Title: | Extract and Analyze Median Molecule Intensity from 'citrus' Output |
---|---|
Description: | Citrus is a computational technique developed for the analysis of high dimensional cytometry data sets. This package extracts, statistically analyzes, and visualizes marker expression from 'citrus' data. This code was used to generate data for Figures 3 and 4 in the forthcoming manuscript: Throm et al. “Identification of Enhanced Interferon-Gamma Signaling in Polyarticular Juvenile Idiopathic Arthritis with Mass Cytometry”, JCI-Insight. For more information on Citrus, please see: Bruggner et al. (2014) <doi:10.1073/pnas.1408792111>. To download the 'citrus' package, please see <https://github.com/nolanlab/citrus>. |
Authors: | Allison Throm |
Maintainer: | Allison Throm <[email protected]> |
License: | GPL-2 |
Version: | 1.0.0 |
Built: | 2024-12-15 07:31:38 UTC |
Source: | CRAN |
Gets matrices of medians for each individual sample for all measured parameters for all clusters
allmeds(citrus.combinedFCSSet, citrus.foldClustering, citrus.foldFeatureSet)
allmeds(citrus.combinedFCSSet, citrus.foldClustering, citrus.foldFeatureSet)
citrus.combinedFCSSet |
loaded from citrusClustering.RData file generated by Citrus run |
citrus.foldClustering |
loaded from citrusClustering.RData file generated by Citrus run |
citrus.foldFeatureSet |
computed from first two variables using citrus.calculateFoldFeatureSet function from citrus package |
Returns a list with each element corresponding to a matrix (rows as samples, columns as measured parameters) for a different cluster (for the minimum threshold specified)
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") meds<-allmeds(citrus.combinedFCSSet=citrus.combinedFCSSet, citrus.foldClustering=citrus.foldClustering, citrus.foldFeatureSet=citrus.foldFeatureSet)
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") meds<-allmeds(citrus.combinedFCSSet=citrus.combinedFCSSet, citrus.foldClustering=citrus.foldClustering, citrus.foldFeatureSet=citrus.foldFeatureSet)
A dataset containing the a simple example of cytometry data
citrus.combinedFCSSet
citrus.combinedFCSSet
A large citrus.combinedFCSSet object with 5 elements:
Toy data set for cytometry
Names of channels for measured parameters included in toy cytmetry data set
ID numbers for each file included in toy cytometry data set
Names of files included in toy cytmetry data set
Names of measured channels in toy cytmetry data set
...
https://github.com/nolanlab/citrus
A dataset containing the clustering of different cell groups
citrus.foldClustering
citrus.foldClustering
A large citrus.foldClustering object with 5 elements:
A list describing which events belong to which clusters
A list describing which events belong to which clusters for each fold
A list describing assignments with fold clustering
Descriptions of each data clustering
The number of times data is clustered
...
https://github.com/nolanlab/citrus
A dataset containing the association of red and blue in clusters with different sample groups
citrus.foldFeatureSet
citrus.foldFeatureSet
A list with 8 elements:
Data set for each sample for all markers and clusters
Vector of clusters meeting size threshold
Data for each fold clustering
Clusters meeting size threshold for each fold clustering
Descriptions of each data clustering
Data omitted from analyses
Minimum size threshold to retain clusters in analysis
The number of times data is clustered
...
https://github.com/nolanlab/citrus
Gets matrices of medians for each individual sample for all measured parameters for all clusters
classclustermeds(citrus.foldFeatureSet, citrus.foldClustering, citrus.combinedFCSSet, groupsizes, meds)
classclustermeds(citrus.foldFeatureSet, citrus.foldClustering, citrus.combinedFCSSet, groupsizes, meds)
citrus.foldFeatureSet |
computed from first two variables using citrus.calculateFoldFeatureSet function from citrus package |
citrus.foldClustering |
loaded from citrusClustering.RData file generated by Citrus run |
citrus.combinedFCSSet |
loaded from citrusClustering.RData file generated by Citrus run |
groupsizes |
list of sizeso f the groups run in Citrus, in order of the selection for citrus run |
meds |
The names of the columns from citrus.combinedFCSSet$data of interest to extract medians for |
Returns a list of matrices with columns corresponding to selected features and rows corresponding to sample groups; each list element corresponds to data for a different cluster
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") meds<-allmeds(citrus.combinedFCSSet=citrus.combinedFCSSet, citrus.foldClustering=citrus.foldClustering, citrus.foldFeatureSet=citrus.foldFeatureSet) medians<-classclustermeds(citrus.foldFeatureSet,citrus.foldClustering, citrus.combinedFCSSet,groupsizes=c(10,10),meds=meds)
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") meds<-allmeds(citrus.combinedFCSSet=citrus.combinedFCSSet, citrus.foldClustering=citrus.foldClustering, citrus.foldFeatureSet=citrus.foldFeatureSet) medians<-classclustermeds(citrus.foldFeatureSet,citrus.foldClustering, citrus.combinedFCSSet,groupsizes=c(10,10),meds=meds)
Gets matrix of medians for desired measured features for all clusters meeting threshold requirements specified in Citrus
clustermeds(citrus.foldFeatureSet, citrus.foldClustering, medsofinterest, citrus.combinedFCSSet)
clustermeds(citrus.foldFeatureSet, citrus.foldClustering, medsofinterest, citrus.combinedFCSSet)
citrus.foldFeatureSet |
computed from first two variables using citrus.calculateFoldFeatureSet function from citrus package |
citrus.foldClustering |
loaded from citrusClustering.RData file generated by Citrus run |
medsofinterest |
The names of the columns from citrus.combinedFCSSet$data of interest to extract medians for |
citrus.combinedFCSSet |
loaded from citrusClustering.RData file generated by Citrus run |
Returns a matrix with columns corresponding to selected features and rows corresponding to samples
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") medians<-clustermeds(citrus.foldFeatureSet=citrus.foldFeatureSet, citrus.foldClustering=citrus.foldClustering, medsofinterest=c("Red","Blue"), citrus.combinedFCSSet=citrus.combinedFCSSet)
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") medians<-clustermeds(citrus.foldFeatureSet=citrus.foldFeatureSet, citrus.foldClustering=citrus.foldClustering, medsofinterest=c("Red","Blue"), citrus.combinedFCSSet=citrus.combinedFCSSet)
Plot dot plots of features where both clusters are significantly different from the reference cluster without processing data before hand
difMarkerPlots(data, clusters, markers, diffclust, strat)
difMarkerPlots(data, clusters, markers, diffclust, strat)
data |
output from call to allmeds function |
clusters |
clusterIDs of the desired clusters to compare and plot |
markers |
indices of the columns of the data matrix for features to be analyse |
diffclust |
clusterID of for cluster to statisticaly compare others to |
strat |
clusterIDs for stratifying clusters as indicated by Citrus results |
Dot plots for all features where both clusters are significantly different from the reference cluster
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") meds<-allmeds(citrus.combinedFCSSet=citrus.combinedFCSSet, citrus.foldClustering=citrus.foldClustering, citrus.foldFeatureSet=citrus.foldFeatureSet) graphs<-difMarkerPlots(data=meds,clusters=c(19999,19972,19988), markers=c(2,3),diffclust=19999,strat=19999)
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") meds<-allmeds(citrus.combinedFCSSet=citrus.combinedFCSSet, citrus.foldClustering=citrus.foldClustering, citrus.foldFeatureSet=citrus.foldFeatureSet) graphs<-difMarkerPlots(data=meds,clusters=c(19999,19972,19988), markers=c(2,3),diffclust=19999,strat=19999)
Plot dot plots of features where one cluster is significantly different from the reference cluster without processing data before hand
difMarkerPlots2(data, clusters, markers, diffclust, strat)
difMarkerPlots2(data, clusters, markers, diffclust, strat)
data |
output from call to allmeds function |
clusters |
clusterIDs of the desired clusters to compare and plot |
markers |
indices of the columns of the data matrix for features to be analyse |
diffclust |
clusterID of for cluster to statisticaly compare others to |
strat |
clusterIDs for stratifying clusters as indicated by Citrus results |
Dot plots for all features where one cluster is significantly different from the reference cluster
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") meds<-allmeds(citrus.combinedFCSSet=citrus.combinedFCSSet, citrus.foldClustering=citrus.foldClustering, citrus.foldFeatureSet=citrus.foldFeatureSet) graphs<-difMarkerPlots2(data=meds,clusters=c(19999,19972,19988),markers=c(2,3), diffclust=19999,strat=19999)
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") meds<-allmeds(citrus.combinedFCSSet=citrus.combinedFCSSet, citrus.foldClustering=citrus.foldClustering, citrus.foldFeatureSet=citrus.foldFeatureSet) graphs<-difMarkerPlots2(data=meds,clusters=c(19999,19972,19988),markers=c(2,3), diffclust=19999,strat=19999)
Filters list of data matrices with columns corresponding to the measured parameters of interest
filterMarker(clustdat, markers)
filterMarker(clustdat, markers)
clustdat |
a list of data matrices with list elements corresponding to clusters and matrices of intensities of measured parameters |
markers |
Indices of the columns of parmeters to keep |
A list of data matrices with columns of data matrices only corresponding to measured parameters of interest
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") meds<-allmeds(citrus.combinedFCSSet=citrus.combinedFCSSet, citrus.foldClustering=citrus.foldClustering, citrus.foldFeatureSet=citrus.foldFeatureSet) meds2<-filterMarker(clustdat=meds,markers=c(2,3))
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") meds<-allmeds(citrus.combinedFCSSet=citrus.combinedFCSSet, citrus.foldClustering=citrus.foldClustering, citrus.foldFeatureSet=citrus.foldFeatureSet) meds2<-filterMarker(clustdat=meds,markers=c(2,3))
Filters list to contain only desired clusters
findclust(data, clusters)
findclust(data, clusters)
data |
a list of data matrices with list elements corresponding to clusters and matrices of intensities of measured parameters |
clusters |
indices of the clusters to retain |
A list of data matrices for the desired clusters
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") meds<-allmeds(citrus.combinedFCSSet=citrus.combinedFCSSet, citrus.foldClustering=citrus.foldClustering, citrus.foldFeatureSet=citrus.foldFeatureSet) filteredmeds<-findclust(data=meds,clusters=c(19999,19972,19988))
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") meds<-allmeds(citrus.combinedFCSSet=citrus.combinedFCSSet, citrus.foldClustering=citrus.foldClustering, citrus.foldFeatureSet=citrus.foldFeatureSet) filteredmeds<-findclust(data=meds,clusters=c(19999,19972,19988))
Assesses significance of ANOVA and t-test results
findSig(posHocRes)
findSig(posHocRes)
posHocRes |
results from a call to the posthoc function |
A dataframe indicating the significances of results
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") meds<-allmeds(citrus.combinedFCSSet=citrus.combinedFCSSet, citrus.foldClustering=citrus.foldClustering, citrus.foldFeatureSet=citrus.foldFeatureSet) filteredmeds<-findclust(data=meds,clusters=c(19999,19972,19988)) meds2<-filterMarker(clustdat=filteredmeds,markers=c(2,3)) foranova<-processforanova(filtereddata=meds2) ttests<-posthoc(processedDat=foranova,clustIDdif=19999) sig<-findSig(posHocRes=ttests)
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") meds<-allmeds(citrus.combinedFCSSet=citrus.combinedFCSSet, citrus.foldClustering=citrus.foldClustering, citrus.foldFeatureSet=citrus.foldFeatureSet) filteredmeds<-findclust(data=meds,clusters=c(19999,19972,19988)) meds2<-filterMarker(clustdat=filteredmeds,markers=c(2,3)) foranova<-processforanova(filtereddata=meds2) ttests<-posthoc(processedDat=foranova,clustIDdif=19999) sig<-findSig(posHocRes=ttests)
Plot dot plots of features where both clusters are significantly different from the reference cluster
plotdif(BJHdf, anovadata, strat)
plotdif(BJHdf, anovadata, strat)
BJHdf |
results of a call to findsig |
anovadata |
results of call to processforanova |
strat |
clusterIDs for clusters that are stratifying |
Dot plots for all features where both clusters are significantly different from the reference cluster
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") meds<-allmeds(citrus.combinedFCSSet=citrus.combinedFCSSet, citrus.foldClustering=citrus.foldClustering, citrus.foldFeatureSet=citrus.foldFeatureSet) filteredmeds<-findclust(data=meds,clusters=c(19999,19972,19988)) meds2<-filterMarker(clustdat=filteredmeds,markers=c(2,3)) foranova<-processforanova(filtereddata=meds2) ttests<-posthoc(processedDat=foranova,clustIDdif=19999) sig<-findSig(posHocRes=ttests) graphs<-plotdif(BJHdf=sig,anovadata=foranova,strat=19999)
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") meds<-allmeds(citrus.combinedFCSSet=citrus.combinedFCSSet, citrus.foldClustering=citrus.foldClustering, citrus.foldFeatureSet=citrus.foldFeatureSet) filteredmeds<-findclust(data=meds,clusters=c(19999,19972,19988)) meds2<-filterMarker(clustdat=filteredmeds,markers=c(2,3)) foranova<-processforanova(filtereddata=meds2) ttests<-posthoc(processedDat=foranova,clustIDdif=19999) sig<-findSig(posHocRes=ttests) graphs<-plotdif(BJHdf=sig,anovadata=foranova,strat=19999)
Plot dot plots of features where one cluster is significantly different from the reference cluster
plotdif2(BJHdf, anovadata, strat)
plotdif2(BJHdf, anovadata, strat)
BJHdf |
results of a call to findsig |
anovadata |
results of call to processforanova |
strat |
clusterIDs for clusters that are stratifying |
Dot plots for all features where one cluster is significantly different from the reference cluster
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") meds<-allmeds(citrus.combinedFCSSet=citrus.combinedFCSSet, citrus.foldClustering=citrus.foldClustering, citrus.foldFeatureSet=citrus.foldFeatureSet) filteredmeds<-findclust(data=meds,clusters=c(19999,19972,19988)) meds2<-filterMarker(clustdat=filteredmeds,markers=c(2,3)) foranova<-processforanova(filtereddata=meds2) ttests<-posthoc(processedDat=foranova,clustIDdif=19999) sig<-findSig(posHocRes=ttests) graphs<-plotdif2(BJHdf=sig,anovadata=foranova,strat=19999)
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") meds<-allmeds(citrus.combinedFCSSet=citrus.combinedFCSSet, citrus.foldClustering=citrus.foldClustering, citrus.foldFeatureSet=citrus.foldFeatureSet) filteredmeds<-findclust(data=meds,clusters=c(19999,19972,19988)) meds2<-filterMarker(clustdat=filteredmeds,markers=c(2,3)) foranova<-processforanova(filtereddata=meds2) ttests<-posthoc(processedDat=foranova,clustIDdif=19999) sig<-findSig(posHocRes=ttests) graphs<-plotdif2(BJHdf=sig,anovadata=foranova,strat=19999)
Runs ANOVA and t-tests comparing clusters and markers in clusters
posthoc(processedDat, clustIDdif)
posthoc(processedDat, clustIDdif)
processedDat |
data that has been processed using the processforanova function |
clustIDdif |
ID number of the cluster to compare the others to |
A list of t-test results for each of the comparisons
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") meds<-allmeds(citrus.combinedFCSSet=citrus.combinedFCSSet, citrus.foldClustering=citrus.foldClustering, citrus.foldFeatureSet=citrus.foldFeatureSet) filteredmeds<-findclust(data=meds,clusters=c(19999,19972,19988)) meds2<-filterMarker(clustdat=filteredmeds,markers=c(2,3)) foranova<-processforanova(filtereddata=meds2) ttests<-posthoc(processedDat=foranova,clustIDdif=19999)
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") meds<-allmeds(citrus.combinedFCSSet=citrus.combinedFCSSet, citrus.foldClustering=citrus.foldClustering, citrus.foldFeatureSet=citrus.foldFeatureSet) filteredmeds<-findclust(data=meds,clusters=c(19999,19972,19988)) meds2<-filterMarker(clustdat=filteredmeds,markers=c(2,3)) foranova<-processforanova(filtereddata=meds2) ttests<-posthoc(processedDat=foranova,clustIDdif=19999)
Processes cluster signaling data in form for statistical analysis
processforanova(filtereddata)
processforanova(filtereddata)
filtereddata |
a list with each element corresonding to a cluster of interest and matrices containing individual sample data for desired markers |
A dataframe sufficient for using the posthoc function to compute statistics
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") meds<-allmeds(citrus.combinedFCSSet=citrus.combinedFCSSet, citrus.foldClustering=citrus.foldClustering, citrus.foldFeatureSet=citrus.foldFeatureSet) filteredmeds<-findclust(data=meds,clusters=c(19999,19972,19988)) foranova<-processforanova(filtereddata=filteredmeds)
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") meds<-allmeds(citrus.combinedFCSSet=citrus.combinedFCSSet, citrus.foldClustering=citrus.foldClustering, citrus.foldFeatureSet=citrus.foldFeatureSet) filteredmeds<-findclust(data=meds,clusters=c(19999,19972,19988)) foranova<-processforanova(filtereddata=filteredmeds)
Reorders to rows (corresponding to different clusters) of a matrix of medians to a desired order
sortmat(mat, desiredorder)
sortmat(mat, desiredorder)
mat |
matrix of median data |
desiredorder |
row labels from matrix in desired order |
Returns a matrix with rows rearranged in desired order
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") medians<-clustermeds(citrus.foldFeatureSet=citrus.foldFeatureSet, citrus.foldClustering=citrus.foldClustering, medsofinterest=c("Red","Blue"), citrus.combinedFCSSet=citrus.combinedFCSSet) names<-rownames(medians) names<-names[c(31,1:30)] sortedmedians<-sortmat(mat=medians,desiredorder=names)
library(mineCitrus) data("citrus.combinedFCSSet") data("citrus.foldClustering") data("citrus.foldFeatureSet") medians<-clustermeds(citrus.foldFeatureSet=citrus.foldFeatureSet, citrus.foldClustering=citrus.foldClustering, medsofinterest=c("Red","Blue"), citrus.combinedFCSSet=citrus.combinedFCSSet) names<-rownames(medians) names<-names[c(31,1:30)] sortedmedians<-sortmat(mat=medians,desiredorder=names)