Package 'miceadds'

Title: Some Additional Multiple Imputation Functions, Especially for 'mice'
Description: Contains functions for multiple imputation which complements existing functionality in R. In particular, several imputation methods for the mice package (van Buuren & Groothuis-Oudshoorn, 2011, <doi:10.18637/jss.v045.i03>) are implemented. Main features of the miceadds package include plausible value imputation (Mislevy, 1991, <doi:10.1007/BF02294457>), multilevel imputation for variables at any level or with any number of hierarchical and non-hierarchical levels (Grund, Luedtke & Robitzsch, 2018, <doi:10.1177/1094428117703686>; van Buuren, 2018, Ch.7, <doi:10.1201/9780429492259>), imputation using partial least squares (PLS) for high dimensional predictors (Robitzsch, Pham & Yanagida, 2016), nested multiple imputation (Rubin, 2003, <doi:10.1111/1467-9574.00217>), substantive model compatible imputation (Bartlett et al., 2015, <doi:10.1177/0962280214521348>), and features for the generation of synthetic datasets (Reiter, 2005, <doi:10.1111/j.1467-985X.2004.00343.x>; Nowok, Raab, & Dibben, 2016, <doi:10.18637/jss.v074.i11>).
Authors: Alexander Robitzsch [aut,cre] , Simon Grund [aut] , Thorsten Henke [ctb]
Maintainer: Alexander Robitzsch <[email protected]>
License: GPL (>= 2)
Version: 3.17-44
Built: 2024-12-05 07:15:42 UTC
Source: CRAN

Help Index


Some Additional Multiple Imputation Functions, Especially for 'mice'

Description

Contains functions for multiple imputation which complements existing functionality in R. In particular, several imputation methods for the mice package (van Buuren & Groothuis-Oudshoorn, 2011, <doi:10.18637/jss.v045.i03>) are implemented. Main features of the miceadds package include plausible value imputation (Mislevy, 1991, <doi:10.1007/BF02294457>), multilevel imputation for variables at any level or with any number of hierarchical and non-hierarchical levels (Grund, Luedtke & Robitzsch, 2018, <doi:10.1177/1094428117703686>; van Buuren, 2018, Ch.7, <doi:10.1201/9780429492259>), imputation using partial least squares (PLS) for high dimensional predictors (Robitzsch, Pham & Yanagida, 2016), nested multiple imputation (Rubin, 2003, <doi:10.1111/1467-9574.00217>), substantive model compatible imputation (Bartlett et al., 2015, <doi:10.1177/0962280214521348>), and features for the generation of synthetic datasets (Reiter, 2005, <doi:10.1111/j.1467-985X.2004.00343.x>; Nowok, Raab, & Dibben, 2016, <doi:10.18637/jss.v074.i11>).

Details

  • The miceadds package contains some functionality for imputation of multilevel data. The function mice.impute.ml.lmer is a general function for imputing multilevel data with hierarchical or cross-classified structures for variables at an arbitrary level. This imputation method uses the lme4::lmer function in the lme4 package. The imputation method mice.impute.2lonly.function conducts an imputation for a variable at a higher level for already defined imputation methods in the mice package. Two-level imputation is available in several functions in the mice package (mice::mice.impute.2l.pan, mice::mice.impute.2l.norm) as well in micemd and hmi packages. The miceadds package contains additional imputation methods for two-level datasets: mice.impute.2l.continuous for normally distributed data, mice.impute.2l.pmm for predictive mean matching in multilevel models and mice.impute.2l.binary for binary data.

  • In addition to the usual mice imputation function which employs parallel chains, the function mice.1chain does multiple imputation from a single chain.

  • Nested multiple imputation can be conducted with mice.nmi. The function NMIcombine conducts statistical inference for nested multiply imputed datasets.

  • Imputation based on partial least squares regression is implemented in mice.impute.pls.

  • Unidimensional plausible value imputation for latent variables (or variables with measurement error) in the mice sequential imputation framework can be applied by using the method mice.impute.plausible.values.

  • Substantive model compatible multiple imputation using fully conditional specification can be conducted with mice.impute.smcfcs.

  • The function syn_mice allows the generation of synthetic datasets with imputation methods for mice. It has similar functionality as the synthpop package (Nowok, Raab, & Dibben, 2016). The function mice.impute.synthpop allows the usage of synthpop synthesization methods in mice, while syn.mice allows the usage of mice imputation methods in synthpop.

  • The method mice.impute.simputation is a wrapper function to imputation methods in the simputation package. The methods mice.impute.imputeR.lmFun and mice.impute.imputeR.cFun are wrapper functions to imputation methods in the imputeR package.

  • The miceadds package also includes some functions R utility functions (e.g. write.pspp, ma.scale2).

  • Imputations for questionnaire items can be accomplished by two-way imputation (tw.imputation).

Author(s)

Alexander Robitzsch [aut,cre] (<https://orcid.org/0000-0002-8226-3132>), Simon Grund [aut] (<https://orcid.org/0000-0002-1290-8986>), Thorsten Henke [ctb]

Maintainer: Alexander Robitzsch <[email protected]>

References

Bartlett, J. W., Seaman, S. R., White, I. R., Carpenter, J. R., & Alzheimer's Disease Neuroimaging Initiative (2015). Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model. Statistical Methods in Medical Research, 24(4), 462-487. doi:10.1177/0962280214521348

Grund, S., Luedtke, O., & Robitzsch, A. (2018). Multiple imputation of multilevel data in organizational research. Organizational Research Methods, 21(1), 111-149. doi:10.1177/1094428117703686

Mislevy, R. J. (1991). Randomization-based inference about latent variables from complex samples. Psychometrika, 56(2), 177-196. doi:10.1007/BF02294457

Nowok, B., Raab, G., & Dibben, C. (2016). synthpop: Bespoke creation of synthetic data in R. Journal of Statistical Software, 74(11), 1-26. doi:10.18637/jss.v074.i11

Reiter, J. P. (2005) Releasing multiply-imputed, synthetic public use microdata: An illustration and empirical study. Journal of the Royal Statistical Society, Series A, 168(1), 185-205. doi:10.1111/j.1467-985X.2004.00343.x

Robitzsch, A., Pham, G., & Yanagida, T. (2016). Fehlende Daten und Plausible Values. In S. Breit & C. Schreiner (Hrsg.). Large-Scale Assessment mit R: Methodische Grundlagen der oesterreichischen Bildungsstandardueberpruefung (S. 259-293). Wien: facultas.

Rubin, D. B. (2003). Nested multiple imputation of NMES via partially incompatible MCMC. Statistica Neerlandica, 57(1), 3-18. doi:10.1111/1467-9574.00217

van Buuren, S. (2018). Flexible imputation of missing data. Boca Raton: CRC Press. doi:10.1201/9780429492259

van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained equations in R. Journal of Statistical Software, 45(3), 1-67. doi:10.18637/jss.v045.i03

See Also

See also the CRAN task view Missing Data:
https://CRAN.R-project.org/view=MissingData

See other R packages for conducting multiple imputation: mice, Amelia, pan, mi, norm, norm2, BaBooN, VIM, ...

Some links to internet sites related to missing data:

http://missingdata.lshtm.ac.uk/
http://www.stefvanbuuren.nl/mi/
http://www.bristol.ac.uk/cmm/software/realcom/
https://rmisstastic.netlify.com/

Examples

##
##   ::'''''''''''''''''''''''''''''''''::
##   :: miceadds 0.11-69 (2013-12-01)   ::
##   ::'''''''''''''''''''''''''''''''''::
##
##  ----------------------- mice at work ---------------------------------
##
##                         (\-.
##                         / _`> .---------.
##                 _)     / _)=  |'-------'|
##                (      / _/    |O   O   o|
##                 `-.__(___)_   | o O . o |
##                               `---------'
##
##                                          oo__
##                                         <;___)------
##                                    oo__   " "
##                                   <;___)------     oo__
##                                     " "           <;___)------
##                                                     " "

Creates Imputed Dataset from a mids.nmi or mids.1chain Object

Description

Creates imputed dataset from a mids.nmi or mids.1chain object.

Usage

## S3 method for class 'mids.nmi'
complete(data, action=c(1,1), ...)

## S3 method for class 'mids.1chain'
complete(data, action=1, ...)

Arguments

data

Object of class mids.nmi (for complete.mids.nmi) or mids.1chain (for complete.mids.1chain)

action

A vector of length two indicating to indices of between and within imputed dataset for for complete.mids.nmi and an integer for the index of imputed dataset for complete.mids.1chain.

...

More arguments to be passed

See Also

See also the corresponding mice::complete function and mitml::mitmlComplete.

Imputation methods: mice.nmi, mice.1chain

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Nested multiple imputation and dataset extraction for TIMSS data
#############################################################################

library(BIFIEsurvey)
data(data.timss2, package="BIFIEsurvey" )
datlist <- data.timss2

# remove first four variables
M <- length(datlist)
for (ll in 1:M){
    datlist[[ll]] <- datlist[[ll]][, -c(1:4) ]
}

#***************
# (1) nested multiple imputation using mice
imp1 <- miceadds::mice.nmi( datlist,  m=4, maxit=3 )
summary(imp1)

#***************
# (2) nested multiple imputation using mice.1chain
imp2 <- miceadds::mice.nmi( datlist, Nimp=4, burnin=10,iter=22, type="mice.1chain")
summary(imp2)

#**************
# extract dataset for third orginal dataset the second within imputation
dat32a <- miceadds::complete.mids.nmi( imp1, action=c(3,2) )
dat32b <- miceadds::complete.mids.nmi( imp2, action=c(3,2) )

#############################################################################
# EXAMPLE 2: Imputation from one chain and extracting dataset for nhanes data
#############################################################################

library(mice)
data(nhanes, package="mice")

# nhanes data in one chain
imp1 <- miceadds::mice.1chain( nhanes, burnin=5, iter=40, Nimp=4,
            method=rep("norm", 4 ) )

# extract first imputed dataset
dati1 <- miceadds::complete.mids.1chain( imp1, action=1 )

## End(Not run)

R Utilities: Removing CF Line Endings

Description

This function removes CF line endings from a text file and writes the processed file in the working directory.

Usage

crlrem( filename1, filename2 )

Arguments

filename1

Name of the original file (possibly with CF line endings)

filename2

Name of the processed file (without CF line endings)

Author(s)

This is code by Dirk Eddelbuettel copied from https://stat.ethz.ch/pipermail/r-devel/2010-September/058480.html

Examples

## Not run: 
filename1 <- "rm.arraymult__0.02.cpp"
filename2 <- "rm.arraymult__0.03.cpp"
crlrem( filename1, filename2 )
## End(Not run)

R Utilities: Copy of an Rcpp File

Description

Copies the Rcpp function into the working directory.

Usage

cxxfunction.copy(cppfct, name)

Arguments

cppfct

Rcpp function

name

Name of the output Rcpp function to be generated

References

Eddelbuettel, D. & Francois, R. (2011). Rcpp: Seamless R and C++ integration. Journal of Statistical Software, 40(8), 1-18. doi:10.18637/jss.v040.i08

See Also

inline::cxxfunction

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Rcpp code logistic distribution
#############################################################################

library(Rcpp)
library(inline)

# define Rcpp file
code1 <- "
    // input array A
    Rcpp::NumericMatrix AA(A);
    // Rcpp::IntegerVector dimAA(dimA);
    int nrows=AA.nrow();
    int ncolumns=AA.ncol();
    Rcpp::NumericMatrix Alogis(nrows,ncolumns)  ;
    // compute logistic distribution
    for (int ii=0; ii<nrows; ii++){
        Rcpp::NumericVector h1=AA.row(ii) ;
        Rcpp::NumericVector res=plogis( h1 ) ;
        for (int jj=0;jj<ncolumns;jj++){
            Alogis(ii,jj)=res[jj] ;
                        }
                    }
    return( wrap(Alogis) );
    "
# compile Rcpp code
fct_rcpp <- inline::cxxfunction( signature( A="matrix"), code1,
              plugin="Rcpp", verbose=TRUE )
# copy function and save it as object 'calclogis'
name <- "calclogis"  # name of the function
cxxfunction.copy( cppfct=fct_rcpp, name=name )
# function is available as object named as name
Reval( paste0( name, " <- fct_rcpp " ) )
# test function
m1 <- outer( seq( -2, 2, len=10 ), seq(-1.5,1.5,len=4) )
calclogis(m1)
    
## End(Not run)

Datasets from Allison's Missing Data Book

Description

Datasets from Allison's missing data book (Allison 2002).

Usage

data(data.allison.gssexp)
data(data.allison.hip)
data(data.allison.usnews)

Format

  • Data data.allison.gssexp:

    'data.frame': 2991 obs. of 14 variables:
    $ AGE : num 33 59 NA 59 21 22 40 25 41 45 ...
    $ EDUC : num 12 12 12 8 13 15 9 12 12 12 ...
    $ FEMALE : num 1 0 1 0 1 1 1 0 1 1 ...
    $ SPANKING: num 1 1 2 2 NA 1 3 1 1 NA ...
    $ INCOM : num 11.2 NA 16.2 18.8 13.8 ...
    $ NOCHILD : num 0 0 0 0 1 1 0 0 0 0 ...
    $ NODOUBT : num NA NA NA 1 NA NA 1 NA NA 1 ...
    $ NEVMAR : num 0 0 0 0 1 1 0 1 0 0 ...
    $ DIVSEP : num 1 0 0 0 0 0 0 0 0 1 ...
    $ WIDOW : num 0 0 0 0 0 0 1 0 1 0 ...
    $ BLACK : num 1 1 1 0 1 1 0 1 1 1 ...
    $ EAST : num 1 1 1 1 1 1 1 1 1 1 ...
    $ MIDWEST : num 0 0 0 0 0 0 0 0 0 0 ...
    $ SOUTH : num 0 0 0 0 0 0 0 0 0 0 ...

  • Data data.allison.hip:

    'data.frame': 880 obs. of 7 variables:
    $ SID : num 1 1 1 1 2 2 2 2 9 9 ...
    $ WAVE: num 1 2 3 4 1 2 3 4 1 2 ...
    $ ADL : num 3 2 3 3 3 1 2 1 3 3 ...
    $ PAIN: num 0 5 0 0 0 1 5 NA 0 NA ...
    $ SRH : num 2 4 2 2 4 1 1 2 2 3 ...
    $ WALK: num 1 0 0 0 0 0 0 0 1 NA ...
    $ CESD: num 9 28 31 11.6 NA ...

  • Data data.allison.usnews:

    'data.frame': 1302 obs. of 7 variables:
    $ CSAT : num 972 961 NA 881 NA ...
    $ ACT : num 20 22 NA 20 17 20 21 NA 24 26 ...
    $ STUFAC : num 11.9 10 9.5 13.7 14.3 32.8 18.9 18.7 16.7 14 ...
    $ GRADRAT: num 15 NA 39 NA 40 55 51 15 69 72 ...
    $ RMBRD : num 4.12 3.59 4.76 5.12 2.55 ...
    $ PRIVATE: num 1 0 0 0 0 1 0 0 0 1 ...
    $ LENROLL: num 4.01 6.83 4.49 7.06 6.89 ...

Source

The datasets were downloaded from http://www.ats.ucla.edu/stat/examples/md/.

References

Allison, P. D. (2002). Missing data. Newbury Park, CA: Sage.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Hip dataset | Imputation using a wide format
#############################################################################

# at first, the hip dataset is 'melted' for imputation

data(data.allison.hip)
  ##   head(data.allison.hip)
  ##     SID WAVE ADL PAIN SRH WALK   CESD
  ##   1   1    1   3    0   2    1  9.000
  ##   2   1    2   2    5   4    0 28.000
  ##   3   1    3   3    0   2    0 31.000
  ##   4   1    4   3    0   2    0 11.579
  ##   5   2    1   3    0   4    0     NA
  ##   6   2    2   1    1   1    0  2.222

library(reshape)
hip.wide <- reshape::reshape(data.allison.hip, idvar="SID", timevar="WAVE",
                direction="wide")
  ##   > head(hip.wide, 2)
  ##     SID ADL.1 PAIN.1 SRH.1 WALK.1 CESD.1 ADL.2 PAIN.2 SRH.2 WALK.2 CESD.2 ADL.3
  ##   1   1     3      0     2      1      9     2      5     4      0 28.000     3
  ##   5   2     3      0     4      0     NA     1      1     1      0  2.222     2
  ##     PAIN.3 SRH.3 WALK.3 CESD.3 ADL.4 PAIN.4 SRH.4 WALK.4 CESD.4
  ##   1      0     2      0     31     3      0     2      0 11.579
  ##   5      5     1      0     12     1     NA     2      0     NA

# imputation of the hip wide dataset
imp <- mice::mice( as.matrix( hip.wide[,-1] ), m=5, maxit=3 )
summary(imp)

## End(Not run)

Datasets from Enders' Missing Data Book

Description

Datasets from Enders' missing data book (2010).

Usage

data(data.enders.depression)
data(data.enders.eatingattitudes)
data(data.enders.employee)

Format

  • Dataset data.enders.depression:

    'data.frame': 280 obs. of 8 variables:
    $ txgroup: int 0 0 0 0 0 0 0 0 0 0 ...
    $ dep1 : int 46 49 40 47 33 44 45 53 40 55 ...
    $ dep2 : int 44 42 28 47 33 41 43 35 43 45 ...
    $ dep3 : int 26 29 31 NA 34 34 34 35 35 36 ...
    $ r2 : int 0 0 0 0 0 0 0 0 0 0 ...
    $ r3 : int 0 0 0 1 0 0 0 0 0 0 ...
    $ pattern: int 3 3 3 2 3 3 3 3 3 3 ...
    $ dropout: int 0 0 0 1 0 0 0 0 0 0 ...

  • Dataset data.enders.eatingattitudes:

    'data.frame': 400 obs. of 14 variables:
    $ id : num 1 2 3 4 5 6 7 8 9 10 ...
    $ eat1 : num 4 6 3 3 3 4 5 4 4 6 ...
    $ eat2 : num 4 5 3 3 2 5 4 3 7 5 ...
    $ eat10: num 4 6 2 4 3 4 4 4 6 5 ...
    $ eat11: num 4 6 2 3 3 5 4 4 5 5 ...
    $ eat12: num 4 6 3 4 3 4 4 4 4 6 ...
    $ eat14: num 4 7 2 4 3 4 4 4 6 6 ...
    $ eat24: num 3 6 3 3 3 4 4 4 4 5 ...
    $ eat3 : num 4 5 3 3 4 4 3 6 4 5 ...
    $ eat18: num 5 6 3 5 4 5 3 6 4 6 ...
    $ eat21: num 4 5 2 4 4 4 3 5 4 5 ...
    $ bmi : num 18.9 26 18.3 18.2 24.4 ...
    $ wsb : num 9 13 6 5 10 7 11 8 10 12 ...
    $ anx : num 11 19 8 14 7 11 12 12 14 12 ..

  • Dataset data.enders.employee:

    'data.frame': 480 obs. of 9 variables:
    $ id : num 1 2 3 4 5 6 7 8 9 10 ...
    $ age : num 40 53 46 37 44 39 33 43 35 37 ...
    $ tenure : num 10 14 10 8 9 10 7 9 9 10 ...
    $ female : num 1 1 1 1 1 1 1 1 1 1 ...
    $ wbeing : num 8 6 NA 7 NA 7 NA 7 7 5 ...
    $ jobsat : num 8 5 7 NA 5 NA 5 NA 7 6 ...
    $ jobperf : num 6 5 7 5 5 7 7 7 7 6 ...
    $ turnover: num 0 0 0 0 0 0 0 0 1 0 ...
    $ iq : num 106 93 107 94 107 118 103 106 108 97 ...

Source

The datasets were downloaded from https://www.appliedmissingdata.com/.

References

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.


Datasets from Grahams Missing Data Book

Description

Datasets from Grahams missing data book (2012).

Usage

data(data.graham.ex3)
data(data.graham.ex6)
data(data.graham.ex8a)
data(data.graham.ex8b)
data(data.graham.ex8c)

Format

  • Dataset data.graham.ex3:

    'data.frame': 2756 obs. of 20 variables:
    $ school : int 1 1 1 1 1 1 1 1 1 1 ...
    $ alc7 : int 1 1 1 7 3 6 1 5 4 3 ...
    $ rskreb71: int 1 3 1 2 1 NA 1 2 1 2 ...
    $ rskreb72: int NA NA NA NA NA NA NA 3 2 3 ...
    $ rskreb73: int NA NA NA NA NA NA NA 2 1 2 ...
    $ rskreb74: int NA NA NA NA NA NA NA 3 2 4 ...
    $ likepa71: int 4 2 3 3 2 NA 1 4 3 3 ...
    $ likepa72: int 5 2 4 2 2 NA 5 3 3 2 ...
    $ likepa73: int 4 1 3 3 2 NA 1 3 2 3 ...
    $ likepa74: int 5 3 1 5 4 4 3 4 3 2 ...
    $ likepa75: int 4 4 4 4 3 3 4 4 3 3 ...
    $ posatt71: int 1 1 1 1 1 2 1 NA NA NA ...
    $ posatt72: int 1 2 1 1 1 2 4 NA NA NA ...
    $ posatt73: int 1 1 1 1 1 2 1 NA NA NA ...
    $ alc8 : int 1 8 4 8 5 7 1 3 5 3 ...
    $ rskreb81: int 1 4 1 2 2 3 2 3 1 4 ...
    $ rskreb82: int NA NA NA NA NA NA NA 3 1 4 ...
    $ rskreb83: int NA NA NA NA NA NA NA 2 1 2 ...
    $ rskreb84: int NA NA NA NA NA NA NA 3 2 4 ...
    $ alc9 : int 3 NA 7 NA 5 7 NA 6 6 7 ...

  • Dataset data.graham.ex6:

    'data.frame': 2756 obs. of 9 variables:
    $ school : int 1 1 1 1 1 1 1 1 1 1 ...
    $ program : int 0 0 0 0 0 0 0 0 0 0 ...
    $ alc7 : int 1 1 1 7 3 6 1 5 4 3 ...
    $ riskreb7: int 1 3 1 2 1 NA 1 2 1 2 ...
    $ likepar7: int 4 2 3 3 2 NA 1 4 3 3 ...
    $ posatt7 : int 1 1 1 1 1 2 1 NA NA NA ...
    $ alc8 : int 1 8 4 8 5 7 1 3 5 3 ...
    $ riskreb8: int 1 4 1 2 2 3 2 3 1 4 ...
    $ alc9 : int 3 NA 7 NA 5 7 NA 6 6 7 ...

  • Dataset data.graham.ex8a:

    'data.frame': 1023 obs. of 20 variables:
    $ skill1 : int 28 29 27 29 29 NA NA NA 29 NA ...
    $ skill2 : int NA NA 29 29 NA NA NA NA NA 21 ...
    $ skill3 : int NA NA 29 29 29 NA 28 10 29 25 ...
    $ skill4 : int NA 29 25 29 29 28 29 NA NA NA ...
    $ skill5 : int 29 29 28 28 29 NA 29 10 NA 25 ...
    $ iplanV1: int 14 18 15 17 16 NA NA NA 18 NA ...
    $ iplanV2: int NA NA 17 16 NA NA NA NA NA 16 ...
    $ iplanV3: int NA NA 16 18 18 NA 17 1 18 16 ...
    $ iplanV4: int NA 18 14 18 14 6 18 NA NA NA ...
    $ iplanV5: int 13 18 12 18 18 NA 18 3 NA 5 ...
    $ planA1 : int 1 0 2 8 3 NA NA NA 7 NA ...
    $ planA2 : int NA NA 0 4 NA NA NA NA NA 6 ...
    $ planA3 : int NA NA 1 4 7 NA 2 0 1 7 ...
    $ planA4 : int NA 8 0 4 6 0 0 NA NA NA ...
    $ planA5 : int 0 7 1 5 7 NA 2 0 NA 6 ...
    $ planV1 : int NA NA NA NA NA NA NA NA NA NA ...
    $ planV2 : int NA NA NA NA NA NA NA NA NA 1 ...
    $ planV3 : int NA NA 1 NA NA NA NA 0 NA 1 ...
    $ planV4 : int NA NA NA NA 2 NA NA NA NA NA ...
    $ planV5 : int 2 NA 2 NA NA NA NA 0 NA NA ...

  • Dataset data.graham.ex8b:

    'data.frame': 2570 obs. of 6 variables:
    $ rskreb71: int 1 3 1 2 1 NA 1 2 1 2 ...
    $ rskreb72: int NA NA NA NA NA NA NA 3 2 3 ...
    $ posatt71: int 1 1 1 1 1 2 1 NA NA NA ...
    $ posatt72: int 1 2 1 1 1 2 4 NA NA NA ...
    $ posatt73: int 1 1 1 1 1 2 1 NA NA NA ...
    $ posatt : int 3 4 3 3 3 6 6 NA NA NA ...

  • Dataset data.graham.ex8c:

    'data.frame': 2756 obs. of 16 variables:
    $ s1 : int 1 1 1 1 1 1 1 1 1 1 ...
    $ s2 : int 0 0 0 0 0 0 0 0 0 0 ...
    $ s3 : int 0 0 0 0 0 0 0 0 0 0 ...
    $ s4 : int 0 0 0 0 0 0 0 0 0 0 ...
    $ s5 : int 0 0 0 0 0 0 0 0 0 0 ...
    $ s6 : int 0 0 0 0 0 0 0 0 0 0 ...
    $ s7 : int 0 0 0 0 0 0 0 0 0 0 ...
    $ s8 : int 0 0 0 0 0 0 0 0 0 0 ...
    $ s9 : int 0 0 0 0 0 0 0 0 0 0 ...
    $ s10 : int 0 0 0 0 0 0 0 0 0 0 ...
    $ s11 : int 0 0 0 0 0 0 0 0 0 0 ...
    $ xalc7 : int 1 1 1 7 3 6 1 5 4 3 ...
    $ rskreb72: int NA NA NA NA NA NA NA 3 2 3 ...
    $ likepa71: int 4 2 3 3 2 NA 1 4 3 3 ...
    $ posatt71: int 1 1 1 1 1 2 1 NA NA NA ...
    $ alc8 : int 1 8 4 8 5 7 1 3 5 3 ...

Source

The datasets were downloaded from http://methodology.psu.edu/pubs/books/missing.

References

Graham, J. W. (2012). Missing data. New York: Springer. doi:10.1007/978-1-4614-4018-5

Examples

## Not run: 
library(mitools)
library(mice)
library(Amelia)
library(jomo)

#############################################################################
# EXAMPLE 1: data.graham.8a | Imputation under multivariate normal model
#############################################################################

data(data.graham.ex8a)
dat <- data.graham.ex8a
dat <- dat[,1:10]
vars <- colnames(dat)
V <- length(vars)
# remove persons with completely missing data
dat <- dat[ rowMeans( is.na(dat) ) < 1, ]
summary(dat)

# some descriptive statistics
psych::describe(dat)

#**************
# imputation under a multivariate normal model
M <- 7  # number of imputations

#--------- mice package
# define imputation method
impM <- rep("norm", V)
names(impM) <- vars
# mice imputation
imp1a <- mice::mice( dat, method=impM, m=M, maxit=4 )
summary(imp1a)
# convert into a list of datasets
datlist1a <- miceadds::mids2datlist(imp1a)

#--------- Amelia package
imp1b <- Amelia::amelia( dat, m=M )
summary(imp1b)
datlist1b <- imp1b$imputations

#--------- jomo package
imp1c <- jomo::jomo1con(Y=dat, nburn=100, nbetween=10, nimp=M)
str(imp1c)
# convert into a list of datasets
datlist1c <- miceadds::jomo2datlist(imp1c)

# alternatively one can use the jomo wrapper function
imp1c1 <- jomo::jomo(Y=dat, nburn=100, nbetween=10, nimp=M)

#############################################################################
# EXAMPLE 2: data.graham.8b | Imputation with categorical variables
#############################################################################

data(data.graham.ex8b)
dat <- data.graham.ex8b
vars <- colnames(dat)
V <- length(vars)

# descriptive statistics
psych::describe(dat)

#*******************************
# imputation in mice using predictive mean matching
imp1a <- mice::mice( dat, m=5, maxit=10)
datlist1a <- mitools::imputationList( miceadds::mids2datlist(imp1a) )
print(datlist1a)

#*******************************
# imputation in jomo treating all variables as categorical

# Note that variables must have values from 1 to N
# use categorize function from sirt package here
dat.categ <- sirt::categorize( dat, categorical=colnames(dat), lowest=1 )
dat0 <- dat.categ$data

# imputation in jomo treating all variables as categorical
Y_numcat <- apply( dat0, 2, max, na.rm=TRUE )
imp1b <- jomo::jomo1cat(Y.cat=dat0, Y.numcat=Y_numcat, nburn=100,
                 nbetween=10, nimp=5)

# recode original categories
datlist1b <- sirt::decategorize( imp1b, categ_design=dat.categ$categ_design )
# convert into a list of datasets
datlist1b <- miceadds::jomo2datlist(datlist1b)
datlist1b <- mitools::imputationList( datlist1b )

# Alternatively, jomo can be used but categorical variables must be
# declared as factors
dat <- dat0
# define two variables as factors
vars <- miceadds::scan.vec(" rskreb71 rskreb72")
for (vv in vars){
    dat[, vv] <- as.factor( dat[,vv] )
          }
# use jomo
imp1b1 <- jomo::jomo(Y=dat, nburn=30, nbetween=10, nimp=5)

#****************************
# compare frequency tables for both imputation packages
fun_prop <- function( variable ){
            t1 <- table(variable)
            t1 / sum(t1)
                }

# variable rskreb71
res1a <-  with( datlist1a, fun_prop(rskreb71) )
res1b <-  with( datlist1b, fun_prop(rskreb71) )
summary( miceadds::NMIcombine(qhat=res1a, NMI=FALSE ) )
summary( miceadds::NMIcombine(qhat=res1b, NMI=FALSE ) )

# variable posatt
res2a <-  with( datlist1a, fun_prop(posatt) )
res2b <-  with( datlist1b, fun_prop(posatt) )
summary( miceadds::NMIcombine(qhat=res2a, NMI=FALSE ) )
summary( miceadds::NMIcombine(qhat=res2b, NMI=FALSE ) )

## End(Not run)

Dataset Internet

Description

Dataset with items corresponding to internet attitudes.

Usage

data(data.internet)

Format

A data frame with 281 observations on the following 22 variables.

The format of the dataset is

'data.frame': 281 obs. of 22 variables:
$ IN1 : num 1 5 2 3 1 3 2 3 2 1 ...
$ IN2 : num 4 3 2 7 7 4 4 7 4 3 ...
$ IN3 : num 4 5 4 2 1 2 5 2 2 4 ...
[...]
$ IN20: num 3 2 2 3 3 4 2 7 2 2 ...
$ IN21: num 3 3 6 5 4 4 5 5 6 5 ...
$ IN22: num 3 4 2 5 3 5 3 7 3 5 ...

Details

The following text is copied from http://people.few.eur.nl/groenen/Data/index.htm

The data set is based on a questionnaire on attitudes towards the Internet. It consists of evaluations of 22 statements about the Internet by 281 students at Erasmus University Rotterdam. These data were gathered around 2002 before the wide availability of broadband Internet access in the Netherlands. The statements were evaluated using a seven-point Likert scale, ranging from 1 (completely disagree) to 7 (completely agree).

We would like to thank Peter Verhoef for making these data available.

Each variable (statement) is coded as follows:

1. Completely disagree
2. Disagree
3. Slightly disagree
4. Neutral
5. Slightly agree
6. Agree
7. Completely agree

Internet items:

1. Paying using Internet is safe
2. Surfing the Internet is easy
3. Internet is unreliable
4. Internet is slow
5. Internet is user-friendly
6. Internet is the future's means of communication
7. Internet is addictive
8. Internet is fast
9. Sending personal data using the Internet is unsafe
10. The prices of Internet subscriptions are high
11. Internet offers many possibilities for abuse
12. The costs of surfing are high
13. Internet offers unbounded opportunities
14. Internet phone costs are high
15. The content of web sites should be regulated
16. Internet is easy to use
17. I like surfing
18. I often speak with friends about the Internet
19. I like to be informed of important new things
20. I always attempt new things on the Internet first
21. I regularly visit websites recommended by others
22. I know much about the Internet

Source

Peter Verhoef

http://people.few.eur.nl/groenen/Data/index.htm

Examples

data(data.internet)
# missing proportions
colMeans( is.na(data.internet) )

Large-scale Dataset for Testing Purposes (Many Cases, Few Variables)

Description

Large-scale dataset with many cases and few variables included for testing purposes.

Usage

data(data.largescale)

Format

A data frame with 14000 observations on the following 13 variables. The format is

'data.frame': 14000 obs. of 13 variables:
$ id: num 1e+07 1e+07 1e+07 1e+07 1e+07 ...
$ D1: num 0 0 0 0 1 0 0 0 0 0 ...
$ D2: num 0 0 0 1 0 1 0 1 0 0 ...
$ D3: num 0 0 0 0 0 0 0 0 0 0 ...
$ D4: num 0 0 0 1 0 0 0 1 0 0 ...
$ D5: num 0 0 0 0 0 1 0 0 0 0 ...
$ v1: num 118 117 94 106 86 117 96 96 82 95 ...
$ v2: num 101 101 86 101 65 94 72 75 70 99 ...
$ v3: num 0 0 0 0 0 1 0 0 0 0 ...
$ v4: num 3 NA 3 5 2 5 5 5 4 2 ...
$ v5: num 0 NA 0 0 0 1 0 0 0 0 ...
$ v6: num 3 3 3 4 NA 1 3 3 2 3 ...
$ v7: num 51 36 14 47 22 17 13 37 47 38 ...


Example Datasets for miceadds Package

Description

Example datasets for miceadds package.

Usage

data(data.ma01)
data(data.ma02)
data(data.ma03)
data(data.ma04)
data(data.ma05)
data(data.ma06)
data(data.ma07)
data(data.ma08)

Format

  • Dataset data.ma01:

    Dataset with students nested within school and student weights (studwgt). The format is

    'data.frame': 4073 obs. of 11 variables:
    $ idstud : num 1e+07 1e+07 1e+07 1e+07 1e+07 ...
    $ idschool: num 1001 1001 1001 1001 1001 ...
    $ studwgt : num 6.05 6.05 5.27 5.27 6.05 ...
    $ math : int 594 605 616 524 685 387 536 594 387 562 ...
    $ read : int 647 651 539 551 689 502 503 597 580 576 ...
    $ migrant : int 0 0 0 1 0 0 1 0 0 0 ...
    $ books : int 6 6 5 2 6 3 4 6 6 5 ...
    $ hisei : int NA 77 69 45 66 53 43 NA 64 50 ...
    $ paredu : int 3 7 7 2 7 3 4 NA 7 3 ...
    $ female : int 1 1 0 0 1 1 0 0 1 1 ...
    $ urban : num 1 1 1 1 1 1 1 1 1 1 ...

  • Dataset data.ma02:

    10 multiply imputed datasets of incomplete data data.ma01. The format is

    List of 10
    $ :'data.frame': 4073 obs. of 11 variables:
    $ :'data.frame': 4073 obs. of 11 variables:
    $ :'data.frame': 4073 obs. of 11 variables:
    $ :'data.frame': 4073 obs. of 11 variables:
    $ :'data.frame': 4073 obs. of 11 variables:
    $ :'data.frame': 4073 obs. of 11 variables:
    $ :'data.frame': 4073 obs. of 11 variables:
    $ :'data.frame': 4073 obs. of 11 variables:
    $ :'data.frame': 4073 obs. of 11 variables:
    $ :'data.frame': 4073 obs. of 11 variables:

  • Dataset data.ma03:

    This dataset contains one variable math_EAP for which a conditional posterior distribution with EAP and its associated standard deviation is available.

    'data.frame': 120 obs. of 8 variables:
    $ idstud : int 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 ...
    $ female : int 0 1 1 1 1 0 1 1 1 1 ...
    $ migrant : int 1 1 0 1 1 0 0 0 1 0 ...
    $ hisei : int 44 NA 26 NA 32 60 31 NA 34 26 ...
    $ educ : int NA 2 NA 1 4 NA 2 NA 2 NA ...
    $ read_wle : num 74.8 78.1 103.2 81.2 119.2 ...
    $ math_EAP : num 337 342 264 285 420 ...
    $ math_SEEAP: num 28 29.5 28.6 28.5 27.5 ...

  • Dataset data.ma04:

    This dataset contains two hypothetical scales A and B and single variables V5, V6 and V7.

    'data.frame': 281 obs. of 13 variables:
    $ group: int 1 1 1 1 1 1 1 1 1 1 ...
    $ A1 : int 2 2 2 1 1 3 3 NA 2 1 ...
    $ A2 : int 2 2 2 3 1 2 4 4 4 4 ...
    $ A3 : int 2 3 3 4 1 3 2 2 2 4 ...
    $ A4 : int 3 4 6 4 7 5 3 5 5 1 ...
    $ V5 : int 2 2 5 5 4 3 4 1 3 4 ...
    $ V6 : int 2 5 5 1 1 3 2 2 2 4 ...
    $ V7 : int 6 NA 4 5 6 2 5 5 6 7 ...
    $ B1 : int 7 NA 6 4 5 2 5 7 3 7 ...
    $ B2 : int 6 NA NA 6 3 3 4 6 6 7 ...
    $ B3 : int 7 NA 7 4 3 4 3 7 5 NA ...
    $ B4 : int 4 5 6 5 4 3 4 5 2 1 ...
    $ B5 : int 7 NA 7 4 4 3 5 7 5 4 ...

  • Dataset data.ma05:

    This is a two-level dataset with students nested within classes. Variables at the student level are Dscore, Mscore, denote, manote, misei and migrant. Variables at the class level are sprengel and groesse.

    'data.frame': 1673 obs. of 10 variables:
    $ idstud : int 100110001 100110002 100110003 100110004 100110005 ...
    $ idclass : int 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 ...
    $ Dscore : int NA 558 643 611 518 552 NA 534 409 543 ...
    $ Mscore : int 404 563 569 621 653 651 510 NA 517 566 ...
    $ denote : int NA 1 1 1 3 2 3 2 3 2 ...
    $ manote : int NA 1 1 1 1 1 2 2 2 1 ...
    $ misei : int NA 51 NA 38 NA 50 53 53 38 NA ...
    $ migrant : int NA 0 0 NA 0 0 0 0 0 NA ...
    $ sprengel: int 0 0 0 0 0 0 0 0 0 0 ...
    $ groesse : int 25 25 25 25 25 25 25 25 25 25 ...

  • Dataset data.ma06:

    This is a dataset in which the variable FC is only available with grouped values (coarse data or interval data).

    'data.frame': 198 obs. of 7 variables:
    $ id : num 1001 1002 1003 1004 1005 ...
    $ A1 : int 14 7 10 15 0 5 9 6 8 0 ...
    $ A2 : int 5 6 4 8 2 5 4 0 7 0 ...
    $ Edu : int 4 3 1 5 5 1 NA 1 5 3 ...
    $ FC : int 3 2 2 2 2 NA NA 2 2 NA ...
    $ FC_low: num 10 5 5 5 5 0 0 5 5 0 ...
    $ FC_upp: num 15 10 10 10 10 100 100 10 10 100 ...

  • Dataset data.ma07:

    This is a three-level dataset in which the variable FC is only available with grouped values (coarse data or interval data).

    'data.frame': 1600 obs. of 9 variables:
    $ id3: num 1001 1001 1001 1001 1001 ...
    $ id2: num 101 101 101 101 101 101 101 101 101 101 ...
    $ id1: int 1 2 3 4 5 6 7 8 9 10 ...
    $ x1 : num 0.91 1.88 NA 1.52 0.93 0.51 2.11 0.99 2.42 NA ...
    $ x2 : num -0.58 1.12 0.87 -0.01 -0.14 0.48 1.85 -0.9 0.93 0.63 ...
    $ y1 : num 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 ...
    $ y2 : num 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 ...
    $ z1 : num -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 ...
    $ z2 : num 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 ...

  • Dataset data.ma08:

    List with several vector of strings containing descriptive data from published articles. See string_to_matrix for converting these strings into matrices.

    List of 4
    $ mat1: chr [1:6] "1. T1_mental_health" ...
    $ mat2: chr [1:16] "1. Exp voc-T1 -" ...
    $ mat3: chr [1:12] "1. TOWRE age 7\t-\t\t\t\t\t\t" ...
    $ mat4: chr [1:18] "1. Vocab. age 7\t-\t\t\t\t\t" ...

  • Dataset data.ma09:

    This is a subset of a PISA dataset that is used for generating synthetic data.

    'data.frame': 342 obs. of 41 variables:
    $ SEX : int 1 2 1 2 1 2 2 2 2 1 ...
    $ AGE : num 16 15.9 16.3 15.5 15.9 ...
    $ HISEI : int 37 46 66 51 25 NA 54 52 51 69 ...
    $ FISCED : int 3 3 6 3 3 NA 3 3 2 2 ...
    $ MISCED : int 3 4 4 4 3 NA 4 3 4 4 ...
    $ PV1MATH: num 643 556 510 604 462 ...
    $ M474Q01: int 1 1 1 1 0 1 1 1 1 0 ...
    $ M155Q02: int 2 2 2 2 2 0 0 2 2 2 ...
    $ M155Q01: int 1 1 0 1 1 1 1 1 1 1 ...
    [...]


Small-Scale Dataset for Testing Purposes (Moderate Number of Cases, Many Variables)

Description

Small-scale dataset for testing purposes (moderate number of cases, many variables)

Usage

data(data.smallscale)

Format

A data frame with 675 observations on the following 164 variables. The format is

'data.frame': 675 obs. of 164 variables:
$ v1 : num 3 3 2 3 3 0 1 0 3 NA ...
$ v2 : num 3 0 1 3 0 0 0 3 2 NA ...
$ v3 : num 0 0 2 3 2 0 1 0 0 NA ...
$ v4 : num 1 3 3 3 NA 0 0 0 3 NA ...
$ v5 : num 0 0 3 3 0 0 3 1 3 3 ...
$ v6 : num 8 8 9 8 9 9 9 8 9 9 ...
[...]


Creates Objects of Class datlist or nested.datlist

Description

Creates objects of class datlist or nested.datlist.

The functions nested.datlist2datlist and datlist2nested.datlist provide list conversions for imputed datasets.

Usage

datlist_create(datasets)

nested.datlist_create(datasets)

## S3 method for class 'datlist'
print(x, ...)

## S3 method for class 'nested.datlist'
print(x, ...)

nested.datlist2datlist(datlist)

datlist2nested.datlist(datlist, Nimp)

Arguments

datasets

For datlist_create: List of datasets, objects of class imputationList, mids, mids.1chain,

For nested.datlist_create: nested list of datasets, NestedImputationList, mids.nmi

x

Object of classes datlist or nested.datlist

datlist

Object of classes datlist, imputationList, nested.datlist or NestedImputationList.

Nimp

Vector of length 2 containing numbers of between and within imputations.

...

Further arguments to be passed

Value

Object of class datlist or nested.datlist

Examples

## Not run: 
## The function datlist_create is currently defined as
function (datasets)
{
    class(datasets) <- "datlist"
    return(datasets)
  }

#############################################################################
# EXAMPLE 1: Create object of class datlist
#############################################################################

library(BIFIEsurvey)
data(data.timss2, package="BIFIEsurvey" )
datlist <- data.timss2

# class datlist
obj1 <- miceadds::datlist_create(data.timss2)

#############################################################################
# EXAMPLE 2: Multiply imputed datasets: Different object classes
#############################################################################

library(mice)
data(nhanes2, package="mice")
set.seed(990)

# nhanes2 data imputation
imp1 <- miceadds::mice.1chain( nhanes2, burnin=5, iter=25, Nimp=5 )
# object of class datlist
imp2 <- miceadds::mids2datlist(imp1)
# alternatively, one can use datlist_create
imp2b <- miceadds::datlist_create(imp1)
# object of class imputationList
imp3 <- mitools::imputationList(imp2)
# retransform object in class datlist
imp2c <- miceadds::datlist_create(imp3)
str(imp2c)

#############################################################################
# EXAMPLE 3: Nested multiply imputed datasets
#############################################################################

library(BIFIEsurvey)
data(data.timss2, package="BIFIEsurvey" )
datlist <- data.timss2
   # list of 5 datasets containing 5 plausible values

#** define imputation method and predictor matrix
data <- datlist[[1]]
V <- ncol(data)
# variables
vars <- colnames(data)
# variables not used for imputation
vars_unused <- miceadds::scan.vec("IDSTUD TOTWGT  JKZONE  JKREP" )

#- define imputation method
impMethod <- rep("norm", V )
names(impMethod) <- vars
impMethod[ vars_unused ] <- ""

#- define predictor matrix
predM <- matrix( 1, V, V )
colnames(predM) <- rownames(predM) <- vars
diag(predM) <- 0
predM[, vars_unused ] <- 0

# object of class nmi
imp1 <- miceadds::mice.nmi( datlist, method=impMethod, predictorMatrix=predM,
                m=4, maxit=3 )
# object of class nested.datlist
imp2 <- miceadds::mids2datlist(imp1)
# object of class NestedImputationList
imp3 <- miceadds::NestedImputationList(imp2)
# redefine class nested.datlist
imp4 <- miceadds::nested.datlist_create(imp3)

#############################################################################
# EXAMPLE 4: Conversions between nested lists of datasets and lists of datasets
#############################################################################

library(BIFIEsurvey)
data(data.timss4, package="BIFIEsurvey" )
datlist <- data.timss4

# object of class nested.datlist
datlist1a <- miceadds::nested.datlist_create(datlist)
# object of class NestedImputationList
datlist1b <- miceadds::NestedImputationList(datlist)

# conversion to datlist
datlist2a <- miceadds::nested.datlist2datlist(datlist1a)  # class datlist
datlist2b <- miceadds::nested.datlist2datlist(datlist1b)  # class imputationList

# convert into a nested list with 2 between nests and 10 within nests
datlist3a <- miceadds::datlist2nested.datlist(datlist2a, Nimp=c(2,10) )
datlist3b <- miceadds::datlist2nested.datlist(datlist2b, Nimp=c(4,5) )

## End(Not run)

Converting an Object of class amelia

Description

This function converts a list of multiply imputed data sets to an object of class amelia.

Usage

datlist2Amelia(datlist)

Arguments

datlist

List of multiply imputed data sets or an object of class mids

Value

An object of class amelia

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Imputation of NHANES data using mice package
#############################################################################

library(mice)
library(Amelia)

data(nhanes,package="mice")
set.seed(566)  # fix random seed

# imputation with mice
imp <- mice::mice(nhanes, m=7)

# conversion to amelia object
amp <- miceadds::datlist2Amelia(datlist=imp)
str(amp)
plot(amp)
print(amp)
summary(amp)

## End(Not run)

Converting a List of Multiply Imputed Data Sets into a mids Object

Description

This function converts a list of multiply imputed data sets to a mice::mids object.

Usage

datlist2mids(dat.list, progress=FALSE)
datalist2mids(dat.list, progress=FALSE)

Arguments

dat.list

List of multiply imputed data sets or an object of class imputationList (see mitools::imputationList )

progress

An optional logical indicating whether conversion process be displayed

Value

An object of class mids

See Also

See mice::as.mids for converting a multiply imputed dataset in long format into a mids object.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Imputation of NHANES data using Amelia package
#############################################################################

library(mice)
library(Amelia)

data(nhanes,package="mice")
set.seed(566)  # fix random seed

# impute 10 datasets using Amelia
a.out <- Amelia::amelia(x=nhanes, m=10)
# plot of observed and imputed data
plot(a.out)

# convert list of multiply imputed datasets into a mids object
a.mids <- miceadds::datlist2mids( a.out$imputations )

# linear regression: apply mice functionality lm.mids
mod <- with( a.mids, stats::lm( bmi ~ age ) )
summary( mice::pool( mod ) )
  ##                    est       se         t       df     Pr(>|t|)     lo 95
  ##  (Intercept) 30.624652 2.626886 11.658158 8.406608 1.767631e-06 24.617664
  ##  age         -2.280607 1.323355 -1.723352 8.917910 1.192288e-01 -5.278451
  ##                   hi 95 nmis       fmi    lambda
  ##  (Intercept) 36.6316392   NA 0.5791956 0.4897257
  ##  age          0.7172368    0 0.5549945 0.4652567

# fit linear regression model in Zelig
library(Zelig)
mod2 <- Zelig::zelig( bmi ~ age, model="ls", data=a.out, cite=FALSE)
summary(mod2)
  ##  Model: Combined Imputations
  ##              Estimate Std.Error z value Pr(>|z|)
  ##  (Intercept)   30.625     2.627  11.658  0.00000 ***
  ##  age           -2.281     1.323  -1.723  0.08482
  ##  ---
  ##  Signif. codes:  '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# fit linear regression using mitools package
library(mitools)
datimp <- mitools::imputationList(a.out$imputations)
mod3 <- with( datimp, stats::lm( bmi ~ age ) )
summary( mitools::MIcombine( mod3 ) )
  ##  Multiple imputation results:
  ##        with(datimp, stats::lm(bmi ~ age))
  ##        MIcombine.default(mod3)
  ##                results       se    (lower     upper) missInfo
  ##  (Intercept) 30.624652 2.626886 25.304594 35.9447092     51 
  ##  age         -2.280607 1.323355 -4.952051  0.3908368     49 

## End(Not run)

Plausible Value Imputation Using a Known Measurement Error Variance (Based on Classical Test Theory)

Description

This function provides unidimensional plausible value imputation with a known measurement error variance or classical test theory (Mislevy, 1991). The reliability of the scale is estimated by Cronbach's Alpha or can be provided by the user.

Usage

draw.pv.ctt(y, dat.scale=NULL, x=NULL, samp.pars=TRUE,
      alpha=NULL, sig.e=NULL, var.e=NULL, true.var=NULL)

Arguments

y

Vector of scale scores if y should not be used.

dat.scale

Matrix of item responses

x

Matrix of covariates

samp.pars

An optional logical indicating whether scale parameters (reliability or measurement error standard deviation) should be sampled

alpha

Reliability estimate of the scale. The default of NULL means that Cronbach's alpha will be used as a reliability estimate.

sig.e

Optional vector of the standard deviation of the error. Note that it is not the error variance.

var.e

Optional vector of the variance of the error.

true.var

True score variance

Details

The linear model is assumed for drawing plausible values of a variable YY contaminated by measurement error. Assuming Y=θ+eY=\theta + e and a linear regression model for θ\theta

θ=Xβ+ϵ\theta=\bold{X} \beta + \epsilon

(plausible value) imputations from the posterior distribution P(θ∣Y,X)P( \theta | Y, \bold{X} ) are drawn. See Mislevy (1991) for details.

Value

A vector with plausible values

Note

Plausible value imputation is also labeled as multiple overimputation (Blackwell, Honaker & King, 2011).

References

Blackwell, M., Honaker, J., & King, G. (2011). Multiple overimputation: A unified approach to measurement error and missing data. Technical Report.

Mislevy, R. J. (1991). Randomization-based inference about latent variables from complex samples. Psychometrika, 56(2), 177-196. doi:10.1007/BF02294457

See Also

See also sirt::plausible.value.imputation.raschtype for plausible value imputation.

Plausible value imputations can be conducted in mice using the imputation method mice.impute.plausible.values.

Plausible values can be drawn in Amelia by specifying observation-level priors, see Amelia::moPrep and Amelia::amelia.

Examples

## Not run: 

#############################################################################
# SIMULATED EXAMPLE 1: Scale scores
#############################################################################

set.seed(899)
n <- 5000       # number of students
x <- round( stats::runif( n, 0,1 ) )
y <- stats::rnorm(n)
# simulate true score theta
theta <- .6 + .4*x + .5 * y + stats::rnorm(n)
# simulate observed score by adding measurement error
sig.e <- rep( sqrt(.40), n )
theta_obs <- theta + stats::rnorm( n, sd=sig.e)

# calculate alpha
( alpha <- stats::var( theta ) / stats::var( theta_obs ) )
# [1] 0.7424108
#=> Ordinarily, sig.e or alpha will be known, assumed or estimated by using items,
#    replications or an appropriate measurement model.

# create matrix of predictors
X <- as.matrix( cbind(x, y ) )

# plausible value imputation with scale score
imp1 <- miceadds::draw.pv.ctt( y=theta_obs, x=X, sig.e=sig.e )
# check results
stats::lm( imp1 ~ x + y )

# imputation with alpha as an input
imp2 <- miceadds::draw.pv.ctt( y=theta_obs, x=X, alpha=.74 )
stats::lm( imp2 ~ x + y )

#--- plausible value imputation in Amelia package
library(Amelia)

# define data frame
dat <- data.frame( "x"=x, "y"=y, "theta"=theta_obs )
# generate observation-level priors for theta
priors <- cbind( 1:n, 3, theta_obs, sig.e )
             # 3 indicates column index for theta
overimp <- priors[,1:2]
# run Amelia
imp <- Amelia::amelia( dat, priors=priors, overimp=overimp, m=10)
# create object of class datlist and evaluate results
datlist <- miceadds::datlist_create( imp$imputations )
withPool_MI( with( datlist, stats::var(theta) ) )
stats::var(theta)       # compare with true variance
mod <- with( datlist,  stats::lm( theta ~ x + y ) )
mitools::MIcombine(mod)

## End(Not run)

Some Functionality for Strings and File Names

Description

The function filename_split splits a file name into parts.

The function string_extract_part extracts a part of a string.

The function string_to_matrix converts a string into a matrix.

Usage

filename_split(file_name, file_sep="__", file_ext=".")
filename_split_vec( file_names, file_sep="__", file_ext=".")

string_extract_part( vec, part=1, sep="__", remove_empty=TRUE )

string_to_matrix(x, rownames=NULL, col_elim=NULL, as_numeric=FALSE,
               diag_val=NULL, extend=FALSE, col1_numeric=FALSE, split=" ")

Arguments

file_name

File name

file_names

File names

file_sep

Separator within file name

file_ext

Separator for file extension

vec

Vector with strings

part

Integer indicating the part of the string to be selected

sep

String separator

remove_empty

Logical indicating whether empty entries (" "") should be removed.

x

String vector

rownames

Column index for row names

col_elim

Indices for elimination of columns

as_numeric

Logical indicating whether numeric conversion is requested

diag_val

Optional values for inclusion in diagonal of matrix

extend

Optional indicating whether numeric matrix should be extended to become a symmetric matrix

col1_numeric

Logical indicating whether second column is selected in such a way that it has to be always a numeric (see Example 5)

split

String used for splitting

Value

List with components of the file name (see Examples).

See Also

files_move

Examples

#############################################################################
# EXAMPLE 1: Demonstration example for filename_split
#############################################################################

# file name
file_name <- "pisa_all_waves_invariant_items_DATA_ITEMS_RENAMED__DESCRIPTIVES__2016-10-12_1000.csv"

# apply function
miceadds::filename_split( file_name )
  ##  $file_name
  ##  [1] "pisa_all_waves_invariant_items_DATA_ITEMS_RENAMED__DESCRIPTIVES__2016-10-12_1000.csv"
  ##  $stem
  ##  [1] "pisa_all_waves_invariant_items_DATA_ITEMS_RENAMED__DESCRIPTIVES"
  ##  $suffix
  ##  [1] "2016-10-12_1000"
  ##  $ext
  ##  [1] "csv"
  ##  $main
  ##  [1] "pisa_all_waves_invariant_items_DATA_ITEMS_RENAMED__DESCRIPTIVES.csv"

#############################################################################
# EXAMPLE 2: Example string_extract_part
#############################################################################

vec <- c("ertu__DES", "ztu__DATA", "guzeuue745_ghshgk34__INFO", "zzu78347834_ghghwuz")

miceadds::string_extract_part( vec=vec, part=1, sep="__" )
miceadds::string_extract_part( vec=vec, part=2, sep="__" )
  ##  > miceadds::string_extract_part( vec=vec, part=1, sep="__" )
  ##  [1] "ertu"                "ztu"                 "guzeuue745_ghshgk34"
  ##  [4] "zzu78347834_ghghwuz"
  ##  > miceadds::string_extract_part( vec=vec, part=2, sep="__" )
  ##  [1] "DES"  "DATA" "INFO" NA

## Not run: 
#############################################################################
# EXAMPLE 3: Reading descriptive information from published articles
#############################################################################
data(data.ma08)
library(stringr)

#**** reading correlations (I)
dat <- data.ma08$mat1
miceadds::string_to_matrix(dat, rownames=2, col_elim=c(1,2))

#**** reading correlations including some processing (II)
dat0 <- data.ma08$mat2
dat <- dat0[1:14]

# substitute "*"
dat <- gsub("*", "", dat, fixed=TRUE )

# replace blanks in variable names
s1 <- stringr::str_locate(dat, "[A-z] [A-z]")
start <- s1[,"start"] + 1
for (ss in 1:length(start) ){
    if ( ! is.na( start[ss] ) ){
        substring( dat[ss], start[ss], start[ss] ) <- "_"
    }
}

# character matrix
miceadds::string_to_matrix(dat)
# numeric matrix containing correlations
miceadds::string_to_matrix(dat, rownames=2, col_elim=c(1,2), as_numeric=TRUE, diag_val=1,
           extend=TRUE )
#** reading means and SDs
miceadds::string_to_matrix(dat0[ c(15,16)], rownames=1, col_elim=c(1), as_numeric=TRUE )

#**** reading correlations (III)
dat <- data.ma08$mat3
dat <- gsub(" age ", "_age_", dat, fixed=TRUE )
miceadds::string_to_matrix(dat, rownames=2, col_elim=c(1,2), as_numeric=TRUE, diag_val=1,
       extend=TRUE )

#**** reading correlations (IV)
dat <- data.ma08$mat4 <- dat0

# remove spaces in variable names
dat <- gsub(" age ", "_age_", dat, fixed=TRUE )
s1 <- stringr::str_locate_all(dat, "[A-z,.] [A-z]")
NL <- length(dat)
for (ss in 1:NL ){
    NR <- nrow(s1[[ss]])
    if (NR>1){
        start <- s1[[ss]][2,1]+1
        if ( ! is.na( start ) ){
            substring( dat[ss], start, start ) <- "_"
        }
    }
}

miceadds::string_to_matrix(dat, rownames=2, col_elim=c(1,2), as_numeric=TRUE, diag_val=1,
     extend=TRUE )

#############################################################################
# EXAMPLE 4: Input string of length one
#############################################################################


pm0 <- "
0.828
0.567 0.658
0.664 0.560 0.772
0.532 0.428 0.501 0.606
0.718 0.567 0.672 0.526 0.843"

miceadds::string_to_matrix(x=pm0, as_numeric=TRUE, extend=TRUE)

#############################################################################
# EXAMPLE 5: String with variable names and blanks
#############################################################################

tab1 <- "
Geometric Shapes .629 .021 (.483) -.049 (.472)
Plates .473 .017 (.370) .105 (.405)
Two Characteristics .601 .013 (.452) -.033 (.444)
Crossing Out Boxes .597 -.062 (.425) -.036 (.445)
Numbers/Letters .731 .004 (.564) .003 (.513)
Numbers/Letters mixed .682 .085 (.555) .082 (.514)"

miceadds::string_to_matrix(x=tab1, col1_numeric=TRUE)

## End(Not run)

Moves Files from One Directory to Another Directory

Description

Moves older (defined in alphanumeric order) files from one directory to another directory. If directories do not exist, they will be automatically created.

Usage

files_move(path1, path2, file_sep="__", pattern=NULL, path2_name="__ARCH")

Arguments

path1

Original directory

path2

Target directory in which the files should be moved

file_sep

Separator for files

pattern

Pattern in file names to be searched for

path2_name

Part of the name of path2 if argument path2 is missing. If path2 is not provided, it has to be a subdirectory of path1.

See Also

filename_split

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Move older files in '__ARCHIVE' directory
#############################################################################

# specify path
path1 <- "p:/IPN/Projects/PISA/Trend_2015/2__Data/All_Waves/"
# specify target directory which is an archive
path2 <- file.path( path1, "__ARCHIVE" )
# move files
files_move( path1, path2 )

## End(Not run)

Simulating Univariate Data from Fleishman Power Normal Transformations

Description

Simulates univariate non-normal data by using Fleishman power transformations (Fleishman, 1978; Demirtas & Hedeker, 2007).

Usage

fleishman_sim(N=1, coef=NULL, mean=0, sd=1, skew=0, kurt=0)

fleishman_coef(mean=0, sd=1, skew=0, kurt=0)

Arguments

N

Number of simulated values

coef

Optional list containing coefficients of Fleishman polynomial estimated by fleishman_coef.

mean

Mean

sd

Standard deviation

skew

Skewness

kurt

(Excess) kurtosis

Details

For Z∼N(0,1)Z \sim N(0,1), the Fleishman power normal variable XX is defined as X=a+bZ+cZ2+dZ3X=a + bZ + cZ^2 + d Z^3.

Value

Vector of simulated values (fleishman_sim) or list of coefficients (fleishman_coef).

References

Demirtas, H., & Hedeker, D. (2008). Imputing continuous data under some non-Gaussian distributions. Statistica Neerlandica, 62(2), 193-205. doi:10.1111/j.1467-9574.2007.00377.x

Fleishman, A. I. (1978). A method for simulating non-normal distributions. Psychometrika, 43(4), 521-532. doi:10.1007/BF02293811

See Also

See also the BinOrdNonNor::Fleishman.coef.NN function in the BinOrdNonNor package.

See the nnig_sim function for simulating a non-normally distributed multivariate variables.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Simulating values with Fleishman polynomial
#############################################################################

#* define mean, standard deviation, skewness and kurtosis
mean <- .75
sd <- 2
skew <- 1
kurt <- 3

#* compute coefficients of Fleishman polynomial
coeff <- miceadds::fleishman_coef(mean=mean, sd=sd, skew=skew, kurt=kurt)
print(coeff)

# sample size
N <- 1000
set.seed(2018)
#* simulate values based on estimated coefficients
X <- miceadds::fleishman_sim(N=N, coef=coeff)
#* simulate values based on input of moments
X <- miceadds::fleishman_sim(N=N, mean=mean, sd=sd, skew=skew, kurt=kurt)

## End(Not run)

R Utilities: Vector Based Versions of grep

Description

These functions slightly extend the usage of grep but it is extended to a vector argument.

Usage

grep.vec(pattern.vec, x, operator="AND", ...)

grepvec( pattern.vec, x, operator="AND", value=FALSE, ...)

grep_leading( pattern, x, value=FALSE )

grepvec_leading( patternvec, x, value=FALSE )

Arguments

pattern.vec

String which should be looked for in vector x

x

A character vector

operator

An optional string. The default argument "AND" searches all entries in x which contain all elements of pattern.vec. If operator is different from the default, then the "OR" logic applies, i.e. the functions searches for vector entries which contain at least one of the strings in pattern.vec.

pattern

String

patternvec

Vector of strings

value

Logical indicating whether indices or values are requested

...

Arguments to be passed to base::grep (e.g., fixed=TRUE)

Examples

#############################################################################
# EXAMPLE 1: Toy example
#############################################################################

vec <- c("abcd", "bcde", "aedf", "cdf" )
# search for entries in vec with contain 'a' and 'f'
#  -> operator="AND"
grep.vec( pattern.vec=c("a","f"), x=vec )
  ##   $x
  ##   [1] "aedf"
  ##   $index.x
  ##   [1] 3

grepvec( pattern.vec=c("a","f"), x=vec, value=TRUE)
grepvec( pattern.vec=c("a","f"), x=vec, value=FALSE)

# search for entries in vec which contain 'a' or 'f'
grep.vec( pattern.vec=c("a","f"), x=vec, operator="OR")
  ##   $x
  ##   [1] "abcd" "aedf" "cdf"
  ##   $index.x
  ##   [1] 1 3 4

Calculation of Groupwise Descriptive Statistics for Matrices

Description

Calculates some groupwise descriptive statistics.

Usage

GroupMean(data, group, weights=NULL, extend=FALSE, elim=FALSE)

GroupSum(data, group, weights=NULL, extend=FALSE)

GroupSD(data, group, weights=NULL, extend=FALSE)

# group mean of a variable
gm(y, cluster, elim=FALSE)

# centering within clusters
cwc(y, cluster)

Arguments

data

A numeric data frame

group

A vector of group identifiers

weights

An optional vector of sample weights

extend

Optional logical indicating whether the group means (or sums) should be extended to the original dimensions of the dataset.

elim

Logical indicating whether a case in a row should be removed from the calculation of the mean in a cluster

y

Variable

cluster

Cluster identifier

Value

A data frame or a vector with groupwise calculated statistics

See Also

mitml::clusterMeans

base::rowsum, stats::aggregate, stats::ave

Examples

## Not run: 

#############################################################################
# EXAMPLE 1: Group means and standard deviations for data.ma02
#############################################################################

data(data.ma02, package="miceadds" )
dat <- data.ma02[[1]] # select first dataset

#--- group means for read and math
GroupMean( dat[, c("read","math") ], group=dat$idschool )
# using rowsum
a1 <- base::rowsum( dat[, c("read","math") ], dat$idschool )
a2 <- base::rowsum( 1+0*dat[, c("read","math") ], dat$idschool )
(a1/a2)[1:10,]
# using aggregate
stats::aggregate(  dat[, c("read","math") ], list(dat$idschool), mean )[1:10,]

#--- extend group means to original dataset
GroupMean( dat[, c("read","math") ], group=dat$idschool, extend=TRUE )
# using ave
stats::ave( dat[, "read" ], dat$idschool  )
stats::ave( dat[, "read" ], dat$idschool, FUN=mean )

#--- group standard deviations
GroupSD( dat[, c("read","math") ], group=dat$idschool)[1:10,]
# using aggregate
stats::aggregate(  dat[, c("read","math") ], list(dat$idschool), sd )[1:10,]

#############################################################################
# EXAMPLE 2: Calculating group means and group mean centering
#############################################################################

data(data.ma07, package="miceadds")
dat <- data.ma07

# compute group means
miceadds::gm( dat$x1, dat$id2 )
# centering within clusters
miceadds::cwc( dat$x1, dat$id2 )

# evaluate formula with model.matrix
X <- model.matrix( ~ I( miceadds::cwc(x1, id2) ) + I( miceadds::gm(x1,id2) ), data=dat )
head(X)

## End(Not run)

Indicator Function for Analyzing Coverage

Description

Indicator function for analyzing coverage. The output indicates whether a value lies within a computed confidence interval.

Usage

in_CI(est, se, true, level=0.95, df=Inf)

Arguments

est

Vector of estimates

se

Vector of standard errors

true

Vector of true parameters

level

Confidence level

df

Degrees of freedom for tt distribution. The default corresponds to the normal distribution.

Value

Logical vector

Examples

#############################################################################
# EXAMPLE 1: Toy example
#############################################################################

#-- simulate estimates and standard errors
set.seed(987)
n <- 10
est <- stats::rnorm( n, sd=1)
se <- stats::runif( n, 0, .7 )
level <- .95
true <- 0

#-- apply coverage function
in_ci <- miceadds::in_CI( est, se, true)
#-- check correctness
cbind( est, se, true, in_ci )

R Utilities: Include an Index to a Data Frame

Description

This function includes an index variable to a data frame in the first column.

Usage

index.dataframe(data,systime=FALSE)

Arguments

data

Data frame

systime

Should system time be included in the second column of the data frame?

Examples

dfr <- matrix( 2*1:12-3, 4,3 )
colnames(dfr) <- paste0("X",1:ncol(dfr))
index.dataframe( dfr)
  ##     index X1 X2 X3
  ##   1     1 -1  7 15
  ##   2     2  1  9 17
  ##   3     3  3 11 19
  ##   4     4  5 13 21
index.dataframe( dfr, systime=TRUE)
  ##     index         file_created X1 X2 X3
  ##   1     1  2013-08-22 10:26:28 -1  7 15
  ##   2     2  2013-08-22 10:26:28  1  9 17
  ##   3     3  2013-08-22 10:26:28  3 11 19
  ##   4     4  2013-08-22 10:26:28  5 13 21

Converts a jomo Data Frame in Long Format into a List of Datasets or an Object of Class mids

Description

Converts a jomo data frame in long format into a list of datasets or an object of class mids.

Usage

jomo2datlist(jomo.dataframe, variable="Imputation")

jomo2mids(jomo.dataframe, variable="Imputation")

Arguments

jomo.dataframe

Data frame generated in jomo package

variable

Variable name for imputation index

Value

List of multiply imputed datasets

See Also

See the jomo package.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Dataset nhanes | jomo imputation and conversion into a data list
#############################################################################

data(nhanes, package="mice")
dat <- nhanes

# impute under multivariate normal model in jomo
imp1 <- jomo::jomo1con(Y=dat, nburn=100, nbetween=10, nimp=5)
# convert into a list of datasets
datlist1 <- miceadds::jomo2datlist(imp1)
# convert into mids object
datlist2 <- miceadds::jomo2datlist(imp1)

## End(Not run)

Kernel PLS Regression

Description

Fits a PLS regression model with the kernel algorithm (Dayal & Macgregor, 1997).

Usage

kernelpls.fit2(X, Y, ncomp)

## S3 method for class 'kernelpls.fit2'
predict(object,X, ...)

Arguments

X

Matrix of regressors

Y

Vector of a univariate outcome

ncomp

Number of components to be extracted

object

Object of class kernelpls.fit2

...

Further arguments to be passed

Value

The same list as in {pls::kernelpls.fit} is produced.

In addition, R2R^2 measures are contained in R2.

Author(s)

This code is a Rcpp translation of the original pls::kernelpls.fit function from the pls package (see Mevik & Wehrens, 2007).

References

Dayal, B., & Macgregor, J. F. (1997). Improved PLS algorithms. Journal of Chemometrics, 11(1), 73-85.

Mevik, B. H., & Wehrens, R. (2007). The pls package: Principal component and partial least squares regression in R. Journal of Statistical Software, 18, 1-24. doi:10.18637/jss.v018.i02

See Also

See the pls package for further estimation algorithms.

Examples

## Not run: 
#############################################################################
# SIMULATED EXAMPLE 1: 300 cases on 100 variables
#############################################################################
set.seed(789)
library(mvtnorm)

N <- 300        # number of cases
p <- 100        # number of predictors
rho1 <- .6      # correlations between predictors

# simulate data
Sigma <- base::diag(1-rho1,p) + rho1
X <- mvtnorm::rmvnorm( N, sigma=Sigma )
beta <- base::seq( 0, 1, len=p )
y <- ( X %*% beta )[,1] + stats::rnorm( N, sd=.6 )
Y <- base::matrix(y,nrow=N, ncol=1 )

# PLS regression
res <- miceadds::kernelpls.fit2( X=X, Y=Y, ncomp=20 )

# predict new scores
Xpred <- predict( res, X=X[1:10,] )

#############################################################################
# EXAMPLE 2: Dataset yarn from pls package
#############################################################################

# use kernelpls.fit from pls package
library(pls)
data(yarn,package="pls")
mod1 <- pls::kernelpls.fit( X=yarn$NIR, Y=yarn$density, ncomp=10 )
# use kernelpls.fit2 from miceadds package
Y <- base::matrix( yarn$density, ncol=1 )
mod2 <- miceadds::kernelpls.fit2( X=yarn$NIR, Y=Y, ncomp=10 )

## End(Not run)

R Utilities: Loading a Package or Installation of a Package if Necessary

Description

Loads packages specified in vector pkg. If some packages are not yet installed, they will be automatically installed by this function using install.packages.

Usage

library_install( pkg, ... )

Arguments

pkg

Vector with package names

...

Further arguments to be passed to install.packages

Examples

## Not run: 
# try to load packages PP and MCMCglmm
library_install( pkg=c("PP", "MCMCglmm") )

## End(Not run)

Cluster Robust Standard Errors for Linear Models and General Linear Models

Description

Computes cluster robust standard errors for linear models (stats::lm) and general linear models (stats::glm) using the multiwayvcov::vcovCL function in the sandwich package.

Usage

lm.cluster(data, formula, cluster, weights=NULL, subset=NULL )

glm.cluster(data, formula, cluster, weights=NULL, subset=NULL, family="gaussian" )

## S3 method for class 'lm.cluster'
summary(object,...)
## S3 method for class 'glm.cluster'
summary(object,...)

## S3 method for class 'lm.cluster'
coef(object,...)
## S3 method for class 'glm.cluster'
coef(object,...)

## S3 method for class 'lm.cluster'
vcov(object,...)
## S3 method for class 'glm.cluster'
vcov(object,...)

Arguments

data

Data frame

formula

An R formula

cluster

Variable name for cluster variable contained in data or a vector with cluster identifiers

subset

Optional vector specifying a subset of observations to be used.

weights

Optional vector of weights to be used.

family

Description of the error distribution and link function to be used in the model, see stats::glm.

...

Further arguments to be passed to stats::lm and stats::glm

object

Object of class lm.cluster or glm.cluster

Value

List with following entries

lm_res

Value of stats::lm

glm_res

Value of stats::glm

vcov

Covariance matrix of parameter estimates

See Also

stats::lm, stats::glm, sandwich::vcovCL

Examples

## Not run: 

#############################################################################
# EXAMPLE 1: Cluster robust standard errors data.ma01
#############################################################################

data(data.ma01)
dat <- data.ma01

#*** Model 1: Linear regression
mod1 <- miceadds::lm.cluster( data=dat, formula=read ~ hisei + female,
               cluster="idschool" )
coef(mod1)
vcov(mod1)
summary(mod1)

# estimate Model 1, but cluster is provided as a vector
mod1b <- miceadds::lm.cluster( data=dat, formula=read ~ hisei + female,
                 cluster=dat$idschool)
summary(mod1b)

#*** Model 2: Logistic regression
dat$highmath <- 1 * ( dat$math > 600 )   # create dummy variable
mod2 <- miceadds::glm.cluster( data=dat, formula=highmath ~ hisei + female,
                cluster="idschool", family="binomial")
coef(mod2)
vcov(mod2)
summary(mod2)

#############################################################################
# EXAMPLE 2: Cluster robust standard errors for multiply imputed datasets
#############################################################################

library(mitools)
data(data.ma05)
dat <- data.ma05

# imputation of the dataset: use six imputations
resp <- dat[, - c(1:2) ]
imp <- mice::mice( resp, method="norm", maxit=3, m=6 )
datlist <- miceadds::mids2datlist( imp )

# linear regression with cluster robust standard errors
mod <- lapply(  datlist, FUN=function(data){
            miceadds::lm.cluster( data=data, formula=denote ~ migrant+ misei,
                    cluster=dat$idclass )
            }  )
# extract parameters and covariance matrix
betas <- lapply( mod, FUN=function(rr){ coef(rr) } )
vars <- lapply( mod, FUN=function(rr){ vcov(rr) } )
# conduct statistical inference
summary( miceadds::pool_mi( qhat=betas, u=vars ) )

#------ compute global F-test for hypothesis that all predictors have zero coefficient values
library(mitml)
Nimp <- 6 # number of imputations
np <- length(betas[[1]])   # number of parameters
beta_names <- names(betas[[1]])
# define vector of parameters for which constraints should be tested
constraints <- beta_names[-1]
# create input for mitml::testConstraints function
qhat <- matrix( unlist(betas), ncol=Nimp)
rownames(qhat) <- beta_names
uhat <- array( unlist(vars), dim=c(np,np,Nimp))
dimnames(uhat) <- list( beta_names, beta_names, NULL )
# compute global F-test
Ftest <- mitml::testConstraints( qhat=betas, uhat=vars, constraints=constraints )
print(Ftest)

#############################################################################
# EXAMPLE 3: Comparing miceadds::lm.cluster() and lme4::lmer()
#############################################################################

data(data.ma01, package="miceadds")
dat <- na.omit(data.ma01)

# center hisei variable
dat$hisei <- dat$hisei - mean(dat$hisei)

# define school mean hisei
dat$hisei_gm <- miceadds::GroupMean(dat$hisei, dat$idschool, extend=TRUE)[,2]
dat$cluster_size <- miceadds::GroupSum(1+0*dat$hisei, dat$idschool, extend=TRUE)[,2]
dat$hisei_wc <- dat$hisei - dat$hisei_gm



#*** Model 1a: lm, hisei with clustering
mod1a <- miceadds::lm.cluster( data=dat, formula=read~hisei, cluster="idschool" )

#*** Model 1b: lmer, hisei
mod1b <- lme4::lmer( data=dat, formula=read~hisei+(1|idschool) )

cbind( coef(mod1a), fixef(mod1b))
 ##  > cbind( coef(mod1a), fixef(mod1b))
 ##                    [,1]        [,2]
 ##  (Intercept) 509.181691 507.8684752
 ##  hisei         1.524776   0.8161745

# variance explanation
vmod1b <- r2mlm::r2mlm(mod1b)
vmod1b$Decompositions

#*** Model 2a: lm, hisei and hisei_gm with clustering
mod2a <- miceadds::lm.cluster( data=dat, formula=read~hisei_wc+hisei_gm,
                                   cluster="idschool" )

#*** Model 2b: lmer, multilevel model
mod2b <- lme4::lmer( data=dat, formula=read~hisei_wc+hisei_gm + (1|idschool) )

# variance explanation
vmod2b <- r2mlm::r2mlm(mod2b)
vmod2b$Decompositions

cbind( coef(mod2a), fixef(mod2b))
 ##  > cbind( coef(mod2a), fixef(mod2b))
 ##                     [,1]        [,2]
 ##  (Intercept) 509.1816911 508.0478629
 ##  hisei_wc      0.7503773   0.7503773
 ##  hisei_gm      5.8424012   5.5681941


## End(Not run)

Statistical Inference for Fixed and Random Structure for Fitted Models in lme4

Description

The function lmer_vcov conducts statistical inference for fixed coefficients and standard deviations and correlations of random effects structure of models fitted in the lme4 package.

The function lmer_pool applies the Rubin formula for inference for fitted lme4 models for multiply imputed datasets.

Usage

lmer_vcov(object, level=.95, use_reml=FALSE, ...)

## S3 method for class 'lmer_vcov'
summary(object, digits=4, file=NULL, ...)
## S3 method for class 'lmer_vcov'
coef(object, ...)
## S3 method for class 'lmer_vcov'
vcov(object, ...)

lmer_vcov2(object, level=.95, ...)

lmer_pool( models, level=.95, ...)
## S3 method for class 'lmer_pool'
summary(object, digits=4, file=NULL, ...)

lmer_pool2( models, level=.95, ...)

Arguments

object

Fitted object in lme4

level

Confidence level

use_reml

Logical indicating whether REML estimates should be used for variance components (if provided)

digits

Number of digits used for rounding in summary

file

Optional file name for sinking output

models

List of models fitted in lme4 for a multiply imputed dataset

...

Further arguments to be passed

Value

List with several entries:

par_summary

Parameter summary

coef

Estimated parameters

vcov

Covariance matrix of estimates

...

Further values

Author(s)

Function originally from Ben Bolker, http://rpubs.com/bbolker/varwald

See Also

lme4::lmer, mitml::testEstimates

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Single model fitted in lme4
#############################################################################

library(lme4)
data(data.ma01, package="miceadds")
dat <- na.omit(data.ma01)

#* fit multilevel model
formula <- math ~ hisei + miceadds::gm( books, idschool ) + ( 1 + books | idschool )
mod1 <- lme4::lmer( formula, data=dat, REML=FALSE)
summary(mod1)

#* statistical inference
res1 <- miceadds::lmer_vcov( mod1 )
summary(res1)
coef(res1)
vcov(res1)

#############################################################################
# EXAMPLE 2: lme4 model for multiply imputed dataset
#############################################################################

library(lme4)
data(data.ma02, package="miceadds")
datlist <- miceadds::datlist_create(data.ma02)

#** fit lme4 model for all imputed datasets
formula <- math ~ hisei + miceadds::gm( books, idschool ) + ( 1 | idschool )
models <- list()
M <- length(datlist)
for (mm in 1:M){
    models[[mm]] <- lme4::lmer( formula, data=datlist[[mm]], REML=FALSE)
}

#** statistical inference
res1 <- miceadds::lmer_pool(models)
summary(res1)

## End(Not run)

R Utilities: Loading/Reading Data Files using miceadds

Description

The function load.data is a wrapper function for loading or reading data frames or matrices.

The function load.files loads multiple files in a data frame.

Usage

load.data( filename, type=NULL, path=getwd(), load_fun=NULL, spss.default=TRUE, ...)

load.files( files, type=NULL, path=getwd(), ...)

Arguments

filename

Name of the data file (matrix or data frame). This can also be a part of the file name and the most recent file is loaded. filename can also be a vector which strings and a file is loaded which contains all the specified strings.

type

The type of file in which the data frame or matrix should be loaded. This can be Rdata (for R binary format, using load.Rdata2), csv (using utils::read.csv2), csv2 (using utils::read.csv), table (using utils::read.table; the dataset must have the file extension dat or txt), xlsx (using readxl::read_excel; or using the extension xls), sav (using foreign::read.spss), RDS. If an alternative data loading function load_fun is chosen, type must be the file extension.

path

Directory from which the dataset should be loaded. It can also be set to NULL if the absolute path is already included in filename.

load_fun

User-specified loading function

spss.default

Optional logical which is only applied for type="sav" indicating whether the arguments to.data.frame=TRUE and use.value.labels=FALSE are used.

...

Further arguments to be passed to load.Rdata2, utils::read.csv2, utils::read.csv, utils::read.table, readxl::read_excel, foreign::read.spss, or load_fun.

files

Vector of file names

See Also

See also load.Rdata for loading R data frames.

See save.Rdata and save.data for saving/writing R data frames.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Toy example
#############################################################################

# load a data frame in the file "data_s3.Rdata" and save this
# as the object "dat.s3"
dat.s3 <- miceadds::load.data( filename="data_s3.Rdata", type="Rdata" )
print(str(dat.s3))

# load text input with base::readLines() function using the 'load_fun' argument
dat <- miceadds::load.data( "my_output_", type="Rout", load_fun=readLines, path=path)

## End(Not run)

R Utilities: Loading Rdata Files in a Convenient Way

Description

These functions loads a Rdata object saved as a data frame or a matrix in the current R environment. The function load.Rdata saves the loaded object in the global environment while load.Rdata2 loads the object only specified environments. Hence, usage of load.Rdata2 instead of load.Rdata is recommended.

Usage

load.Rdata(filename, objname)

load.Rdata2(filename, path=getwd(), RDS=FALSE)

Arguments

filename

Rdata file (matrix or data frame)

objname

Object name. This object will be a global variable in R.

path

Directory from which the dataset should be loaded

RDS

logical if object is saved as an RDS object

See Also

See also save.Rdata for saving data frames in a Rdata format.

See also: base::load, base::save

Examples

## Not run: 
# load a data frame in the file "data_s3.Rdata" and save this
# as the object "dat.s3"
load.Rdata( filename="data_s3.Rdata", "dat.s3" )
head(dat.s3)

# Alternatively one can use the function
dat.s3 <- miceadds::load.Rdata2( filename="data_s3.Rdata")

## End(Not run)

Utility Functions for Working with lme4 Formula Objects

Description

Utility functions for working with lme4 formula objects. The function ma_lme4_formula_terms decomposes an lme4 formula into several parts for further processing.

Usage

ma_lme4_formula_terms(formula)

ma_lme4_formula_design_matrices(formula, data, start_index=0, formula_terms=NULL,
        only_design_matrices=FALSE)

Arguments

formula

An R formula object

data

Data frame

start_index

Starting index for cluster identifiers

formula_terms

Optional argument with processed formula terms using the function ma_lme4_formula_terms

only_design_matrices

Logical indicating whether only design matrices should be created

Value

List with several entries

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Splitting a lme4 formula
#############################################################################

#*** formula for a multilevel model
formula <- y ~ I( miceadds::cwc(x, idcluster)) + z + I(z^2) + I( miceadds::gm(x, idcluster) ) + w +
                        ( x + I(x^2) | idcluster)  + (0 +  w | idcluster ) +
                        ( 0 + I(as.factor(f)) | idcluster)
miceadds::ma_lme4_formula_terms(formula)

#*** formula for a single level model
formula2 <- y ~ I( miceadds::cwc(x, idcluster)) + z + I(z^2) + I( miceadds::gm(x, idcluster) ) + w
miceadds::ma_lme4_formula_terms(formula2)

#############################################################################
# EXAMPLE 2: Design matrices for multilevel model
#############################################################################

data(data.ma07, package="miceadds")
dat <- data.ma07

formula <- x1 ~ x2 + I( miceadds::gm( x2, id2)) + I( miceadds::gm( x2, id3)) + y1 + z1 +
                    ( x2 | id2:id3 ) + ( 1 | id3 ) + ( 0 + x2 | id3 )
res <- miceadds::ma_lme4_formula_design_matrices(formula, data=dat)
str(res)

## End(Not run)

Simulating Normally Distributed Data

Description

Some functions for normally distributed data.

The function ma_rmvnorm is like mvtnorm::rmvnorm, but allows for a covariance matrix sigma which can have zero variances.

Usage

ma_rmvnorm(n, mu=NULL, sigma, eps=1e-10)

Arguments

n

Sample size

mu

Mean vector

sigma

Covariance matrix

eps

Trimming constant for zero variances

Value

Matrix of simulated values

See Also

MASS::mvrnorm

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Two-dimensional simulation with zero variance at dimension 1
#############################################################################

sigma <- matrix( c(0,0,0,1), nrow=2, ncol=2)
miceadds::ma_rmvnorm( n=10, sigma=sigma )

## End(Not run)

Standardization of a Matrix

Description

This function performs a z-standardization for a numeric matrix. Note that in a case of a zero standard deviation all matrix entries are divided by a small number such that no NaNs occur.

Usage

ma.scale2(x, missings=FALSE)

Arguments

x

A numeric matrix in which missing values are permitted

missings

A logical indicating whether missings occur (or could occur) in the dataset

Value

A matrix

See Also

base::scale

Examples

#############################################################################
# EXAMPLE 1: z-standardization data.internet
#############################################################################

data(data.internet)
dat <- data.internet

# z-standardize all variables in this dataset
zdat <- miceadds::ma.scale2( dat, missings=TRUE )

## Not run: 
#############################################################################
# SIMULATED EXAMPLE 2: Speed comparison for many cases and many variables
#############################################################################

set.seed(9786)
# 3000 cases, 200 variables
N <- 3000
p <- 200
# simulate some data
x <- matrix( stats::rnorm( N*p ), N, p )
x <- round( x, 2 )

# compare computation times for 10 replications
B <- 10
    s1 <- Sys.time()        # scale in R
for (bb in 1:B){
    res <- scale(x)
} ; s2 <- Sys.time() ; d1 <- s2-s1

    s1 <- Sys.time()        # scale in miceadds
for (bb in 1:B){
    res1 <- miceadds::ma.scale2(x)
} ; s2 <- Sys.time() ; d2 <- s2-s1

# scale in miceadds with missing handling
    s1 <- Sys.time()
for (bb in 1:B){
    res1 <- miceadds::ma.scale2(x,missings=TRUE)
} ; s2 <- Sys.time() ; d3 <- s2-s1
d1      # scale in R
d2      # scale in miceadds (no missing handling)
d3      # scale in miceadds (with missing handling)
  ##   > d1      # scale in R
  ##   Time difference of 1.622431 secs
  ##   > d2      # scale in miceadds (no missing handling)
  ##   Time difference of 0.156003 secs
  ##   > d3      # scale in miceadds (with missing handling)
  ##   Time difference of 0.2028039 secs

## End(Not run)

Some Multivariate Descriptive Statistics for Weighted Data in miceadds

Description

Some multivariate descriptive statistics for weighted datasets in miceadds. A list of (nested) multiply imputed data sets is also allowed as input.

Usage

ma.wtd.meanNA(data, weights=NULL, vars=NULL )

ma.wtd.sdNA(data, weights=NULL, vars=NULL, method="unbiased" )

ma.wtd.covNA(data, weights=NULL, vars=NULL, method="unbiased" )

ma.wtd.corNA(data, weights=NULL, vars=NULL, method="unbiased" )

ma.wtd.skewnessNA(data, weights=NULL, vars=NULL, method="unbiased" )

ma.wtd.kurtosisNA(data, weights=NULL, vars=NULL, method="unbiased" )

ma.wtd.quantileNA( data, weights=NULL, vars=NULL, type=7,
          probs=seq(0,1,.25) )

Arguments

data

Numeric data vector or data frame or objects of one of the classes datlist, imputationList, mids, mids.1chain, nested.datlist, NestedImputationList or BIFIEdata.

weights

Optional vector of sampling weights

vars

Optional vector of variable names

method

Computation method for covariances. These amount to choosing the divisor (n−1)(n-1) (method="unbiased") instead of nn (method="ML"). See stats::cov.wt for further details.

type

Quantile type. This specification follows TAM::weighted_quantile

probs

Vector of probabilities used for calculation of quantiles.

Details

Contrary to ordinary R practice, missing values are ignored in the calculation of descriptive statistics.

ma.wtd.meanNA weighted means
ma.wtd.sdNA weighted standard deviations
ma.wtd.covNA weighted covariance matrix
ma.wtd.corNA weighted correlation matrix
ma.wtd.skewnessNA weighted skewness
ma.wtd.kurtosisNA weighted (excess) kurtosis

Value

A vector or a matrix depending on the requested statistic.

Note

If data is of class BIFIEdata and no weights are specified, sample weights are extracted from the BIFIEdata object.

See Also

Some functions for weighted statistics: stats::weighted.mean, stats::cov.wt, {Hmisc::wtd.var}, TAM::weighted_quantile, ...

See micombine.cor for statistical inference of correlation coefficients.

Examples

#############################################################################
# EXAMPLE 1: Weighted statistics for a single dataset data.ma01
#############################################################################

data(data.ma01)
dat <- as.matrix(data.ma01[,-c(1:3)])

# weighted mean
ma.wtd.meanNA( dat, weights=data.ma01$studwgt )

# weighted SD
ma.wtd.sdNA( dat, weights=data.ma01$studwgt )

# weighted covariance for selected variables
ma.wtd.covNA( dat, weights=data.ma01$studwgt, vars=c("books","hisei") )

# weighted correlation
ma.wtd.corNA( dat, weights=data.ma01$studwgt )

## Not run: 
# weighted skewness
ma.wtd.skewnessNA( dat[,"books"], weights=data.ma01$studwgt )
# compare with result in TAM
TAM::weighted_skewness( x=dat[,"books"], w=data.ma01$studwgt )

# weighted kurtosis
ma.wtd.kurtosisNA( dat, weights=data.ma01$studwgt, vars=c("books","hisei") )
# compare with TAM
TAM::weighted_kurtosis( dat[,"books"], w=data.ma01$studwgt )
TAM::weighted_kurtosis( dat[,"hisei"], w=data.ma01$studwgt )

#############################################################################
# EXAMPLE 2: Weighted statistics multiply imputed dataset
#############################################################################

library(mitools)
data(data.ma05)
dat <- data.ma05

# do imputations
resp <- dat[, - c(1:2) ]
# object of class mids
imp <- mice::mice( resp, method="norm", maxit=3, m=5 )
# object of class datlist
datlist <- miceadds::mids2datlist( imp )
# object of class imputationList
implist <- mitools::imputationList(datlist)

# weighted means
ma.wtd.meanNA(datlist)
ma.wtd.meanNA(implist)
ma.wtd.meanNA(imp)

# weighted quantiles
ma.wtd.quantileNA( implist, weights=data.ma05$studwgt, vars=c("manote","Dscore"))

#############################################################################
# EXAMPLE 3: Weighted statistics nested multiply imputed dataset
#############################################################################

library(BIFIEsurvey)
data(data.timss2, package="BIFIEsurvey" )
datlist <- data.timss2   # list of 5 datasets containing 5 plausible values

#** define imputation method and predictor matrix
data <- datlist[[1]]
V <- ncol(data)
# variables
vars <- colnames(data)
# variables not used for imputation
vars_unused <- miceadds::scan.vec("IDSTUD TOTWGT  JKZONE  JKREP" )
#- define imputation method
impMethod <- rep("norm", V )
names(impMethod) <- vars
impMethod[ vars_unused ] <- ""
#- define predictor matrix
predM <- matrix( 1, V, V )
colnames(predM) <- rownames(predM) <- vars
diag(predM) <- 0
predM[, vars_unused ] <- 0

# object of class mids.nmi
imp1 <- miceadds::mice.nmi( datlist, method=impMethod, predictorMatrix=predM,
                m=4, maxit=3 )
# object of class nested.datlist
datlist <- miceadds::mids2datlist(imp1)
# object of class NestedImputationList
imp2 <- miceadds::NestedImputationList(datlist)

# weighted correlations
vars <- c("books","ASMMAT","likesc")
ma.wtd.corNA( datlist,  vars=vars )
ma.wtd.corNA( imp2,  vars=vars )
ma.wtd.corNA( imp1,  vars=vars )

#############################################################################
# EXAMPLE 4: Multiply imputed datasets in BIFIEdata format
#############################################################################

library(BIFIEsurvey)
data(data.timss1, package="BIFIEsurvey")
data(data.timssrep, package="BIFIEsurvey")

# create BIFIEdata object
bdat <- BIFIEsurvey::BIFIE.data( data.list=data.timss1, wgt=data.timss1[[1]]$TOTWGT,
            wgtrep=data.timssrep[, -1 ] )
summary(bdat)
# create BIFIEdata object in a compact way
bdat2 <- BIFIEsurvey::BIFIE.data( data.list=data.timss1, wgt=data.timss1[[1]]$TOTWGT,
            wgtrep=data.timssrep[, -1 ], cdata=TRUE)
summary(bdat2)

# compute skewness
ma.wtd.skewnessNA( bdat, vars=c("ASMMAT", "books" ) )
ma.wtd.skewnessNA( bdat2, vars=c("ASMMAT", "books" ) )

#############################################################################
# EXAMPLE 5: Nested multiply imputed datasets in BIFIEdata format
#############################################################################

data(data.timss4, package="BIFIEsurvey")
data(data.timssrep, package="BIFIEsurvey")

# nested imputed dataset, save it in compact format
bdat <- BIFIE.data( data.list=data.timss4, wgt=data.timss4[[1]][[1]]$TOTWGT,
            wgtrep=data.timssrep[, -1 ], NMI=TRUE, cdata=TRUE )
summary(bdat)
# skewness
ma.wtd.skewnessNA( bdat, vars=c("ASMMAT", "books" ) )

## End(Not run)

Cohen's d Effect Size for Missingness Indicators

Description

Computes Cohen's d effect size indicating whether missingness on a variable is related to other variables (covariates).

Usage

mi_dstat(dat)

Arguments

dat

Data frame

Value

A matrix. Missingness indicators refer to rows and covariates to columns.

Examples

#############################################################################
# EXAMPLE 1: d effect size for missingness indicators data.ma01
#############################################################################

data(data.ma01)
dat <- data.ma01

# compute d effect sizes
md <- miceadds::mi_dstat(dat)
round( md, 3 )

Analysis of Variance for Multiply Imputed Data Sets (Using the D2D_2 Statistic)

Description

This function combines FF values from analysis of variance using the D2D_2 statistic which is based on combining χ2\chi^2 statistics (see Allison, 2001, Grund, Luedtke & Robitzsch, 2016; micombine.F, micombine.chisquare).

Usage

mi.anova(mi.res, formula, type=2)

Arguments

mi.res

Object of class mids or mids.1chain

formula

Formula for lm function. Note that this can be also a string.

type

Type for ANOVA calculations. For type=3, the car::Anova function from the car package is used.

Value

A list with the following entries:

r.squared

Explained variance R2R^2

anova.table

ANOVA table

References

Allison, P. D. (2002). Missing data. Newbury Park, CA: Sage.

Grund, S., Luedtke, O., & Robitzsch, A. (2016). Pooling ANOVA results from multiply imputed datasets: A simulation study. Methodology, 12(3), 75-88. doi:10.1027/1614-2241/a000111

See Also

This function uses micombine.F and micombine.chisquare.

See mice::pool.compare and mitml::testModels for model comparisons based on the D1D_1 statistic. The D2D_2 statistic is also included in mitml::testConstraints.

The D1D_1, D2D_2 and D3D_3 statistics are also included in the mice package in functions mice::D1, mice::D2 and mice::D3.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: nhanes2 data | two-way ANOVA
#############################################################################

library(mice)
library(car)
data(nhanes2, package="mice")
set.seed(9090)

# nhanes data in one chain and 8 imputed datasets
mi.res <- miceadds::mice.1chain( nhanes2, burnin=4, iter=20, Nimp=8 )
# 2-way analysis of variance (type 2)
an2a <- miceadds::mi.anova(mi.res=mi.res, formula="bmi ~ age * chl" )

# test of interaction effects using mitml::testModels()
mod1 <- with( mi.res, stats::lm( bmi ~ age*chl ) )
mod0 <- with( mi.res, stats::lm( bmi ~ age+chl ) )

mitml::testModels(model=mod1$analyses, null.model=mod0$analyses, method="D1")
mitml::testModels(model=mod1$analyses, null.model=mod0$analyses, method="D2")

# 2-way analysis of variance (type 3)
an2b <- miceadds::mi.anova(mi.res=mi.res, formula="bmi ~ age * chl", type=3)

#****** analysis based on first imputed dataset

# extract first dataset
dat1 <- mice::complete( mi.res$mids )

# type 2 ANOVA
lm1 <- stats::lm( bmi ~ age * chl, data=dat1 )
summary( stats::aov( lm1 ) )
# type 3 ANOVA
lm2 <- stats::lm( bmi ~ age * chl, data=dat1, contrasts=list(age=contr.sum))
car::Anova(mod=lm2, type=3)

## End(Not run)

Imputation of a Continuous or a Binary Variable From a Two-Level Regression Model using lme4 or blme

Description

The function mice.impute.2l.continuous imputes values of continuous variables with a linear mixed effects model using lme4::lmer or blme::blmer. The lme4::lmer or blme::blmer function is also used for predictive mean matching where the match is based on predicted values which contain the fixed and (sampled) random effects. Binary variables can be imputed from a two-level logistic regression model fitted with the lme4::glmer or blme::bglmer function. See Snijders and Bosker (2012) and Zinn (2013) for details.

Usage

mice.impute.2l.continuous(y, ry, x, type, intercept=TRUE,
    groupcenter.slope=FALSE, draw.fixed=TRUE, random.effects.shrinkage=1E-6,
    glmer.warnings=TRUE, blme_use=FALSE, blme_args=NULL, ... )

mice.impute.2l.pmm(y, ry, x, type, intercept=TRUE,
    groupcenter.slope=FALSE, draw.fixed=TRUE, random.effects.shrinkage=1E-6,
    glmer.warnings=TRUE, donors=5, match_sampled_pars=TRUE,
    blme_use=FALSE, blme_args=NULL, ... )

mice.impute.2l.binary(y, ry, x, type, intercept=TRUE,
    groupcenter.slope=FALSE, draw.fixed=TRUE, random.effects.shrinkage=1E-6,
    glmer.warnings=TRUE, blme_use=FALSE, blme_args=NULL, ... )

Arguments

y

Incomplete data vector of length n

ry

Vector of missing data pattern (FALSE – missing, TRUE – observed)

x

Matrix (n x p) of complete predictors.

type

Type of predictor variable. The cluster identifier has type -2, fixed effects predictors without a random slope type 1 and predictors with fixed effects and random effects have type 2. If the cluster mean should be included for a covariate, 3 should be chosen. The specification 4 includes the cluster mean, the fixed effect and the random effect.

intercept

Optional logical indicating whether the intercept should be included.

groupcenter.slope

Optional logical indicating whether covariates should be centered around group means

draw.fixed

Optional logical indicating whether fixed effects parameter should be randomly drawn

random.effects.shrinkage

Shrinkage parameter for stabilizing the covariance matrix of random effects

glmer.warnings

Optional logical indicating whether warnings from glmer should be displayed

blme_use

Logical indicating whether the blme package should be used.

blme_args

(Prior) Arguments for blme, see blme::blmer and blme::bmerDist-class.

donors

Number of donors used for predictive mean matching

match_sampled_pars

Logical indicating whether values of nearest neighbors should also be sampled in pmm imputation.

...

Further arguments to be passed

Value

A vector of length nmis=sum(!ry) with imputed values.

References

Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and advanced multilevel modeling. Thousand Oaks, CA: Sage.

Zinn, S. (2013). An imputation model for multilevel binary data. NEPS Working Paper No 31.

See Also

See mice.impute.ml.lmer for imputation for datasets with more than two levels (e.g., three-level datasets or cross-classified datasets).

Variables at a higher level (e.g. at level 2) can be imputed using 2lonly functions, for example the mice::mice.impute.2lonly.norm function in the mice package or the general mice.impute.2lonly.function function in the miceadds package which using an already defined imputation method at level 1. If a level-2 variable for 3-level data should be imputed, then mice.impute.ml.lmer can also be used to impute this variable with a two-level imputation model in which level 1 corresponds to the original level-2 units and level 2 corresponds to the original level-3 units.

See mice::mice.impute.2l.norm and mice::mice.impute.2l.pan for imputation functions in the mice package under fully conditional specification for normally distributed variables. The function mice::mice.impute.2l.norm allows for residual variances which are allowed to vary across groups while mice::mice.impute.2l.pan assumes homogeneous residual variances.

The micemd package provides further imputation methods for the mice package for imputing multilevel data with fully conditional specification. The function micemd::mice.impute.2l.jomo has similar functionality like mice::mice.impute.2l.pan and imputes normally distributed two-level data with a Bayesian MCMC approach, but relies on the jomo package instead of the pan package. The functions mice::mice.impute.2l.lmer and micemd::mice.impute.2l.glm.norm have similar functionality like mice.impute.2l.continuous and imputes normally distributed two-level data. The function {micemd::mice.impute.2l.glm.bin} has similar functionality like mice.impute.2l.binary and imputes binary two-level data.

The hmi package imputes single-level and multilevel data and is also based on fully conditional specification. The package relies on the MCMC estimation implemented in the MCMCglmm package. The imputation procedure can be run with the hmi::hmi function.

See the pan (pan::pan) and the jomo (jomo::jomo) package for joint multilevel imputation. See mitml::panImpute and mitml::jomoImpute for wrapper functions to these packages in the mitml package.

Imputation by chained equations can also be conducted in blocks of multivariate conditional distributions since mice 3.0.0 (see the blocks argument in mice::mice). The mitml::panImpute and mitml::jomoImpute functions can be used with mice::mice by specifying imputation methods "panImpute" (see mice::mice.impute.panImpute)) and "jomoImpute" (see mice::mice.impute.jomoImpute)).

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Imputation of a binary variable
#############################################################################

#--- simulate missing values
set.seed(976)
G <- 30        # number of groups
n <- 8        # number of persons per group
iccx <- .2    # intra-class correlation X
iccy <- .3    # latent intra-class correlation binary outcome
bx <- .4    # regression coefficient
threshy <- stats::qnorm(.70)  # threshold for y
x <- rep( rnorm( G, sd=sqrt( iccx) ), each=n )  +
            rnorm(G*n, sd=sqrt( 1 - iccx) )
y <- bx * x + rep( rnorm( G, sd=sqrt( iccy) ), each=n )  +
                rnorm(G*n, sd=sqrt( 1 - iccy) )
y <- 1 * ( y > threshy )
dat <- data.frame( group=100+rep(1:G, each=n), x=x, y=y )

#* create some missings
dat1 <- dat
dat1[ seq( 1, G*n, 3 ),"y" ]  <- NA
dat1[ dat1$group==2, "y" ] <- NA

#--- prepare imputation in mice
vars <- colnames(dat1)
V <- length(vars)
#* predictor matrix
predmat <- matrix( 0, nrow=V, ncol=V)
rownames(predmat) <- colnames(predmat) <- vars
predmat["y", ] <- c(-2,2,0)
#* imputation methods
impmeth <- rep("",V)
names(impmeth) <- vars
impmeth["y"] <- "2l.binary"

#** imputation with logistic regression ('2l.binary')
imp1 <- mice::mice( data=as.matrix(dat1), method=impmeth,
                predictorMatrix=predmat, maxit=1, m=5 )

#** imputation with predictive mean matching ('2l.pmm')
impmeth["y"] <- "2l.pmm"
imp2 <- mice::mice( data=as.matrix(dat1), method=impmeth,
                predictorMatrix=predmat, maxit=1, m=5 )

#** imputation with logistic regression using blme package
blme_args <- list( "cov.prior"="invwishart")
imp3 <- mice::mice( data=as.matrix(dat1), method=impmeth,
                predictorMatrix=predmat, maxit=1, m=5,
                blme_use=TRUE, blme_args=blme_args )

## End(Not run)

Arguments for mice::mice Function

Description

Defines initial arguments of imputation method and predictor matrix for mice::mice function.

Usage

mice_inits(dat, ignore=NULL)

Arguments

dat

Dataset

ignore

Vector of variables which should be ignored in imputation

Value

List with entries

method

Imputation method

predictorMatrix

Predictor matrix

See Also

See mice::make.predictorMatrix and mice::make.method for generating an initial predictor matrix and a vector of imputation methods.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Inits for mice imputation
#############################################################################

data(data.ma04, package="miceadds")
dat <- data.ma04

res <- miceadds::mice_inits(dat, ignore=c("group") )
str(res)

## End(Not run)

Multiple Imputation by Chained Equations using One Chain

Description

This function modifies the mice::mice function to multiply impute a dataset using a long chain instead of multiple parallel chains which is the approach employed in mice::mice.

Usage

mice.1chain(data, burnin=10, iter=20, Nimp=10, method=NULL,
     where=NULL, visitSequence=NULL, blots=NULL, post=NULL,
     defaultMethod=c("pmm", "logreg", "polyreg", "polr"),
     printFlag=TRUE, seed=NA, data.init=NULL, ...)

## S3 method for class 'mids.1chain'
summary(object,...)

## S3 method for class 'mids.1chain'
print(x, ...)

## S3 method for class 'mids.1chain'
plot(x, plot.burnin=FALSE, ask=TRUE, ...)

Arguments

data

Numeric matrix

burnin

Number of burn-in iterations

iter

Total number of imputations (larger than burnin)

Nimp

Number of imputations

method

See mice::mice

where

See mice::mice

visitSequence

See mice::mice

blots

See mice::mice

post

See mice::mice

defaultMethod

See mice::mice

printFlag

See mice::mice

seed

See mice::mice

data.init

See mice::mice

object

Object of class mids.1chain

x

Object of class mids.1chain

plot.burnin

An optional logical indicating whether burnin iterations should be included in the traceplot

ask

An optional logical indicating a user request for viewing next plot

...

See mice::mice

Value

A list with following entries

midsobj

Objects of class mids

datlist

List of multiply imputed datasets

datalong

Original and imputed dataset in the long format

implist

List of mids objects for every imputation

chainMpar

Trace of means for all imputed variables

chainVarpar

Trace of variances for all imputed variables

Note

Multiple imputation can also be used for determining causal effects (see Example 3; Schafer & Kang, 2008).

See Also

mice::mice

Examples

## Not run: 

#############################################################################
# EXAMPLE 1: One chain nhanes data
#############################################################################

library(mice)
data(nhanes, package="mice")
set.seed(9090)

# nhanes data in one chain
imp.mi1 <- miceadds::mice.1chain( nhanes, burnin=5, iter=40, Nimp=4,
                 method=rep("norm", 4 ) )
summary(imp.mi1)       # summary of mids.1chain
plot( imp.mi1 ) # trace plot excluding burnin iterations
plot( imp.mi1, plot.burnin=TRUE ) # trace plot including burnin iterations

# select mids object
imp.mi2 <- imp.mi1$midsobj
summary(imp.mi2)    # summary of mids

# apply mice functionality lm.mids
mod <- with( imp.mi2, stats::lm( bmi ~ age ) )
summary( mice::pool( mod ) )

#############################################################################
# EXAMPLE 2: One chain (mixed data: numeric and factor)
#############################################################################

library(mice)
data(nhanes2, package="mice")
set.seed(9090)

# nhanes2 data in one chain
imp.mi1 <- miceadds::mice.1chain( nhanes2, burnin=5, iter=25, Nimp=5 )
# summary
summary( imp.mi1$midsobj )

#############################################################################
# EXAMPLE 3: Multiple imputation with counterfactuals for estimating
#            causal effects (average treatment effects)
# Schafer, J. L., & Kang, J. (2008). Average causal effects from nonrandomized
#    studies: a practical guide and simulated example.
#    Psychological Methods, 13, 279-313.
#############################################################################

data(data.ma01)
dat <- data.ma01[, 4:11]

# define counterfactuals for reading score for students with and
# without migrational background
dat$read.migrant1 <- ifelse( paste(dat$migrant)==1, dat$read, NA )
dat$read.migrant0 <- ifelse( paste(dat$migrant)==0, dat$read, NA )

# define imputation method
impmethod <- rep("pls", ncol(dat) )
names(impmethod) <- colnames(dat)

# define predictor matrix
pm <- 4*(1 - diag( ncol(dat) ) )    # 4 - use all interactions
rownames(pm) <- colnames(pm) <- colnames(dat)
pm[ c( "read.migrant0", "read.migrant1"), ] <- 0
# do not use counterfactuals for 'read' as a predictor
pm[, "read.migrant0"] <- 0
pm[, "read.migrant1"] <- 0
# define control variables for creation of counterfactuals
pm[ c( "read.migrant0", "read.migrant1"), c("hisei","paredu","female","books") ] <- 4
  ##   > pm
  ##                 math read migrant books hisei paredu female urban read.migrant1 read.migrant0
  ##   math             0    4       4     4     4      4      4     4             0             0
  ##   read             4    0       4     4     4      4      4     4             0             0
  ##   migrant          4    4       0     4     4      4      4     4             0             0
  ##   books            4    4       4     0     4      4      4     4             0             0
  ##   hisei            4    4       4     4     0      4      4     4             0             0
  ##   paredu           4    4       4     4     4      0      4     4             0             0
  ##   female           4    4       4     4     4      4      0     4             0             0
  ##   urban            4    4       4     4     4      4      4     0             0             0
  ##   read.migrant1    0    0       0     4     4      4      4     0             0             0
  ##   read.migrant0    0    0       0     4     4      4      4     0             0             0

# imputation using mice function and PLS imputation with
# predictive mean matching method 'pmm6'
imp <- mice::mice( dat, method=impmethod, predictorMatrix=pm,
            maxit=4, m=5, pls.impMethod="pmm5" )

#*** Model 1: Raw score difference
mod1 <- with( imp, stats::lm( read ~ migrant ) )
smod1 <- summary( mice::pool(mod1) )
  ##   > smod1
  ##                  est    se      t     df Pr(>|t|)  lo 95  hi 95 nmis    fmi lambda
  ##   (Intercept) 510.21 1.460 349.37 358.26        0 507.34 513.09   NA 0.1053 0.1004
  ##   migrant     -43.38 3.757 -11.55  62.78        0 -50.89 -35.87  404 0.2726 0.2498

#*** Model 2: ANCOVA - regression adjustment
mod2 <- with( imp, stats::lm( read ~ migrant + hisei + paredu + female + books) )
smod2 <- summary( mice::pool(mod2) )
  ##   > smod2
  ##                    est      se      t      df  Pr(>|t|)    lo 95   hi 95 nmis      fmi   lambda
  ##   (Intercept) 385.1506 4.12027 93.477 3778.66 0.000e+00 377.0725 393.229   NA 0.008678 0.008153
  ##   migrant     -29.1899 3.30263 -8.838   87.46 9.237e-14 -35.7537 -22.626  404 0.228363 0.210917
  ##   hisei         0.9401 0.08749 10.745  160.51 0.000e+00   0.7673   1.113  733 0.164478 0.154132
  ##   paredu        2.9305 0.79081  3.706   41.34 6.190e-04   1.3338   4.527  672 0.339961 0.308780
  ##   female       38.1719 2.26499 16.853 1531.31 0.000e+00  33.7291  42.615    0 0.041093 0.039841
  ##   books        14.0113 0.88953 15.751  154.71 0.000e+00  12.2541  15.768  423 0.167812 0.157123

#*** Model 3a: Estimation using counterfactuals
mod3a <- with( imp, stats::lm( I( read.migrant1 - read.migrant0) ~ 1 ) )
smod3a <- summary( mice::pool(mod3a) )
  ##   > smod3a
  ##                  est    se      t    df Pr(>|t|)  lo 95  hi 95 nmis    fmi lambda
  ##   (Intercept) -22.54 7.498 -3.007 4.315  0.03602 -42.77 -2.311   NA 0.9652 0.9521

#*** Model 3b: Like Model 3a but using student weights
mod3b <- with( imp, stats::lm( I( read.migrant1 - read.migrant0) ~ 1,
                        weights=data.ma01$studwgt ) )
smod3b <- summary( mice::pool(mod3b) )
  ##   > smod3b
  ##                  est    se      t  df Pr(>|t|)  lo 95  hi 95 nmis    fmi lambda
  ##   (Intercept) -21.88 7.605 -2.877 4.3  0.04142 -42.43 -1.336   NA 0.9662 0.9535

#*** Model 4: Average treatment effect on the treated (ATT, migrants)
#             and non-treated (ATN, non-migrants)
mod4 <- with( imp, stats::lm( I( read.migrant1 - read.migrant0) ~ 0 + as.factor( migrant) )   )
smod4 <- summary( mice::pool(mod4) )
  ##   > smod4
  ##                          est    se      t    df Pr(>|t|)  lo 95   hi 95 nmis    fmi lambda
  ##   as.factor(migrant)0 -23.13 8.664 -2.669  4.27 0.052182 -46.59  0.3416   NA 0.9682 0.9562
  ##   as.factor(migrant)1 -19.95 5.198 -3.837 19.57 0.001063 -30.81 -9.0884   NA 0.4988 0.4501
# ATN=-23.13 and ATT=-19.95

## End(Not run)

Imputation by Predictive Mean Matching or Normal Linear Regression with Contextual Variables

Description

This imputation method imputes a variable using linear regression with predictive mean matching as the imputation method. Including a contextual effects means that an aggregated variable at a cluster level is included as a further covariate.

Usage

mice.impute.2l.contextual.pmm(y, ry, x, type, imputationWeights=NULL,
     interactions=NULL, quadratics=NULL, pls.facs=NULL, ...)

mice.impute.2l.contextual.norm(y, ry, x, type, ridge=10^(-5),
   imputationWeights=NULL, interactions=NULL, quadratics=NULL, pls.facs=NULL, ...)

Arguments

y

Incomplete data vector of length n

ry

Vector of missing data pattern (FALSE – missing, TRUE – observed)

x

Matrix (n x p) of complete covariates.

type

Type of predictor variables. type=-2 refers to the cluster variable, type=2 denotes a variable for which also a contextual effect is included and type=1 denotes all other variables which are included as 'ordinary' predictors.

imputationWeights

Optional vector of sample weights

interactions

Vector of variable names used for creating interactions

quadratics

Vector of variable names used for creating quadratic terms

pls.facs

Number of factors used in partial least dimension reduction (if requested)

...

Further arguments to be passed

ridge

Ridge parameter in the diagonal of X′X\bold{X}'\bold{X}

Value

A vector of length nmis=sum(!ry) with imputed values.

See Also

For imputations at level 2 variables see mice::mice.impute.2lonly.norm and mice::mice.impute.2lonly.pmm.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Sequential hierarchical imputation for data.ma05 dataset
#############################################################################

data(data.ma05)
dat <- data.ma05

# define predictor matrix
predM <- mice::make.predictorMatrix(data=dat)
# exclude student IDs
predM[, "idstud"] <- 0
# define idclass as the cluster variable (type=-2)
predM[, "idclass" ] <- -2

# initialize with norm method
impMethod <- mice::make.method(data=dat)
names(impMethod) <- names( imp0$method )
impMethod[ c("idstud","idclass")] <- ""

#*****
# STUDENT LEVEL (Level 1)

# Use a random slope model for Dscore and Mscore as the imputation method.
# Here, variance homogeneity of residuals is assumed (contrary to
# the 2l.norm imputation method in the mice package).
impMethod[ c("Dscore", "Mscore") ] <- "2l.pan"
predM[ c("Dscore","Mscore"), "misei" ] <- 2    # random slopes on 'misei'
predM[, "idclass" ] <- -2

# For imputing 'manote' and 'denote' use contextual effects (i.e. cluszer means)
# of variables 'misei' and 'migrant'
impMethod[ c("denote", "manote") ] <- "2l.contextual.pmm"
predM[ c("denote", "manote"), c("misei","migrant")] <- 2

# Use no cluster variable 'idclass' for imputation of 'misei'
impMethod[ "misei"] <- "norm"
predM[ "misei", "idclass"] <- 0 # use no multilevel imputation model

# Variable migrant: contextual effects of Dscore and misei
impMethod[ "migrant"] <- "2l.contextual.pmm"
predM[ "migrant", c("Dscore",  "misei" ) ] <- 2
predM[ "migrant", "idclass" ] <- -2

#****
# CLASS LEVEL (Level 2)
# impute 'sprengel' and 'groesse' at the level of classes
impMethod[ "sprengel"] <- "2lonly.pmm"
impMethod[ "groesse"] <- "2lonly.norm"
predM[ c("sprengel","groesse"), "idclass" ] <- -2

# do imputation
imp <- mice::mice( dat, predictorMatrix=predM, m=3,  maxit=4,
           method=impMethod, paniter=100)
summary(imp)

#**** imputation model 2 with PLS dimension reduction

# define some interaction effects
interactions <- list( manote=c("migrant", "misei") )
# number of PLS factors (5 factors)
pls.facs <- list( manote=5 )

# do imputation
imp2 <- mice::mice( dat, predictorMatrix=predM, interactions=interactions,
            pls.facs=pls.facs, method=impMethod, paniter=100)
summary(imp2)

## End(Not run)

Imputation of Latent and Manifest Group Means for Multilevel Data

Description

The imputation method 2l.latentgroupmean imputes a latent group mean assuming an infinite population of subjects within a group (Grund, Luedtke & Robitzsch, 2018; see also Luedtke, Marsh, Robitzsch, Trautwein, Asparouhov & Muthen, 2008 or Croon & van Veldhoven, 2007). Therefore, unreliability of group means when treating subjects as indicators is taken into account.

The imputation method mice.impute.2l.groupmean just imputes (i.e. computes) the manifest group mean. See also mice::mice.impute.2lonly.mean.

The imputation method mice.impute.2l.groupmean.elim computes the group mean eliminating the subject under study from the calculation. Therefore, this imputation method will lead to different values of individuals within the same group.

Usage

mice.impute.2l.latentgroupmean.ml(y, ry, x, type, pls.facs=NULL,
    imputationWeights=NULL, interactions=NULL, quadratics=NULL,
    EAP=FALSE, ...)

mice.impute.2l.latentgroupmean.mcmc(y, ry, x, type, pls.facs=NULL,
    imputationWeights=NULL, interactions=NULL, quadratics=NULL,
    mcmc.burnin=100, mcmc.adapt=100, mcmc.iter=1000, draw.fixed=TRUE, EAP=FALSE, ...)

mice.impute.2l.groupmean(y, ry, x, type, grmeanwarning=TRUE, ...)

mice.impute.2l.groupmean.elim(y, ry, x, type, ...)

Arguments

y

Incomplete data vector of length n

ry

Vector of missing data pattern (FALSE – missing, TRUE – observed)

x

Matrix (n x p) of complete covariates.

type

Type of predictor variables. type=-2 refers to the cluster variable, type=2 denotes a variable for which also a (latent) group mean should be calculated. Predictors with type=1 denote all other variables.

pls.facs

Number of factors used for PLS regression (optional).

imputationWeights

Optional vector of sample weights.

interactions

Vector of variable names used for creating interactions

quadratics

Vector of variable names used for creating quadratic terms

draw.fixed

Optional logical indicating whether parameters for fixed effects should be sampled.

EAP

Logical indicating whether EAPs should be used for imputation. The default FALSE corresponds to sampling from the posterior distribution.

mcmc.burnin

Number of MCMC burn-in iterations.

mcmc.adapt

Number of MCMC iterations in adaptation phase.

mcmc.iter

Total number of MCMC iterations.

grmeanwarning

An optional logical indicating whether some group means cannot be calculated.

...

Further arguments to be passed.

Details

The imputation of the latent group mean uses the lme4::lmer function of the lme4 package for mice.impute.2l.latentgroupmean.ml and the MCMCglmm::MCMCglmm function of the MCMCglmm package for mice.impute.2l.latentgroupmean.ml. Latent group mean imputation also follows Mislevy (1991).

Value

A vector of length y containing imputed group means.

References

Croon, M. A., & van Veldhoven, M. J. (2007). Predicting group-level outcome variables from variables measured at the individual level: a latent variable multilevel model. Psychological Methods, 12(1), 45-57. doi:10.1037/1082-989X.12.1.45

Grund, S., Luedtke, O., & Robitzsch, A. (2018). Multiple imputation of missing data at level 2: A comparison of fully conditional and joint modeling in multilevel designs. Journal of Educational and Behavioral Statistics, 43(3), 316-353. doi:10.3102/1076998617738087

Luedtke, O., Marsh, H. W., Robitzsch, A., Trautwein, U., Asparouhov, T., & Muthen, B. (2008). The multilevel latent covariate model: a new, more reliable approach to group-level effects in contextual studies. Psychological Methods, 13(3), 203-229. doi:10.1037/a0012869

Mislevy, R. J. (1991). Randomization-based inference about latent variables from complex samples. Psychometrika, 56(2), 177-196. doi:10.1007/BF02294457

See Also

mice::mice.impute.2lonly.mean

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Two-level imputation data.ma05 dataset with imputation
#            of a latent group mean
#############################################################################

data(data.ma05)
dat <- data.ma05

# include manifest group mean for 'Mscore'
dat$M.Mscore <- NA
# include latent group group for 'Mscore'
dat$LM.Mscore <- NA    #=> LM: latent group mean

# define predictor matrix
predM <- mice::make.predictorMatrix(data=dat)
# exclude student ISs
predM[, "idstud"] <- 0
# idclass is the cluster identifier
predM[, "idclass" ] <- -2

# define imputation methods
impMethod <- mice::make.method(data=dat)
# initialize with norm
impMethod <- rep( "norm", length(impMethod) )
names(impMethod) <- names( imp$method )
impMethod[ c("idstud","idclass")] <- ""

#*****
# STUDENT LEVEL (Level 1)

# Use a random slope model for Dscore and Mscore as the imputation method.
# Here, variance homogeneity of residuals is assumed (contrary to
# the 2l.norm imputation method in the mice package).
impMethod[ c("Dscore", "Mscore") ] <- "2l.pan"
predM[ c("Dscore","Mscore"), "misei" ] <- 2    # random slopes on 'misei'
predM[, "idclass" ] <- -2

# For imputing 'manote' and 'denote' use contextual effects (i.e. cluster means)
# of variables 'misei' and 'migrant'
impMethod[ c("denote", "manote") ] <- "2l.contextual.pmm"
predM[ c("denote", "manote"), c("misei","migrant")] <- 2

# Use no cluster variable 'idclass' for imputation of 'misei'
impMethod[ "misei"] <- "norm"
predM[ "misei", "idclass"] <- 0 # use no multilevel imputation model

# Variable migrant: contextual effects of Dscore and misei
impMethod[ "migrant"] <- "2l.contextual.pmm"
predM[ "migrant", c("Dscore",  "misei" ) ] <- 2
predM[ "migrant", "idclass" ] <- -2

#****
# CLASS LEVEL (Level 2)
# impute 'sprengel' and 'groesse' at the level of classes
impMethod[ "sprengel"] <- "2lonly.pmm2"
impMethod[ "groesse"] <- "2lonly.norm2"
predM[ c("sprengel","groesse"), "idclass" ] <- -2

# manifest group mean for Mscore
impMethod[ "M.Mscore" ] <- "2l.groupmean"
# latent group mean for Mscore
impMethod[ "LM.Mscore" ] <- "2l.latentgroupmean.ml"
predM[ "M.Mscore", "Mscore" ] <- 2

# covariates for latent group mean of 'Mscore'
predM[ "LM.Mscore", "Mscore" ] <- 2
predM[ "LM.Mscore", c( "Dscore", "sprengel" ) ] <- 1

# do imputations
imp <- mice::mice( dat, predictorMatrix=predM, m=3,  maxit=4,
         method=impMethod, allow.na=TRUE, pan.iter=100)

## End(Not run)

Imputation at Level 2 (in miceadds)

Description

The imputation method mice.impute.2lonly.function is a general imputation function for level 2 imputation which allow any defined imputation function at level 1 in mice.

Usage

mice.impute.2lonly.function(y, ry, x, wy=NULL, type, imputationFunction,
     cluster_var, ...)

Arguments

y

Incomplete data vector of length n

ry

Vector of missing data pattern (FALSE=missing, TRUE=observed)

x

Matrix (n x p) of complete covariates. Only numeric variables are permitted for usage of this function.

wy

Logical vector of length(y) indicating at which positions imputations should be conducted.

type

Cluster identifier can be specified by -2 for aggregation. However, we recommend to use the argument cluster_var for specifying the cluster variable at Level 2. Predictors must be specified by 1.

imputationFunction

Imputation function for mice. Any imputation method which is defined at level 1 can be used for level 2 imputation.

cluster_var

Cluster identifier for Level 2 units

...

Other named arguments.

Value

A vector of length nmis with imputations.

See Also

See mice::mice.impute.2lonly.norm and the mice::mice.impute.2lonly.pmm function.

See also the jomo package (jomo::jomo2) for joint multilevel imputation of level 1 and level 2 variables.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Imputation of level 2 variables
#############################################################################

#**** Simulate some data
# x,y ... level 1 variables
# v,w ... level 2 variables

set.seed(987)
G <- 250            # number of groups
n <- 20             # number of persons
beta <- .3          # regression coefficient
rho <- .30          # residual intraclass correlation
rho.miss <- .10     # correlation with missing response
missrate <- .50     # missing proportion
y1 <- rep( stats::rnorm( G, sd=sqrt(rho)), each=n ) + stats::rnorm(G*n, sd=sqrt(1-rho))
w <- rep( round( stats::rnorm(G ), 2 ), each=n )
v <- rep( round( stats::runif( G, 0, 3 ) ), each=n )
x <-  stats::rnorm( G*n )
y <- y1 + beta  * x + .2 * w + .1 * v
dfr0 <- dfr <- data.frame( "group"=rep(1:G, each=n ), "x"=x, "y"=y,
        "w"=w, "v"=v )
dfr[ rho.miss * x + stats::rnorm( G*n, sd=sqrt( 1 - rho.miss ) ) <
                stats::qnorm(missrate), "y" ] <- NA
dfr[ rep( stats::rnorm(G), each=n ) < stats::qnorm(missrate), "w" ] <- NA
dfr[ rep( stats::rnorm(G), each=n ) < stats::qnorm(missrate), "v" ] <- NA

#* initial predictor matrix and imputation methods
predM <- mice::make.predictorMatrix(data=dfr)
impM <- mice::make.method(data=dfr)

#...
# multilevel imputation
predM1 <- predM
predM1[c("w","v","y"),"group"] <- c(0,0,-2)
predM1["y","x"] <- 1        # fixed x effects imputation
impM1 <- impM
impM1[c("y","w","v")] <- c("2l.continuous", "2lonly.function", "2lonly.function" )
# define imputation functions
imputationFunction <- list( "w"="sample", "v"="pmm5" )
# define cluster variable
cluster_var <- list( "w"="group", "v"="group" )

# impute
imp1 <- mice::mice( as.matrix(dfr), m=1, predictorMatrix=predM1, method=impM1, maxit=5,
            imputationFunction=imputationFunction, cluster_var=cluster_var )

## End(Not run)

Groupwise Imputation Function

Description

The function mice.impute.bygroup performs groupwise imputation for arbitrary imputation methods defined in mice.

Usage

mice.impute.bygroup(y, ry, x, wy=NULL, group, imputationFunction, ...)

Arguments

y

Incomplete data vector of length n

ry

Vector of missing data pattern (FALSE – missing, TRUE – observed)

x

Matrix (n x p) of complete covariates.

wy

Vector of length(y) indicating which entries should be imputed.

group

Name of grouping variable

imputationFunction

Imputation method for mice

...

More arguments to be passed to imputation function

Value

Vector of imputed values

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Cluster-specific imputation for some variables
#############################################################################

library(mice)
data( data.ma01, package="miceadds")
dat <- data.ma01

# use sub-dataset
dat <- dat[ dat$idschool <=1006, ]
V <- ncol(dat)
# create initial predictor matrix and imputation methods
predictorMatrix <- matrix( 1, nrow=V, ncol=V)
diag(predictorMatrix) <- 0
rownames(predictorMatrix) <- colnames(predictorMatrix) <- colnames(dat)
predictorMatrix[, c("idstud", "studwgt","urban" ) ] <- 0
method <- rep("norm", V)
names(method) <- colnames(dat)

#** groupwise imputation of variable books
method["books"] <- "bygroup"
# specify name of the grouping variable ('idschool') and imputation method ('norm')
group <- list( "books"="idschool" )
imputationFunction <- list("books"="norm" )

#** conduct multiple imputation in mice
imp <- mice::mice( dat, method=method, predictorMatrix=predictorMatrix,
            m=1, maxit=1, group=group, imputationFunction=imputationFunction )

#############################################################################
# EXAMPLE 2: Group-wise multilevel imputation '2l.pan'
#############################################################################

library(mice)
data( data.ma01, package="miceadds" )
dat <- data.ma01

# select data
dat <- dat[, c("idschool","hisei","books","female") ]
V <- ncol(dat)
dat <- dat[ ! is.na( dat$books), ]
# define factor variable

dat$books <- as.factor(dat$books)
# create initial predictor matrix and imputation methods
predictorMatrix <- matrix( 0, nrow=V, ncol=V)
rownames(predictorMatrix) <- colnames(predictorMatrix) <- colnames(dat)
predictorMatrix["idschool", ] <- 0
predictorMatrix[ "hisei", "idschool" ] <- -2
predictorMatrix[ "hisei", c("books","female") ] <- 1
method <- rep("", V)
names(method) <- colnames(dat)
method["hisei"] <- "bygroup"
group <- list( "hisei"="female" )
imputationFunction <- list("hisei"="2l.pan" )

#** conduct multiple imputation in mice
imp <- mice::mice( dat, method=method, predictorMatrix=predictorMatrix,
            m=1, maxit=1, group=group, imputationFunction=imputationFunction )
str(imp)

## End(Not run)

Imputation of a Categorical Variable Using Multivariate Predictive Mean Matching

Description

Imputes a categorical variable using multivariate predictive mean matching.

Usage

mice.impute.catpmm(y, ry, x, donors=5, ridge=10^(-5), ...)

Arguments

y

Incomplete data vector of length n

ry

Vector of missing data pattern (FALSE – missing, TRUE – observed)

x

Matrix (n x p) of complete covariates.

donors

Number of donors used for random sampling of nearest neighbors in imputation

ridge

Numerical constant used for avioding collinearity issues. Noise is added to covariates.

...

Further arguments to be passed

Details

The categorical outcome variable is recoded as a vector of dummy variables. A multivariate linear regression is specified for computing predicted values. The L1 distance (i.e., sum of absolute deviations) is utilized for predictive mean matching. Predictive mean matching for categorical variables has been proposed by Meinfelder (2009) using a multinomial regression instead of ordinary linear regression.

Value

A vector of length nmis=sum(!ry) with imputed values.

References

Meinfelder, F. (2009). Analysis of Incomplete Survey Data - Multiple Imputation via Bayesian Bootstrap Predictive Mean Matching. Dissertation thesis. University of Bamberg, Germany. https://fis.uni-bamberg.de/handle/uniba/213

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Imputation internat data
#############################################################################

data(data.internet, package="miceadds")
dat <- data.internet

#** empty imputation
imp0 <- mice::mice(dat, m=1, maxit=0)
method <- imp0$method
predmat <- imp0$predictorMatrix

#** define factor variable

dat1 <- dat
dat1[,1] <- as.factor(dat1[,1])
method[1] <- "catpmm"

#** impute with 'catpmm''
imp <- mice::mice(dat1, method=method1, m=5)
summary(imp)

## End(Not run)

Imputation Using a Fixed Vector

Description

Defines a fixed vector of values for imputation of a variable. The method is particularly useful for the generation of synthetic datasets, see syn_mice (Example 1).

Usage

mice.impute.constant(y, ry, x, fixed_values, ... )

Arguments

y

Incomplete data vector of length n

ry

Vector of missing data pattern (FALSE – missing, TRUE – observed)

x

Matrix (n x p) of complete covariates.

fixed_values

Vector containing fixed values

...

More arguments to be passed to imputation function

Value

Vector of imputed values

See Also

syn.constant

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Example with fixed imputed values
#############################################################################

data(nhanes, package="mice")
dat <- nhanes

#* define methods
method <- c(age="", bmi="constant", hyp="norm", chl="pmm")
fixed_values <- list( bmi=rep(27,9) )

#* impute
imp <- mice::mice(dat, method=method, m=1, maxit=3, fixed_values=fixed_values)
table(mice::complete(imp, action=1)$bmi)

## End(Not run)

Imputation of a Variable Using Probabilistic Hot Deck Imputation

Description

Imputes a variable under a random draw from a pool of donors defined by a distance function. Uncertainty with respect to the creation of donor pools is introduced by drawing a Bootstrap sample (approximate Bayesian Bootstrap, ABB) from observations with complete data (see Andridge & Little, 2010).

Usage

mice.impute.hotDeck(y, ry, x, donors=5, method="Mahalanobis", ...)

Arguments

y

Incomplete data vector of length n

ry

Vector of missing data pattern (FALSE – missing, TRUE – observed)

x

Matrix (n x p) of complete covariates.

donors

Number of donors used for random sampling of nearest neighbors in imputation

method

Method used for computation of weights in distance function. Options are the Mahalanobis metric (method="Mahalanobis"), weighted by correlations of covariates with the outcome (method="cor") and weighting by linear regression coefficients (method="lm").

...

Further arguments to be passed

Value

A vector of length nmis=sum(!ry) with imputed values.

References

Andridge, R. R., & and Little, R. J. A. (2010). A review of hot deck imputation for survey non-response. International Statistical Review, 78(1), 40-64. doi:10.1111/j.1751-5823.2010.00103.x

See Also

See also the packages hot.deck and HotDeckImputation.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Hot deck imputation NHANES dataset
#############################################################################

data(nhanes, package="mice")
dat <- nhanes

#*** prepare imputation method
vars <- colnames(dat)
V <- length(vars)
impMethod <- rep("hotDeck", V)
method <- "cor"

#*** imputation in mice
imp <- mice::mice( data=as.matrix(dat), m=1, method=impMethod, method=method )
summary(imp)

## End(Not run)

Wrapper Function to Imputation Methods in the imputeR Package

Description

The imputation methods "imputeR.lmFun" and "imputeR.cFun" provide interfaces to imputation methods in the imputeR package for continuous and binary data, respectively.

Usage

mice.impute.imputeR.lmFun(y, ry, x, Fun=NULL, draw_boot=TRUE, add_noise=TRUE, ... )

mice.impute.imputeR.cFun(y, ry, x, Fun=NULL, draw_boot=TRUE, ... )

Arguments

y

Incomplete data vector of length n

ry

Vector of missing data pattern (FALSE – missing, TRUE – observed)

x

Matrix (n x p) of complete covariates.

Fun

Name of imputation functions in imputeR package, e.g., imputeR::ridgeR, see Details.

draw_boot

Logical indicating whether a Bootstrap sample is taken for sampling model parameters

add_noise

Logical indicating whether empirical residuals should be added to predicted values

...

Further arguments to be passed

Details

Methods for continuous variables:

imputeR::CubistR, imputeR::glmboostR, imputeR::lassoR, imputeR::pcrR, imputeR::plsR, imputeR::ridgeR, imputeR::stepBackR, imputeR::stepBothR, imputeR::stepForR

Methods for binary variables: imputeR::gbmC, imputeR::lassoC, imputeR::ridgeC, imputeR::rpartC, imputeR::stepBackC, imputeR::stepBothC, imputeR::stepForC

Value

A vector of length nmis=sum(!ry) with imputed values.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Example with binary and continuous variables
#############################################################################

library(mice)
library(imputeR)

data(nhanes, package="mice")
dat <- nhanes
dat$hyp <- as.factor(dat$hyp)

#* define imputation methods
method <- c(age="",bmi="norm",hyp="imputeR.cFun",chl="imputeR.lmFun")
Fun <- list( hyp=imputeR::ridgeC, chl=imputeR::ridgeR)

#** do imputation
imp <- mice::mice(dat1, method=method, maxit=10, m=4, Fun=Fun)
summary(imp)

## End(Not run)

Multilevel Imputation Using lme4

Description

This function is a general imputation function based on the linear mixed effects model as implemented in lme4::lmer. The imputation model can be hierarchical or non-hierarchical and can be written in a general form y=Xβ+∑v=1VZvuv\bold{y}=\bold{X} \bold{\beta} + \sum_{v=1}^V \bold{Z}_v \bold{u}_v for VV multivariate random effects. While predictors can be selected by specifying the rows in the predictor matrix in mice::mice (i.e., modification of type), the level of random effects can be specified with levels_id and random slopes can be selected with random_slopes.

The function mice.impute.ml.lmer allows the imputation of variables at arbitrary levels. The corresponding level can be specified with levels_id. All predictor variables are aggregated to the corresponding level of the variable to be imputed.

Several strategies for the specification of the design matrix X\bold{X} are accommodated. By default, predictors at a lower level are automatically aggregated to the higher level and included as further predictors to maintain the multilevel structure in the data (Grund, Luedtke & Robitzsch, 2018; Enders, Mistler & Keller, 2016; argument aggregate_automatically=TRUE). Further, interactions and quadratic effects can be defined by respective arguments interactions and quadratics. The dimension of the matrix of predictors can be reduced by applying partial least squares regression, see mice.impute.pls.

The function now only allows continuous data (model="continuous"), ordinal data (model="pmm") or binary data (model="pmm" or model="binary"). Nominal variables with missing values cannot (yet) be handled.

Usage

mice.impute.ml.lmer(y, ry, x, type, levels_id, variables_levels=NULL,
    random_slopes=NULL, aggregate_automatically=TRUE, intercept=TRUE,
    groupcenter.slope=FALSE, draw.fixed=TRUE, random.effects.shrinkage=1e-06,
    glmer.warnings=TRUE, model="continuous", donors=3, match_sampled_pars=FALSE,
    blme_use=FALSE, blme_args=NULL, pls.facs=0, interactions=NULL,
    quadratics=NULL, min.int.cor=0, min.all.cor=0, pls.print.progress=FALSE,
    group_index=NULL, iter_re=0, ...)

Arguments

y

Incomplete data vector of length n

ry

Vector of missing data pattern (FALSE – missing, TRUE – observed)

x

Matrix (n ×\times p) of complete predictors.

type

Predictor variables associated with fixed effects.

levels_id

Specification of the level identifiers (see Examples)

variables_levels

Specification of the level of variables (see Examples)

random_slopes

Specification of random slopes (see Examples)

aggregate_automatically

Logical indicating whether aggregated effects at higher levels are automatically included.

intercept

Optional logical indicating whether the intercept should be included.

groupcenter.slope

Optional logical indicating whether covariates should be centered around group means

draw.fixed

Optional logical indicating whether fixed effects parameter should be randomly drawn

random.effects.shrinkage

Shrinkage parameter for stabilizing the covariance matrix of random effects

glmer.warnings

Optional logical indicating whether warnings from glmer should be displayed

model

Type of model. Can be "continuous" for normally distributed data, "binary" for dichotomous data specifying a logistic mixed effects model and "pmm" for predictive mean matching.

donors

Number of donors used for predictive mean matching

match_sampled_pars

Logical indicating whether values of nearest neighbors should also be sampled in pmm imputation.

blme_use

Logical indicating whether the blme package should be used.

blme_args

(Prior) Arguments for blme, see blme::blmer and blme::bmerDist-class.

pls.facs

Number of factors used in PLS dimension reduction

interactions

Specification of predictors with interaction effects

quadratics

Specification of predictors with quadratic effects

min.int.cor

Minimum absolute value of correlation with outcome for interaction effects to be retained

min.all.cor

Minimum absolute value of correlation with outcome for predictors to be retained

pls.print.progress

Logical indicating whether progress of algorithm should be displayed

group_index

Optional vector for group identifiers (internally used in mice.impute.bygroup

iter_re

Number of iterations for sampling random effects in random intercept models for continuous outcomes. Using iter_re>0 is necessary for cross-classified models with not fully balanced designs.

...

Further arguments to be passed

Value

Vector of imputed values

References

Enders, C. K., Mistler, S. A., & Keller, B. T. (2016). Multilevel multiple imputation: A review and evaluation of joint modeling and chained equations imputation. Psychological Methods, 21(2), 222-240. doi:10.1037/met0000063

Grund, S., Luedtke, O., & Robitzsch, A. (2018). Multiple imputation of multilevel data in organizational research. Organizational Research Methods, 21(1), 111-149. doi:10.1177/1094428117703686

See Also

See mice.impute.2l.continuous for two-level imputation in mice and for several links to other packages which enable multilevel imputation.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Imputation of three-level data with normally distributed residuals
#############################################################################

data(data.ma07, package="miceadds")
dat <- data.ma07

# variables at level 1 (identifier id1): x1 (some missings), x2 (complete)
# variables at level 2 (identifier id2): y1 (some missings), y2 (complete)
# variables at level 3 (identifier id3): z1 (some missings), z2 (complete)

#****************************************************************************
# Imputation model 1

#----- specify levels of variables (only relevent for variables
#      with missing values)
variables_levels <- miceadds:::mice_imputation_create_type_vector( colnames(dat), value="")
 # leave variables at lowest level blank (i.e., "")
variables_levels[ c("y1","y2") ] <- "id2"
variables_levels[ c("z1","z2") ] <- "id3"

#----- specify predictor matrix
predmat <- mice::make.predictorMatrix(data=dat)
predmat[, c("id2", "id3") ] <- 0
# set -2 for cluster identifier for level 3 variable z1
# because "2lonly" function is used
predmat[ "z1", "id3" ] <- -2

#----- specify imputation methods
method <- mice::make.method(data=dat)
method[c("x1","y1")] <- "ml.lmer"
method[c("z1")] <- "2lonly.norm"

#----- specify hierarchical structure of imputation models
levels_id <- list()
#** hierarchical structure for variable x1
levels_id[["x1"]] <- c("id2", "id3")
#** hierarchical structure for variable y1
levels_id[["y1"]] <- c("id3")

#----- specify random slopes
random_slopes <- list()
#** random slopes for variable x1
random_slopes[["x1"]] <- list( "id2"=c("x2"), "id3"=c("y1") )
# if no random slopes should be specified, the corresponding entry can be left empty
# and only a random intercept is used in the imputation model

#----- imputation in mice
imp1 <- mice::mice( dat, maxit=10, m=5, method=method,
            predictorMatrix=predmat, levels_id=levels_id,  random_slopes=random_slopes,
            variables_levels=variables_levels )
summary(imp1)

#****************************************************************************
# Imputation model 2

#----- impute x1 with predictive mean matching and y1 with normally distributed residuals
model <- list(x1="pmm", y1="continuous")

#----- assume only random intercepts
random_slopes <- NULL

#---- create interactions with z2 for all predictors in imputation models for x1 and y1
interactions <- list("x1"="z2", "y1"="z2")

#----- imputation in mice
imp2 <- mice::mice( dat, method=method, predictorMatrix=predmat,
                levels_id=levels_id, random_slopes=random_slopes,
                variables_levels=variables_levels, model=model, interactions=interactions)
summary(imp2)

## End(Not run)

Plausible Value Imputation using Classical Test Theory and Based on Individual Likelihood

Description

This imputation function performs unidimensional plausible value imputation if (subject-wise) measurement errors or the reliability of the scale is known (Mislevy, 1991; see also Asparouhov & Muthen, 2010; Blackwell, Honaker & King, 2011, 2017a, 2017b). The function also allows the input of an individual likelihood obtained by fitting an item response model.

Usage

mice.impute.plausible.values(y, ry, x, type, alpha=NULL,
    alpha.se=0, scale.values=NULL, sig.e.miss=1e+06,
    like=NULL, theta=NULL, normal.approx=NULL,
    pviter=15, imputationWeights=rep(1, length(y)), plausible.value.print=TRUE,
    pls.facs=NULL, interactions=NULL, quadratics=NULL, extract_data=TRUE,
    control_latreg=list( progress=FALSE, ridge=1e-5 ),  ...)

Arguments

y

Incomplete data vector of length n

ry

Vector of missing data pattern (FALSE – missing, TRUE – observed)

x

Matrix (n ×\times p) of complete covariates.

type

Type of predictor variables. type=3 refers to items belonging to a scale to be imputed. A cluster (grouping) variable is defined by type=-2. If for some predictors, the cluster means should also be included as predictors, then specify type=2 (see Imputation Model 3 of Example 1).

alpha

A known reliability estimate. An optional standard error of the estimate can be provided in alpha.se

alpha.se

Optional numeric value of the standard error of the alpha reliability estimate if in every iteration a new reliability should be sampled.

scale.values

A list consisting of scale values of scale values and its corresponding standard errors (see Example 1).

sig.e.miss

A standard error of measurement for cases with missing values on a scale

like

Individual likelihood evaluated at theta

theta

Grid of unidimensional latent variable

normal.approx

Logical indicating whether the individual posterior should be approximated by a normal distribution

pviter

Number of iterations in each imputation which should be run until the plausible values are drawn

imputationWeights

Optional vector of sample weights

plausible.value.print

An optional logical indicating whether some information about the plausible value imputation should be printed at the console

pls.facs

Number of PLS factors if PLS dimension reduction is used

interactions

Vector of variable names used for creating interactions

quadratics

Vector of variable names used for creating quadratic terms

extract_data

Logical indicating whether input data should be extracted from parent environment within mice::mice routine

control_latreg

Control arguments for TAM::tam.latreg

...

Further objects to be passed

Details

The linear model is assumed for drawing plausible values of a variable YY contaminated by measurement error. Assuming Y=θ+eY=\theta + e and a linear regression model for θ\theta

θ=Xβ+ϵ\theta=\bold{X} \beta + \epsilon

(plausible value) imputations from the posterior distribution P(θ∣Y,X)P( \theta | Y, \bold{X} ) are drawn. See Mislevy (1991) for details.

Value

A vector of length nrow(x) containing imputed plausible values.

Note

Plausible value imputation is also known as multiple overimputation (Blackwell, Honaker & King, 2016a, 2016b) which is implemented in the Amelia package, see Amelia::moPrep and Amelia::amelia.

References

Asparouhov, T., & Muthen, B. (2010). Plausible values for latent variables using Mplus. Technical Report. https://www.statmodel.com/papers.shtml

Blackwell, M., Honaker, J., & King, G. (2011). Multiple overimputation: A unified approach to measurement error and missing data. Technical Report.

Blackwell, M., Honaker, J., & King, G. (2017a). A unified approach to measurement error and missing data: Overview and applications. Sociological Methods & Research, 46(3), 303-341.

Blackwell, M., Honaker, J., & King, G. (2017b). A unified approach to measurement error and missing data: Details and extensions. Sociological Methods & Research, 46(3), 342-369.

Mislevy, R. J. (1991). Randomization-based inference about latent variables from complex samples. Psychometrika, 56, 177-196.

See Also

See TAM::tam.latreg for fitting latent regression models.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Plausible value imputation for data.ma04 | 2 scales
#############################################################################

data(data.ma04, package="miceadds")
dat <- data.ma04

# Scale 1 consists of items A1,...,A4
# Scale 2 consists of items B1,...,B5
dat$scale1 <- NA
dat$scale2 <- NA

#** inits imputation method and predictor matrix
res <- miceadds::mice_inits(dat, ignore=c("group") )
predM <- res$predictorMatrix
impMethod <- res$method
impMethod <- gsub("pmm", "norm", impMethod )

# look at missing proportions
colSums( is.na(dat) )

# redefine imputation methods for plausible value imputation
impMethod[ "scale1" ] <- "plausible.values"
predM[ "scale1",  ] <- 1
predM[ "scale1", c("A1", "A2",  "A3", "A4" ) ] <- 3
    # items corresponding to a scale should be declared by a 3 in the predictor matrix
impMethod[ "scale2" ] <- "plausible.values"
predM[,"scale2"  ] <- 0
predM[ "scale2",  c("A2","A3","A4","V6","V7") ] <- 1
diag(predM) <- 0

# use imputed scale values as predictors for V5, V6 and V7
predM[ c("V5","V6","V7"), c("scale1","scale2" ) ] <- 1
# exclude for V5, V6 and V7 the items of scales A and B as predictors
predM[ c("V5","V6","V7"), c( paste0("A",2:4), paste0("B",1:5) ) ] <- 0
# exclude 'group' as a predictor
predM[,"group"] <- 0

# look at imputation method and predictor matrix
impMethod
predM

#-------------------------------
# Parameter for imputation
#***
# scale 1 (A1,...,A4)
# known Cronbach's Alpha
alpha <- NULL
alpha <- list( "scale1"=.8 )
alpha.se <- list( "scale1"=.05 )  # sample alpha with a standard deviation of .05

#***
# scale 2 (B1,...,B5)
# means and SE's of scale scores are assumed to be known
M.scale2 <- rowMeans( dat[, paste("B",1:5,sep="")  ] )
# M.scale2[ is.na( m1) ] <- mean( M.scale2, na.rm=TRUE )
SE.scale2 <- rep( sqrt( stats::var(M.scale2,na.rm=T)*(1-.8) ), nrow(dat) )
#=> heterogeneous measurement errors are allowed
scale.values <- list( "scale2"=list( "M"=M.scale2, "SE"=SE.scale2 ) )

#*** Imputation Model 1: Imputation four using parallel chains
imp1 <- mice::mice( dat, predictorMatrix=predM, m=4, maxit=5,
          alpha.se=alpha.se, method=impMethod,  allow.na=TRUE, alpha=alpha,
          scale.values=scale.values  )
summary(imp1)

# extract first imputed dataset
dat11 <- mice::complete( imp, 1 )

#*** Imputation Model 2: Imputation using one long chain
imp2 <- miceadds::mice.1chain( dat, predictorMatrix=predM, burnin=10, iter=20, Nimp=4,
          alpha.se=alpha.se, method=impMethod,  allow.na=TRUE, alpha=alpha,
          scale.values=scale.values )
summary(imp2)

#-------------
#*** Imputation Model 3: Imputation including  group level variables

# use group indicator for plausible value estimation
predM[ "scale1", "group" ] <- -2
# V7 and B1 should be aggregated at the group level
predM[ "scale1", c("V7","B1") ] <- 2
predM[ "scale2", "group" ] <- -2
predM[ "scale2", c("V7","A1") ] <- 2

# perform single imputation (m=1)
imp <- mice::mice( dat, predictorMatrix=predM, m=1, maxit=10,
            method=impMethod,  allow.na=TRUE, alpha=alpha,
            scale.values=scale.values )
dat10 <- mice::complete(imp)

# multilevel model
library(lme4)
mod <- lme4::lmer( scale1 ~ ( 1 | group), data=dat11 )
summary(mod)

mod <- lme4::lmer( scale1 ~ ( 1 | group), data=dat10)
summary(mod)

#############################################################################
# EXAMPLE 2: Plausible value imputation with chained equations
#############################################################################

# - simulate a latent variable theta and dichotomous item responses
# - two covariates X in which the second covariate has measurement error

library(sirt)
library(TAM)
library(lavaan)

set.seed(7756)
N <- 2000    # number of persons
I <- 10     # number of items

# simulate covariates
X <- MASS::mvrnorm( N, mu=c(0,0), Sigma=matrix( c(1,.5,.5,1),2,2 ) )
colnames(X) <- paste0("X",1:2)
# second covariate with measurement error with variance var.err
var.err <- .3
X.err <- X
X.err[,2] <- X[,2] + stats::rnorm(N, sd=sqrt(var.err) )
# simulate theta
theta <- .5*X[,1] + .4*X[,2] + stats::rnorm( N, sd=.5 )
# simulate item responses
itemdiff <- seq( -2, 2, length=I)  # item difficulties
dat <- sirt::sim.raschtype( theta, b=itemdiff )

#***********************
#*** Model 0: Regression model with true variables
mod0 <- stats::lm( theta ~ X )
summary(mod0)

#**********************
# plausible value imputation for abilities and error-prone
# covariates using the mice package

# creating the likelihood for plausible value for abilities
mod11 <- TAM::tam.mml( dat )
likePV <- IRT.likelihood(mod11)
# creating the likelihood for error-prone covariate X2
# The known measurement error variance is 0.3.
lavmodel <- "
  X2true=~ 1*X2
  X2 ~~ 0.3*X2
    "
mod12 <- lavaan::cfa( lavmodel, data=as.data.frame(X.err) )
summary(mod12)
likeX2 <- IRTLikelihood.cfa( data=X.err, cfaobj=mod12)
str(likeX2)

#-- create data input for mice package
data <- data.frame( "PVA"=NA, "X1"=X[,1], "X2"=NA  )
vars <- colnames(data)
V <- length(vars)
predictorMatrix <- 1 - diag(V)
rownames(predictorMatrix) <- colnames(predictorMatrix) <- vars
method <- rep("norm", V )
names(method) <- vars
method[c("PVA","X2")] <- "plausible.values"

#-- create argument lists for plausible value imputation
# likelihood and theta grid of plausible value derived from IRT model
like <- list( "PVA"=likePV, "X2"=likeX2 )
theta <- list( "PVA"=attr(likePV,"theta"),
                "X2"=attr(likeX2, "theta") )
#-- initial imputations
data.init <- data
data.init$PVA <- mod11$person$EAP
data.init$X2 <- X.err[,"X2"]

#-- imputation using the mice and miceadds package
imp1 <- mice::mice( as.matrix(data), predictorMatrix=predictorMatrix, m=4,
            maxit=6, method=method,  allow.na=TRUE,
            theta=theta, like=like, data.init=data.init )
summary(imp1)

# compute linear regression
mod4a <- with( imp1, stats::lm( PVA ~ X1 + X2 ) )
summary( mice::pool(mod4a) )

#############################################################################
# EXAMPLE 3: Plausible value imputation with known error variance
#############################################################################

#---- simulate data
set.seed(987)
N <- 1000         # number of persons
var_err <- .4     # error variance
dat <- data.frame( x1=stats::rnorm(N), x2=stats::rnorm(N) )
dat$theta <- .3 * dat$x1 - .5*dat$x2 + stats::rnorm(N)
dat$y <- dat$theta + stats::rnorm( N, sd=sqrt(var_err) )

#-- linear regression for measurement-error-free data
mod0a <- stats::lm( theta ~ x1 + x2, data=dat )
summary(mod0a)
#-- linear regression for data with measurement error
mod0b <- stats::lm( y ~ x1 + x2, data=dat )
summary(mod0b)

#-- process data for imputation

dat1 <- dat
dat1$theta <- NA
scale.values <- list( "theta"=list( "M"=dat$y, "SE"=rep(sqrt(var_err),N )))
dat1$y <- NULL

cn <- colnames(dat1)
V <- length(cn)
method <- rep("", length(cn) )
names(method) <- cn
method["theta"] <- "plausible.values"

#-- imputation in mice
imp <- mice::mice( dat1, maxit=1, m=5, allow.na=TRUE, method=method,
            scale.values=scale.values )
summary(imp)

#-- inspect first dataset
summary( mice::complete(imp, action=1) )

#-- linear regression based on imputed datasets
mod1 <- with(imp, stats::lm( theta ~ x1 + x2 ) )
summary( mice::pool(mod1) )

## End(Not run)

Imputation using Partial Least Squares for Dimension Reduction

Description

This function imputes a variable with missing values using PLS regression (Mevik & Wehrens, 2007) for a dimension reduction of the predictor space.

Usage

mice.impute.pls(y, ry, x, type, pls.facs=NULL,
   pls.impMethod="pmm", donors=5, pls.impMethodArgs=NULL, pls.print.progress=TRUE,
   imputationWeights=rep(1, length(y)), pcamaxcols=1E+09,
   min.int.cor=0, min.all.cor=0, N.largest=0, pls.title=NULL, print.dims=TRUE,
   pls.maxcols=5000, use_boot=FALSE, envir_pos=NULL, extract_data=TRUE,
   remove_lindep=TRUE, derived_vars=NULL, ...)

mice.impute.2l.pls2(y, ry, x, type, pls.facs=NULL, pls.impMethod="pmm",
   pls.print.progress=TRUE, imputationWeights=rep(1, length(y)), pcamaxcols=1E+09,
   tricube.pmm.scale=NULL, min.int.cor=0, min.all.cor=0, N.largest=0,
   pls.title=NULL, print.dims=TRUE, pls.maxcols=5000, envir_pos=parent.frame(), ...)

Arguments

y

Incomplete data vector of length n

ry

Vector of missing data pattern (FALSE – missing, TRUE – observed)

x

Matrix (n x p) of complete covariates.

type

type=1 – variable is used as a predictor,

type=4 – create interactions with the specified variable with all other predictors,

type=5 – create a quadratic term of the specified variable

type=6 – if some interactions are specified, ignore the variables with entry 6 when creating interactions

type=-2 – specification of a cluster variable. The cluster mean of the outcome y (when eliminating the subject under study) is included as a further predictor in the imputation.

pls.facs

Number of factors used in PLS regression. This argument can also be specified as a list defining different numbers of factors for all variables to be imputed.

pls.impMethod

Imputation method used for in PLS estimation. Any imputation method can be used except if imputationWeights is provided. Imputation weights are available for norm and pmm. Categorical variables can be imputed with the method catpmm (see mice.impute.catpmm). For the method catpmm, multivariate PLS regression is employed for dummy-coded categories of the outcome variable. The method xplsfacs creates only PLS factors of the regression model.

donors

Number of donors if predictive mean matching is used (pls.impMethod="pmm").

pls.impMethodArgs

Arguments for imputation method pls.impMethod.

pls.print.progress

Print progress during PLS regression.

imputationWeights

Vector of sample weights to be used in imputation models.

pcamaxcols

Amount of variance explained by principal components (must be a number between 0 and 1) or number of factors used in PCA (an integer larger than 1).

min.int.cor

Minimum absolute correlation for an interaction of two predictors to be included in the PLS regression model

min.all.cor

Minimum absolute correlation for inclusion in the PLS regression model.

N.largest

Number of variable to be included which do have the largest absolute correlations.

pls.title

Title for progress print in console output.

print.dims

An optional logical indicating whether dimensions of inputs should be printed.

pls.maxcols

Maximum number of interactions to be created.

use_boot

Logical whether Bayesian bootstrap should be used for drawing regression parameters

envir_pos

Position of the environment from which the data should be extracted.

extract_data

Logical indicating whether input data should be extracted from parent environment within mice::mice routine

remove_lindep

Logical indicating whether linear dependencies should be automatically detected and some predictors are removed

derived_vars

Optional list containing formulas with derived variables for inclusion in PLS dimension reduction

...

Further arguments to be passed.

tricube.pmm.scale

Scale factor for tricube PMM imputation.

Value

A vector of length nmis=sum(!ry) with imputations if pls.impMethod !="xplsfacs". In case of pls.impMethod=="xplsfacs" a matrix with PLS factors is computed.

Note

The mice.impute.2l.pls2 function is just included for reasons of backward compatibility to former miceadds versions.

References

Mevik, B. H., & Wehrens, R. (2007). The pls package: Principal component and partial least squares regression in R. Journal of Statistical Software, 18, 1-24. doi:10.18637/jss.v018.i02

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: PLS imputation method for internet data
#############################################################################

data(data.internet)
dat <- data.internet

# specify predictor matrix
predictorMatrix <- matrix( 1, ncol(dat), ncol(dat) )
rownames(predictorMatrix) <- colnames(predictorMatrix) <- colnames(dat)
diag( predictorMatrix) <- 0

# use PLS imputation method for all variables
impMethod <- rep( "pls", ncol(dat) )
names(impMethod) <- colnames(dat)

# define predictors for interactions (entries with type 4 in predictorMatrix)
predictorMatrix[c("IN1","IN15","IN16"),c("IN1","IN3","IN10","IN13")] <- 4
# define predictors which should appear as linear and quadratic terms (type 5)
predictorMatrix[c("IN1","IN8","IN9","IN10","IN11"),c("IN1","IN2","IN7","IN5")] <- 5

# use 9 PLS factors for all variables
pls.facs <- as.list( rep( 9, length(impMethod) ) )
names(pls.facs) <- names(impMethod)
pls.facs$IN1 <- 15   # use 15 PLS factors for variable IN1

# choose norm or pmm imputation method
pls.impMethod <- as.list( rep("norm", length(impMethod) ) )
names(pls.impMethod) <- names(impMethod)
pls.impMethod[ c("IN1","IN6")] <- "pmm"

# some arguments for imputation method
pls.impMethodArgs <- list( "IN1"=list( "donors"=10 ),
                           "IN2"=list( "ridge2"=1E-4 ) )

# Model 1: Three parallel chains
imp1 <- mice::mice(data=dat, method=impMethod,
     m=3, maxit=5, predictorMatrix=predictorMatrix,
     pls.facs=pls.facs, # number of PLS factors
     pls.impMethod=pls.impMethod,  # Imputation Method in PLS imputation
     pls.impMethodArgs=pls.impMethodArgs, # arguments for imputation method
     pls.print.progress=TRUE, ls.meth="ridge" )
summary(imp1)

# Model 2: One long chain
imp2 <- miceadds::mice.1chain(data=dat, method=impMethod,
     burnin=10, iter=21, Nimp=3, predictorMatrix=predictorMatrix,
     pls.facs=pls.facs, pls.impMethod=pls.impMethod,
     pls.impMethodArgs=pls.impMethodArgs, ls.meth="ridge" )
summary(imp2)

# Model 3: inclusion of additional derived variables

# define derived variables for IN1
derived_vars <- list( "IN1"=~I( ifelse( IN2>IN3, IN2, IN3 ) ) + I( sin(IN2) ) )

imp3 <- miceadds::mice.1chain(data=dat, method=impMethod, derived_vars=derived_vars,
     burnin=10, iter=21, Nimp=3, predictorMatrix=predictorMatrix,
     pls.facs=pls.facs, pls.impMethod=pls.impMethod,
     pls.impMethodArgs=pls.impMethodArgs, ls.meth="ridge" )
summary(imp3)

#*** example for using imputation function at the level of a variable

# extract first imputed dataset
imp1 <- mice::complete(imp1, action=1)
data_imp1[ is.na(dat$IN1), "IN1" ] <- NA

# define variables
y <- data_imp1$IN1
x <- data_imp1[, -1 ]
ry <- ! is.na(y)
cn <- colnames(dat)
p <- ncol(dat)
type <- rep(1,p)
names(type) <- cn
type["IN1"] <- 0

# imputation of variable 'IN1'
imp0 <- miceadds::mice.impute.pls(y=y, x=x, ry=ry, type=type, pls.facs=10, pls.impMethod="norm",
             ls.meth="ridge", extract_data=FALSE )

## End(Not run)

Imputation by Predictive Mean Matching (in miceadds)

Description

This function imputes values by predictive mean matching like the mice::mice.impute.pmm method in the mice package.

Usage

mice.impute.pmm3(y, ry, x, donors=3, noise=10^5, ridge=10^(-5), ...)
mice.impute.pmm4(y, ry, x, donors=3, noise=10^5, ridge=10^(-5), ...)
mice.impute.pmm5(y, ry, x, donors=3, noise=10^5, ridge=10^(-5), ...)
mice.impute.pmm6(y, ry, x, donors=3, noise=10^5, ridge=10^(-5), ...)

Arguments

y

Incomplete data vector of length n

ry

Vector of missing data pattern (FALSE – missing, TRUE – observed)

x

Matrix (n x p) of complete covariates.

donors

Number of donors used for imputation

noise

Numerical value to break ties

ridge

Ridge parameter in the diagonal of X′X\bold{X}'\bold{X}

...

Further arguments to be passed

Details

The imputation method pmm3 imitates mice::mice.impute.pmm imputation method in mice.

The imputation method pmm4 ignores ties in predicted yy values. With many predictors, this does not probably implies any substantial problem.

The imputation method pmm5 suffers from the same problem. Contrary to the other PMM methods, it searches DD donors (specified by donors) smaller than the predicted value and DD donors larger than the predicted value and randomly samples a value from this set of 2â‹…D2 \cdot D donors.

The imputation method pmm6 is just the Rcpp implementation of pmm5.

Value

A vector of length nmis=sum(!ry) with imputed values.

See Also

See data.largescale and data.smallscale for speed comparisons of different functions for predictive mean matching.

Examples

## Not run: 
#############################################################################
# SIMULATED EXAMPLE 1: Two variables x and y with missing y
#############################################################################
set.seed(1413)

rho <- .6   # correlation between x and y
N <- 6800    # number of cases
x <- stats::rnorm(N)
My <- .35   # mean of y
y.com <- y <- My + rho * x + stats::rnorm(N, sd=sqrt( 1 - rho^2 ) )

# create missingness on y depending on rho.MAR parameter
rho.mar <- .4    # correlation response tendency z and x
missrate <- .25  # missing response rate
# simulate response tendency z and missings on y
z <- rho.mar * x + stats::rnorm(N, sd=sqrt( 1 - rho.mar^2 ) )
y[ z < stats::qnorm( missrate ) ] <- NA
dat <- data.frame(x, y )

# mice imputation
impmethod <- rep("pmm", 2 )
names(impmethod) <- colnames(dat)

# pmm (in mice)
imp1 <- mice::mice( as.matrix(dat), m=1, maxit=1, method=impmethod)
# pmm3 (in miceadds)
imp3 <- mice::mice( as.matrix(dat), m=1, maxit=1,
           method=gsub("pmm","pmm3",impmethod)  )
# pmm4 (in miceadds)
imp4 <- mice::mice( as.matrix(dat), m=1, maxit=1,
           method=gsub("pmm","pmm4",impmethod)  )
# pmm5 (in miceadds)
imp5 <- mice::mice( as.matrix(dat), m=1, maxit=1,
           method=gsub("pmm","pmm5",impmethod)  )
# pmm6 (in miceadds)
imp6 <- mice::mice( as.matrix(dat), m=1, maxit=1,
           method=gsub("pmm","pmm6",impmethod)  )

dat.imp1 <- mice::complete( imp1, 1 )
dat.imp3 <- mice::complete( imp3, 1 )
dat.imp4 <- mice::complete( imp4, 1 )
dat.imp5 <- mice::complete( imp5, 1 )
dat.imp6 <- mice::complete( imp6, 1 )

dfr <- NULL
# means
dfr <- rbind( dfr, c( mean( y.com ), mean( y, na.rm=TRUE ), mean( dat.imp1$y),
    mean( dat.imp3$y), mean( dat.imp4$y), mean( dat.imp5$y),  mean( dat.imp6$y)  ) )
# SD
dfr <- rbind( dfr, c( stats::sd( y.com ), stats::sd( y, na.rm=TRUE ),
      stats::sd( dat.imp1$y), stats::sd( dat.imp3$y), stats::sd( dat.imp4$y),
      stats::sd( dat.imp5$y), stats::sd( dat.imp6$y) ) )
# correlations
dfr <- rbind( dfr, c( stats::cor( x,y.com ),
    stats::cor( x[ ! is.na(y) ], y[ ! is.na(y) ] ),
    stats::cor( dat.imp1$x, dat.imp1$y), stats::cor( dat.imp3$x, dat.imp3$y),
    stats::cor( dat.imp4$x, dat.imp4$y), stats::cor( dat.imp5$x, dat.imp5$y),
    stats::cor( dat.imp6$x, dat.imp6$y)
        ) )
rownames(dfr) <- c("M_y", "SD_y", "cor_xy" )
colnames(dfr) <- c("compl", "ld", "pmm", "pmm3", "pmm4", "pmm5","pmm6")
##           compl     ld    pmm   pmm3   pmm4   pmm5   pmm6
##   M_y    0.3306 0.4282 0.3314 0.3228 0.3223 0.3264 0.3310
##   SD_y   0.9910 0.9801 0.9873 0.9887 0.9891 0.9882 0.9877
##   cor_xy 0.6057 0.5950 0.6072 0.6021 0.6100 0.6057 0.6069

## End(Not run)

Imputation of a Linear Model by Bayesian Bootstrap

Description

These functions impute from linear models using the functions stats::lm, MASS::rlm or MASS::lqs. The method mice.impute.lm_fun allows the definition of a general linear regression fitting function for which the methods predict and residuals are defined.

Parameters of the model are estimated by Bayesian bootstrap. Predicted values are computed and residuals are randomly drawn from the empirical distribution of residuals of observed data.

Usage

mice.impute.lm(y, ry, x, wy=NULL, lm_args=NULL, trafo=NULL, antitrafo=NULL, ...)

mice.impute.rlm(y, ry, x, wy=NULL, lm_args=NULL, trafo=NULL, antitrafo=NULL, ...)

mice.impute.lqs(y, ry, x, wy=NULL, lm_args=NULL, trafo=NULL, antitrafo=NULL, ...)

mice.impute.lm_fun(y, ry, x, wy=NULL, lm_args=NULL, lm_fun="lm", trafo=NULL,
               antitrafo=NULL, ...)

Arguments

y

Incomplete data vector of length n

ry

Vector of missing data pattern (FALSE – missing, TRUE – observed)

x

Matrix (n x p) of complete covariates.

wy

Vector of logicals indicating which entries should be imputed

lm_args

List of arguments for stats::lm, MASS::rlm, MASS::lqs or a user-defined function.

lm_fun

Linear regression fitting function, e.g. stats::lm for which S3 methods predict and residuals are defined.

trafo

Optional function for transforming the outcome values

antitrafo

Optional function which is the inverse function of trafo

...

Further arguments to be passed

Value

A vector of length nmis=sum(!ry) with imputed values.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Some toy example illustrating the methods
#############################################################################

library(MASS)
library(mice)

#-- simulate data
set.seed(98)
N <- 1000
x <- stats::rnorm(N)
z <- 0.5*x + stats::rnorm(N, sd=.7)
y <- stats::rnorm(N, mean=.3*x - .2*z, sd=1 )
dat <- data.frame(x,z,y)
dat[ seq(1,N,3), c("x","y") ] <- NA
dat[ seq(1,N,4), "z" ] <- NA

#-- define imputation methods
imp <- mice::mice(dat, maxit=0)
method <- imp$method
method["x"] <- "rlm"
method["z"] <- "lm"
method["y"] <- "lqs"

#-- impute data
imp <- mice::mice(dat, method=method)
summary(imp)

#--- example using transformations
dat1$x <- exp(dat1$x)
dat1$z <- stats::plogis(dat1$z)

trafo <- list(x=log, z=stats::qlogis)
antitrafo <- list(x=exp, z=stats::plogis)

#- impute with transformations
imp2 <- mice::mice(dat1, method=method, m=1, maxit=3, trafo=trafo, antitrafo=antitrafo)
print(imp2)

## End(Not run)

Wrapper Function to Imputation Methods in the simputation Package

Description

This imputation method provides a wrapper function to univariate imputation methods in the simputation package.

Usage

mice.impute.simputation(y, ry, x, Fun=NULL, Fun_args=NULL, ... )

Arguments

y

Incomplete data vector of length n

ry

Vector of missing data pattern (FALSE – missing, TRUE – observed)

x

Matrix (n x p) of complete covariates.

Fun

Name of imputation functions in simputation package, e.g., imputeR::impute_lm, see Details.

Fun_args

Optional argument list for Fun

...

Further arguments to be passed

Details

Selection of imputation methods included in the simputation package:

linear regression: simputation::impute_lm,
robist linear regression with M-estimators: simputation::impute_rlm,
regularized regression with lasso/elasticnet/ridge regression: simputation::impute_en,
CART models or random forests: simputation::impute_cart, simputation::impute_rf,
Hot deck imputation: simputation::impute_rhd, simputation::impute_shd,
Predictive mean matching: simputation::impute_pmm,
k-nearest neighbours imputation: simputation::impute_knn

Value

A vector of length nmis=sum(!ry) with imputed values.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Nhanes example
#############################################################################

library(mice)
library(simputation)

data(nhanes, package="mice")
dat <- nhanes

#** imputation methods
method <- c(age="",bmi="norm", hyp="norm", chl="simputation")
Fun <- list( chl=simputation::impute_lm)
Fun_args <- list( chl=list(add_residual="observed") )

#** do imputations
imp <- mice::mice(dat, method=method, Fun=Fun, Fun_args=Fun_args)
summary(imp)

## End(Not run)

Substantive Model Compatible Multiple Imputation (Single Level)

Description

Computes substantive model compatible multiple imputation (Bartlett et al., 2015; Bartlett & Morris, 2015). Several regression functions are allowed (see dep_type).

Usage

mice.impute.smcfcs(y, ry, x, wy=NULL, sm, dep_type="norm", sm_type="norm",
       fac_sd_proposal=1, mh_iter=20, ...)

Arguments

y

Incomplete data vector of length n

ry

Vector of missing data pattern (FALSE – missing, TRUE – observed)

x

Matrix (n x p) of complete covariates.

wy

Logical vector indicating positions where imputations should be conducted.

sm

Formula for substantive model.

dep_type

Distribution type for variable which is imputed. Possible choices are "norm" (normal distribution), "lognorm" (lognormal distribution), "yj" (Yeo-Johnson distribution, see mdmb::yjt_regression), "bc" (Box-Cox distribution, see mdmb::bct_regression), "logistic" (logistic distribution).

sm_type

Distribution type for dependent variable in substantive model. One of the distribution mentioned in dep_type can be chosen.

fac_sd_proposal

Starting value for factor of standard deviation in Metropolis-Hastings sampling.

mh_iter

Number iterations in Metropolis-Hasting sampling

...

Further arguments to be passed

Details

Imputed values are drawn based on a Metropolis-Hastings sampling algorithm in which the standard deviation of the proposal distribution is adaptively tuned.

Value

A vector of length nmis=sum(!ry) with imputed values.

References

Bartlett, J. W., & Morris, T. P. (2015). Multiple imputation of covariates by substantive-model compatible fully conditional specification. Stata Journal, 15(2), 437-456.

Bartlett, J. W., Seaman, S. R., White, I. R., Carpenter, J. R., & Alzheimer's Disease Neuroimaging Initiative (2015). Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model. Statistical Methods in Medical Research, 24(4), 462-487. doi:10.1177/0962280214521348

See Also

See the smcfcs package for an alternative implementation of substantive model multiple imputation in a fully conditional specification approach.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Substantive model with interaction effects
#############################################################################

library(mice)
library(mdmb)

#--- simulate data
set.seed(98)
N <- 1000
x <- stats::rnorm(N)
z <- 0.5*x + stats::rnorm(N, sd=.7)
y <- stats::rnorm(N, mean=.3*x - .2*z + .7*x*z, sd=1 )
dat <- data.frame(x,z,y)
dat[ seq(1,N,3), c("x","y") ] <- NA


#--- define imputation methods
imp <- mice::mice(dat, maxit=0)
method <- imp$method
method["x"] <- "smcfcs"

# define substantive model
sm <- y ~ x*z
# define formulas for imputation models
formulas <- as.list( rep("",ncol(dat)))
names(formulas) <- colnames(dat)
formulas[["x"]] <- x ~ z
formulas[["y"]] <- sm
formulas[["z"]] <- z ~ 1

#- Yeo-Johnson distribution for x
dep_type <- list()
dep_type$x <- "yj"

#-- do imputation
imp <- mice::mice(dat, method=method, sm=sm, formulas=formulas, m=1, maxit=10,
                   dep_type=dep_type)
summary(imp)

#############################################################################
# EXAMPLE 2: Substantive model with quadratic effects
#############################################################################

#** simulate data with missings
set.seed(50)
n <- 1000
x <- stats::rnorm(n)
z <- stats::rnorm(n)
y <- 0.5 * z + x + x^2 + stats::rnorm(n)
mm <- stats::runif(n)
x[sample(1:n, size=370, prob=mm)] <- NA
z[sample(1:n, size=480, prob=mm)] <- NA
y[sample(1:n, size=500, prob=mm)] <- NA

df <- data.frame(x=x,y=y,z=z)

#** imputation
imp <- mice::mice(df, method="smcfcs", sm=y ~ z + x + I(x^2), m=6, maxit=10)
summary(imp)

#** analysis
summary(mice::pool(with(imp, stats::lm(y ~ z + x + I(x^2)))))

#** imputation using the smcfcs package
df$x_sq <- df$x^2
nonmice <- smcfcs::smcfcs(df, smtype="lm", smformula=y ~ z + x + x_sq,
             method=c("norm", "", "norm", "x^2"))
mice::pool(lapply(nonmice$impDatasets, function(x) stats::lm(y ~ z + x + x_sq, data=x)))

## End(Not run)

Using a synthpop Synthesizing Method in the mice Package

Description

The function allows to use a synthpop synthesizing method to be used in the mice::mice function of the mice package.

Usage

mice.impute.synthpop(y, ry, x, synthpop_fun="norm", synthpop_args=list(),
     proper=TRUE, ...)

Arguments

y

Incomplete data vector of length n

ry

Vector of missing data pattern (FALSE – missing, TRUE – observed)

x

Matrix (n x p) of complete covariates.

synthpop_fun

Synthesizing method in the synthpop package

synthpop_args

Function arguments of syn_fun

proper

Logical value specifying whether proper synthesis should be conducted.

...

Further arguments to be passed

Value

A vector of length nmis=sum(!ry) with imputed values.

See Also

See syn.mice for using a mice imputation method in the synthpop package.

See synthpop::syn for generating synthetic datasets with the synthpop package.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Imputation of NHANES data using the 'syn.normrank' method
#############################################################################

library(synthpop)
data(nhanes, package="mice")
dat <- nhanes

#* empty imputation
imp0 <- mice::mice(dat, maxit=0)
method <- imp0$method

#* define synthpop method 'normrank' for variable 'chl'
method["chl"] <- "synthpop"
synthpop_fun <- list( chl="normrank" )
synthpop_args <- list( chl=list(smoothing="density") )

#* conduct imputation
imp <- mice::mice(dat, method=method, m=1, maxit=3, synthpop_fun=synthpop_fun,
            synthpop_args=synthpop_args)
summary(imp)

## End(Not run)

Imputation by Tricube Predictive Mean Matching

Description

This function performs tricube predictive mean matching (see Hmisc::aregImpute) in which donors are weighted according to distances of predicted values. Three donors are chosen.

Usage

mice.impute.tricube.pmm(y, ry, x, tricube.pmm.scale=0.2, tricube.boot=FALSE, ...)

Arguments

y

Incomplete data vector of length n

ry

Vector of missing data pattern (FALSE – missing, TRUE – observed)

x

Matrix (n x p) of complete covariates.

tricube.pmm.scale

A scaling factor for tricube matching. The default is 0.2.

tricube.boot

A logical indicating whether tricube matching should be performed using a bootstrap sample

...

Further arguments to be passed

Value

A vector of length nmis=sum(!ry) with imputed values.

See Also

Hmisc::aregImpute

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Tricube predictive mean matching for nhanes data
#############################################################################

library(mice)
data(nhanes, package="mice")
set.seed(9090)

#*** Model 1: Use default of tricube predictive mean matching
varnames <- colnames(nhanes)
VV <- length(varnames)
method <- rep("tricube.pmm", VV )
names(method) <- varnames
# imputation with mice
imp.mi1 <- mice::mice( nhanes, m=5, maxit=4, method=method )

#*** Model 2: use item-specific imputation methods
iM2 <- method
iM2["bmi"] <- "pmm6"
# use imputation method 'tricube.pmm' for hyp and chl
# select different scale parameters for these variables
tricube.pmm.scale1 <- list( "hyp"=.15, "chl"=.30 )
imp.mi2 <- miceadds::mice.1chain( nhanes, burnin=5, iter=20, Nimp=4,
               method=iM2, tricube.pmm.scale=tricube.pmm.scale1  )

## End(Not run)

Imputation by Weighted Predictive Mean Matching or Weighted Normal Linear Regression

Description

Imputation by predictive mean matching or normal linear regression using sampling weights.

Usage

mice.impute.weighted.pmm(y, ry, x, wy=NULL, imputationWeights=NULL,
      pls.facs=NULL, interactions=NULL, quadratics=NULL, donors=5, ...)

mice.impute.weighted.norm(y, ry, x, wy=NULL, ridge=1e-05, pls.facs=NULL,
     imputationWeights=NULL, interactions=NULL, quadratics=NULL, ...)

Arguments

y

Incomplete data vector of length n

ry

Vector of missing data pattern (FALSE – missing, TRUE – observed)

x

Matrix (n x p) of complete covariates.

wy

Logical vector of length length(y). A TRUE value indicates locations in y for which imputations are created.

imputationWeights

Optional vector of sampling weights

pls.facs

Number of factors in PLS regression (if used). The default is NULL which means that no PLS regression is used for dimension reduction.

interactions

Optional vector of variables for which interactions should be created

quadratics

Optional vector of variables which should also be included as quadratic effects.

donors

Number of donors

...

Further arguments to be passed

ridge

Ridge parameter in the diagonal of X′X\bold{X}'\bold{X}

Value

A vector of length nmis=sum(!ry) with imputed values.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Imputation using sample weights
#############################################################################

data( data.ma01)
set.seed(977)

# select subsample
dat <- as.matrix(data.ma01)
dat <- dat[ 1:1000, ]

# empty imputation
imp0 <- mice::mice( dat, maxit=0)

# redefine imputation methods
meth <- imp0$method
meth[ meth=="pmm"  ] <- "weighted.pmm"
meth[ c("paredu", "books", "migrant" ) ] <- "weighted.norm"
# redefine predictor matrix
pm <- imp0$predictorMatrix
pm[, 1:3 ] <- 0
# do imputation
imp <- mice::mice( dat, predictorMatrix=pm, method=meth,
           imputationWeights=dat[,"studwgt"], m=3, maxit=5)

## End(Not run)

Nested Multiple Imputation

Description

Performs nested multiple imputation (Rubin, 2003) for the functions mice::mice and mice.1chain. The function mice.nmi generates an object of class mids.nmi.

Usage

mice.nmi(datlist, type="mice", ...)

## S3 method for class 'mids.nmi'
summary(object, ...)

## S3 method for class 'mids.nmi'
print(x, ...)

Arguments

datlist

List of datasets for which nested multiple imputation should be applied

type

Imputation model: type="mice" for mice::mice or type="mice.1chain" for mice.1chain.

...

Arguments to be passed to mice::mice or mice.1chain.

object

Object of class mids.nmi.

x

Object of class mids.nmi.

Value

Object of class mids.nmi with entries

imp

List of nested multiply imputed datasets whose entries are of class mids or mids.1chain.

Nimp

Number of between and within imputations.

References

Rubin, D. B. (2003). Nested multiple imputation of NMES via partially incompatible MCMC. Statistica Neerlandica, 57(1), 3-18. doi:10.1111/1467-9574.00217

See Also

For imputation models see mice::mice and mice.1chain.

Functions for analyses of nested multiply imputed datasets: complete.mids.nmi, with.mids.nmi, pool.mids.nmi

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Nested multiple imputation for TIMSS data
#############################################################################

library(BIFIEsurvey)
data(data.timss2, package="BIFIEsurvey" )
datlist <- data.timss2
   # list of 5 datasets containing 5 plausible values

#** define imputation method and predictor matrix
data <- datlist[[1]]
V <- ncol(data)
# variables
vars <- colnames(data)
# variables not used for imputation
vars_unused <- miceadds::scan.vec("IDSTUD TOTWGT  JKZONE  JKREP" )

#- define imputation method
impMethod <- rep("norm", V )
names(impMethod) <- vars
impMethod[ vars_unused ] <- ""

#- define predictor matrix
predM <- matrix( 1, V, V )
colnames(predM) <- rownames(predM) <- vars
diag(predM) <- 0
predM[, vars_unused ] <- 0

#***************
# (1) nested multiple imputation using mice
imp1 <- miceadds::mice.nmi( datlist, method=impMethod, predictorMatrix=predM,
                m=4, maxit=3 )
summary(imp1)

#***************
# (2) nested multiple imputation using mice.1chain
imp2 <- miceadds::mice.nmi( datlist, method=impMethod, predictorMatrix=predM,
            Nimp=4, burnin=10,iter=22, type="mice.1chain")
summary(imp2)

## End(Not run)

Defunct miceadds Functions

Description

These functions have been removed or replaced in the miceadds package.

Usage

fast.groupmean(...)
fast.groupsum(...)
mice.impute.2l.plausible.values(...)
mice.impute.2l.pls(...)
mice.impute.2lonly.norm2(...)
mice.impute.2lonly.pmm2(...)
mice.impute.tricube.pmm2(...)

Arguments

...

Arguments to be passed.

Details

The fast.groupmean function has been replaced by GroupMean.

The fast.groupsum function has been replaced by GroupSum.

The mice.impute.2l.plausible.values function has been replaced by mice.impute.plausible.values.

The mice.impute.2l.pls2 function has been replaced by mice.impute.pls.

The mice.impute.2lonly.norm2 and mice.impute.2lonly.pmm2 functions can be safely replaced by the mice::mice.impute.2lonly.norm and mice::mice.impute.2lonly.pmm functions in the mice package.

The mice.impute.tricube.pmm2 function has been replaced by mice.impute.tricube.pmm.


Utility Functions in miceadds

Description

Utility functions in miceadds.

Usage

## searches for objects in parent environments
ma_exists_get( x, pos, n_index=1:8)
ma_exists( x, pos, n_index=1:8)
mice_imputation_get_states( pos=parent.frame(n=1), n_index=1:20 )

Arguments

x

Object name (character)

pos

Environment

n_index

Levels in parent.frame in which object is searched

Details

The function ma_exists_get is used in miceadds:::mice_imputation_get_states.


Combination of Chi Square Statistics of Multiply Imputed Datasets

Description

This function does inference for the χ2\chi^2 statistic based on multiply imputed datasets (see e.g. Enders, 2010, p. 239 ff.; Allison, 2002). This function is also denoted as the D2D_2 statistic.

Usage

micombine.chisquare(dk, df, display=TRUE, version=1)

Arguments

dk

Vector of chi square statistics

df

Degrees of freedom of χ2\chi^2 statistic

display

An optional logical indicating whether results should be printed at the R console.

version

Integer indicating which calculation formula should be used. The default version=1 refers to the correct formula as in Enders (2010), while version=0 uses an incorrect formula as printed in Allison (2001). The incorrect calculation version=0 was included in miceadds versions smaller than version 2.0. See also http://statisticalhorizons.com/wp-content/uploads/2012/01/combchi.sas.

Value

A vector with following entries

D

Combined D2D_2 statistic which is approximately FF-distributed with (df, df2) degrees of freedom

p

The p value corresponding to D

df

Numerator degrees of freedom

df2

Denominator degrees of freedom

References

Allison, P. D. (2002). Missing data. Newbury Park, CA: Sage.

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

See Also

See also mice::pool.compare for a Wald test to compare two fitted models in the mice package.

Examples

#############################################################################
# EXAMPLE 1: Chi square values of analyses from 7 multiply imputed datasets
#############################################################################

# Vector of 7 chi square statistics
dk <- c(24.957, 18.051, 18.812, 17.362, 21.234, 18.615, 19.84)
dk.comb <- miceadds::micombine.chisquare(dk=dk, df=4 )
  ##  Combination of Chi Square Statistics for Multiply Imputed Data
  ##  Using 7 Imputed Data Sets
  ##  F(4, 482.06)=4.438     p=0.00157

Inference for Correlations and Covariances for Multiply Imputed Datasets

Description

Statistical inference for correlations and covariances for multiply imputed datasets

Usage

micombine.cor(mi.res, variables=NULL, conf.level=0.95,
     method="pearson", nested=FALSE, partial=NULL )

micombine.cov(mi.res, variables=NULL, conf.level=0.95,
     nested=FALSE )

Arguments

mi.res

Object of class mids or mids.1chain

variables

Indices of variables for selection

conf.level

Confidence level

method

Method for calculating correlations. Must be one of "pearson" or "spearman". The default is the calculation of the Pearson correlation.

nested

Logical indicating whether the input dataset stems from a nested multiple imputation.

partial

Formula object for computing partial correlations. The terms which should be residualized are written in the formula object partial. Alternatively, it can be a vector of variables.

Value

A data frame containing the coefficients (r, cov) and its corresponding standard error (rse, cov_se), fraction of missing information (fmi) and a tt value (t).

The corresponding coefficients can also be obtained as matrices by requesting attr(result,"r_matrix").

See Also

See stats::cor.test for testing correlation coefficients.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: nhanes data | combination of correlation coefficients
#############################################################################

library(mice)
data(nhanes, package="mice")
set.seed(9090)

# nhanes data in one chain
imp.mi <- miceadds::mice.1chain( nhanes, burnin=5, iter=20, Nimp=4,
                  method=rep("norm", 4) )

# correlation coefficients of variables 4, 2 and 3 (indexed in nhanes data)
res <- miceadds::micombine.cor(mi.res=imp.mi, variables=c(4,2,3) )
  ##     variable1 variable2       r    rse fisher_r fisher_rse    fmi       t      p
  ##   1       chl       bmi  0.2458 0.2236   0.2510     0.2540 0.3246  0.9879 0.3232
  ##   2       chl       hyp  0.2286 0.2152   0.2327     0.2413 0.2377  0.9643 0.3349
  ##   3       bmi       hyp -0.0084 0.2198  -0.0084     0.2351 0.1904 -0.0358 0.9714
  ##     lower95 upper95
  ##   1 -0.2421  0.6345
  ##   2 -0.2358  0.6080
  ##   3 -0.4376  0.4239

# extract matrix with correlations and its standard errors
attr(res, "r_matrix")
attr(res, "rse_matrix")

# inference for covariance
res2 <- miceadds::micombine.cov(mi.res=imp.mi, variables=c(4,2,3) )

# inference can also be conducted for non-imputed data
res3 <- miceadds::micombine.cov(mi.res=nhanes, variables=c(4,2,3) )

# partial correlation residualizing bmi and chl
res4 <- miceadds::micombine.cor(mi.res=imp.mi, variables=c("age","hyp" ),
                  partial=~bmi+chl )
res4
# alternatively, 'partial' can also be defined as c('age','hyp')

#############################################################################
# EXAMPLE 2: nhanes data | comparing different correlation coefficients
#############################################################################

library(psych)
library(mitools)

# imputing data
imp1 <- mice::mice( nhanes,  method=rep("norm", 4 ) )
summary(imp1)

#*** Pearson correlation
res1 <- miceadds::micombine.cor(mi.res=imp1, variables=c(4,2) )

#*** Spearman rank correlation
res2 <- miceadds::micombine.cor(mi.res=imp1, variables=c(4,2),  method="spearman")

#*** Kendalls tau
# test of computation of tau for first imputed dataset
dat1 <- mice::complete(imp1, action=1)
tau1 <- psych::corr.test(x=dat1[,c(4,2)], method="kendall")
tau1$r[1,2]    # estimate
tau1$se     # standard error

# results of Kendalls tau for all imputed datasets
res3 <- with( data=imp1,
        expr=psych::corr.test( x=cbind( chl, bmi ), method="kendall") )
# extract estimates
betas <- lapply( res3$analyses, FUN=function(ll){ ll$r[1,2] } )
# extract variances
vars <- lapply( res3$analyses, FUN=function(ll){ (ll$se[1,2])^2 } )
# Rubin inference
tau_comb <- mitools::MIcombine( results=betas, variances=vars )
summary(tau_comb)

#############################################################################
# EXAMPLE 3: Inference for correlations for nested multiply imputed datasets
#############################################################################

library(BIFIEsurvey)
data(data.timss4, package="BIFIEsurvey" )
datlist <- data.timss4

# object of class nested.datlist
datlist <- miceadds::nested.datlist_create(datlist)
# inference for correlations
res2 <- miceadds::micombine.cor(mi.res=datlist, variables=c("lang", "migrant", "ASMMAT"))

## End(Not run)

Combination of F Statistics for Multiply Imputed Datasets Using a Chi Square Approximation

Description

Several FF statistics from multiply imputed datasets are combined using an approximation based on χ2\chi^2 statistics (see micombine.chisquare).

Usage

micombine.F(Fvalues, df1, display=TRUE, version=1)

Arguments

Fvalues

Vector containing FF values.

df1

Degrees of freedom of the numerator. Degrees of freedom of the numerator are approximated by ∞\infty (large number of degrees of freedom).

display

A logical indicating whether results should be displayed at the console

version

Integer indicating which calculation formula should be used. The default version=1 refers to the correct formula as in Enders (2010), while version=0 uses an incorrect formula as printed in Allison (2001). The incorrect calculation version=0 was included in miceadds versions smaller than version 2.0. See also http://statisticalhorizons.com/wp-content/uploads/2012/01/combchi.sas.

Value

The same output as in micombine.chisquare

References

Allison, P. D. (2002). Missing data. Newbury Park, CA: Sage.

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

Grund, S., Luedtke, O., & Robitzsch, A. (2016). Pooling ANOVA results from multiply imputed datasets: A simulation study. Methodology, 12(3), 75-88. doi:10.1027/1614-2241/a000111

See Also

micombine.chisquare

Examples

#############################################################################
# EXAMPLE 1: F statistics for 5 imputed datasets
#############################################################################

Fvalues <- c( 6.76, 4.54, 4.23, 5.45, 4.78 )
micombine.F(Fvalues, df1=4 )
  ##  Combination of Chi Square Statistics for Multiply Imputed Data
  ##  Using 5 Imputed Data Sets
  ##  F(4, 52.94)=3.946     p=0.00709

Converting a mids, mids.1chain or mids.nmi Object in a Dataset List

Description

Converts a mids, mids.1chain or mids.nmi object in a dataset list.

Usage

mids2datlist(midsobj, X=NULL)

Arguments

midsobj

Object of class mids, mids.1chain or mids.nmi

X

Optional data frame of variables to be included in imputed datasets.

Value

List of multiply imputed datasets of classes datlist or nested.datlist.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Imputing nhanes data and convert result into a dataset list
#############################################################################

data(nhanes,package="mice")

#**** imputation using mice
imp1 <- mice::mice( nhanes, m=3, maxit=5 )
# convert mids object into list
datlist1 <- miceadds::mids2datlist( imp1 )

#**** imputation using mice.1chain
imp2 <- miceadds::mice.1chain( nhanes, burnin=4, iter=20, Nimp=5 )
# convert mids.1chain object into list
datlist2 <- miceadds::mids2datlist( imp2 )

#############################################################################
# EXAMPLE 2: Nested multiple imputation and datalist conversion
#############################################################################

library(BIFIEsurvey)
data(data.timss2, package="BIFIEsurvey" )
datlist <- data.timss2
   # list of 5 datasets containing 5 plausible values

# remove first four variables
M <- length(datlist)
for (ll in 1:M){
    datlist[[ll]] <- datlist[[ll]][, -c(1:4) ]
                }

#***************
# (1) nested multiple imputation using mice
imp1 <- miceadds::mice.nmi( datlist,  m=4, maxit=3 )
summary(imp1)

#***************
# (2) nested multiple imputation using mice.1chain
imp2 <- miceadds::mice.nmi( datlist, Nimp=4, burnin=10,iter=22, type="mice.1chain")
summary(imp2)

#**************
# conversion into a datalist
datlist.i1 <- miceadds::mids2datlist( imp1 )
datlist.i2 <- miceadds::mids2datlist( imp2 )

#############################################################################
# EXAMPLE 3: mids object conversion and inclusion of further variables
#############################################################################

data(data.ma05)
dat <- data.ma05

# imputation
resp <- dat[, - c(1:2) ]
imp <- mice::mice( resp, method="norm", maxit=2, m=3 )

# convert mids object into datalist
datlist0 <- miceadds::mids2datlist( imp )
# convert mids object into datalist and include some id variables
datlist1 <- miceadds::mids2datlist( imp, X=dat[,c(1,2) ] )

## End(Not run)

Export mids object to MLwiN

Description

Converts a mids object into a format recognized by the multilevel software MLwiN.

Usage

mids2mlwin(imp, file.prefix, path=getwd(), sep=" ", dec=".", silent=FALSE,
   X=NULL)

Arguments

imp

The imp argument is an object of class mids, typically produced by the mice() function.

file.prefix

A character string describing the prefix of the output data files.

path

A character string containing the path of the output file. By default, files are written to the current R working directory.

sep

The separator between the data fields.

dec

The decimal separator for numerical data.

silent

A logical flag stating whether the names of the files should be printed.

X

Optional data frame of variables to be included in imputed datasets.

Value

The return value is NULL.

Author(s)

Thorsten Henke

Examples

## Not run: 
# imputation nhanes data
data(nhanes)
imp <- mice::mice(nhanes)
# write files to MLwiN
mids2mlwin(imp, file.prefix="nhanes" )

## End(Not run)

MCMC Estimation for Mixed Effects Model

Description

Fits a mixed effects model via MCMC. The outcome can be normally distributed or ordinal (Goldstein, 2011; Goldstein, Carpenter, Kenward & Levin, 2009).

Usage

ml_mcmc( formula, data, iter=3000, burnin=500, print_iter=100, outcome="normal",
     nu0=NULL, s0=1, psi_nu0_list=NULL, psi_S0_list=NULL, inits_lme4=FALSE,
     thresh_fac=5.8, ridge=1e-5)

## S3 method for class 'ml_mcmc'
summary(object, digits=4, file=NULL, ...)

## S3 method for class 'ml_mcmc'
plot(x, ask=TRUE, ...)

## S3 method for class 'ml_mcmc'
coef(object, ...)

## S3 method for class 'ml_mcmc'
vcov(object, ...)

ml_mcmc_fit(y, X, Z_list, beta, Psi_list, sigma2, alpha, u_list, idcluster_list,
    onlyintercept_list, ncluster_list, sigma2_nu0, sigma2_sigma2_0, psi_nu0_list,
    psi_S0_list, est_sigma2, est_probit, parameter_index, est_parameter, npar, iter,
    save_iter, verbose=TRUE, print_iter=500, parnames0=NULL, K=9999, est_thresh=FALSE,
    thresh_fac=5.8, ridge=1e-5, parm_summary=TRUE )

## exported Rcpp functions
miceadds_rcpp_ml_mcmc_sample_beta(xtx_inv, X, Z_list, y, u_list, idcluster_list, sigma2,
     onlyintercept_list, NR, ridge)
miceadds_rcpp_ml_mcmc_sample_u(X, beta, Z_list, y, ztz_list, idcluster_list,
    ncluster_list, sigma2, Psi_list, onlyintercept_list, NR, u0_list, ridge)
miceadds_rcpp_ml_mcmc_sample_psi(u_list, nu0_list, S0_list, NR, ridge)
miceadds_rcpp_ml_mcmc_sample_sigma2(y, X, beta, Z_list, u_list, idcluster_list,
     onlyintercept_list, nu0, sigma2_0, NR, ridge)
miceadds_rcpp_ml_mcmc_sample_latent_probit(X, beta, Z_list, u_list, idcluster_list, NR,
     y_int, alpha, minval, maxval)
miceadds_rcpp_ml_mcmc_sample_thresholds(X, beta, Z_list, u_list, idcluster_list, NR, K,
     alpha, sd_proposal, y_int)
miceadds_rcpp_ml_mcmc_predict_fixed_random(X, beta, Z_list, u_list, idcluster_list, NR)
miceadds_rcpp_ml_mcmc_predict_random_list(Z_list, u_list, idcluster_list, NR, N)
miceadds_rcpp_ml_mcmc_predict_random(Z, u, idcluster)
miceadds_rcpp_ml_mcmc_predict_fixed(X, beta)
miceadds_rcpp_ml_mcmc_subtract_fixed(y, X, beta)
miceadds_rcpp_ml_mcmc_subtract_random(y, Z, u, idcluster, onlyintercept)
miceadds_rcpp_ml_mcmc_compute_ztz(Z, idcluster, ncluster)
miceadds_rcpp_ml_mcmc_compute_xtx(X)
miceadds_rcpp_ml_mcmc_probit_category_prob(y_int, alpha, mu1, use_log)
miceadds_rcpp_pnorm(x, mu, sigma)
miceadds_rcpp_qnorm(x, mu, sigma)
miceadds_rcpp_rtnorm(mu, sigma, lower, upper)

Arguments

formula

An R formula in lme4-like specification

data

Data frame

iter

Number of iterations

burnin

Number of burnin iterations

print_iter

Integer indicating that every print_iterth iteration progress should be displayed

outcome

Outcome distribution: "normal" or "probit"

nu0

Prior sample size

s0

Prior guess for variance

inits_lme4

Logical indicating whether initial values should be obtained from fitting the model in the lme4 package

thresh_fac

Factor for proposal variance for estimating thresholds which is determined as thresh_fac/N/N (5.8/N5.8/N as default).

ridge

Ridge parameter for covariance matrices in sampling

object

Object of class ml_mcmc

digits

Number of digits after decimal used for printing

file

Optional file name

...

Further arguments to be passed

x

Object of class ml_mcmc

ask

Logical indicating whether display of the next plot should be requested via clicking

y

Outcome vector

X

Design matrix fixed effects

Z_list

Design matrices random effects

beta

Initial vector fixed coefficients

Psi_list

Initial covariance matrices random effects

sigma2

Initial residual covariance matrix

alpha

Vector of thresholds

u_list

List with initial values for random effects

idcluster_list

List with cluster identifiers for random effects

onlyintercept_list

List of logicals indicating whether only random intercepts are used for a corresponding random effect

ncluster_list

List containing number of clusters for each random effect

sigma2_nu0

Prior sample size residual variance

sigma2_sigma2_0

Prior guess residual variance

psi_nu0_list

List of prior sample sizes for covariance matrices of random effects

psi_S0_list

List of prior guesses for covariance matrices of random effects

est_sigma2

Logical indicating whether residual variance should be estimated

est_probit

Logical indicating whether probit model for ordinal outcomes should be estimated

parameter_index

List containing integers for saving parameters

est_parameter

List of logicals indicating which parameter type should be estimated

npar

Number of parameters

save_iter

Vector indicating which iterations should be used

verbose

Logical indicating whether progress should be displayed

parnames0

Optional vector of parameter names

K

Number of categories

est_thresh

Logical indicating whether thresholds should be estimated

parm_summary

Logical indicating whether a parameter summary table should be computed

xtx_inv

Matrix

NR

Integer

ztz_list

List containing design matrices for random effects

u0_list

List containing random effects

nu0_list

List with prior sample sizes

S0_list

List with prior guesses

sigma2_0

Numeric

y_int

Integer vector

minval

Numeric

maxval

Numeric

sd_proposal

Numeric vector

N

Integer

Z

Matrix

u

Matrix containing random effects

idcluster

Integer vector

onlyintercept

Logical

ncluster

Integer

mu1

Vector

use_log

Logical

mu

Vector

sigma

Numeric

lower

Vector

upper

Vector

Details

Fits a linear mixed effects model y=Xbeta+Zu+ey=\bm{X}\bm{beta}+ \bm{Z}\bm{u}+e with MCMC sampling. In case of ordinal data, the ordinal variable yy is replaced by an underlying latent normally distributed variable y∗y^\ast and the residual variance is fixed to 1.

Value

List with following entries (selection)

sampled_values

Sampled values

par_summary

Parameter summary

References

Goldstein, H. (2011). Multilevel statistical models. New York: Wiley. doi:10.1002/9780470973394

Goldstein, H., Carpenter, J., Kenward, M., & Levin, K. (2009). Multilevel models with multivariate mixed response types. Statistical Modelling, 9(3), 173-197. doi:10.1177/1471082X0800900301

See Also

See also the MCMCglmm package for MCMC estimation and the lme4 package for maximum likelihood estimation.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Multilevel model continuous data
#############################################################################

library(lme4)

#*** simulate data
set.seed(9097)

# number of clusters and units within clusters
K <- 150
n <- 15
iccx <- .2
idcluster <- rep( 1:K, each=n )
w <- stats::rnorm( K )
x <- rep( stats::rnorm( K, sd=sqrt(iccx) ), each=n) +
               stats::rnorm( n*K, sd=sqrt( 1 - iccx ))
X <- data.frame(int=1, "x"=x, xaggr=miceadds::gm(x, idcluster),
        w=rep( w, each=n ) )
X <- as.matrix(X)
Sigma <- diag( c(2, .5 ) )
u <- MASS::mvrnorm( K, mu=c(0,0), Sigma=Sigma )
beta <- c( 0, .3, .7, 1 )
Z <- X[, c("int", "x") ]
ypred <- as.matrix(X) %*% beta + rowSums( Z * u[ idcluster, ] )
y <- ypred[,1] + stats::rnorm( n*K, sd=1 )
data <- as.data.frame(X)
data$idcluster <- idcluster
data$y <- y

#*** estimate mixed effects model with miceadds::ml_mcmc() function
formula <- y ~ x + miceadds::gm(x, idcluster) + w + ( 1 + x | idcluster)
mod1 <- miceadds::ml_mcmc( formula=formula, data=data)
plot(mod1)
summary(mod1)

#*** compare results with lme4 package
mod2 <- lme4::lmer(formula=formula, data=data)
summary(mod2)

#############################################################################
# EXAMPLE 2: Multilevel model for ordinal outcome
#############################################################################

#*** simulate data
set.seed(456)
# number of clusters and units within cluster
K <- 500
n <- 10
iccx <- .2
idcluster <- rep( 1:K, each=n )
w <- rnorm( K )
x <- rep( stats::rnorm( K, sd=sqrt(iccx)), each=n) +
                 stats::rnorm( n*K, sd=sqrt( 1 - iccx ))
X <- data.frame("int"=1, "x"=x, "xaggr"=miceadds::gm(x, idcluster),
        w=rep( w, each=n ) )
X <- as.matrix(X)
u <- matrix( stats::rnorm(K, sd=sqrt(.5) ), ncol=1)
beta <- c( 0, .3, .7, 1 )
Z <- X[, c("int") ]
ypred <- as.matrix(X) %*% beta + Z * u[ idcluster, ]
y <- ypred[,1] + stats::rnorm( n*K, sd=1 )
data <- as.data.frame(X)
data$idcluster <- idcluster
alpha <- c(-Inf, -.4, 0, 1.7,  Inf)
data$y <- cut( y, breaks=alpha, labels=FALSE ) - 1

#*** estimate model
formula <- y ~ miceadds::cwc(x, idcluster) + miceadds::gm(x,idcluster) + w + ( 1 | idcluster)
mod <- miceadds::ml_mcmc( formula=formula, data=data, iter=2000, burnin=500,
                outcome="probit", inits_lme4=FALSE)
summary(mod)
plot(mod)

## End(Not run)

Functions for Analysis of Nested Multiply Imputed Datasets

Description

The function NestedImputationList takes a list of lists of datasets and converts this into an object of class NestedImputationList.

Statistical models can be estimated with the function with.NestedImputationList.

The mitools::MIcombine method can be used for objects of class NestedImputationResultList which are the output of with.NestedImputationList.

Usage

NestedImputationList( datasets )

## S3 method for class 'NestedImputationList'
print(x, ...)

## S3 method for class 'NestedImputationResultList'
MIcombine(results, ...)

Arguments

datasets

List of lists of datasets which are created by nested multiple imputation.

x

Object of class NestedImputationResultsList

results

Object of class NestedImputationResultsList

...

Further arguments to be passed.

Value

Function NestedImputationList: Object of class NestedImputationList.

Function MIcombine.NestedImputationList: Object of class mipo.nmi.

See Also

with.NestedImputationList, within.NestedImputationList, pool.mids.nmi, NMIcombine

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Nested multiple imputation and conversion into an object of class
#            NestedImputationList
#############################################################################

library(BIFIEsurvey)
data(data.timss2, package="BIFIEsurvey" )
datlist <- data.timss2

# remove first four variables
M <- length(datlist)
for (ll in 1:M){
    datlist[[ll]] <- datlist[[ll]][, -c(1:4) ]
                }

# nested multiple imputation using mice
imp1 <- miceadds::mice.nmi( datlist,  m=3, maxit=2 )
summary(imp1)

# create object of class NestedImputationList
datlist1 <- miceadds::mids2datlist( imp1 )
datlist1 <- miceadds::NestedImputationList( datlist1 )

# estimate linear model using with
res1 <- with( datlist1, stats::lm( ASMMAT ~ female + migrant ) )
# pool results
mres1 <- mitools::MIcombine( res1 )
summary(mres1)
coef(mres1)
vcov(mres1)

## End(Not run)

Converting a Nested List into a List (and Vice Versa)

Description

Converts a nested list into a list (and vice versa).

Usage

nestedList2List(nestedList)

List2nestedList(List, N_between, N_within=NULL, loop_within=TRUE)

Arguments

nestedList

A nested list

List

A list

N_between

Number of between list elements

N_within

Number of within list elements

loop_within

Optional logical indicating whether looping should start from within list

Value

A list or a nested list

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: List conversions using a small example
#############################################################################

# define a nestedList
nestedList <- as.list(1:3)
nestedList[[1]] <- as.list( 2:4 )
nestedList[[2]] <- as.list( 34 )
nestedList[[3]] <- as.list( 4:9 )

# convert a nested list into a list
v2 <- miceadds::nestedList2List( nestedList)

## reconvert list v2 into a nested list, looping within first
v3 <- miceadds::List2nestedList(v2, N_between=5)
# looping between first
v4 <- miceadds::List2nestedList(v2, N_between=5, loop_within=FALSE)

## End(Not run)

Wald Test for Nested Multiply Imputed Datasets

Description

Performs a Wald test for nested multiply imputed datasets (NMIwaldtest) and ordinary multiply imputed datasets (MIwaldtest), see Reiter and Raghunathan (2007). The corresponding statistic is also called the D1D_1 statistic.

The function create.designMatrices.waldtest is a helper function for the creation of design matrices.

Usage

NMIwaldtest(qhat, u, Cdes=NULL, rdes=NULL, testnull=NULL)

MIwaldtest(qhat, u, Cdes=NULL, rdes=NULL, testnull=NULL)

## S3 method for class 'NMIwaldtest'
summary(object, digits=4,...)

## S3 method for class 'MIwaldtest'
summary(object, digits=4,...)

create.designMatrices.waldtest(pars, k)

Arguments

qhat

List or array of estimated parameters

u

List or array of estimated covariance matrices of parameters

Cdes

Design matrix CC for parameter test (see Details)

rdes

Constant vector rr (see Details)

testnull

Vector containing names of parameters which should be tested for a parameter value of zero.

object

Object of class NMIwaldtest

digits

Number of digits after decimal for print

...

Further arguments to be passed

pars

Vector of parameter names

k

Number of linear hypotheses which should be tested

Details

The Wald test is performed for a linear hypothesis Cθ=rC \bold{\theta}=r for a parameter vector θ\bold{\theta}.

Value

List with following entries

stat

Data frame with test statistic

qhat

Transformed parameter according to linear hypothesis

u

Covariance matrix of transformed parameters

Note

The function create.designMatrices.waldtest is a helper function for the creation of design matrices.

References

Reiter, J. P. and Raghunathan, T. E. (2007). The multiple adaptations of multiple imputation. Journal of the American Statistical Association, 102(480), 1462-1471. doi:10.1198/016214507000000932

See Also

NMIcombine

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Nested multiple imputation and Wald test | TIMSS data
#############################################################################

library(BIFIEsurvey)
data(data.timss2, package="BIFIEsurvey" )
datlist <- data.timss2
# remove first four variables
M <- length(datlist)
for (ll in 1:M){
    datlist[[ll]] <- datlist[[ll]][, -c(1:4) ]
}

#***************
# (1) nested multiple imputation using mice
imp1 <- miceadds::mice.nmi( datlist,  m=3, maxit=2 )
summary(imp1)

#**** Model 1: Linear regression with interaction effects
res1 <- with( imp1, stats::lm( likesc ~ female*migrant + female*books  ) )
pres1 <- miceadds::pool.mids.nmi( res1 )
summary(pres1)

# test whether both interaction effects equals zero
pars <- dimnames(pres1$qhat)[[3]]
des <- miceadds::create.designMatrices.waldtest( pars=pars, k=2)
Cdes <- des$Cdes
rdes <- des$rdes
Cdes[1, "female:migrant"] <- 1
Cdes[2, "female:books"] <- 1
wres1 <- miceadds::NMIwaldtest( qhat=pres1$qhat, u=pres1$u, Cdes=Cdes, rdes=rdes )
summary(wres1)

# a simpler specification is the use of "testnull"
testnull <- c("female:migrant", "female:books")
wres1b <- miceadds::NMIwaldtest( qhat=qhat, u=u, testnull=testnull )
summary(wres1b)

#**** Model 2: Multivariate linear regression
res2 <- with( imp1, stats::lm( cbind( ASMMAT, ASSSCI ) ~
                           0 + I(1*(female==1)) + I(1*(female==0))   ) )
pres2 <- miceadds::pool.mids.nmi( res2 )
summary(pres2)

# test whether both gender differences equals -10 points
pars <- dimnames(pres2$qhat)[[3]]
  ##  > pars
  ##  [1] "ASMMAT:I(1 * (female==1))" "ASMMAT:I(1 * (female==0))"
  ##  [3] "ASSSCI:I(1 * (female==1))" "ASSSCI:I(1 * (female==0))"

des <- miceadds::create.designMatrices.waldtest( pars=pars, k=2)
Cdes <- des$Cdes
rdes <- c(-10,-10)
Cdes[1, "ASMMAT:I(1*(female==1))"] <- 1
Cdes[1, "ASMMAT:I(1*(female==0))"] <- -1
Cdes[2, "ASSSCI:I(1*(female==1))"] <- 1
Cdes[2, "ASSSCI:I(1*(female==0))"] <- -1

wres2 <- miceadds::NMIwaldtest( qhat=pres2$qhat, u=pres2$u, Cdes=Cdes, rdes=rdes )
summary(wres2)

# test only first hypothesis
wres2b <- miceadds::NMIwaldtest( qhat=pres2$qhat, u=pres2$u, Cdes=Cdes[1,,drop=FALSE],
                         rdes=rdes[1] )
summary(wres2b)

#############################################################################
# EXAMPLE 2: Multiple imputation and Wald test | TIMSS data
#############################################################################

library(BIFIEsurvey)
data(data.timss2, package="BIFIEsurvey" )
dat <- data.timss2[[1]]
dat <- dat[, - c(1:4) ]

# perform multiple imputation
imp <- mice::mice( dat, m=6, maxit=3 )

# define analysis model
res1 <- with( imp, lm( likesc ~ female*migrant + female*books  ) )
pres1 <- mice::pool( res1 )
summary(pres1)

# Wald test for zero interaction effects
qhat <- mitools::MIextract(res1$analyses, fun=coef)
u <- mitools::MIextract(res1$analyses, fun=vcov)
pars <- names(qhat[[1]])
des <- miceadds::create.designMatrices.waldtest( pars=pars, k=2)
Cdes <- des$Cdes
rdes <- des$rdes
Cdes[1, "female:migrant"] <- 1
Cdes[2, "female:books"] <- 1

# apply MIwaldtest function
wres1 <- miceadds::MIwaldtest( qhat, u, Cdes, rdes )
summary(wres1)

# use again "testnull"
testnull <- c("female:migrant", "female:books")
wres1b <- miceadds::MIwaldtest( qhat=qhat, u=u, testnull=testnull )
summary(wres1b)

#***** linear regression with cluster robust standard errors

# convert object of class mids into a list object
datlist_imp <- miceadds::mids2datlist( imp )
# define cluster
idschool <- as.numeric( substring( data.timss2[[1]]$IDSTUD, 1, 5 ) )
# linear regression
res2 <- lapply( datlist_imp, FUN=function(data){
           miceadds::lm.cluster( data=data, formula=likesc ~ female*migrant + female*books,
                            cluster=idschool ) } )
# extract parameters and covariance matrix
qhat <- lapply( res2, FUN=function(rr){ coef(rr) } )
u <- lapply( res2, FUN=function(rr){ vcov(rr) } )
# perform Wald test
wres2 <- miceadds::MIwaldtest( qhat, u, Cdes, rdes )
summary(wres2)

## End(Not run)

Simulation of Multivariate Linearly Related Non-Normal Variables

Description

Simulates multivariate linearly related non-normally distributed variables (Foldnes & Olsson, 2016). For marginal distributions, skewness and (excess) kurtosis values are provided and the values are simulated according to the Fleishman power transformation (Fleishman, 1978; see fleishman_sim).

The function nnig_sim simulates data from a multivariate random variable Y\bold{Y} which is related to a number of independent variables X\bold{X} (independent generators; Foldnes & Olsson, 2016) which are Fleishman power normally distributed. In detail, it holds that Y=μ+AX\bold{Y}=\bold{\mu} + \bold{A} \bold{X} where the covariance matrix Σ\bold{\Sigma} is decomposed according to a Cholesky decomposition Σ=AAT\bold{\Sigma}=\bold{A} \bold{A}^T.

Usage

# determine coefficients
nnig_coef(mean=NULL, Sigma, skew, kurt)

# simulate values
nnig_sim(N, coef)

Arguments

mean

Vector of means. The default is a vector containing zero means.

Sigma

Covariance matrix

skew

Vector of skewness values

kurt

Vector of (excess) kurtosis values

N

Number of cases

coef

List of parameters generated by nnig_coef

Value

A list of parameter values (nnig_coef) or a data frame with simulated values (nnig_sim).

References

Fleishman, A. I. (1978). A method for simulating non-normal distributions. Psychometrika, 43(4), 521-532. doi:10.1007/BF02293811

Foldnes, N., & Olsson, U. H. (2016). A simple simulation technique for nonnormal data with prespecified skewness, kurtosis, and covariance matrix. Multivariate Behavioral Research, 51(2-3), 207-219. doi:10.1080/00273171.2015.1133274

Vale, D. C., & Maurelli, V. A. (1983). Simulating multivariate nonnormal distributions. Psychometrika, 48(3), 465-471. doi:10.1007/BF02293687

See Also

See fungible::monte1 for simulating multivariate linearly related non-normally distributed variables generated by the method of Vale and Morelli (1983). See also the MultiVarMI::MVNcorr function in the MultiVarMI package and the SimMultiCorrData package.

The MultiVarMI also includes an imputation function MultiVarMI::MI for non-normally distributed variables.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Simulating data with nnig_sim function
#############################################################################

#* define input parameters
Sigma <- matrix( c(1,.5, .2,
                  .5, 1,.7,
                  .2, .7, 1), 3, 3 )
skew <- c(0,1,1)
kurt <- c(1,3,3)

#* determine coefficients
coeff <- miceadds::nnig_coef( Sigma=Sigma, skew=skew, kurt=kurt )
print(coeff)

#* simulate data
set.seed(2018)
Y <- miceadds::nnig_sim( N=2000, coef=coeff)

#* check descriptive statistics
apply(Y, 2, TAM::weighted_skewness )
apply(Y, 2, TAM::weighted_kurtosis )

## End(Not run)

R Utilities: Formatting R Output on the R Console

Description

This function does some formatting of output.

Usage

output.format1(stringtype, label, rep.N=1,stringlength=70)

Arguments

stringtype

Type of string for display, e.g. "*", "-", ...

label

Some comment which should be displayed at the console

rep.N

Number of lines which shall be left blank

stringlength

Length of vector with label

Value

Generates a string output at the R console

Examples

output.format1(stringtype="*'", label="HELLO WORLD", stringlength=20)
##   *'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'*'
##   HELLO WORLD

Principal Component Analysis with Ridge Regularization

Description

Performs a principal component analysis for a dataset while a ridge parameter is added on the diagonal of the covariance matrix.

Usage

pca.covridge(x, ridge=1E-10, wt=NULL )

Arguments

x

A numeric matrix

ridge

Ridge regularization parameter for the covariance matrix

wt

Optional vector of weights

Value

A list with following entries:

loadings

Matrix of factor loadings

scores

Matrix of principal component scores

sdev

Vector of standard deviations of factors (square root of eigenvalues)

See Also

Principal component analysis in stats: stats::princomp

For calculating first eigenvalues of a symmetric matrix see also sirt::sirt_eigenvalues in the sirt package.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: PCA on imputed internet data
#############################################################################

library(mice)
data(data.internet)
dat <- as.matrix( data.internet)

# single imputation in mice
imp <- mice::mice( dat, m=1, maxit=10 )

# apply PCA
pca.imp <- miceadds::pca.covridge( complete(imp) )
  ##   > pca.imp$sdev
  ##      Comp.1    Comp.2    Comp.3    Comp.4    Comp.5    Comp.6    Comp.7
  ##   3.0370905 2.3950176 2.2106816 2.0661971 1.8252900 1.7009921 1.6379599

# compare results with princomp
pca2.imp <- stats::princomp( complete(imp) )
  ##   > pca2.imp
  ##   Call:
  ##   stats::princomp(x=complete(imp))
  ##
  ##   Standard deviations:
  ##      Comp.1    Comp.2    Comp.3    Comp.4    Comp.5    Comp.6    Comp.7
  ##   3.0316816 2.3907523 2.2067445 2.0625173 1.8220392 1.6979627 1.6350428

## End(Not run)

Statistical Inference for Multiply Imputed Datasets

Description

Statistical inference for multiply imputed datasets. See mitools::MIcombine or mice::pool for functions of the same functionality.

Usage

pool_mi(qhat, u=NULL, se=NULL, dfcom=1e+07, method="smallsample")

## S3 method for class 'pool_mi'
summary(object, alpha=0.05, ...)

## S3 method for class 'pool_mi'
coef(object, ...)

## S3 method for class 'pool_mi'
vcov(object, ...)

Arguments

qhat

List of parameter vectors

u

List of covariance matrices

se

List of vector of standard errors. Either u or se must be provided.

dfcom

Degrees of freedom of statistical analysis

method

The default is the small sample inference ("smallsample"). Any other input provides large sample inference.

object

Object of class pool_mi

alpha

Confidence level

...

Further arguments to be passed

Value

Object of with similar output as produced by the mice::pool function.

See Also

mitools::MIcombine, mice::pool, mitml::testEstimates

For statistical inference for nested multiply imputed datasets see NMIcombine.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Statistical inference for models based on imputationList
#############################################################################

library(mitools)
library(mice)
library(Zelig)
library(mitml)
library(lavaan)
library(semTools)
data(data.ma02)

# save dataset as imputation list
imp <- mitools::imputationList( data.ma02 )
# mids object
imp0 <- miceadds::datlist2mids( imp )
# datlist object
imp1 <- miceadds::datlist_create(data.ma02)

#--- apply linear model based on imputationList
mod <- with( imp, stats::lm( read ~ hisei + female ) )
#--- apply linear model for mids object
mod0 <- with( imp0, stats::lm( read ~ hisei + female ) )
# extract coefficients
cmod <- mitools::MIextract( mod, fun=coef)
# extract standard errors
semod <- lapply( mod, FUN=function(mm){
    smm <- summary(mm)
    smm$coef[,"Std. Error"]
} )
# extract covariance matrix
vmod <- mitools::MIextract( mod, fun=vcov)

#*** pooling based on covariance matrices
res1 <- miceadds::pool_mi( qhat=cmod, u=vmod )
summary(res1)
coef(res1)
vcov(res1)

#*** pooling based on standard errors
res2 <- miceadds::pool_mi( qhat=cmod, se=semod )

#*** pooling with MIcombine
res3 <- mitools::MIcombine( results=cmod, variances=vmod )

#*** pooling with pool function in mice
res4 <- mice::pool( mod0 )

#*** analysis in Zelig
# convert datalist into object of class amelia
mi02 <- list( "imputations"=data.ma02)
class(mi02) <- "amelia"
res5 <- Zelig::zelig( read ~ hisei + female, model="ls", data=mi02 )

#*** analysis in lavaan
lavmodel <- "
     read ~ hisei + female
     read ~~ a*read
     read ~ 1
     # residual standard deviation
     sde :=sqrt(a)
       "
# analysis for first imputed dataset
mod6a <- lavaan::sem( lavmodel, data=imp1[[1]] )
summary(mod6a)
# analysis based on all datasets using with
mod6b <- lapply( imp1, FUN=function(data){
           res <- lavaan::sem( lavmodel, data=data )
           return(res)
                } )
# extract parameters and covariance matrices
qhat0 <- lapply( mod6b, FUN=function(ll){  coef(ll) } )
u0 <- lapply( mod6b, FUN=function(ll){  vcov(ll) } )
res6b <- mitools::MIcombine( results=qhat0, variances=u0 )

# extract informations for all parameters
qhat <- lapply( mod6b, FUN=function(ll){
        h1 <- lavaan::parameterEstimates(ll)
        parnames <- paste0( h1$lhs, h1$op, h1$rhs )
        v1 <- h1$est
        names(v1) <- parnames
        return(v1)
     } )
se <- lapply( mod6b, FUN=function(ll){
        h1 <- lavaan::parameterEstimates(ll)
        parnames <- paste0( h1$lhs, h1$op, h1$rhs )
        v1 <- h1$se
        names(v1) <- parnames
        return(v1)
     } )
res6c <- miceadds::pool_mi( qhat=qhat, se=se )

# function runMI in semTools package
res6d <- semTools::runMI(model=lavmodel, data=imp1, m=length(imp1) )
  # semTools version 0.4-9 provided an error message
# perform inference with mitml package
se2 <- lapply( se, FUN=function(ss){  ss^2  } )  # input variances
res6e <- mitml::testEstimates(qhat=qhat, uhat=se2)

#*** complete model estimation and inference in mitml

# convert into object of class mitml.list
ml02 <- mitml::as.mitml.list( data.ma02)
# estimate regression
mod7 <- with( ml02, stats::lm( read ~ hisei + female ) )
# inference
res7 <- mitml::testEstimates( mod7 )

#*** model comparison
summary(res1)
summary(res2)
summary(res3)
summary(res4)
summary(res5)
summary(res6b)
summary(res6c)
print(res6e)
print(res7)

## End(Not run)

Pooling for Nested Multiple Imputation

Description

Statistical inference for scalar parameters for nested multiply imputed datasets (Rubin, 2003; Harel & Schafer, 2002, 2003; Reiter & Raghanuthan, 2007; Harel, 2007).

The NMIcombine (pool_nmi as a synonym) and NMIextract functions are extensions of mitools::MIcombine and mitools::MIextract.

Usage

pool.mids.nmi(object, method="largesample")

NMIcombine( qhat, u=NULL, se=NULL, NMI=TRUE, comp_cov=TRUE, is_list=TRUE,
       method=1)

pool_nmi( qhat, u=NULL, se=NULL, NMI=TRUE, comp_cov=TRUE, is_list=TRUE,
       method=1)

NMIextract(results, expr, fun)

## S3 method for class 'mipo.nmi'
summary(object, digits=4, ...)

## S3 method for class 'mipo.nmi'
coef(object, ...)

## S3 method for class 'mipo.nmi'
vcov(object, ...)

Arguments

object

Object of class mids.nmi. For summary it must be an object of class mipo.nmi.

method

For pool.mids.nmi: Method for calculating degrees of freedom. Until now, only the method "largesample" is available.
For NMIcombine and pool_nmi: Computation method of fraction of missing information. method=1 is due to Harel and Schafer (2003) or Shen (2007). method=2 is due to Harel and Schafer (2002) and is coherent to the calculation for multiply imputed datasets, while the former method is not.

qhat

List of lists of parameter estimates. In case of an ordinary imputation it can only be a list.

u

Optional list of lists of covariance matrices of parameter estimates

se

Optional vector of standard errors. This argument overwrites u if it is provided.

NMI

Optional logical indicating whether the NMIcombine function should be applied for results of nested multiply imputed datasets. It is set to FALSE if only a list results of multiply imputed datasets is available.

comp_cov

Optional logical indicating whether covariances between parameter estimates should be estimated.

is_list

Optional logical indicating whether qhat and u are provided as lists as an input. If is_list=FALSE, appropriate arrays can be used as input.

results

A list of objects

expr

An expression

fun

A function of one argument

digits

Number of digits after decimal for printing results in summary.

...

Further arguments to be passed.

Value

Object of class mipo.nmi with following entries

qhat

Estimated parameters in all imputed datasets

u

Estimated covariance matrices of parameters in all imputed datasets

qbar

Estimated parameter

ubar

Average estimated variance within imputations

Tm

Total variance of parameters

df

Degrees of freedom

lambda

Total fraction of missing information

lambda_Between

Fraction of missing information of between imputed datasets (first stage imputation)

lambda_Within

Fraction of missing information of within imputed datasets (second stage imputation)

References

Harel, O., & Schafer, J. (2002). Two stage multiple imputation. Joint Statistical Meetings - Biometrics Section.

Harel, O., & Schafer, J. (2003). Multiple imputation in two stages. In Proceedings of Federal Committee on Statistical Methodology 2003 Conference.

Harel, O. (2007). Inferences on missing information under multiple imputation and two-stage multiple imputation. Statistical Methodology, 4(1), 75-89. doi:10.1016/j.stamet.2006.03.002

Reiter, J. P. and Raghunathan, T. E. (2007). The multiple adaptations of multiple imputation. Journal of the American Statistical Association, 102(480), 1462-1471. doi:10.1198/016214507000000932

Rubin, D. B. (2003). Nested multiple imputation of NMES via partially incompatible MCMC. Statistica Neerlandica, 57(1), 3-18. doi:10.1111/1467-9574.00217

See Also

mice::pool, mitools::MIcombine, mitools::MIextract

mice.nmi, MIcombine.NestedImputationResultList

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Nested multiple imputation and statistical inference
#############################################################################

library(BIFIEsurvey)
data(data.timss2, package="BIFIEsurvey" )
datlist <- data.timss2
# remove first four variables
M <- length(datlist)
for (ll in 1:M){
    datlist[[ll]] <- datlist[[ll]][, -c(1:4) ]
               }

#***************
# (1) nested multiple imputation using mice
imp1 <- miceadds::mice.nmi( datlist,  m=3, maxit=2 )
summary(imp1)

#***************
# (2) first linear regression: ASMMAT ~ migrant + female
res1 <- with( imp1, stats::lm( ASMMAT ~ migrant + female ) ) # fit
pres1 <- miceadds::pool.mids.nmi( res1 )  # pooling
summary(pres1)  # summary
coef(pres1)
vcov(pres1)

#***************
# (3) second linear regression: likesc ~ migrant + books
res2 <- with( imp1, stats::lm( likesc ~ migrant + books  ) )
pres2 <- miceadds::pool.mids.nmi( res2 )
summary(pres2)

#***************
# (4) some descriptive statistics using the mids.nmi object
res3 <- with( imp1, c( "M_lsc"=mean(likesc), "SD_lsc"=stats::sd(likesc) ) )
pres3 <- miceadds::NMIcombine( qhat=res3$analyses )
summary(pres3)

#*************
# (5) apply linear regression based on imputation list

# convert mids object to datlist
datlist2 <- miceadds::mids2datlist( imp1 )
str(datlist2, max.level=1)

# double application of lapply to the list of list of nested imputed datasets
res4 <- lapply( datlist2, FUN=function(dl){
    lapply( dl, FUN=function(data){
            stats::lm( ASMMAT ~ migrant + books, data=data )
                                } )
                }  )

# extract coefficients
qhat <- lapply( res4, FUN=function(bb){
            lapply( bb, FUN=function(ww){
                    coef(ww)
                        } )
                } )
# shorter function
NMIextract( results=res4, fun=coef )

# extract covariance matrices
u <- lapply( res4, FUN=function(bb){
            lapply( bb, FUN=function(ww){
                    vcov(ww)
                        } )
                } )
# shorter function
NMIextract( results=res4, fun=vcov )

# apply statistical inference using the NMIcombine function
pres4 <- miceadds::NMIcombine( qhat=qhat, u=u )
summary(pres4)

#--- statistical inference if only standard errors are available
# extract standard errors
se <- lapply( res4, FUN=function(bb){
            lapply( bb, FUN=function(ww){
                # ww <- res4[[1]][[1]]
                sww <- summary(ww)
                sww$coef[,"Std. Error"]
                        } )
                } )
se
# apply NMIcombine function
pres4b <- miceadds::NMIcombine( qhat=qhat, se=se )
# compare results
summary(pres4b)
summary(pres4)

#############################################################################
# EXAMPLE 2: Some comparisons for a multiply imputed dataset
#############################################################################

library(mitools)
data(data.ma02)

# save dataset as imputation list
imp <- mitools::imputationList( data.ma02 )
print(imp)
# save dataset as an mids object
imp1 <- miceadds::datlist2mids( imp )

# apply linear model based on imputationList
mod <- with( imp, stats::lm( read ~ hisei + female ) )
# same linear model based on mids object
mod1 <- with( imp1, stats::lm( read ~ hisei + female ) )

# extract coefficients
cmod <- mitools::MIextract( mod, fun=coef)
# extract standard errors
semod <- lapply( mod, FUN=function(mm){
                smm <- summary(mm)
                smm$coef[,"Std. Error"]
                        } )
# extract covariance matrix
vmod <- mitools::MIextract( mod, fun=vcov)

#*** pooling with NMIcombine with se (1a) and vcov (1b) as input
pmod1a <- miceadds::NMIcombine( qhat=cmod, se=semod, NMI=FALSE )
pmod1b <- miceadds::NMIcombine( qhat=cmod, u=vmod, NMI=FALSE )
# use method 2 which should conform to MI inference of mice::pool
pmod1c <- miceadds::NMIcombine( qhat=cmod, u=vmod, NMI=FALSE, method=2)

#*** pooling with mitools::MIcombine function
pmod2 <- mitools::MIcombine( results=cmod, variances=vmod )
#*** pooling with mice::pool function
pmod3a <- mice::pool( mod1 )
pmod3b <- mice::pool( mod1, method="Rubin")

#--- compare results
summary(pmod1a)   # method=1  (the default)
summary(pmod1b)   # method=1  (the default)
summary(pmod1c)   # method=2
summary(pmod2)
summary(pmod3a)
summary(pmod3b)

## End(Not run)

R Utilities: Evaluates a String as an Expression in R

Description

This function evaluates a string as an R expression.

Usage

Reval(Rstring, print.string=TRUE, n.eval.parent=1)

# Reval( print(Rstring) )
Revalpr(Rstring, print.string=TRUE)

#  Reval( print(str(Rstring)) )
Revalprstr(Rstring, print.string=TRUE)

#  Reval( print(round(Rstring, digits)) )
Revalpr_round( Rstring, digits=5, print.string=TRUE)

#  Reval( print(max(abs(Rstring_x - Rstring_y)) ) )
Revalpr_maxabs( Rstring_x, Rstring_y, print.string=TRUE, na.rm=FALSE)

Arguments

Rstring

String which shall be evaluated in R

print.string

Should the string printed on the console?

n.eval.parent

Index of parent environment in which the R command should be evaluated.

digits

Number of digits after decimal.

Rstring_x

String corresponding to an R object

Rstring_y

String corresponding to an R object

na.rm

Logical indicating whether missing values should be removed from calculation

Details

The string is evaluated in the parent environment. See base::eval for the definition of environments in R.

Examples

# This function is simply a shortage function
# See the definition of this function:
Reval <- function( Rstring, print.string=TRUE){
    if (print.string){ cat( paste( Rstring ), "\n"  ) }
        eval.parent( parse( text=paste( Rstring )), n=1 )
            }

Reval( "a <- 2^3" )
  ## a <- 2^3
a
  ## [1] 8

Utility Functions for Writing R Functions

Description

Utility functions for writing R functions.

Usage

## include argument values in a function input
Rfunction_include_argument_values(string, maxlen=70)

## assign objects to entries in a list
Rfunction_output_list_result_function(string, mid=" <- res$")

## delete declaration of Rcpp and RcppArmadillo object classes
Rcppfunction_remove_classes(string, maxlen=70, remove=TRUE)

Arguments

string

String

maxlen

Maximal string length for output

mid

Middle term in the output

remove

Logical indicating whether object classes should be removed

Value

String

Examples

#############################################################################
# EXAMPLE 1: Toy examples
#############################################################################

##**** extend missing arguments

string <- "
          mice.impute.2l.pls2(y, ry, x, type, pls.facs=pls.facs  ))
          "
cat( miceadds::Rfunction_include_argument_values(string) )
  ##    mice.impute.2l.pls2( y=y, ry=ry, x=x, type=type, pls.facs=pls.facs )

##**** assignment to objects as entries in a list

string <- "
          list( vname=vname, p, type=type, data=data, levels_id )
          "
cat( miceadds::Rfunction_output_list_result_function( string ) )
  ##
  ##  vname <- res$vname
  ##  p <- res$p
  ##  type <- res$type
  ##  data <- res$data
  ##  levels_id <- res$levels_id


string <- "
arma::colvec miceadds_rcpp_rtnorm2( arma::colvec mu,
            double sigma0, arma::colvec lower, arma::colvec upper,
            double minval, double maxval)
    "

cat( miceadds::Rcppfunction_remove_classes(string, maxlen=70) )
cat( miceadds::Rcppfunction_remove_classes(string, maxlen=70, remove=FALSE) )

Rhat Convergence Statistic of a mice Imputation

Description

Computes the Rhat statistic for a mids object.

Usage

Rhat.mice(mice.object)

Arguments

mice.object

Object of class mids

Value

Data frame containing the Rhat statistic for mean and variances for all variables of the Markov chains used for imputation

References

Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Rhat statistic for nhanes data
#############################################################################

library(mice)
data(nhanes, package="mice")
set.seed(9090)

# nhanes 3 parallel chains
imp1 <- mice::mice( nhanes, m=3, maxit=10, method=rep("norm", 4 ))
miceadds::Rhat.mice( imp1 )
  ##     variable MissProp Rhat.M.imp Rhat.Var.imp
  ##   1      bmi       36  1.0181998     1.155807
  ##   2      hyp       32  1.0717677     1.061174
  ##   3      chl       40  0.9717109     1.318721

## End(Not run)

R Utilities: Rounding DIN 1333 (Kaufmaennisches Runden)

Description

This is a rounding function which rounds up for all numbers according to the rule of 'kaufmaennisches Runden' (DIN 1333).

Usage

round2(vec, digits=0)

Arguments

vec

Numeric vector

digits

Number of digits after decimal for rounding

Value

Vector with rounded values

Examples

#############################################################################
# EXAMPLE 1:
#############################################################################

vec <- c( 1.5, 2.5, 3.5, 1.51,  1.49)
vec
round(vec)
round2(vec)
  ##   > vec
  ##   [1] 1.50 2.50 3.50 1.51 1.49
  ##   > round(vec)
  ##   [1] 2 2 4 2 1
  ##   > miceadds::round2(vec)
  ##   [1] 2 3 4 2 1

#############################################################################
# EXAMPLE 2:
#############################################################################

vec <- - c( 1.5, 2.5, 3.5, 1.51,  1.49)
vec
round(vec)
round2(vec)
  ##   > vec
  ##   [1] -1.50 -2.50 -3.50 -1.51 -1.49
  ##   > round(vec)
  ##   [1] -2 -2 -4 -2 -1
  ##   > miceadds::round2(vec)
  ##   [1] -2 -3 -4 -2 -1

#############################################################################
# EXAMPLE 3:
#############################################################################

vec <- c(8.4999999, 8.5, 8.501, 7.4999999, 7.5, 7.501 )
round(vec)
round2( vec )
round2( vec, digits=1)
round2( -vec )
  ##   > round(vec)
  ##   [1] 8 8 9 7 8 8
  ##   > miceadds::round2( vec )
  ##   [1] 8 9 9 7 8 8
  ##   > miceadds::round2( vec, digits=1)
  ##   [1] 8.5 8.5 8.5 7.5 7.5 7.5
  ##   > miceadds::round2( -vec )
  ##   [1] -8 -9 -9 -7 -8 -8

R Utilities: R Session Information

Description

Informs about current R session.

Usage

Rsessinfo()

Value

A string containing reduced information about R session info

Examples

Rsessinfo()
  ##   > miceadds::Rsessinfo()
  ##   [1] "R version 2.15.2 (2012-10-26) x86_64, mingw32 | nodename=SD70 | login=robitzsch"

R Utilities: Saving/Writing Data Files using miceadds

Description

This function is a wrapper function for saving or writing data frames or matrices.

Usage

save.data( data, filename, type="Rdata", path=getwd(), row.names=FALSE, na=NULL,
      suffix=NULL, suffix_space="__", index=FALSE, systime=FALSE, ...)

Arguments

data

Data frame or matrix to be saved

filename

Name of data file

type

The type of file in which the data frame or matrix should be loaded. This can be Rdata (for R binary format, using base::save, csv (using utils::write.csv2), csv (using utils::write.csv), table (using utils::write.table), sav (using sjlabelled::write_spss), RDS (using saveRDS). type can also be a vector if the data frame should be saved in multiple formats.

path

Directory from which the dataset should be loaded

row.names

Optional logical indicating whether row names should be included in saved csv or csv2 files.

na

Missing value handling. The default is "" for type="csv" and type="csv2" and is "." for type="table".

suffix

Optional suffix in file name.

suffix_space

Optional place holder if a suffix is used.

index

Optional logical indicating whether an index should be included in the first column using the function index.dataframe.

systime

If index=TRUE, this optional logical indicates whether a time stamp should be included in the second column.

...

Further arguments to be passed to save, write.csv2, write.csv, write.table or sjlabelled::write_spss.

See Also

See load.Rdata and load.data for saving/writing R data frames.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Save dataset data.ma01
#############################################################################

#*** use data.ma01 as an example for writing data files using save.data
data(data.ma01)
dat <- data.ma01

# set a working directory
pf2 <- "P:/ARb/temp_miceadds"

# save data in Rdata format
miceadds::save.data( dat, filename="ma01data", type="Rdata", path=pf2)

# save data in table format without row and column names
miceadds::save.data( dat, filename="ma01data", type="table", path=pf2,
            row.names=FALSE, na=".", col.names=FALSE)

# save data in csv2 format, including time stamp in file name
# and row index and time stamp in saved data
miceadds::save.data( dat, filename="ma01data", type="csv2", path=pf2,
            row.names=FALSE, na="", suffix=systime()[5],
            index=TRUE, systime=TRUE )

# save data in sav format
miceadds::save.data( dat, filename="ma02data", type="sav",  path=pf2 )

# save data file in different formats
types <- c("Rdata", "csv2", "sav")
sapply( types, FUN=function(type){
    miceadds::save.data( dat, filename="ma02data", type=type,  path=pf2,
               suffix=miceadds::systime()[3], row.names=TRUE  )
                                    } )

# save data frame in multiple file formats (sav, table and csv2)
miceadds::save.data( dat, filename="ma03data", type=c("sav","table","csv2"),  path=pf2,
            suffix=miceadds::systime()[7]  )

## End(Not run)

R Utilities: Save a Data Frame in Rdata Format

Description

This function saves a data frame in a Rdata format.

Usage

save.Rdata(dat, name, path=NULL, part.numb=1000)

Arguments

dat

Data frame

name

Name of the R object to be saved

path

Directory for saving the object

part.numb

Number of rows of the data frame which should also be saved in csv format. The default is saving 1000 rows.

Examples

## Not run: 
dfr <- matrix( 2*1:12-3, 4,3 )
save.Rdata( dfr, "dataframe_test" )

## End(Not run)

Adding a Standardized Variable to a List of Multiply Imputed Datasets or a Single Datasets

Description

Adds a standardized variable to a list of multiply imputed datasets or a single dataset. This function extends base::scale for a data frame to a list of multiply imputed datasets.

Usage

scale_datlist(datlist, orig_var, trafo_var, weights=NULL, M=0, SD=1,
    digits=NULL)

Arguments

datlist

A data frame, a list of multiply imputed datasets of one of the classes datlist or imputationList or a list of nested multiply imputed datasets of one of the classes nested_datlist or NestedImputationList.

orig_var

Vector with names of the variables to be transformed

trafo_var

Vector with names of the standardized variables

weights

Optional vector of sample weights. Alternatively, the weights can also be a string indicating the variable used from datlist.

M

Mean of the transformed variable

SD

Standard deviation of the transformed variable

digits

Number of digits used for rounding the standardized variable

Value

A vector or a matrix

See Also

base::scale, ma.scale2

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Standardized variables in list of multiply imputed datasets
#############################################################################

data(data.ma02)
datlist <- data.ma02

#--- object of class 'datlist'
datlist <- miceadds::datlist_create( datlist )

# mean and SD of variable hisei
miceadds::ma.wtd.meanNA(data=datlist, weights=datlist[[1]]$studwgt, vars="hisei" )
mean( unlist( lapply( datlist, FUN=function(data){
        stats::weighted.mean( data$hisei, data$studwgt )  } ) ) )
miceadds::ma.wtd.sdNA(data=datlist, weights=datlist[[1]]$studwgt, vars="hisei" )
mean( unlist( lapply( datlist, FUN=function(data){
        sqrt( Hmisc::wtd.var( data$hisei, data$studwgt ) ) } ) ) )

# standardize variable hisei to M=100 and SD=15
datlist1a <- miceadds::scale_datlist( datlist=datlist, orig_var="hisei",
               trafo_var="hisei100", weights=datlist[[1]]$studwgt, M=100, SD=15 )

# check mean and SD
miceadds::ma.wtd.meanNA(data=datlist1a, weights=datlist[[1]]$studwgt, vars="hisei100")
miceadds::ma.wtd.sdNA(data=datlist1a, weights=datlist[[1]]$studwgt, vars="hisei100")

#--- do standardization for unweighted sample with books <=3
# -> define a weighting variable at first
datlist0 <- mitools::imputationList( datlist )
datlist2a <- miceadds::within.imputationList( datlist0, {
             # define weighting variable
                 wgt_books <- 1 * ( books <=3 )
                    } )

# standardize variable hisei to M=100 and SD=15 with respect to weighting variable
datlist2b <- miceadds::scale_datlist( datlist=datlist2a, orig_var="hisei", trafo_var="hisei100",
         weights="wgt_books", M=100, SD=15 )

# check mean and SD (groupwise)
miceadds::ma.wtd.meanNA(data=datlist1a, weights=datlist[[1]]$studwgt, vars="hisei100")
miceadds::ma.wtd.sdNA(data=datlist1a, weights=datlist[[1]]$studwgt, vars="hisei100")

#--- transformation for a single dataset
dat0 <- datlist[[1]]
dat0a <- miceadds::scale_datlist( datlist=dat0, orig_var="hisei", trafo_var="hisei100",
                    weights=dat0$studwgt, M=100, SD=15 )
stats::weighted.mean( dat0a[,"hisei"],  w=dat0a$studwgt )
stats::weighted.mean( dat0a[,"hisei100"],  w=dat0a$studwgt )
sqrt( Hmisc::wtd.var( dat0a[,"hisei100"],  weights=dat0a$studwgt ) )

#--- Standardizations for objects of class imputationList
datlist2 <- mitools::imputationList(datlist)   # object class conversion
datlist2a <- miceadds::scale_datlist( datlist=datlist2, orig_var="hisei",
                 trafo_var="hisei100", weights=datlist[[1]]$studwgt, M=100, SD=15 )

#############################################################################
# EXAMPLE 2: Standardized variables in list of nested multiply imputed datasets
#############################################################################

# nested multiply imputed dataset in BIFIEsurvey package
data(data.timss4, package="BIFIEsurvey")
datlist <- data.timss4
wgt <- datlist[[1]][[1]]$TOTWGT

# class nested.datlist
imp1 <- miceadds::nested.datlist_create( datlist )
# class NestedImputationList
imp2 <- miceadds::NestedImputationList( datlist )

# standardize variable scsci
imp1a <- miceadds::scale_datlist( datlist=imp1, orig_var="scsci", trafo_var="zscsci", weights=wgt)
# check descriptives
miceadds::ma.wtd.meanNA( imp1a, weights=wgt, vars=c("scsci", "zscsci" ) )
miceadds::ma.wtd.sdNA( imp1a, weights=wgt, vars=c("scsci", "zscsci" ) )

#############################################################################
# EXAMPLE 3: Standardization of variables for imputed data in mice package
#############################################################################

data(nhanes, package="mice")
set.seed(76)

#--- impute nhanes data
imp <- mice::mice(nhanes)
#--- convert into datlist
datlist <- miceadds::mids2datlist(imp)
#--- scale datlist (all variables)
vars <- colnames(nhanes)
sdatlist <- miceadds::scale_datlist(datlist, orig_var=vars, trafo_var=paste0("z",vars) )
#--- reconvert to mids object
imp2 <- miceadds::datlist2mids(sdatlist)
#*** compare descriptive statistics of objects
round( miceadds::mean0( mice::complete(imp, action=1) ), 2 )
round( miceadds::mean0( mice::complete(imp2, action=1) ), 2 )

## End(Not run)

R Utilities: Scan a Character Vector

Description

The function scan.vec function splits a string into a character vector. The function scan0 is the base::scan function using the default what="character".

Usage

scan.vec(vec)
scan.vector(vec)

scan0(file="", ...)

Arguments

vec

A string which should be split according to blanks

file

File to be scanned. See base::scan.

...

Further arguments to be passed. See base::scan.

See Also

base::scan

Examples

#############################################################################
# EXAMPLE 1: Example scan.vec | reading a string
#############################################################################


vars <- miceadds::scan.vector( "urbgrad \n  groesse  \t  Nausg  grpgroesse   privat  ")
vars
  ## [1] "urbgrad"    "groesse"    "Nausg"      "grpgroesse"
  ## [6] "privat"

## the next lines are only commented out to fulfill CRAN checks
## vars2 <- miceadds::scan0()
##     female urbgrad  groesse  Nausg    grpgroesse   privat

R Utilities: Source all R or Rcpp Files within a Directory

Description

The function source.all sources all R files within a specified directory and is based on base::source.

The function source.Rcpp.all sources all Rcpp files within a specified directory and is based on Rcpp::sourceCpp.

The function rcpp_create_header_file creates a cpp header file for a Rcpp file.

Usage

source.all( path, grepstring="\\.R",  print.source=TRUE, file_sep="__"  )

source.Rcpp.all( path, file_names=NULL, ext="\\.cpp", excl="RcppExports",
   remove_temp_file=FALSE )

rcpp_create_header_file(file_name, pack=NULL, path=getwd() )

Arguments

path

Path where the files are located

grepstring

Which strings should be looked for? grepstring can also be a vector.

print.source

An optional logical whether the source process printed on the console?

file_sep

String at which file name should be split for looking for most recent files

file_names

Optional vector of (parts of) file names

ext

File extension for Rcpp files

excl

String indicating which files should be omitted from sourcing

remove_temp_file

Logical indicating whether temporary Rcpp files should be removed.

file_name

File name

pack

Optional string for package

Details

For loading header files, the line // [include_header_file] has to be included before loading the header file using a line of the form #include "my_function.h".

Examples

## Not run: 
# define path
path <- "c:/myfiles/"
# source all files containing the string 'Rex'
source.all( path, "Rex" )

## End(Not run)

Descriptive Statistics for a Vector or a Data Frame

Description

Applies descriptive statistics to a vector or a data frame. The function stats0 is a general function. This function is used for extending the basic descriptive statistics functions from the base and stats package. The function prop_miss computes the proportion of missing data for each variable.

Usage

stats0(x, FUN, na.rm=TRUE,...)

max0(x, na.rm=TRUE)
mean0(x, na.rm=TRUE)
min0(x, na.rm=TRUE)
quantile0(x, probs=seq(0, 1, 0.25), na.rm=TRUE)
sd0(x, na.rm=TRUE)
var0(x, na.rm=TRUE)

prop_miss(x)

Arguments

x

Vector or a data frame

FUN

Function which is applied to x

na.rm

Logical indicating whether missing data should be removed

probs

Probabilities

...

Further arguments to be passed

Value

A vector or a matrix

See Also

base::max, base::mean, base::min, stats::quantile, stats::sd, stats::var

Examples

#############################################################################
# EXAMPLE 1: Descriptive statistics toy datasets
#############################################################################

#--- simulate vector y and data frame dat
set.seed(765)
N <- 25    # number of observations
y <- stats::rnorm(N)
V <- 4    # number of variables
dat <- matrix( stats::rnorm( N*V ), ncol=V )
colnames(dat) <- paste0("V",1:V)

#-- standard deviation
apply( dat, 2, stats::sd )
sd0( dat )
#-- mean
apply( dat, 2, base::mean )
mean0( dat )
#-- quantile
apply( dat, 2, stats::quantile )
quantile0( dat )
#-- minimum and maximum
min0(dat)
max0(dat)

#*** apply functions to missing data
dat1 <- dat
dat1[ cbind( c(2,5),2) ] <- NA

#-- proportion of missing data
prop_miss( dat1 )
#-- MAD statistic
stats0( dat, FUN=stats::mad )
#-- SD
sd0(y)

R Utilities: String Paste Combined with expand.grid

Description

String paste combined with expand.grid

Usage

str_C.expand.grid(xlist, indices=NULL)

Arguments

xlist

A list of character vectors

indices

Optional vector of indices to be permuted in xlist

Value

A character vector

Examples

#############################################################################
# EXAMPLE 1: Some toy examples
#############################################################################

x1 <- list( c("a","b" ), c("t", "r","v") )
str_C.expand.grid( x1 )
  ##   [1] "at" "bt" "ar" "br" "av" "bv"

x1 <- list( c("a","b" ), paste0("_", 1:4 ), c("t", "r","v") )
str_C.expand.grid( x1, indices=c(2,1,3) )
  ##    [1] "_1at" "_1bt" "_2at" "_2bt" "_3at" "_3bt" "_4at" "_4bt" "_1ar" "_1br"
  ##   [11] "_2ar" "_2br" "_3ar" "_3br" "_4ar" "_4br" "_1av" "_1bv" "_2av" "_2bv"
  ##   [21] "_3av" "_3bv" "_4av" "_4bv"

## Not run: 
##***************************************************************************
## The function 'str_C.expand.grid' is currently defined as
function( xlist, indices=NULL )
{
     xeg <- expand.grid( xlist)
     if ( ! is.null(indices) ){    xeg <- xeg[, indices ]}
     apply( xeg, 1, FUN=function(vv){ paste0( vv, collapse="") } )
}
##***************************************************************************

## End(Not run)

Subsetting Multiply Imputed Datasets and Nested Multiply Imputed Datasets

Description

Returns a subsets of multiply imputed datasets or nested multiply imputed datasets. These function allows choosing parts of the imputed datasets using the index argument for multiply imputed datasets and index_between and index_within for nested multiply imputed datasets as well as the application of the base::subset S3 method for selecting cases and variables in datasets.

Usage

subset_datlist(datlist, subset=TRUE, select=NULL, expr_subset=NULL,
        index=NULL, toclass="datlist")

## S3 method for class 'datlist'
subset(x, subset, select=NULL, expr_subset=NULL,
                     index=NULL, ...)
## S3 method for class 'imputationList'
subset(x, subset, select=NULL, expr_subset=NULL,
                     index=NULL, ...)
## S3 method for class 'mids'
subset(x, subset, select=NULL, expr_subset=NULL,
                     index=NULL, ...)
## S3 method for class 'mids.1chain'
subset(x, subset, select=NULL, expr_subset=NULL,
                     index=NULL, ...)

subset_nested.datlist( datlist, subset=TRUE, select=NULL, expr_subset=NULL,
      index_between=NULL, index_within=NULL, toclass="nested.datlist",
          simplify=FALSE )

## S3 method for class 'nested.datlist'
subset(x, subset, select=NULL, expr_subset=NULL,
                index_between=NULL, index_within=NULL, simplify=FALSE, ...)
## S3 method for class 'NestedImputationList'
subset(x, subset, select=NULL, expr_subset=NULL,
                index_between=NULL, index_within=NULL, simplify=FALSE, ...)

Arguments

datlist

For subset_datlist it is a list of datasets or an object of class datlist, imputationList, mids or mids.1chain.
For subset_nested.datlist it is a list of datasets or an object of class nested.datlist or NestedImputationList.

subset

Logical expression indicating elements or rows to keep, see base::subset. subset can also be a numeric vector containing row indices.

select

Expression indicating columns to select from a data frame

expr_subset

Expression indicating a selection criterion for selection rows.

index

Vector of indices indicating which of the multiply imputed datasets should be selected.

toclass

The object class in which the datasets should be saved.

index_between

Index for between nest datasets

index_within

Index for within nest datasets

simplify

Optional logical indicating whether a nested multiply imputed dataset should be simplified to a multiplied imputed dataset.

x

Object containing multiply imputed or nested multiply imputed datasets

...

Further arguments to be passed.

Value

For multiply imputed datasets: Object of class datlist, imputationList or mids
For nested multiply imputed datasets: Object of class nested.datlist or NestedImputationList.

Note

If subsetting is applied to objects of class mids (or mids.1chain), then informations about the imputation procedure are lost.

See Also

base::subset

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Subsetting and selection of multiply imputed datasets
#############################################################################

data(data.ma02)

# define original list of datasets
datlist1a <- data.ma02
# object of class datlist
datlist1b <- miceadds::datlist_create(datlist1a)
datlist1b
# object of class imputationList
datlist1c <- mitools::imputationList(datlist1a)
datlist1c
# object of class mids
datlist1d <- miceadds::datlist2mids(datlist1a)
datlist1d

# select some imputed datasets
datlist2a <- miceadds::subset_datlist( datlist1a, index=c(5,3,7) )
datlist2a
# convert to class imputationList
datlist2b <- miceadds::subset_datlist( datlist1a, index=c(5,3,7),
                      toclass="imputationList")
datlist2b
# convert to class mids
datlist2c <- miceadds::subset_datlist( datlist1a, index=1:3, toclass="mids")
datlist2c

# select some variables
datlist3a <- miceadds::subset_datlist( datlist1a, select=c("idstud", "books")  )
datlist3a
# Because datlist1b is a datlist it is equivalent to
datlist3b <- subset( datlist1b, select=c("idstud", "books")  )
datlist3b
# operating on imputationList class
datlist3c <- miceadds::subset_datlist( datlist1c, select=c("idstud", "books")  )
datlist3c
# operating on mids class
datlist3d <- miceadds::subset_datlist( datlist1d, select=c("idstud", "books")  )
datlist3d
# selection of rows and columns in multiply imputed datasets
datlist4a <- miceadds::subset_datlist( datlist1a, index=1:5,
                  subset=datlist1a[[1]]$idschool < 1067,
                  select=c("idstud", "idschool","hisei") )
datlist4a
# convert to class mids
datlist4b <- miceadds::subset_datlist( datlist1a, index=1:5,
                  subset=datlist1a[[1]]$idschool < 1067,
                  select=c("idstud", "idschool","hisei"), toclass="mids" )
datlist4b
# The same functionality, but now applying to object of class mids datlist1d
datlist4c <- miceadds::subset_datlist( datlist1d, index=1:5,
               subset=datlist1a[[1]]$idschool < 1067,
               select=c("idstud", "idschool","hisei") )
datlist4c

# expression for selecting rows specific in each data frame
# which can result in differently sized datasets (because the variable
# migrant is imputed)
datlist5a <- miceadds::subset_datlist( datlist1a,  expr_subset=expression(migrant==1) )
datlist5a

# select the first 100 cases
datlist6a <- miceadds::subset_datlist( datlist1a, select=c("idstud", "books"),
                       subset=1:100 )
datlist6a

#############################################################################
# EXAMPLE 2: Subsetting and selection of nested multiply imputed datasets
#############################################################################

library(BIFIEsurvey)
data(data.timss4, package="BIFIEsurvey")
dat <- data.timss4

# create object of class 'nested.datlist'
datlist1a <- miceadds::nested.datlist_create( dat )
# create object of class 'NestedImputationList'
datlist1b <- miceadds::NestedImputationList(dat)

# select some between datasets
datlist2a <- subset_nested.datlist( datlist1a, index_between=c(1,3,4) )
datlist2a
# shorter version
datlist2b <- subset( datlist1a, index_between=c(1,3,4) )
datlist2b
# conversion of a NestedImputationList
datlist2c <- subset( datlist1b, index_between=c(1,3,4))
datlist2c
# select rows and columns
sel_cases <- datlist1a[[1]][[1]]$JKZONE <=42
datlist3a <- subset( datlist1a, subset=sel_cases,
                 select=c("IDSTUD","books", "ASMMAT") )
datlist3a
# remove within nest
datlist4a <- subset( datlist1a, index_within=1 )
datlist4a
# remove within nest and simplify structure
datlist4b <- subset( datlist1a, index_within=1, simplify=TRUE)
datlist4b
datlist4c <- subset( datlist1b, index_within=1, simplify=TRUE)
datlist4c
# remove between nest
datlist5a <- subset( datlist1a, index_between=1, simplify=TRUE)
datlist5a
datlist5b <- subset( datlist1b, index_between=1, simplify=TRUE)
datlist5b

## End(Not run)

Sum Preserving Rounding

Description

This function implements sum preserving rounding. If the supplied data is a matrix, then the sum of all row entries is preserved.

Usage

sumpreserving.rounding(data, digits=0, preserve=TRUE)

Arguments

data

Vector or data frame

digits

Number of digits to be round

preserve

Should the sum be preserved?

Examples

#############################################################################
# EXAMPLE 1:
#############################################################################

# define example data
data <- c( 1455, 1261, 1067, 970, 582, 97 )
data <- 100 * data / sum(data)

( x1 <- round( data ) )
sum(x1)
(x2 <- miceadds::sumpreserving.rounding( data ) )
sum(x2)

  ##   > ( x1 <- round( data ) )
  ##   [1] 27 23 20 18 11  2
  ##   > sum(x1)
  ##   [1] 101
  ##   > (x2 <- miceadds::sumpreserving.rounding( data ) )
  ##   [1] 27 23 20 18 10  2
  ##   > sum(x2)
  ##   [1] 100

#############################################################################
# EXAMPLE 2:
#############################################################################

# matrix input
data <- rbind( data, data )
( x1 <- round( data ) )
rowSums(x1)
(x2 <- miceadds::sumpreserving.rounding( data ) )
rowSums(x2)

#############################################################################
# EXAMPLE 3:
#############################################################################

x2 <- c( 1.4, 1.4, 1.2 )
round(x2)
sumpreserving.rounding(x2)
  ##   > round(x2)
  ##   [1] 1 1 1
  ##   > miceadds::sumpreserving.rounding(x2)
  ##   [1] 1 2 1

Generation of Synthetic Data Utilizing Data Augmentation

Description

This function generates synthetic data utilizing data augmentation (Jiang et al., 2022; Grund et al., 2022). Continuous and ordinal variables can be handled. The order of the synthesized variables can be defined using the argument syn_vars.

Usage

syn_da(dat, syn_vars=NULL, fix_vars=NULL, ord_vars=NULL, da_noise=0.5,
   use_pls=TRUE, ncomp=20, exact_regression=TRUE, exact_marginal=TRUE,
   imp_maxit=5)

Arguments

dat

Original dataset

syn_vars

Vector with variable names that should be synthesized

fix_vars

Vector with variable names that are held fixed in the synthesis

ord_vars

Vector with ordinal variables that are treated as factors when modeled as predictors in the regression model

da_noise

Proportion of variance (i.e., unreliability) that is added as noise in data augmentation. The argument can be numeric or a vector, depending on whether it is made variable-specific.

use_pls

Logical indicating whether partial least squares (PLS) should be used for dimension reduction

ncomp

Number of PLS factors

exact_regression

Logical indicating whether residuals are forced to be uncorrelated with predictors in the synthesis model

exact_marginal

Logical indicating whether marginal distributions of the variables should be preserved

imp_maxit

Number of iterations in the imputation if the original dataset contains missing values

Value

A list with entries

dat_syn

generated synthetic data

dat2

Data frame containing original and synthetic data

...

more entries

References

Grund, S., Luedtke, O., & Robitzsch, A. (2022). Using synthetic data to improve the reproducibility of statistical results in psychological research. Psychological Methods. Epub ahead of print. doi:10.1037/met0000526

Jiang, B., Raftery, A. E., Steele, R. J., & Wang, N. (2022). Balancing inferential integrity and disclosure risk via model targeted masking and multiple imputation. Journal of the American Statistical Association, 117(537), 52-66. doi:10.1080/01621459.2021.1909597

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Generate synthetic data with item responses and covariates
#############################################################################

data(data.ma09, package="miceadds")
dat <- data.ma09

# fixed variables in synthesis
fix_vars <- c("PV1MATH", "SEX","AGE")
# ordinal variables in synthesis
ord_vars <- c("FISCED", "MISCED", items)
# variables that should be synthesized
syn_vars <- c("HISEI", "FISCED", "MISCED", items)

#-- synthesize data
mod <- miceadds::syn_da( dat=dat0, syn_vars=syn_vars, fix_vars=fix_vars,
            ord_vars=ord_vars, da_noise=0.5, imp_maxit=2, use_pls=TRUE, ncomp=20,
            exact_regression=TRUE, exact_marginal=TRUE)
#- extract synthetic dataset
mod$dat_syn

## End(Not run)

Constructs Synthetic Dataset with mice Imputation Methods

Description

Constructs synthetic dataset with mice imputation methods. The functionality is very similar to the functionality of synthpop::syn in the synthpop package (Nowok, Raab, & Dibben, 2016). Methods defined in synthpop are accessible via mice.impute.synthpop (see Examples).

Usage

syn_mice(data, m=5, k=NULL, syn_check=TRUE, ...)

Arguments

data

Original data frame

m

Number of synthetic datasets

k

Number of observations in synthetic data

syn_check

Logical indicating whether checks in synthpop::syn should be performed.

...

Further arguments to be passed, with conventions in mice::mice

Value

Object of class synds, see synthpop::syn.

References

Nowok, B., Raab, G., & Dibben, C. (2016). synthpop: Bespoke creation of synthetic data in R. Journal of Statistical Software, 74(11), 1-26. doi:10.18637/jss.v074.i11

See Also

mice::mice, synthpop::syn

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Synthesization of SD2011 using mice functionality
#############################################################################

library(synthpop)

#** selection of dataset
data(SD2011, package="synthpop")
vars <- c("sex","age","ls","smoke")
dat  <- SD2011[1:1000, vars]
dat$ls <- as.numeric(dat$ls)

#** default synthesis
imp0 <- synthpop::syn(dat)
pred0 <- imp0$predictor.matrix
method0 <- imp0$method

#* define imputation methods
method <- c(sex="synthpop", age="synthpop", ls="synthpop", smoke="logreg")
# only for smoke, an original mice imputation method is used

#- define synthpop functions
synthpop_fun <- list(sex="constant", age="constant", ls="cart")

#- arguments for 'syn.cart' method
synthpop_args <- list(ls=list(smoothing="density"))

#- fixed values for 'syn.constant' method
fixed_values <- dat[,1:2]

#- do synthesization
imp <- miceadds::syn_mice(dat, m=1, synthpop_fun=synthpop_fun, method=method,
            pedictorMatrix=pred0, rf.fixed_values=fixed_values, synthpop_args=synthpop_args)
summary(imp)

## End(Not run)

Synthesizing Method for Fixed Values by Design in synthpop

Description

Defines a synthesizing method for fixed values of a variable by design in the synthpop package.

Usage

syn.constant(y, x, xp, fixed_values, ...)

Arguments

y

Original data vector of length nn

x

Matrix (n×pn \times p) of original covariates

xp

Matrix (k×pk \times p) of synthesised covariates

fixed_values

Vector containing fixed values

...

Further arguments to be passed

Details

When using the synthesis method "mice" in synthpop::syn, the function argument has to appear as rf.fixed_values (convention in synthpop).

Value

A vector of length k with synthetic values of y.

See Also

synthpop::syn, mice.impute.constant

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: SD2011 | Fixed values for variable sex
#############################################################################

library(synthpop)

#** selection of dataset
data(SD2011, package="synthpop")
vars <- c("sex","age","ls","smoke")
dat  <- SD2011[1:1000, vars]
dat$ls <- as.numeric(dat$ls)

#** default synthesis
imp0 <- synthpop::syn(dat)
pred <- imp0$predictor.matrix
method <- imp0$method

#** constant vector
method["sex"] <- "constant"
fixed_values <- data.frame( sex=rep(dat$sex[c(1,2)], each=1000) )
imp <- synthpop::syn( dat, method=method, k=2000, m=1,
                rf.fixed_values=fixed_values)
table(imp$syn$sex)

## End(Not run)

Synthesizing Method for synthpop Using a Formula Interface

Description

Defines a synthesizing method for for synthpop using a formula interface.

Usage

syn.formula(y, x, xp, proper=FALSE, syn_formula, syn_fun, syn_args, ...)

Arguments

y

Original data vector of length nn

x

Matrix (n×pn \times p) of original covariates

xp

Matrix (k×pk \times p) of synthesised covariates

proper

Logical value specifying whether proper synthesis should be conducted.

syn_formula

A formula object

syn_fun

Synthesizing method in synthpop package

syn_args

Function arguments of syn_fun

...

Further arguments to be passed

Details

When using the synthesis method "mice" in synthpop::syn, the function arguments have to appear as rf.syn_formula, rf.syn_fun and rf.syn_args (convention in synthpop).

Value

A vector of length k with synthetic values of y.

See Also

synthpop::syn

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: SD2011 | using a formula for defining the regression model
#############################################################################

library(synthpop)

#** selection of dataset
data(SD2011, package="synthpop")
vars <- c("sex","age","ls","smoke")
dat  <- SD2011[1:1000, vars]
dat$ls <- as.numeric(dat$ls)

#** default synthesis
imp0 <- synthpop::syn(dat)
pred <- imp0$predictor.matrix
method <- imp0$method

#** use synthesizing method 'formula'
method["ls"] <- "formula"
syn_fun <- list( ls="normrank" )
syn_args <- list( ls=list( smoothing="density" ) )
syn_formula <- list( ls=~ sex + age + I(age^2) + I(age>50) )

#* synthesize data
imp <- synthpop::syn( dat, method=method, predictor.matrix=pred, k=2000, m=1,
            rf.syn_fun=syn_fun, rf.syn_args=syn_args, rf.syn_formula=syn_formula)
summary(imp)

## End(Not run)

Using a mice Imputation Method in the synthpop Package

Description

The function allows to use a mice imputation method to be used in the synthpop::syn function of the synthpop package (Nowok, Raab, & Dibben, 2016).

Usage

syn.mice(y, x, xp, mice_fun, mice_args, ...)

Arguments

y

Original data vector of length nn

x

Matrix (n×pn \times p) of original covariates

xp

Matrix (k×pk \times p) of synthesised covariates

mice_fun

Name of imputation method for mice

mice_args

Optional list of arguments for mice_fun, see Examples.

...

Further arguments to be passed

Details

When using the synthesis method "mice" in synthpop::syn, the function arguments have to appear as rf.mice_fun and rf.mice_arg (convention in synthpop).

Value

A vector of length k with synthetic values of y.

References

Nowok, B., Raab, G., & Dibben, C. (2016). synthpop: Bespoke creation of synthetic data in R. Journal of Statistical Software, 74(11), 1-26. doi:10.18637/jss.v074.i11

See Also

synthpop::syn, syn_mice

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: SD2011 | Minimal example for using a mice imputation method
#############################################################################

library(synthpop)

#** selection of dataset
data(SD2011, package="synthpop")
vars <- c("sex","age","ls","smoke")
dat  <- SD2011[1:1000, vars]
dat$ls <- as.numeric(dat$ls)
dat$smoke <- 1*(paste(dat$smoke)=="YES")

#** default synthesis
imp0 <- synthpop::syn(dat)
pred <- imp0$predictor.matrix
method <- imp0$method

#** use mice imputation method 'rlm' for variable 'ls'
method[c("ls","smoke")] <- c("mice","mice")
mice_fun <- list( ls="rlm", smoke="pmm")
mice_args <- list( ls=list( trafo=log, antitrafo=exp) )

#* synthesize data
imp <- synthpop::syn( dat, method=method, predictor.matrix=pred, k=2000, m=1,
            rf.mice_fun=mice_fun, rf.mice_args=mice_args)
summary(imp)

## End(Not run)

R Utilities: Various Strings Representing System Time

Description

This function generates system time strings in several formats.

Usage

systime()

Value

A vector with entries of system time (see Examples).

Examples

#############################################################################
# EXAMPLE 1: Output of systime
#############################################################################

systime()
  ##
  ##  > miceadds::systime()
  ##  [1] "2016-02-29 10:25:44"
  ##  [2] "2016-02-29"
  ##  [3] "20160229"
  ##  [4] "2016-02-29_1025"
  ##  [5] "2016-02-29_1000"
  ##  [6] "20160229_102544"
  ##  [7] "20160229102544"
  ##  [8] "IPNERZW-C014_20160229102544"

Two-Way Imputation

Description

Two-way imputation using the simple method of Sijtsma and van der Ark (2003) and the MCMC based imputation of van Ginkel, van der Ark, Sijtsma and Vermunt (2007).

Usage

tw.imputation(data, integer=FALSE)

tw.mcmc.imputation(data, iter=100, integer=FALSE)

Arguments

data

Matrix of item responses corresponding to a scale

integer

A logical indicating whether imputed values should be integers. The default is FALSE.

iter

Number of iterations

Details

For persons pp and items ii, the two-way imputation is conducted by posing a linear model of tau-equivalent measurements:

Xpi=θp+bi+εijX_{pi}=\theta_p + b_i + \varepsilon_{ij}

If the score XpiX_{pi} is missing then it is imputed by

X^pi=X~p+bi\hat{X}_{pi}=\tilde{X}_p + b_i

where X~p\tilde{X}_p is the person mean of person pp of the remaining items with observed responses.

The two-way imputation can also be seen as a scaling procedure to obtain a scale score which takes different item means into account.

Value

A matrix with original and imputed values

References

Sijtsma, K., & Van der Ark, L. A. (2003). Investigation and treatment of missing item scores in test and questionnaire data. Multivariate Behavioral Research, 38(4), 505-528. doi:10.1207/s15327906mbr3804_4

Van Ginkel, J. R., Van der Ark, A., Sijtsma, K., & Vermunt, J. K. (2007). Two-way imputation: A Bayesian method for estimating missing scores in tests and questionnaires, and an accurate approximation. Computational Statistics & Data Analysis, 51(8), 4013-4027. doi:10.1016/j.csda.2006.12.022

See Also

The two-way imputation method is also implemented in the TestDataImputation::Twoway function of the TestDataImputation package.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Two-way imputation data.internet
#############################################################################

data(data.internet)
data <- data.internet

#***
# Model 1: Two-way imputation method of Sijtsma and van der Ark (2003)
set.seed(765)
dat.imp <- miceadds::tw.imputation( data )
dat.imp[ 278:281,]
  ##       IN9     IN10    IN11     IN12
  ##   278   5 4.829006 5.00000 4.941611
  ##   279   5 4.000000 4.78979 4.000000
  ##   280   7 4.000000 7.00000 7.000000
  ##   281   4 3.000000 5.00000 5.000000

#***
# Model 2: Two-way imputation method using MCMC
dat.imp <- miceadds::tw.mcmc.imputation( data, iter=3)
dat.imp[ 278:281,]
  ##       IN9     IN10     IN11     IN12
  ##   278   5 6.089222 5.000000 3.017244
  ##   279   5 4.000000 5.063547 4.000000
  ##   280   7 4.000000 7.000000 7.000000
  ##   281   4 3.000000 5.000000 5.000000

## End(Not run)

Stringing Variable Names with Line Breaks

Description

Stringing variable names with line breaks.

Usage

VariableNames2String(vars, breaks=80, sep=" ")

Arguments

vars

Vector with variable names

breaks

Numeric value for line break of variable string

sep

Separator

Value

String with line breaks

Examples

#############################################################################
# EXAMPLE 1: Toy example
#############################################################################

data(data.ma01)
# extract variable names
vars <- colnames(data.ma01)
# convert into a long string with line breaks at column 25
vars2 <- miceadds::VariableNames2String(vars, breaks=25)
vars
  ##   [1] "idstud"   "idschool" "studwgt"  "math"     "read"     "migrant"
  ##   [7] "books"    "hisei"    "paredu"   "female"   "urban"
vars2
  ##  idstud idschool studwgt
  ##  math read migrant books
  ##  hisei paredu female
  ##  urban

Automatic Determination of a Visit Sequence in mice

Description

This function automatically determines a visit sequence for a specified model in mice::mice when passive variables are defined as imputation methods. Note that redundant visits could be computed and a user should check the plausibility of the result.

Usage

visitSequence.determine(impMethod, vis, data, maxit=10)

Arguments

impMethod

Vector with imputation methods

vis

Initial vector of visit sequence

data

Data frame to be used for multiple imputations

maxit

Maximum number of iteration for computation of the updated visit sequence

Value

Updated vector of the visit sequence

See Also

Used in the mice::mice function as an argument. The function mice::make.visitSequence creates a visit sequence.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Visit sequence for a small imputation model
#############################################################################

data( data.smallscale )
# select a small number of variables
dat <- data.smallscale[, paste0("v",1:4) ]
V <- ncol(dat)

# define initial vector of imputation methods
impMethod <- rep("norm", V)
names(impMethod) <- colnames(dat)
# define variable names and imputation method for passive variables in a data frame
dfr.impMeth <- data.frame( "variable"=NA,
                  "impMethod"=NA )
dfr.impMeth[1,] <- c("v1_v1", "~ I(v1^2)" )
dfr.impMeth[2,] <- c("v2_v4", "~ I(v2*v4)" )
dfr.impMeth[3,] <- c("v4log", "~ I( log(abs(v4)))" )
dfr.impMeth[4,] <- c("v12", "~ I( v1 + v2 + 3*v1_v1 - v2_v4 )" )
# add variables to dataset and imputation methods
VV <- nrow(dfr.impMeth)
for (vv in 1:VV){
    impMethod[ dfr.impMeth[vv,1] ] <- dfr.impMeth[vv,2]
    dat[, dfr.impMeth[vv,1] ] <- NA
}

# run empty imputation model to obtain initial vector of visit sequence
imp0 <- mice::mice( dat, m=1, method=impMethod, maxit=0 )
imp0$vis

# update visit sequence
vis1 <- miceadds::visitSequence.determine( impMethod=impMethod, vis=imp0$vis, data=dat)

# imputation with updated visit sequence
imp <- mice::mice( dat, m=1, method=impMethod, visitSequence=vis1, maxit=2)

## End(Not run)

Evaluates an Expression for (Nested) Multiply Imputed Datasets

Description

Evaluates an expression for (nested) multiply imputed datasets. These functions extend the following functions: mice::with.mids, base::with, base::within.data.frame, mitools::with.imputationList.

The withPool functions try to pool estimates (by simple averaging) obtained by with or a list of results of imputed datasets.

Usage

## S3 method for class 'mids.1chain'
with(data, expr, ...)
## S3 method for class 'datlist'
with(data, expr, fun, ...)

## S3 method for class 'mids.nmi'
with(data, expr, ...)
## S3 method for class 'nested.datlist'
with(data, expr, fun, ...)
## S3 method for class 'NestedImputationList'
with(data, expr, fun, ...)

## S3 method for class 'datlist'
within(data, expr, ...)
## S3 method for class 'imputationList'
within(data, expr, ...)

## S3 method for class 'nested.datlist'
within(data, expr, ...)
## S3 method for class 'NestedImputationList'
within(data, expr, ...)

withPool_MI(x, ...)

withPool_NMI(x, ...)

## S3 method for class 'mira.nmi'
summary(object, ...)

Arguments

data

Object of class mids.1chain, mids.nmi, imputationList or NestedImputationList

expr

Expression with a formula object.

fun

A function taking a data frame argument

...

Additional parameters to be passed to expr.

object

Object of class mira.nmi.

x

List with vectors or matrices as results of an analysis for (nested) multiply imputed datasets.

Value

with.mids.1chain: List of class mira.

with.mids.nmi: List of class mira.nmi.

with.datlist: List of class imputationResultList.

with.NestedImputationList or with.nested.datlist: List of class NestedImputationResultList.

within.imputationList: List of class imputationList.

within.NestedImputationList: List of class NestedImputationList.

withPool_MI or withPool_NMI: Vector or matrix with pooled estimates

Author(s)

Slightly modified code of mice::with.mids, mice::summary.mira, base::within.data.frame

See Also

See the corresponding functionality in base, mice, mitools and mitml packages:
mice::with.mids, mitools::with.imputationList, mitml::with.mitml.list, base::with

base::within.data.frame, mitml::within.mitml.list,

mice::summary.mira,

Imputation functions in miceadds: mice.1chain, mice.nmi

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: One chain nhanes data | application of 'with' and 'within'
#############################################################################

library(mice)
data(nhanes, package="mice")
set.seed(9090)

# nhanes data in one chain
imp <- miceadds::mice.1chain( nhanes, burnin=5, iter=40, Nimp=4 )
# apply linear regression
res <- with( imp, expr=stats::lm( hyp ~ age + bmi  ) )
summary(res)
# pool results
summary( mice::pool(res))

# calculate some descriptive statistics
res2 <- with( imp, expr=c("M1"=mean(hyp), "SD_age"=stats::sd(age) ) )
# pool estimates
withPool_MI(res2)

# with method for datlist
imp1 <- miceadds::datlist_create(imp)
res2b <- with( imp1, fun=function(data){
                    dfr <- data.frame("M"=colMeans(data),
                             "Q5"=apply( data, 2, stats::quantile, .05 ),
                             "Q95"=apply( data, 2, stats::quantile, .95 ) )
                    return(dfr)
                        } )
withPool_MI(res2b)

# convert mids object into an object of class imputationList
datlist <- miceadds::mids2datlist( imp )
datlist <- mitools::imputationList(datlist)

# define formulas for modification of the data frames in imputationList object
datlist2 <- within( datlist, {
                     age.D3 <- 1*(age==3)
                     hyp_chl <- hyp * chl
                        } )
# look at modified dataset
head( datlist2$imputations[[1]] )

# convert into a datlist
datlist2b <- miceadds::datlist_create( datlist2 )

# apply linear model using expression
mod1a <- with( datlist2, expr=stats::lm( hyp ~ age.D3 ) )
# do the same but now with a function argument
mod1b <- with( datlist2, fun=function(data){
                    stats::lm( data$hyp ~ data$age.D3 )
                        } )
# apply the same model for object datlist2b
mod2a <- with( datlist2b, expr=lm( hyp ~ age.D3 ) )
mod2b <- with( datlist2b, fun=function(data){
                    stats::lm( data$hyp ~ data$age.D3 )
                        } )

mitools::MIcombine(mod1a)
mitools::MIcombine(mod1b)
mitools::MIcombine(mod2a)
mitools::MIcombine(mod2b)

#############################################################################
# EXAMPLE 2: Nested multiple imputation and application of with/within methods
#############################################################################

library(BIFIEsurvey)
data(data.timss2, package="BIFIEsurvey" )
datlist <- data.timss2

# remove first four variables
M <- length(datlist)
for (ll in 1:M){
    datlist[[ll]] <- datlist[[ll]][, -c(1:4) ]
                }

# nested multiple imputation using mice
imp1 <- miceadds::mice.nmi( datlist,  m=4, maxit=3 )
summary(imp1)
# apply linear model and use summary method for all analyses of imputed datasets
res1 <- with( imp1, stats::lm( ASMMAT ~ migrant + female ) )
summary(res1)

# convert mids.nmi object into an object of class NestedImputationList
datlist1 <- miceadds::mids2datlist( imp1 )
datlist1 <- miceadds::NestedImputationList( datlist1 )
# convert into nested.datlist object
datlist1b <- miceadds::nested.datlist_create(datlist1)

# use with function
res1b <- with( datlist1, stats::glm( ASMMAT ~ migrant + female ) )
# apply for nested.datlist
res1c <- with( datlist1b, stats::glm( ASMMAT ~ migrant + female ) )

# use within function for data transformations
datlist2 <- within( datlist1, {
                highsc <- 1*(ASSSCI > 600)
                books_dum <- 1*(books>=3)
                rm(scsci)   # remove variable scsci
                    } )

# include random number in each dataset
N <- attr( datlist1b, "nobs")
datlist3 <- within( datlist1b, {
                rn <- stats::runif( N, 0, .5 )
                    } )

#-- some applications of withPool_NMI
# mean and SD
res3a <- with( imp1, c( "m1"=mean(ASMMAT), "sd1"=stats::sd(ASMMAT) ) )
withPool_NMI(res3a)
# quantiles
vars <- c("ASMMAT", "lang", "scsci")
res3b <- with( datlist1b, fun=function(data){
                dat <- data[,vars]
                res0 <- sapply( vars, FUN=function(vv){
                    stats::quantile( dat[,vv], probs=c(.25, .50, .75) )
                                    } )
                t(res0)
                    } )
withPool_NMI(res3b)

## End(Not run)

Write a List of Multiply Imputed Datasets

Description

Writes a list of multiply imputed datasets.

Usage

write.datlist(datlist, name, include.varnames=TRUE, type="csv2",
     separate=TRUE, Mplus=FALSE, round=NULL, Rdata=TRUE,
     subdir=TRUE, ...)

Arguments

datlist

List of imputed datasets. Can also be an object of class mids, mids.1chain or imputationList

name

Name of files to be saved

include.varnames

Logical indicating whether variables should be saved

type

File type of datasets to be saved, see save.data.

separate

Logical indicating whether imputed datasets should be written in separate files.

Mplus

Logical indicating whether files should be written for usage in Mplus software

round

Number of digits to round after decimal. The default is no rounding.

Rdata

Logical indicating whether datlist should also be saved in R binary format.

subdir

Logical indicating whether results should be written into a subdirectory.

...

Further arguments to be passed to save.data.

See Also

See also mice::mids2mplus, mice::mids2spss and write.mice.imputation for writing objects of class mids.

See also Amelia::write.amelia for writing imputed datasets in Amelia.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Write data list imputed in mice
#############################################################################

data(data.ma01)
dat <- as.matrix(data.ma01)

# start with empty imputation
imp0 <- mice::mice( dat, maxit=0)

# modify predictor matrix
predM <- imp0$predictorMatrix
predM[, c("idschool", "idstud" ) ] <- 0
# modify imputation method
impMeth <- imp0$method
impMeth[ impMeth=="pmm" ] <- "norm"

# do imputations in mice
imp <- mice::mice( dat, predictorMatrix=predM, method=impMeth, m=3, maxit=4 )

# write imputed data in format "csv2" and round after 4 digits
write.datlist( datlist=imp, name="mice_imp_csv2", round=4 )
# write imputed data in R binary format
write.datlist( datlist=imp, name="mice_imp_Rdata", type="Rdata")
# write data for Mplus usage
write.datlist( datlist=imp, name="mice_imp_Mplus", Mplus=TRUE, round=5)

## End(Not run)

Reading and Writing Files in Fixed Width Format

Description

Reads and writes files in fixed width format. The functions are written for being more efficient than utils::read.fwf.

Usage

write.fwf2(dat, format.full, format.round, file)

read.fwf2( file, format.full, variables=NULL)

Arguments

dat

Data frame (or matrix). Variables can be numeric or strings. However, string length of string variables are not allowed to be larger than what is specified in format.full.

format.full

Vector with fixed width variable lengths

format.round

Vector with digits after decimals

file

File name

variables

Optional vector with variable names

See Also

utils::read.fwf

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Write and read a file in fixed width format
#############################################################################

# set working directory
path <- "P:/ARb/temp"
setwd(path)

# define a data frame
set.seed(9876)
dat <- data.frame( "x"=seq( 1, 21, len=5), "y"=stats::runif( 5 ),
            "z"=stats::rnorm( 5 ) )

# save data frame in fixed width format
format.full <- c(6, 6, 8 )
format.round <- c( 0, 2, 3 )
write.fwf2( dat, format.full=format.full, format.round=format.round,
                file="testdata" )

# read the data
dat1 <- miceadds::read.fwf2( file="testdata.dat", format.full=c(6,6,8),
               variables=c("x","y","z") )
# check differences between data frames
dat - dat1

#############################################################################
# EXAMPLE 2: Write datasets containing some string variables in fwf format
#############################################################################

n <- 5
dat <- data.frame( "x"=stats::runif(n, 0, 9 ), "y"=LETTERS[1:n] )
write.fwf2(dat, format.full=c(4,2), format.round=c(2,0),  file="testdata")

## End(Not run)

Export Multiply Imputed Datasets from a mids Object

Description

Exports multiply imputed datasets and information about the imputation. Objects of class mids (generated by mice::mice) and mids.1chain (generated by mice.1chain) are supported.

Usage

write.mice.imputation(mi.res, name, include.varnames=TRUE,
      long=TRUE, mids2spss=TRUE, spss.dec=",", dattype=NULL)

Arguments

mi.res

Object of class mids or mids.1chain

name

Name of created subdirectory and datasets

include.varnames

An optional logical indicating whether variable names should be included in the imputed dataset. The default is TRUE.

long

An optional logical indicating whether the dataset should also be saved in a long format?

mids2spss

An optional logical indicating whether a syntax for reading imputed datasets in SPSS should be included

spss.dec

SPSS decimal separator (can be "," or ".")

dattype

Format of the saved dataset: csv or csv2

Value

Several files are saved using impxxx (the name) as the prefix:

impxxx.Rdata

Saved object of class mids

impxxx__DATALIST.Rdata

Saved object of a list containing multiply imputed datasets

impxxx__IMP_LIST

File with list of multiply imputed datasets

impxxx__IMP_SUMMARY

Summary file of the imputation

impxxx__IMPDATA_nn

Imputed datasets nn

impxxx__IMPMETHOD

File containing imputation methods

impxxx__LEGENDE

File with variable names of the dataset

impxxx__LONG

Imputed datasets in long format

impxxx__PREDICTORMATRIX

File containing the predictor matrix

impxxx__SPSS.sps

SPSS syntax for reading the corresponding txt file into SPSS format.

See Also

See also mice::mids2mplus and mice::mids2spss

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Imputation of nhanes data and write imputed datasets on disk
#############################################################################

data(nhanes,package="mice")

#**********
# Model 1: Imputation using mice
imp1 <- mice::mice( nhanes, m=3, maxit=5 )
# write results
write.mice.imputation(mi.res=imp1, name="mice_imp1" )

#**********
# Model 2: Imputation using mice.1chain
imp2 <- miceadds::mice.1chain( nhanes, burnin=10, iter=20, Nimp=4 )
# write results
write.mice.imputation(mi.res=imp2, name="mice_imp2" )

## End(Not run)

Writing a Data Frame into SPSS Format Using PSPP Software

Description

Writes a data frame into SPSS format using the PSPP software. To use this function, download and install PSPP at first: http://www.gnu.org/software/pspp/pspp.html.

Usage

write.pspp(data, datafile, pspp.path, decmax=6,
   as.factors=TRUE, use.bat=FALSE)

Arguments

data

Data frame

datafile

Name of the output file (without file ending)

pspp.path

Path where the PSPP executable is located, e.g. "C:/Program Files (x86)/PSPP/bin/"

decmax

Maximum number of digits after decimal

as.factors

A logical indicating whether all factors and string entries should be treated as factors in the output file.

use.bat

A logical indicating whether PSPP executed via a batch file in the DOS mode (TRUE) or directly invoked via the system command from within R (FALSE).

Value

A dataset in sav format (SPSS format).

Author(s)

The code was adapted from https://stat.ethz.ch/pipermail/r-help/2006-January/085941.html

See Also

See also foreign::write.foreign.

For writing sav files see also haven::write_sav and sjlabelled::write_spss.

For convenient viewing sav files we recommend the freeware program ViewSav, see http://www.asselberghs.dds.nl/stuff.htm.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Write a data frame into SPSS format
#############################################################################

#****
# (1) define data frame
data <- data.frame( "pid"=1000+1:5, "height"=round(rnorm( 5 ),4),
                "y"=10*c(1,1,1,2,2), "r2"=round( rnorm(5),2),
                "land"=as.factor( c( rep("A",1), rep("B", 4 ) ) ) )
#****
# (2) define variable labels
v1 <- rep( "", ncol(data) )
names(v1) <-  colnames(data)
attr( data, "variable.labels" ) <- v1
attr(data,"variable.labels")["pid"] <- "Person ID"
attr(data,"variable.labels")["height"] <- "Height of a person"
attr(data,"variable.labels")["y"] <- "Gender"

#****
# (3) define some value labels
v1 <- c(10,20)
names(v1) <- c("male", "female" )
attr( data$y, "value.labels" ) <- v1

#****
# (4a) run PSPP to produce a sav file
write.pspp( data, datafile="example_data1",
        pspp.path="C:/Program Files (x86)/PSPP/bin/" )

#****
# (4b) produce strings instead of factors
write.pspp( data, datafile="example_data2",
        pspp.path="C:/Program Files (x86)/PSPP/bin/", as.factors=FALSE )

#****
# write sav file using haven package
library(haven)
haven::write_sav( data, "example_data1a.sav" )

#****
# write sav file using sjlabelled package
library(sjlabelled)
data <- sjlabelled::set_label( data, attr(data, "variable.labels") )
sjlabelled::write_spss( data, "example_data1b.sav" )

## End(Not run)