SNMoE (Skew-Normal Mixtures-of-Experts) provides a flexible modelling framework for heterogenous data with possibly skewed distributions to generalize the standard Normal mixture of expert model. SNMoE consists of a mixture of K skew-Normal expert regressors network (of degree p) gated by a softmax gating network (of degree q) and is represented by:
alpha
’s of the softmax
net.beta
’s, scale parameters
sigma
’s, and the skewness parameters lambda
’s.
SNMoE thus generalises mixtures of (normal,
skew-normal) distributions and mixtures of regressions with these
distributions. For example, when q = 0, we retrieve mixtures of
(skew-normal, or normal) regressions, and when both p = 0 and q = 0, it is a mixture of
(skew-normal, or normal) distributions. It also reduces to the standard
(normal, skew-normal) distribution when we only use a single expert
(K = 1).Model estimation/learning is performed by a dedicated expectation conditional maximization (ECM) algorithm by maximizing the observed data log-likelihood. We provide simulated examples to illustrate the use of the model in model-based clustering of heterogeneous regression data and in fitting non-linear regression functions.
It was written in R Markdown, using the knitr package for production.
See help(package="meteorits")
for further details and
references provided by citation("meteorits")
.
n <- 500 # Size of the sample
alphak <- matrix(c(0, 8), ncol = 1) # Parameters of the gating network
betak <- matrix(c(0, -2.5, 0, 2.5), ncol = 2) # Regression coefficients of the experts
lambdak <- c(3, 5) # Skewness parameters of the experts
sigmak <- c(1, 1) # Standard deviations of the experts
x <- seq.int(from = -1, to = 1, length.out = n) # Inputs (predictors)
# Generate sample of size n
sample <- sampleUnivSNMoE(alphak = alphak, betak = betak, sigmak = sigmak,
lambdak = lambdak, x = x)
y <- sample$y
snmoe <- emSNMoE(X = x, Y = y, K, p, q, n_tries, max_iter,
threshold, verbose, verbose_IRLS)
## EM - SNMoE: Iteration: 1 | log-likelihood: -529.700494167196
## EM - SNMoE: Iteration: 2 | log-likelihood: -525.989268269454
## EM - SNMoE: Iteration: 3 | log-likelihood: -525.946377307157
## EM - SNMoE: Iteration: 4 | log-likelihood: -525.934606017225
## EM - SNMoE: Iteration: 5 | log-likelihood: -525.929806778679
## EM - SNMoE: Iteration: 6 | log-likelihood: -525.926673627579
## EM - SNMoE: Iteration: 7 | log-likelihood: -525.924003699033
## EM - SNMoE: Iteration: 8 | log-likelihood: -525.921530110722
## EM - SNMoE: Iteration: 9 | log-likelihood: -525.919204730305
## EM - SNMoE: Iteration: 10 | log-likelihood: -525.917029773346
## EM - SNMoE: Iteration: 11 | log-likelihood: -525.914980143827
## EM - SNMoE: Iteration: 12 | log-likelihood: -525.91304788326
## EM - SNMoE: Iteration: 13 | log-likelihood: -525.911218074198
## EM - SNMoE: Iteration: 14 | log-likelihood: -525.909500410472
## EM - SNMoE: Iteration: 15 | log-likelihood: -525.907884356338
## EM - SNMoE: Iteration: 16 | log-likelihood: -525.90635095873
## EM - SNMoE: Iteration: 17 | log-likelihood: -525.904909482292
## EM - SNMoE: Iteration: 18 | log-likelihood: -525.903555017547
## EM - SNMoE: Iteration: 19 | log-likelihood: -525.902278840505
## EM - SNMoE: Iteration: 20 | log-likelihood: -525.901075974653
## EM - SNMoE: Iteration: 21 | log-likelihood: -525.899928951112
## EM - SNMoE: Iteration: 22 | log-likelihood: -525.898834641916
## EM - SNMoE: Iteration: 23 | log-likelihood: -525.897788324004
## EM - SNMoE: Iteration: 24 | log-likelihood: -525.896806199865
## EM - SNMoE: Iteration: 25 | log-likelihood: -525.89587743652
## EM - SNMoE: Iteration: 26 | log-likelihood: -525.894982821204
## EM - SNMoE: Iteration: 27 | log-likelihood: -525.89413093053
## EM - SNMoE: Iteration: 28 | log-likelihood: -525.893322509821
## EM - SNMoE: Iteration: 29 | log-likelihood: -525.892551887791
## EM - SNMoE: Iteration: 30 | log-likelihood: -525.891816503127
## EM - SNMoE: Iteration: 31 | log-likelihood: -525.891113801274
## EM - SNMoE: Iteration: 32 | log-likelihood: -525.890441671635
## EM - SNMoE: Iteration: 33 | log-likelihood: -525.88979524545
## EM - SNMoE: Iteration: 34 | log-likelihood: -525.889174884473
## EM - SNMoE: Iteration: 35 | log-likelihood: -525.888589714703
## EM - SNMoE: Iteration: 36 | log-likelihood: -525.888029370465
## EM - SNMoE: Iteration: 37 | log-likelihood: -525.887489599761
## EM - SNMoE: Iteration: 38 | log-likelihood: -525.886968850595
snmoe$summary()
## -----------------------------------------------
## Fitted Skew-Normal Mixture-of-Experts model
## -----------------------------------------------
##
## SNMoE model with K = 2 experts:
##
## log-likelihood df AIC BIC ICL
## -525.887 10 -535.887 -556.96 -557.0111
##
## Clustering table (Number of observations in each expert):
##
## 1 2
## 249 251
##
## Regression coefficients:
##
## Beta(k = 1) Beta(k = 2)
## 1 0.9764542 0.9590402
## X^1 2.7009367 -2.8352644
##
## Variances:
##
## Sigma2(k = 1) Sigma2(k = 2)
## 0.4805849 0.4837961
snmoe <- emSNMoE(X = x, Y = y, K, p, q, n_tries, max_iter,
threshold, verbose, verbose_IRLS)
## EM - SNMoE: Iteration: 1 | log-likelihood: 74.2853260853685
## EM - SNMoE: Iteration: 2 | log-likelihood: 87.568312175146
## EM - SNMoE: Iteration: 3 | log-likelihood: 88.8289010766741
## EM - SNMoE: Iteration: 4 | log-likelihood: 89.103480567308
## EM - SNMoE: Iteration: 5 | log-likelihood: 89.3149897723314
## EM - SNMoE: Iteration: 6 | log-likelihood: 89.5260779503417
## EM - SNMoE: Iteration: 7 | log-likelihood: 89.6738417335011
## EM - SNMoE: Iteration: 8 | log-likelihood: 89.7581984026967
## EM - SNMoE: Iteration: 9 | log-likelihood: 89.8040096754372
## EM - SNMoE: Iteration: 10 | log-likelihood: 89.8301281617738
## EM - SNMoE: Iteration: 11 | log-likelihood: 89.8477410379849
## EM - SNMoE: Iteration: 12 | log-likelihood: 89.8618991175194
## EM - SNMoE: Iteration: 13 | log-likelihood: 89.8740464528799
## EM - SNMoE: Iteration: 14 | log-likelihood: 89.8847988822857
## EM - SNMoE: Iteration: 15 | log-likelihood: 89.8946594482934
## EM - SNMoE: Iteration: 16 | log-likelihood: 89.9038624307367
## EM - SNMoE: Iteration: 17 | log-likelihood: 89.9124844986863
## EM - SNMoE: Iteration: 18 | log-likelihood: 89.9205536842787
## EM - SNMoE: Iteration: 19 | log-likelihood: 89.9280826458704
## EM - SNMoE: Iteration: 20 | log-likelihood: 89.935070451645
## EM - SNMoE: Iteration: 21 | log-likelihood: 89.9415197721284
## EM - SNMoE: Iteration: 22 | log-likelihood: 89.9474707208975
## EM - SNMoE: Iteration: 23 | log-likelihood: 89.9530672774521
## EM - SNMoE: Iteration: 24 | log-likelihood: 89.9581425943244
## EM - SNMoE: Iteration: 25 | log-likelihood: 89.9627192098075
## EM - SNMoE: Iteration: 26 | log-likelihood: 89.9668255859453
## EM - SNMoE: Iteration: 27 | log-likelihood: 89.9706732295635
## EM - SNMoE: Iteration: 28 | log-likelihood: 89.9732947557867
## EM - SNMoE: Iteration: 29 | log-likelihood: 89.9761994807163
## EM - SNMoE: Iteration: 30 | log-likelihood: 89.9786947238551
## EM - SNMoE: Iteration: 31 | log-likelihood: 89.9810231527528
## EM - SNMoE: Iteration: 32 | log-likelihood: 89.9832379135178
## EM - SNMoE: Iteration: 33 | log-likelihood: 89.9852878028098
## EM - SNMoE: Iteration: 34 | log-likelihood: 89.9876378301524
## EM - SNMoE: Iteration: 35 | log-likelihood: 89.9896342875275
## EM - SNMoE: Iteration: 36 | log-likelihood: 89.9915084152363
## EM - SNMoE: Iteration: 37 | log-likelihood: 89.9935133217261
## EM - SNMoE: Iteration: 38 | log-likelihood: 89.995463354536
## EM - SNMoE: Iteration: 39 | log-likelihood: 89.9973435732974
## EM - SNMoE: Iteration: 40 | log-likelihood: 89.9993502889407
## EM - SNMoE: Iteration: 41 | log-likelihood: 90.0013123492908
## EM - SNMoE: Iteration: 42 | log-likelihood: 90.0032783943324
## EM - SNMoE: Iteration: 43 | log-likelihood: 90.0053501058096
## EM - SNMoE: Iteration: 44 | log-likelihood: 90.0073930010251
## EM - SNMoE: Iteration: 45 | log-likelihood: 90.0095190217271
## EM - SNMoE: Iteration: 46 | log-likelihood: 90.0116739932068
## EM - SNMoE: Iteration: 47 | log-likelihood: 90.0138718720756
## EM - SNMoE: Iteration: 48 | log-likelihood: 90.0161061106491
## EM - SNMoE: Iteration: 49 | log-likelihood: 90.0183905400359
## EM - SNMoE: Iteration: 50 | log-likelihood: 90.020727204548
## EM - SNMoE: Iteration: 51 | log-likelihood: 90.023117116011
## EM - SNMoE: Iteration: 52 | log-likelihood: 90.0255634277233
## EM - SNMoE: Iteration: 53 | log-likelihood: 90.0280678999636
## EM - SNMoE: Iteration: 54 | log-likelihood: 90.0306305753437
## EM - SNMoE: Iteration: 55 | log-likelihood: 90.0332559876454
## EM - SNMoE: Iteration: 56 | log-likelihood: 90.0359489532023
## EM - SNMoE: Iteration: 57 | log-likelihood: 90.0387067994226
## EM - SNMoE: Iteration: 58 | log-likelihood: 90.041530677628
## EM - SNMoE: Iteration: 59 | log-likelihood: 90.0444231907296
## EM - SNMoE: Iteration: 60 | log-likelihood: 90.0473857433417
## EM - SNMoE: Iteration: 61 | log-likelihood: 90.0504221753549
## EM - SNMoE: Iteration: 62 | log-likelihood: 90.0535342915592
## EM - SNMoE: Iteration: 63 | log-likelihood: 90.0567205705967
## EM - SNMoE: Iteration: 64 | log-likelihood: 90.0599854830905
## EM - SNMoE: Iteration: 65 | log-likelihood: 90.063332756115
## EM - SNMoE: Iteration: 66 | log-likelihood: 90.066762586908
## EM - SNMoE: Iteration: 67 | log-likelihood: 90.070275569501
## EM - SNMoE: Iteration: 68 | log-likelihood: 90.0738739274331
## EM - SNMoE: Iteration: 69 | log-likelihood: 90.077558952864
## EM - SNMoE: Iteration: 70 | log-likelihood: 90.0813332815647
## EM - SNMoE: Iteration: 71 | log-likelihood: 90.0851962203603
## EM - SNMoE: Iteration: 72 | log-likelihood: 90.0891514239949
## EM - SNMoE: Iteration: 73 | log-likelihood: 90.0931996962161
## EM - SNMoE: Iteration: 74 | log-likelihood: 90.0973408483758
## EM - SNMoE: Iteration: 75 | log-likelihood: 90.1015774737196
## EM - SNMoE: Iteration: 76 | log-likelihood: 90.1059070566717
## EM - SNMoE: Iteration: 77 | log-likelihood: 90.1103314668407
## EM - SNMoE: Iteration: 78 | log-likelihood: 90.1148565285241
## EM - SNMoE: Iteration: 79 | log-likelihood: 90.1194815316856
## EM - SNMoE: Iteration: 80 | log-likelihood: 90.1242049445233
## EM - SNMoE: Iteration: 81 | log-likelihood: 90.1290285768821
## EM - SNMoE: Iteration: 82 | log-likelihood: 90.1339527594057
## EM - SNMoE: Iteration: 83 | log-likelihood: 90.1389768657052
## EM - SNMoE: Iteration: 84 | log-likelihood: 90.1441010705331
## EM - SNMoE: Iteration: 85 | log-likelihood: 90.1493307833849
## EM - SNMoE: Iteration: 86 | log-likelihood: 90.154660032826
## EM - SNMoE: Iteration: 87 | log-likelihood: 90.1600849680801
## EM - SNMoE: Iteration: 88 | log-likelihood: 90.1656125761583
## EM - SNMoE: Iteration: 89 | log-likelihood: 90.1712413944929
## EM - SNMoE: Iteration: 90 | log-likelihood: 90.1769676619914
## EM - SNMoE: Iteration: 91 | log-likelihood: 90.1827864574592
## EM - SNMoE: Iteration: 92 | log-likelihood: 90.1886929079343
## EM - SNMoE: Iteration: 93 | log-likelihood: 90.1946923124089
## EM - SNMoE: Iteration: 94 | log-likelihood: 90.2007844274807
## EM - SNMoE: Iteration: 95 | log-likelihood: 90.2069619775841
## EM - SNMoE: Iteration: 96 | log-likelihood: 90.213220616311
## EM - SNMoE: Iteration: 97 | log-likelihood: 90.2195646306972
## EM - SNMoE: Iteration: 98 | log-likelihood: 90.2259927605863
## EM - SNMoE: Iteration: 99 | log-likelihood: 90.2324950210035
## EM - SNMoE: Iteration: 100 | log-likelihood: 90.2390781648701
## EM - SNMoE: Iteration: 101 | log-likelihood: 90.2457348047699
## EM - SNMoE: Iteration: 102 | log-likelihood: 90.2524581533261
## EM - SNMoE: Iteration: 103 | log-likelihood: 90.2592499774212
## EM - SNMoE: Iteration: 104 | log-likelihood: 90.2661024407359
## EM - SNMoE: Iteration: 105 | log-likelihood: 90.2730115515547
## EM - SNMoE: Iteration: 106 | log-likelihood: 90.279976209872
## EM - SNMoE: Iteration: 107 | log-likelihood: 90.2869939466811
## EM - SNMoE: Iteration: 108 | log-likelihood: 90.2940590870208
## EM - SNMoE: Iteration: 109 | log-likelihood: 90.3011646940429
## EM - SNMoE: Iteration: 110 | log-likelihood: 90.3083039094818
## EM - SNMoE: Iteration: 111 | log-likelihood: 90.3154776733114
## EM - SNMoE: Iteration: 112 | log-likelihood: 90.3226763671791
## EM - SNMoE: Iteration: 113 | log-likelihood: 90.3298944363651
## EM - SNMoE: Iteration: 114 | log-likelihood: 90.3371263821345
## EM - SNMoE: Iteration: 115 | log-likelihood: 90.3443742676319
## EM - SNMoE: Iteration: 116 | log-likelihood: 90.3516315638178
## EM - SNMoE: Iteration: 117 | log-likelihood: 90.3588680885751
## EM - SNMoE: Iteration: 118 | log-likelihood: 90.3661587850821
## EM - SNMoE: Iteration: 119 | log-likelihood: 90.3734057200873
## EM - SNMoE: Iteration: 120 | log-likelihood: 90.3806372308835
## EM - SNMoE: Iteration: 121 | log-likelihood: 90.3878685739409
## EM - SNMoE: Iteration: 122 | log-likelihood: 90.3950912690036
## EM - SNMoE: Iteration: 123 | log-likelihood: 90.4022570940244
## EM - SNMoE: Iteration: 124 | log-likelihood: 90.4094601915568
## EM - SNMoE: Iteration: 125 | log-likelihood: 90.4166450595709
## EM - SNMoE: Iteration: 126 | log-likelihood: 90.4238208249862
## EM - SNMoE: Iteration: 127 | log-likelihood: 90.430981090991
## EM - SNMoE: Iteration: 128 | log-likelihood: 90.4381256610545
## EM - SNMoE: Iteration: 129 | log-likelihood: 90.4452489217015
## EM - SNMoE: Iteration: 130 | log-likelihood: 90.4523472461912
## EM - SNMoE: Iteration: 131 | log-likelihood: 90.459416279208
## EM - SNMoE: Iteration: 132 | log-likelihood: 90.4664519209536
## EM - SNMoE: Iteration: 133 | log-likelihood: 90.4734526282882
## EM - SNMoE: Iteration: 134 | log-likelihood: 90.4804184885308
## EM - SNMoE: Iteration: 135 | log-likelihood: 90.4873412045005
## EM - SNMoE: Iteration: 136 | log-likelihood: 90.4942193686568
## EM - SNMoE: Iteration: 137 | log-likelihood: 90.5010501778669
## EM - SNMoE: Iteration: 138 | log-likelihood: 90.5078321164534
## EM - SNMoE: Iteration: 139 | log-likelihood: 90.5145589136531
## EM - SNMoE: Iteration: 140 | log-likelihood: 90.5212344001057
## EM - SNMoE: Iteration: 141 | log-likelihood: 90.5278564951564
## EM - SNMoE: Iteration: 142 | log-likelihood: 90.534423098112
## EM - SNMoE: Iteration: 143 | log-likelihood: 90.5409344629952
## EM - SNMoE: Iteration: 144 | log-likelihood: 90.5473899334455
## EM - SNMoE: Iteration: 145 | log-likelihood: 90.5537814913267
## EM - SNMoE: Iteration: 146 | log-likelihood: 90.560112337611
## EM - SNMoE: Iteration: 147 | log-likelihood: 90.566380141533
## EM - SNMoE: Iteration: 148 | log-likelihood: 90.572584514722
## EM - SNMoE: Iteration: 149 | log-likelihood: 90.5787312654253
## EM - SNMoE: Iteration: 150 | log-likelihood: 90.5848118115491
## EM - SNMoE: Iteration: 151 | log-likelihood: 90.5908262120639
## EM - SNMoE: Iteration: 152 | log-likelihood: 90.5967751532754
## EM - SNMoE: Iteration: 153 | log-likelihood: 90.60265793536
## EM - SNMoE: Iteration: 154 | log-likelihood: 90.6084739958059
## EM - SNMoE: Iteration: 155 | log-likelihood: 90.6142244771207
## EM - SNMoE: Iteration: 156 | log-likelihood: 90.6199103075135
## EM - SNMoE: Iteration: 157 | log-likelihood: 90.625530469273
## EM - SNMoE: Iteration: 158 | log-likelihood: 90.6310818145737
## EM - SNMoE: Iteration: 159 | log-likelihood: 90.6365637122534
## EM - SNMoE: Iteration: 160 | log-likelihood: 90.6419762036358
## EM - SNMoE: Iteration: 161 | log-likelihood: 90.6473185957117
## EM - SNMoE: Iteration: 162 | log-likelihood: 90.6525903933931
## EM - SNMoE: Iteration: 163 | log-likelihood: 90.6577941903887
## EM - SNMoE: Iteration: 164 | log-likelihood: 90.6629210870795
## EM - SNMoE: Iteration: 165 | log-likelihood: 90.6679747586871
## EM - SNMoE: Iteration: 166 | log-likelihood: 90.6729540138367
## EM - SNMoE: Iteration: 167 | log-likelihood: 90.6778573104503
## EM - SNMoE: Iteration: 168 | log-likelihood: 90.6826818962396
## EM - SNMoE: Iteration: 169 | log-likelihood: 90.6874277238748
## EM - SNMoE: Iteration: 170 | log-likelihood: 90.6920885812387
## EM - SNMoE: Iteration: 171 | log-likelihood: 90.6966719265932
## EM - SNMoE: Iteration: 172 | log-likelihood: 90.7011699792608
## EM - SNMoE: Iteration: 173 | log-likelihood: 90.7055810048848
## EM - SNMoE: Iteration: 174 | log-likelihood: 90.7099028022837
## EM - SNMoE: Iteration: 175 | log-likelihood: 90.7141329764136
## EM - SNMoE: Iteration: 176 | log-likelihood: 90.7182842539528
## EM - SNMoE: Iteration: 177 | log-likelihood: 90.7223450816748
## EM - SNMoE: Iteration: 178 | log-likelihood: 90.7263071740956
## EM - SNMoE: Iteration: 179 | log-likelihood: 90.7301694600929
## EM - SNMoE: Iteration: 180 | log-likelihood: 90.7339315706424
## EM - SNMoE: Iteration: 181 | log-likelihood: 90.7375892823773
## EM - SNMoE: Iteration: 182 | log-likelihood: 90.7412247506535
## EM - SNMoE: Iteration: 183 | log-likelihood: 90.7444674954627
## EM - SNMoE: Iteration: 184 | log-likelihood: 90.7479478459669
## EM - SNMoE: Iteration: 185 | log-likelihood: 90.7510307259643
## EM - SNMoE: Iteration: 186 | log-likelihood: 90.754078818476
## EM - SNMoE: Iteration: 187 | log-likelihood: 90.7570633871628
## EM - SNMoE: Iteration: 188 | log-likelihood: 90.7599256852085
## EM - SNMoE: Iteration: 189 | log-likelihood: 90.7626831666105
## EM - SNMoE: Iteration: 190 | log-likelihood: 90.7653706304918
## EM - SNMoE: Iteration: 191 | log-likelihood: 90.7679596895902
## EM - SNMoE: Iteration: 192 | log-likelihood: 90.7704408486903
## EM - SNMoE: Iteration: 193 | log-likelihood: 90.7728343467749
## EM - SNMoE: Iteration: 194 | log-likelihood: 90.7751428926052
## EM - SNMoE: Iteration: 195 | log-likelihood: 90.7773677791875
## EM - SNMoE: Iteration: 196 | log-likelihood: 90.7797039020051
## EM - SNMoE: Iteration: 197 | log-likelihood: 90.7817423199903
## EM - SNMoE: Iteration: 198 | log-likelihood: 90.7837053485257
## EM - SNMoE: Iteration: 199 | log-likelihood: 90.7856157427355
## EM - SNMoE: Iteration: 200 | log-likelihood: 90.787428407066
## EM - SNMoE: Iteration: 201 | log-likelihood: 90.789181483454
## EM - SNMoE: Iteration: 202 | log-likelihood: 90.7908642144407
## EM - SNMoE: Iteration: 203 | log-likelihood: 90.7924673008877
## EM - SNMoE: Iteration: 204 | log-likelihood: 90.7940049836458
## EM - SNMoE: Iteration: 205 | log-likelihood: 90.7954792369292
## EM - SNMoE: Iteration: 206 | log-likelihood: 90.7968920335845
## EM - SNMoE: Iteration: 207 | log-likelihood: 90.7982448969729
## EM - SNMoE: Iteration: 208 | log-likelihood: 90.7995399030732
## EM - SNMoE: Iteration: 209 | log-likelihood: 90.8008935154934
## EM - SNMoE: Iteration: 210 | log-likelihood: 90.8020735548834
## EM - SNMoE: Iteration: 211 | log-likelihood: 90.8032025747583
## EM - SNMoE: Iteration: 212 | log-likelihood: 90.8042819144111
## EM - SNMoE: Iteration: 213 | log-likelihood: 90.8053133812662
## EM - SNMoE: Iteration: 214 | log-likelihood: 90.8063148528906
## EM - SNMoE: Iteration: 215 | log-likelihood: 90.8072547183172
## EM - SNMoE: Iteration: 216 | log-likelihood: 90.8081605010383
## EM - SNMoE: Iteration: 217 | log-likelihood: 90.8090168215093
## EM - SNMoE: Iteration: 218 | log-likelihood: 90.8098395522449
## EM - SNMoE: Iteration: 219 | log-likelihood: 90.8106199538803
## EM - SNMoE: Iteration: 220 | log-likelihood: 90.8113619583823
## EM - SNMoE: Iteration: 221 | log-likelihood: 90.8120693216519
## EM - SNMoE: Iteration: 222 | log-likelihood: 90.8127435300108
## EM - SNMoE: Iteration: 223 | log-likelihood: 90.813386033468
## EM - SNMoE: Iteration: 224 | log-likelihood: 90.8139983802686
## EM - SNMoE: Iteration: 225 | log-likelihood: 90.8145821597711
## EM - SNMoE: Iteration: 226 | log-likelihood: 90.8152022831961
## EM - SNMoE: Iteration: 227 | log-likelihood: 90.8157309720549
## EM - SNMoE: Iteration: 228 | log-likelihood: 90.8161705836726
## EM - SNMoE: Iteration: 229 | log-likelihood: 90.8167240417126
## EM - SNMoE: Iteration: 230 | log-likelihood: 90.8171774584058
## EM - SNMoE: Iteration: 231 | log-likelihood: 90.8175992118328
## EM - SNMoE: Iteration: 232 | log-likelihood: 90.8180204165044
## EM - SNMoE: Iteration: 233 | log-likelihood: 90.818411859425
## EM - SNMoE: Iteration: 234 | log-likelihood: 90.818783831325
## EM - SNMoE: Iteration: 235 | log-likelihood: 90.8191378598692
## EM - SNMoE: Iteration: 236 | log-likelihood: 90.8194843905164
## EM - SNMoE: Iteration: 237 | log-likelihood: 90.8198036557484
## EM - SNMoE: Iteration: 238 | log-likelihood: 90.8201074058724
## EM - SNMoE: Iteration: 239 | log-likelihood: 90.8203967679444
## EM - SNMoE: Iteration: 240 | log-likelihood: 90.820672093918
## EM - SNMoE: Iteration: 241 | log-likelihood: 90.8209340781917
## EM - SNMoE: Iteration: 242 | log-likelihood: 90.8211838280595
## EM - SNMoE: Iteration: 243 | log-likelihood: 90.8214211451648
## EM - SNMoE: Iteration: 244 | log-likelihood: 90.8216468557392
## EM - SNMoE: Iteration: 245 | log-likelihood: 90.8218615614055
## EM - SNMoE: Iteration: 246 | log-likelihood: 90.8220659512825
## EM - SNMoE: Iteration: 247 | log-likelihood: 90.822305394879
## EM - SNMoE: Iteration: 248 | log-likelihood: 90.8224897091046
## EM - SNMoE: Iteration: 249 | log-likelihood: 90.822620057321
## EM - SNMoE: Iteration: 250 | log-likelihood: 90.8228330264267
## EM - SNMoE: Iteration: 251 | log-likelihood: 90.8229922331042
## EM - SNMoE: Iteration: 252 | log-likelihood: 90.8231437957965
## EM - SNMoE: Iteration: 253 | log-likelihood: 90.8232421928194
## EM - SNMoE: Iteration: 254 | log-likelihood: 90.823425321987
## EM - SNMoE: Iteration: 255 | log-likelihood: 90.8235553214655
## EM - SNMoE: Iteration: 256 | log-likelihood: 90.8236791210491
## EM - SNMoE: Iteration: 257 | log-likelihood: 90.8237973291899
## EM - SNMoE: Iteration: 258 | log-likelihood: 90.8239099293079
## EM - SNMoE: Iteration: 259 | log-likelihood: 90.824017181937
## EM - SNMoE: Iteration: 260 | log-likelihood: 90.8241193126624
## EM - SNMoE: Iteration: 261 | log-likelihood: 90.8242165097087
## EM - SNMoE: Iteration: 262 | log-likelihood: 90.824308934124
## EM - SNMoE: Iteration: 263 | log-likelihood: 90.8243974718816
snmoe$summary()
## -----------------------------------------------
## Fitted Skew-Normal Mixture-of-Experts model
## -----------------------------------------------
##
## SNMoE model with K = 2 experts:
##
## log-likelihood df AIC BIC ICL
## 90.8244 10 80.8244 66.26112 66.16136
##
## Clustering table (Number of observations in each expert):
##
## 1 2
## 69 67
##
## Regression coefficients:
##
## Beta(k = 1) Beta(k = 2)
## 1 -14.225630550 -32.64233201
## X^1 0.007305018 0.01669158
##
## Variances:
##
## Sigma2(k = 1) Sigma2(k = 2)
## 0.01466509 0.03729136