will not be selected often (minimum distance of 0.3 here) diffs <- t(apply(matrix(runif(20*4, .3, 1), 20), 1, cumsum)) diffs <- -(diffs - rowMeans(diffs)) d <- diffs + rnorm(20) dat <- simdata(a, d, 500, itemtype = 'graded') # mod <- mirt(dat, 1) ### An example of a mixed item, bifactor loadings pattern with correlated specific factors a <- matrix(c( .8,.4,NA, .4,.4,NA, .7,.4,NA, .8,NA,.4, .4,NA,.4, .7,NA,.4),ncol=3,byrow=TRUE) d <- matrix(c( -1.0,NA,NA, 1.5,NA,NA, 0.0,NA,NA, 0.0,-1.0,1.5, #the first 0 here is the recommended constraint for nominal 0.0,1.0,-1, #the first 0 here is the recommended constraint for gpcm 2.0,0.0,NA),ncol=3,byrow=TRUE) nominal <- matrix(NA, nrow(d), ncol(d)) # the first 0 and last (ncat - 1) = 2 values are the recommended constraints nominal[4, ] <- c(0,1.2,2) sigma <- diag(3) sigma[2,3] <- sigma[3,2] <- .25 items <- c('2PL','2PL','2PL','nominal','gpcm','graded') dataset <- simdata(a,d,2000,items,sigma=sigma,nominal=nominal) #mod <- bfactor(dataset, c(1,1,1,2,2,2), itemtype=c(rep('2PL', 3), 'nominal', 'gpcm','graded')) #coef(mod) #### Convert standardized factor loadings to slopes F2a <- function(F, D=1.702){ h2 <- rowSums(F^2) a <- (F / sqrt(1 - h2)) * D a } (F <- matrix(c(rep(.7, 5), rep(.5,5)))) (a <- F2a(F)) d <- rnorm(10) dat <- simdata(a, d, 5000, itemtype = '2PL') mod <- mirt(dat, 1) coef(mod, simplify=TRUE)$items summary(mod) mod2 <- mirt(dat, 'F1 = 1-10 CONSTRAIN = (1-5, a1), (6-10, a1)') summary(mod2) anova(mod2, mod) #### Convert classical 3PL paramerization into slope-intercept form nitems <- 50 as <- rlnorm(nitems, .2, .2) bs <- rnorm(nitems, 0, 1) gs <- rbeta(nitems, 5, 17) # convert first item (only intercepts differ in resulting transformation) traditional2mirt(c('a'=as[1], 'b'=bs[1], 'g'=gs[1], 'u'=1), cls='3PL') # convert all difficulties to intercepts ds <- numeric(nitems) for(i in 1:nitems) ds[i] <- traditional2mirt(c('a'=as[i], 'b'=bs[i], 'g'=gs[i], 'u'=1), cls='3PL')[2] dat <- simdata(as, ds, N=5000, guess=gs, itemtype = '3PL') # estimate with beta prior for guessing parameters # mod <- mirt(dat, model="Theta = 1-50 # PRIOR = (1-50, g, expbeta, 5, 17)", itemtype = '3PL') # coef(mod, simplify=TRUE, IRTpars=TRUE)$items # data.frame(as, bs, gs, us=1) #### Unidimensional nonlinear factor pattern theta <- rnorm(2000) Theta <- cbind(theta,theta^2) a <- matrix(c( .8,.4, .4,.4, .7,.4, .8,NA, .4,NA, .7,NA),ncol=2,byrow=TRUE) d <- matrix(rnorm(6)) itemtype <- rep('2PL',6) nonlindata <- simdata(a=a, d=d, itemtype=itemtype, Theta=Theta) #model <- ' #F1 = 1-6 #(F1 * F1) = 1-3' #mod <- mirt(nonlindata, model) #coef(mod) #### 2PLNRM model for item 4 (with 4 categories), 2PL otherwise a <- matrix(rlnorm(4,0,.2)) # first column of item 4 is the intercept for the correct category of 2PL model, # otherwise nominal model configuration d <- matrix(c( -1.0,NA,NA,NA, 1.5,NA,NA,NA, 0.0,NA,NA,NA, 1, 0.0,-0.5,0.5),ncol=4,byrow=TRUE) nominal <- matrix(NA, nrow(d), ncol(d)) nominal[4, ] <- c(NA,0,.5,.6) items <- c(rep('2PL',3),'nestlogit') dataset <- simdata(a,d,2000,items,nominal=nominal) #mod <- mirt(dataset, 1, itemtype = c('2PL', '2PL', '2PL', '2PLNRM'), key=c(NA,NA,NA,0)) #coef(mod) #itemplot(mod,4) # return list of simulation parameters listobj <- simdata(a,d,2000,items,nominal=nominal, returnList=TRUE) str(listobj) # generate dataset from converged model mod <- mirt(Science, 1, itemtype = c(rep('gpcm', 3), 'nominal')) sim <- simdata(model=mod, N=1000) head(sim) Theta <- matrix(rnorm(100)) sim <- simdata(model=mod, Theta=Theta) head(sim) # alternatively, define a suitable object with functions from the mirtCAT package # help(generate.mirt_object) library(mirtCAT) nitems <- 50 a1 <- rlnorm(nitems, .2,.2) d <- rnorm(nitems) g <- rbeta(nitems, 20, 80) pars <- data.frame(a1=a1, d=d, g=g) head(pars) obj <- generate.mirt_object(pars, '3PL') dat <- simdata(N=200, model=obj) #### 10 item GGUMs test with 4 categories each a <- rlnorm(10, .2, .2) b <- rnorm(10) #passed to d= input, but used as the b parameters diffs <- t(apply(matrix(runif(10*3, .3, 1), 10), 1, cumsum)) t <- -(diffs - rowMeans(diffs)) dat <- simdata(a, b, 1000, 'ggum', t=t) apply(dat, 2, table) # mod <- mirt(dat, 1, 'ggum') # coef(mod) ###### # prob.list example # custom probability function that returns a matrix fun <- function(a, b, theta){ P <- 1 / (1 + exp(-a * (theta-b))) cbind(1-P, P) } set.seed(1) theta <- matrix(rnorm(100)) prob.list <- list() nitems <- 5 a <- rlnorm(nitems, .2, .2); b <- rnorm(nitems, 0, 1/2) for(i in 1:nitems) prob.list[[i]] <- fun(a[i], b[i], theta) str(prob.list) dat <- simdata(prob.list=prob.list) head(dat) # prob.list input is useful when defining custom items as well name <- 'old2PL' par <- c(a = .5, b = -2) est <- c(TRUE, TRUE) P.old2PL <- function(par,Theta, ncat){ a <- par[1] b <- par[2] P1 <- 1 / (1 + exp(-1*a*(Theta - b))) cbind(1-P1, P1) } x <- createItem(name, par=par, est=est, P=P.old2PL) prob.list[[1]] <- x@P(x@par, theta) ## End(Not run)
Defines the object returned from mirt
when model is exploratory.
Call
:function call
Data
:list of data, sometimes in different forms
Options
:list of estimation options
Fit
:a list of fit information
Model
:a list of model-based information
ParObjects
:a list of the S4 objects used during estimation
OptimInfo
:a list of arguments from the optimization process
Internals
:a list of internal arguments for secondary computations (inspecting this object is generally not required)
vcov
:a matrix represented the asymptotic covariance matrix of the parameter estimates
time
:a data.frame indicating the breakdown of computation times in seconds
signature(object = "SingleGroupClass")
signature(object = "SingleGroupClass")
signature(x = "SingleGroupClass", y = "missing")
signature(x = "SingleGroupClass")
signature(object = "SingleGroupClass")
signature(object = "SingleGroupClass")
signature(object = "SingleGroupClass")
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
A 5-item data set analyzed by Bartholomew (1998). Data contains dichotomous responses (endorsement vs non-endorsement) from 1490 German respondents to five statements on perceptions of social life.
Phil Chalmers [email protected]
Bartholomew, D., J. (1998). Scaling unobservable constructs in social science. Journal of the Royal Statistical Society - Series C, 47, 1-13.
## Not run: # tabular format data(SLF) SLF # full dataset full <- expand.table(SLF) itemstats(full) mod <- mirt(full) plot(mod, type = 'trace') ## End(Not run)
## Not run: # tabular format data(SLF) SLF # full dataset full <- expand.table(SLF) itemstats(full) mod <- mirt(full) plot(mod, type = 'trace') ## End(Not run)
Transforms coefficients into a standardized factor loading's metric. For MixedClass
objects,
the fixed and random coefficients are printed. Note that while the output to the console is rounded
to three digits, the returned list of objects is not. For simulations, use
output <- summary(mod, verbose = FALSE)
to suppress the console messages.
## S4 method for signature 'SingleGroupClass' summary( object, rotate = "oblimin", Target = NULL, suppress = 0, suppress.cor = 0, verbose = TRUE, ... )
## S4 method for signature 'SingleGroupClass' summary( object, rotate = "oblimin", Target = NULL, suppress = 0, suppress.cor = 0, verbose = TRUE, ... )
object |
an object of class |
rotate |
a string indicating which rotation to use for exploratory models, primarily
from the Rotations currently supported are: For models that are not exploratory this input will automatically be set to |
Target |
a dummy variable matrix indicting a target rotation pattern. This is required for
rotations such as |
suppress |
a numeric value indicating which (possibly rotated) factor loadings should be suppressed. Typical values are around .3 in most statistical software. Default is 0 for no suppression |
suppress.cor |
same as |
verbose |
logical; allow information to be printed to the console? |
... |
additional arguments to be passed |
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: x <- mirt(Science, 2) summary(x) summary(x, rotate = 'varimax') ## End(Not run)
## Not run: x <- mirt(Science, 2) summary(x) summary(x, rotate = 'varimax') ## End(Not run)
Given an estimated model compute the test information.
testinfo( x, Theta, degrees = NULL, group = NULL, individual = FALSE, which.items = 1:extract.mirt(x, "nitems") )
testinfo( x, Theta, degrees = NULL, group = NULL, individual = FALSE, which.items = 1:extract.mirt(x, "nitems") )
x |
an object of class 'SingleGroupClass', or an object of class 'MultipleGroupClass' if a suitable
|
Theta |
a matrix of latent trait values |
degrees |
a vector of angles in degrees that are between 0 and 90. Only applicable when the input object is multidimensional |
group |
group argument to pass to |
individual |
logical; return a data.frame of information traceline for each item? |
which.items |
an integer vector indicating which items to include in the expected information function. Default uses all possible items |
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
dat <- expand.table(deAyala) (mirt(dat, 1, '2PL', pars = 'values')) mod <- mirt(dat, 1, '2PL', constrain = list(c(1,5,9,13,17))) Theta <- matrix(seq(-4,4,.01)) tinfo <- testinfo(mod, Theta) plot(Theta, tinfo, type = 'l') ## Not run: # compare information loss between two tests tinfo_smaller <- testinfo(mod, Theta, which.items = 3:5) # removed item informations plot(Theta, iteminfo(extract.item(mod, 1), Theta), type = 'l') plot(Theta, iteminfo(extract.item(mod, 2), Theta), type = 'l') # most loss of info around -1 when removing items 1 and 2; expected given item info functions plot(Theta, tinfo_smaller - tinfo, type = 'l') ## End(Not run)
dat <- expand.table(deAyala) (mirt(dat, 1, '2PL', pars = 'values')) mod <- mirt(dat, 1, '2PL', constrain = list(c(1,5,9,13,17))) Theta <- matrix(seq(-4,4,.01)) tinfo <- testinfo(mod, Theta) plot(Theta, tinfo, type = 'l') ## Not run: # compare information loss between two tests tinfo_smaller <- testinfo(mod, Theta, which.items = 3:5) # removed item informations plot(Theta, iteminfo(extract.item(mod, 1), Theta), type = 'l') plot(Theta, iteminfo(extract.item(mod, 2), Theta), type = 'l') # most loss of info around -1 when removing items 1 and 2; expected given item info functions plot(Theta, tinfo_smaller - tinfo, type = 'l') ## End(Not run)
This function constructs all possible k-way combinations of an input vector.
It is primarily useful when used in conjunction with the mdirt
function,
though users may have other uses for it as well. See expand.grid
for more
flexible combination formats.
thetaComb(theta, nfact, intercept = FALSE)
thetaComb(theta, nfact, intercept = FALSE)
theta |
the vector from which all possible combinations should be obtained |
nfact |
the number of observations (and therefore the number of columns to return in the matrix of combinations) |
intercept |
logical; should a vector of 1's be appended to the first column of the
result to include an intercept design component? Default is |
a matrix with all possible combinations
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
# all possible joint combinations for the vector -4 to 4 thetaComb(-4:4, 2) # all possible binary combinations for four observations thetaComb(c(0,1), 4) # all possible binary combinations for four observations (with intercept) thetaComb(c(0,1), 4, intercept=TRUE)
# all possible joint combinations for the vector -4 to 4 thetaComb(-4:4, 2) # all possible binary combinations for four observations thetaComb(c(0,1), 4) # all possible binary combinations for four observations (with intercept) thetaComb(c(0,1), 4, intercept=TRUE)
This is a helper function for users who have previously available traditional/classical
IRT parameters and want to know the equivalent slope-intercept translation used in mirt
.
Note that this function assumes that the supplied models are unidimensional by definition (i.e.,
will have only one slope/discrimination) and in the logistic metric (i.e., logistic-ogive
scaling coefficient D=1). If there is no supported slope-intercept transformation
available then the original vector of parameters will be returned by default.
traditional2mirt(x, cls, ncat)
traditional2mirt(x, cls, ncat)
x |
a vector of parameters to transform |
cls |
the class or itemtype of the supplied model |
ncat |
the number of categories implied by the IRT model |
Supported class transformations for the cls
input are:
Form must be: (discrimination, difficulty, lower-bound, upper-bound)
Form must be: (discrimination, difficulty 1, difficulty 2, ..., difficulty k-1)
Form must be: (discrimination, difficulty 1, difficulty 2, ..., difficulty k-1)
Form must be: (discrimination 1, discrimination 2, ..., discrimination k, difficulty 1, difficulty 2, ..., difficulty k)
a named vector of slope-intercept parameters (if supported)
# classical 3PL model vec <- c(a=1.5, b=-1, g=.1, u=1) slopeint <- traditional2mirt(vec, '3PL', ncat=2) slopeint # classical graded model (four category) vec <- c(a=1.5, b1=-1, b2=0, b3=1.5) slopeint <- traditional2mirt(vec, 'graded', ncat=4) slopeint # classical generalize partial credit model (four category) vec <- c(a=1.5, b1=-1, b2=0, b3=1.5) slopeint <- traditional2mirt(vec, 'gpcm', ncat=4) slopeint # classical nominal model (4 category) vec <- c(a1=.5, a2 = -1, a3=1, a4=-.5, d1=1, d2=-1, d3=-.5, d4=.5) slopeint <- traditional2mirt(vec, 'nominal', ncat=4) slopeint
# classical 3PL model vec <- c(a=1.5, b=-1, g=.1, u=1) slopeint <- traditional2mirt(vec, '3PL', ncat=2) slopeint # classical graded model (four category) vec <- c(a=1.5, b1=-1, b2=0, b3=1.5) slopeint <- traditional2mirt(vec, 'graded', ncat=4) slopeint # classical generalize partial credit model (four category) vec <- c(a=1.5, b1=-1, b2=0, b3=1.5) slopeint <- traditional2mirt(vec, 'gpcm', ncat=4) slopeint # classical nominal model (4 category) vec <- c(a1=.5, a2 = -1, a3=1, a4=-.5, d1=1, d2=-1, d3=-.5, d4=.5) slopeint <- traditional2mirt(vec, 'nominal', ncat=4) slopeint
Extract parameter variance covariance matrix
## S4 method for signature 'SingleGroupClass' vcov(object)
## S4 method for signature 'SingleGroupClass' vcov(object)
object |
an object of class |
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: x <- mirt(Science, 1, SE=TRUE) vcov(x) ## End(Not run)
## Not run: x <- mirt(Science, 1, SE=TRUE) vcov(x) ## End(Not run)
Compute a Wald test given an L
vector or matrix of numeric contrasts. Requires that the
model information matrix be computed (by passing SE = TRUE
when estimating the model). Use
wald(model)
to observe how the information matrix columns are named, especially if
the estimated model contains constrained parameters (e.g., 1PL).
wald(object, L, C = NULL)
wald(object, L, C = NULL)
object |
estimated object from |
L |
a coefficient matrix with dimensions |
C |
a constant vector of population parameters to be compared along side L, where
The following description is borrowed from Alternatively, the hypothesis can be specified symbolically as a character vector with one or more elements, each of which gives either a linear combination of coefficients, or a linear equation in the coefficients (i.e., with both a left and right side separated by an equals sign). Components of a linear expression or linear equation can consist of numeric constants, or numeric constants multiplying coefficient names (in which case the number precedes the coefficient, and may be separated from it by spaces or an asterisk); constants of 1 or -1 may be omitted. Spaces are always optional. Components are separated by plus or minus signs. Newlines or tabs in hypotheses will be treated as spaces. See the examples below." |
Phil Chalmers [email protected]
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## Not run: # View parnumber index data(LSAT7) data <- expand.table(LSAT7) mod <- mirt(data, 1, SE = TRUE) coef(mod) # see how the information matrix relates to estimated parameters, and how it lines up # with the parameter index (infonames <- wald(mod)) index <- mod2values(mod) index[index$est, ] # second item slope equal to 0? L <- matrix(0, 1, 10) L[1,3] <- 1 wald(mod, L) # same as above using character syntax input infonames wald(mod, "a1.5 = 0") # simultaneously test equal factor slopes for item 1 and 2, and 4 and 5 L <- matrix(0, 2, 10) L[1,1] <- L[2, 7] <- 1 L[1,3] <- L[2, 9] <- -1 L wald(mod, L) # Again, using more efficient syntax infonames wald(mod, c("a1.1 = a1.5", "a1.13 = a1.17")) # log-Liklihood tests (requires estimating a new model) cmodel <- 'theta = 1-5 CONSTRAIN = (1,2, a1), (4,5, a1)' mod2 <- mirt(data, cmodel) # or, equivalently #mod2 <- mirt(data, 1, constrain = list(c(1,5), c(13,17))) anova(mod2, mod) ##### # test equality of means in multi-group model: # H0: (mu1 - mu2) = (mu3 - mu4) set.seed(12345) a <- matrix(abs(rnorm(15,1,.3)), ncol=1) d <- matrix(rnorm(15,0,.7),ncol=1) itemtype <- rep('2PL', nrow(a)) N <- 500 dataset1 <- simdata(a, d, N, itemtype) dataset2 <- simdata(a, d, N, itemtype, mu = .5) dataset3 <- simdata(a, d, N, itemtype, mu = -1) dataset4 <- simdata(a, d, N, itemtype, mu = -.5) dat <- rbind(dataset1, dataset2, dataset3, dataset4) group <- factor(rep(paste0('D', 1:4), each=N)) levels(group) models <- 'F1 = 1-15' # 3 means estimated mod_free <- multipleGroup(dat, models, group = group, SE=TRUE, invariance=c('slopes', 'intercepts', 'free_var','free_means')) wald(mod_free) # obtain parameter names # View(mod2values(mod_free)) # reference group mean = 0 by default wald(mod_free, c("0 - MEAN_1.123 = MEAN_1.185 - MEAN_1.247")) ## End(Not run)
## Not run: # View parnumber index data(LSAT7) data <- expand.table(LSAT7) mod <- mirt(data, 1, SE = TRUE) coef(mod) # see how the information matrix relates to estimated parameters, and how it lines up # with the parameter index (infonames <- wald(mod)) index <- mod2values(mod) index[index$est, ] # second item slope equal to 0? L <- matrix(0, 1, 10) L[1,3] <- 1 wald(mod, L) # same as above using character syntax input infonames wald(mod, "a1.5 = 0") # simultaneously test equal factor slopes for item 1 and 2, and 4 and 5 L <- matrix(0, 2, 10) L[1,1] <- L[2, 7] <- 1 L[1,3] <- L[2, 9] <- -1 L wald(mod, L) # Again, using more efficient syntax infonames wald(mod, c("a1.1 = a1.5", "a1.13 = a1.17")) # log-Liklihood tests (requires estimating a new model) cmodel <- 'theta = 1-5 CONSTRAIN = (1,2, a1), (4,5, a1)' mod2 <- mirt(data, cmodel) # or, equivalently #mod2 <- mirt(data, 1, constrain = list(c(1,5), c(13,17))) anova(mod2, mod) ##### # test equality of means in multi-group model: # H0: (mu1 - mu2) = (mu3 - mu4) set.seed(12345) a <- matrix(abs(rnorm(15,1,.3)), ncol=1) d <- matrix(rnorm(15,0,.7),ncol=1) itemtype <- rep('2PL', nrow(a)) N <- 500 dataset1 <- simdata(a, d, N, itemtype) dataset2 <- simdata(a, d, N, itemtype, mu = .5) dataset3 <- simdata(a, d, N, itemtype, mu = -1) dataset4 <- simdata(a, d, N, itemtype, mu = -.5) dat <- rbind(dataset1, dataset2, dataset3, dataset4) group <- factor(rep(paste0('D', 1:4), each=N)) levels(group) models <- 'F1 = 1-15' # 3 means estimated mod_free <- multipleGroup(dat, models, group = group, SE=TRUE, invariance=c('slopes', 'intercepts', 'free_var','free_means')) wald(mod_free) # obtain parameter names # View(mod2values(mod_free)) # reference group mean = 0 by default wald(mod_free, c("0 - MEAN_1.123 = MEAN_1.185 - MEAN_1.247")) ## End(Not run)