Title: | Management of Survey Data and Presentation of Analysis Results |
---|---|
Description: | An infrastructure for the management of survey data including value labels, definable missing values, recoding of variables, production of code books, and import of (subsets of) 'SPSS' and 'Stata' files is provided. Further, the package allows to produce tables and data frames of arbitrary descriptive statistics and (almost) publication-ready tables of regression model estimates, which can be exported to 'LaTeX' and HTML. |
Authors: | Martin Elff [aut, cre], Christopher N. Lawrence [ctb], Dave Atkins [ctb], Jason W. Morgan [ctb], Achim Zeileis [ctb], Mael Astruc-Le Souder [ctb], Kiril Mueller [ctb], Pieter Schoonees [ctb] |
Maintainer: | Martin Elff <[email protected]> |
License: | GPL-2 | GPL-3 |
Version: | 0.99.31.8.1 |
Built: | 2024-10-25 05:30:24 UTC |
Source: | CRAN |
Annotations, that is, objects of class "annotation"
,
are character vectors with all their elements named.
Only one method is defined for this subclass of character vectors,
a method for show
, that shows the annotation in
a nicely formatted way. Annotations of an object can be obtained
via the function annotation(x)
and can be set via
annotation(x)<-value
.
Elements of an annotation with names "description"
and "wording"
have a special meaning.
The first kind can be obtained and set via
description(x)
and description(x)<-value
,
the second kind can be obtained via
wording(x)
and wording(x)<-value
.
"description"
elements are used in way the "variable labels"
are used in SPSS and Stata. "wording"
elements of annotation
objects are meant to contain the question wording of a questionnaire
item represented by an "item"
objects.
These elements of annotations are treated in a special way
in the output of the coodbook
function.
annotation(x) ## S4 method for signature 'ANY' annotation(x) ## S4 method for signature 'item' annotation(x) ## S4 method for signature 'data.set' annotation(x) annotation(x)<-value ## S4 replacement method for signature 'ANY,character' annotation(x)<-value ## S4 replacement method for signature 'ANY,annotation' annotation(x)<-value ## S4 replacement method for signature 'item,annotation' annotation(x)<-value ## S4 replacement method for signature 'vector,annotation' annotation(x)<-value description(x) description(x)<-value wording(x) wording(x)<-value ## S4 method for signature 'data.set' description(x) ## S4 method for signature 'importer' description(x) ## S4 method for signature 'data.frame' description(x) ## S4 method for signature 'tbl_df' description(x)
annotation(x) ## S4 method for signature 'ANY' annotation(x) ## S4 method for signature 'item' annotation(x) ## S4 method for signature 'data.set' annotation(x) annotation(x)<-value ## S4 replacement method for signature 'ANY,character' annotation(x)<-value ## S4 replacement method for signature 'ANY,annotation' annotation(x)<-value ## S4 replacement method for signature 'item,annotation' annotation(x)<-value ## S4 replacement method for signature 'vector,annotation' annotation(x)<-value description(x) description(x)<-value wording(x) wording(x)<-value ## S4 method for signature 'data.set' description(x) ## S4 method for signature 'importer' description(x) ## S4 method for signature 'data.frame' description(x) ## S4 method for signature 'tbl_df' description(x)
x |
an object |
value |
a character or annotation object |
annotation(x)
returns an object of class "annotation"
,
which is a named character.
description(x)
and wording(x)
each usually return a character string.
If description(x)
is applied to a data.set
or an importer
object,
however, a character vector is returned, which is named after the
variables in the data set or the external file.
vote <- sample(c(1,2,3,8,9,97,99),size=30,replace=TRUE) labels(vote) <- c(Conservatives = 1, Labour = 2, "Liberal Democrats" = 3, "Don't know" = 8, "Answer refused" = 9, "Not applicable" = 97, "Not asked in survey" = 99 ) missing.values(vote) <- c(97,99) description(vote) <- "Vote intention" wording(vote) <- "If a general election would take place next tuesday, the candidate of which party would you vote for?" annotation(vote) annotation(vote)["Remark"] <- "This is not a real questionnaire item, of course ..." codebook(vote)
vote <- sample(c(1,2,3,8,9,97,99),size=30,replace=TRUE) labels(vote) <- c(Conservatives = 1, Labour = 2, "Liberal Democrats" = 3, "Don't know" = 8, "Answer refused" = 9, "Not applicable" = 97, "Not asked in survey" = 99 ) missing.values(vote) <- c(97,99) description(vote) <- "Vote intention" wording(vote) <- "If a general election would take place next tuesday, the candidate of which party would you vote for?" annotation(vote) annotation(vote)["Remark"] <- "This is not a real questionnaire item, of course ..." codebook(vote)
applyTemplate
is called internally by mtable
to format coefficients and summary statistics.
applyTemplate(x,template,float.style=getOption("float.style"), digits=min(3,getOption("digits")), signif.symbols=getOption("signif.symbols"))
applyTemplate(x,template,float.style=getOption("float.style"), digits=min(3,getOption("digits")), signif.symbols=getOption("signif.symbols"))
x |
a numeric or character vector to be formatted, or a list of such vectors. |
template |
a character vector that defines the template, see details. |
float.style |
A character string that is passed to |
digits |
number of significant digits to use if not specified in the template. |
signif.symbols |
a named vector that specifies how significance levels
are symbolically indicated, values of the vector specify
significance levels and names specify the symbols. By default, the
|
Character vectors that are used as templates may be arbitrary. However,
certain character sequences may form template expressions.
A template expression is of the form ($<POS>:<Format spec>)
,
where "($
" indicates the start of a template expression,
"<POS>
" stands for either an index or name that selects an
element from x
and "<Format spec>
" stands for a
format specifier. It may contain an letter indicating the
style in which the vector element selected by <POS>
will be formatted by formatC
, it may contain
a number as the number of significant digits, a "#
"
indicating that the number of signifcant digits will be at most that given
by getOption("digits")
, or *
that means that
the value will be formatted as a significance symbol.
applyTemplate
returns a character vector in which template
expressions in template
are substituted by formatted values from x
.
If template
is an array then the return value is also an array of
the same shape.
applyTemplate(c(a=.0000000000000304,b=3),template=c("($1:g7#)($a:*)"," (($1:f2)) ")) applyTemplate(c(a=.0000000000000304,b=3),template=c("($a:g7#)($a:*)"," (($b:f2)) "))
applyTemplate(c(a=.0000000000000304,b=3),template=c("($1:g7#)($a:*)"," (($1:f2)) ")) applyTemplate(c(a=.0000000000000304,b=3),template=c("($a:g7#)($a:*)"," (($b:f2)) "))
The as.array
for data frames
takes all factors in a data frame and uses them
to define the dimensions of the resulting array,
and fills the array with the values of
the remaining numeric variables.
Currently, the data frame must contain all combinations of factor levels.
## S4 method for signature 'data.frame' as.array(x,data.name=NULL,...)
## S4 method for signature 'data.frame' as.array(x,data.name=NULL,...)
x |
a data frame |
data.name |
a character string, giving the name
attached to the dimension
that corresponds to the
numerical variables in the data frame
(that is, the |
... |
other arguments, ignored. |
An array
BerkeleyAdmissions <- to.data.frame(UCBAdmissions) BerkeleyAdmissions as.array(BerkeleyAdmissions,data.name="Admit") try(as.array(BerkeleyAdmissions[-1,],data.name="Admit"))
BerkeleyAdmissions <- to.data.frame(UCBAdmissions) BerkeleyAdmissions as.array(BerkeleyAdmissions,data.name="Admit") try(as.array(BerkeleyAdmissions[-1,],data.name="Admit"))
as.symbols
and syms
are functions potentially useful
in connection with foreach
and xapply
.
as.symbols
produces a list of symbols from a character vector,
while syms
returns a list of symbols from symbols given as arguments,
but it can be used to construct patterns of symbols.
as.symbols(x) syms(...,paste=FALSE,sep="")
as.symbols(x) syms(...,paste=FALSE,sep="")
x |
a character vector |
... |
character strings or (unquoted) variable names |
paste |
logical value; should the character strings
|
sep |
a separator string, passed to |
A list of language symbols (results of as.symbol
- not graphical
symbols!).
as.symbols(letters[1:8]) syms("a",1:3,paste=TRUE) sapply(syms("a",1:3,paste=TRUE),typeof)
as.symbols(letters[1:8]) syms("a",1:3,paste=TRUE) sapply(syms("a",1:3,paste=TRUE),typeof)
The %if%
operator allows to assign values to a variable only if
a condition is met i.e. results in TRUE
. It is supposed to
be used similar to the replace ... if
construct in Stata.
expr %if% condition # For example # (variable <- value) %if% (other_variable == 0)
expr %if% condition # For example # (variable <- value) %if% (other_variable == 0)
expr |
An expression that assigns a value to variable |
condition |
A logical vector or a an expression that evaluates to a logical vector |
The 'value' that is assigned to the variable in expr
should either be a scalar, a vector with as many elements as the
condition vector has, or as many elements as the number of elements
in the condition vector that are equal (or evaluate to) TRUE
.
(test_var <- 1) %if% (1:7 > 3) test_var (test_var <- 2) %if% (1:7 <= 3) test_var (test_var <- 100*test_var) %if% (1:7%%2==0) test_var # This creates a warning about non-matching lengths. (test_var <- 500:501) %if% (1:7 <= 3) test_var (test_var <- 501:503) %if% (1:7 <= 3) test_var (test_var <- 401:407) %if% (1:7 <= 3) test_var
(test_var <- 1) %if% (1:7 > 3) test_var (test_var <- 2) %if% (1:7 <= 3) test_var (test_var <- 100*test_var) %if% (1:7%%2==0) test_var # This creates a warning about non-matching lengths. (test_var <- 500:501) %if% (1:7 <= 3) test_var (test_var <- 501:503) %if% (1:7 <= 3) test_var (test_var <- 401:407) %if% (1:7 <= 3) test_var
The operator %#%
can be used to attach a
description
annotation to an object. %##%
can be
used to attach a character vector of annotations to an object.
%@%
returns the attribute with the name given as second
argument. With %@%
it is also possible to assign attributes.
x %#% descr x %##% annot x %@% nm x %@% nm <- value
x %#% descr x %##% annot x %@% nm x %@% nm <- value
x |
an object, usually and |
descr |
a character string |
annot |
a named character vector; its contents are added to the
"annotation" attribute of |
nm |
a character string, the name of the attribute being set or requested. |
value |
any kind of object that can be attached as an attribute. |
test1 <- 1 %#% "One" # This is equivalent to: # test <- 1 # description(test) <- "One" description(test1) # Results in "One" # Not that it makes sense, but ... test2 <- 2 %##% c( Precedessor = 0, Successor = 2 ) # This is equivalent to: # test2 <- 2 # annotation(test2) <- c( # Precedessor = 0, # Successor = 2 # ) annotation(test2) # The following examples are equivalent to # attr(test2,"annotation") test2 %@% annotation test2 %@% "annotation" test2 %@% another.attribute <- 42 # This is equivalent to attr(test2,"another.attribute") <- 42 attributes(test2)
test1 <- 1 %#% "One" # This is equivalent to: # test <- 1 # description(test) <- "One" description(test1) # Results in "One" # Not that it makes sense, but ... test2 <- 2 %##% c( Precedessor = 0, Successor = 2 ) # This is equivalent to: # test2 <- 2 # annotation(test2) <- c( # Precedessor = 0, # Successor = 2 # ) annotation(test2) # The following examples are equivalent to # attr(test2,"annotation") test2 %@% annotation test2 %@% "annotation" test2 %@% another.attribute <- 42 # This is equivalent to attr(test2,"another.attribute") <- 42 attributes(test2)
The function By
evaluates an expression within subsets of
a data frame, where the subsets are defined by a formula.
By(formula,expr,data=parent.frame())
By(formula,expr,data=parent.frame())
formula |
an expression or (preferably) a formula containing the names of conditioning variables or factors. |
expr |
an expression that is evaluated for any unique combination
of values of the variables contained in |
data |
a data frame, an object that can be coerced into
a data frame (for example, a table), or an environment,
from which values for the variables in |
A list of class "by", giving the results for each combination of values
of variables in formula
.
berkeley <- Aggregate(Table(Admit,Freq)~.,data=UCBAdmissions) (Bres <- By(~Dept,glm(cbind(Admitted,Rejected)~Gender,family="binomial"),data=berkeley)) # The results all have 'data' components str(Bres[[1]]$data) attach(berkeley) (Bres <- By(~Dept,glm(cbind(Admitted,Rejected)~Gender,family="binomial"))) detach(berkeley)
berkeley <- Aggregate(Table(Admit,Freq)~.,data=UCBAdmissions) (Bres <- By(~Dept,glm(cbind(Admitted,Rejected)~Gender,family="binomial"),data=berkeley)) # The results all have 'data' components str(Bres[[1]]$data) attach(berkeley) (Bres <- By(~Dept,glm(cbind(Admitted,Rejected)~Gender,family="binomial"))) detach(berkeley)
cases
allows to distinguish several cases defined logical
conditions. It can be used to code these cases into a vector. The
function can be considered as a multi-condition generalization of
ifelse
.
cases(...,check.xor=c("warn","stop","ignore"), .default=NA,.complete=FALSE, check.na=c("warn","stop","ignore"), na.rm=TRUE)
cases(...,check.xor=c("warn","stop","ignore"), .default=NA,.complete=FALSE, check.na=c("warn","stop","ignore"), na.rm=TRUE)
... |
A sequence of logical expressions or assignment expressions containing logical expressions as "right hand side". |
check.xor |
character (either |
.default |
a value to be used for unsatisfied conditions. |
.complete |
logical, if |
check.na |
character (either |
na.rm |
a logical value; how to handle |
There are two distinct ways to use this function. Either the
function can be used to construct a factor that represents
several logical cases or it can be used to conditionally
evaluate an expression in a manner similar to ifelse
.
For the first use, the ...
arguments have to be a series of
logical expressions. cases
then returns a factor
with as many levels as logical expressions given as
...
arguments. The resulting factor will attain its
first level if the first condition is TRUE, otherwise it will attain its
second level if the second condition is TRUE, etc.
The levels will be named after the conditions or, if name tags are
attached to the logical expressions, after the tags of the expressions.
Not that the logical expressions all need to evaluate to logical vectors
of the same length, otherwise an error condition is raised.
If .complete
is TRUE
then an additional factor level is
created for the conditions not satisfied for any of the cases.
For the second use, the ...
arguments have to be a series
of assignment expression of the type <expression> <- <logical expression>
or <logical expression> -> <expression>
. For cases
in which the first logical expression is TRUE, the result of first expression that
appears on the other side of the assignment operator become elements of the
vector returned by cases
, for cases in which the second logical expression is TRUE,
the result of the second expression that appears on the other side
of the assignment operator become elements of the
vector returned by cases
, etc.
For cases that do not satisfy any of the given conditions the value of
the .default
argument is used.
Note that the logical expressions also here all need to evaluate to logical
vectors of the same length. The expressions on the other side of the
assignment operator should also be either vectors of the same length
and mode or should scalars of the same mode, otherwise unpredictable
results may occur.
If it is called with logical expressions as ... arguments,
cases
returns a factor, if it is called with
assignment expressions the function returns a vector with the
same mode as the results of the "assigned" expressions
and with the same length as the logical conditions.
# Examples of the first kind of usage of the function # df <- data.frame(x = rnorm(n=20), y = rnorm(n=20)) df <- df[do.call(order,df),] (df <- within(df,{ x1=cases(x>0,x<=0) y1=cases(y>0,y<=0) z1=cases( "Condition 1"=x<0, "Condition 2"=y<0,# only applies if x >= 0 "Condition 3"=TRUE ) z2=cases(x<0,(x>=0 & y <0), (x>=0 & y >=0)) })) xtabs(~x1+y1,data=df) dd <- with(df, try(cases(x<0, x>=0, x>1, check.xor=TRUE)# let's be fussy ) ) dd <- with(df, try(cases(x<0,x>=0,x>1)) ) genTable(range(x)~dd,data=df) # An example of the second kind of usage of the function: # A construction of a non-smooth function # fun <- function(x) cases( x==0 -> 1, abs(x)> 1 -> abs(x), abs(x)<=1 -> x^2 ) x <- seq(from=-2,to=2,length=101) plot(fun(x)~x) # Demo of the new .default and .complete arguments x <- seq(from=-2,to=2) cases(a = x < -1, b = x > 1, .complete = TRUE) cases(x < -1, x > 1, .complete = TRUE) cases(1 <- x < -1, 3 <- x > 1, .default = 2) threshhold <- 5 d <- c(1:10, NaN) d1 <- cases( d > threshhold -> 1, d <= threshhold -> 2 ) d2 <- cases( is.na(d) -> 0, d > threshhold -> 1, d <= threshhold -> 2 ) # Leads to missing values because some of the conditions result in missing # even though they could be 'captured' d3 <- cases( is.na(d) -> 0, d > threshhold -> 1, d <= threshhold -> 2, na.rm=FALSE ) d4 <- cases( is.na(d) -> 0, d > threshhold +2 -> 1, d <= threshhold -> 2, na.rm=FALSE ) cbind(d,d1,d2,d3,d4) cases( d > threshhold, d <= threshhold ) cases( is.na(d), d > threshhold, d <= threshhold ) cases( d > threshhold, d <= threshhold, .complete=TRUE ) cases( d > threshhold + 2, d <= threshhold, .complete=TRUE )
# Examples of the first kind of usage of the function # df <- data.frame(x = rnorm(n=20), y = rnorm(n=20)) df <- df[do.call(order,df),] (df <- within(df,{ x1=cases(x>0,x<=0) y1=cases(y>0,y<=0) z1=cases( "Condition 1"=x<0, "Condition 2"=y<0,# only applies if x >= 0 "Condition 3"=TRUE ) z2=cases(x<0,(x>=0 & y <0), (x>=0 & y >=0)) })) xtabs(~x1+y1,data=df) dd <- with(df, try(cases(x<0, x>=0, x>1, check.xor=TRUE)# let's be fussy ) ) dd <- with(df, try(cases(x<0,x>=0,x>1)) ) genTable(range(x)~dd,data=df) # An example of the second kind of usage of the function: # A construction of a non-smooth function # fun <- function(x) cases( x==0 -> 1, abs(x)> 1 -> abs(x), abs(x)<=1 -> x^2 ) x <- seq(from=-2,to=2,length=101) plot(fun(x)~x) # Demo of the new .default and .complete arguments x <- seq(from=-2,to=2) cases(a = x < -1, b = x > 1, .complete = TRUE) cases(x < -1, x > 1, .complete = TRUE) cases(1 <- x < -1, 3 <- x > 1, .default = 2) threshhold <- 5 d <- c(1:10, NaN) d1 <- cases( d > threshhold -> 1, d <= threshhold -> 2 ) d2 <- cases( is.na(d) -> 0, d > threshhold -> 1, d <= threshhold -> 2 ) # Leads to missing values because some of the conditions result in missing # even though they could be 'captured' d3 <- cases( is.na(d) -> 0, d > threshhold -> 1, d <= threshhold -> 2, na.rm=FALSE ) d4 <- cases( is.na(d) -> 0, d > threshhold +2 -> 1, d <= threshhold -> 2, na.rm=FALSE ) cbind(d,d1,d2,d3,d4) cases( d > threshhold, d <= threshhold ) cases( is.na(d), d > threshhold, d <= threshhold ) cases( d > threshhold, d <= threshhold, .complete=TRUE ) cases( d > threshhold + 2, d <= threshhold, .complete=TRUE )
This function uses the base package function chartr
to translate characters in variable descriptions (a.k.a variable labels) and
value labels of item
, data.set
,
and importer
objects.
It will be useful when the encoding of an important data set cannot be fully identified or if the encoding in the data file is incorrect or unknown.
charTrans(x, old = "", new = "", ...) ## S3 method for class 'annotation' charTrans(x, old = "", new = "", ...) ## S3 method for class 'data.set' charTrans(x, old = "", new = "", ...) ## S3 method for class 'importer' charTrans(x, old = "", new = "", ...) ## S3 method for class 'item' charTrans(x, old = "", new = "", ...) ## S3 method for class 'value.labels' charTrans(x, old = "", new = "", ...)
charTrans(x, old = "", new = "", ...) ## S3 method for class 'annotation' charTrans(x, old = "", new = "", ...) ## S3 method for class 'data.set' charTrans(x, old = "", new = "", ...) ## S3 method for class 'importer' charTrans(x, old = "", new = "", ...) ## S3 method for class 'item' charTrans(x, old = "", new = "", ...) ## S3 method for class 'value.labels' charTrans(x, old = "", new = "", ...)
x |
a character vector or an object of which character data or attributes character-translated. |
old |
a string with the characters to be translated. |
new |
a string with the translated characters. |
... |
further arguments, currently ignored. |
charTrans
returns a copy of its first argument with character-translated
character data or attributes.
## Not run: # Locate an SPSS 'portable' file and get info on variables, their labels S2601.POR <- spss.portable.file("POR-Files/S2601.POR", encoded = "cp850") # 'ß' appears to be correctly coded, but 'ä', 'ö', 'ü' are not, so we need to # to some fine-tuning S2601.POR <- charTrans(S2601.POR, old="{|}\r", new="äöü ") # Now labels etc. are correctly encoded. codebook(S2601.POR) ## End(Not run)
## Not run: # Locate an SPSS 'portable' file and get info on variables, their labels S2601.POR <- spss.portable.file("POR-Files/S2601.POR", encoded = "cp850") # 'ß' appears to be correctly coded, but 'ä', 'ö', 'ü' are not, so we need to # to some fine-tuning S2601.POR <- charTrans(S2601.POR, old="{|}\r", new="äöü ") # Now labels etc. are correctly encoded. codebook(S2601.POR) ## End(Not run)
coarsen
can be used to obtain a factor from a vector, similar
to cut
, but with less technical and more "aesthetic"
labels of the factor levels.
coarsen(x,...) ## S3 method for class 'numeric' coarsen(x, n=5, pretty=TRUE, quantiles=!pretty, breaks=NULL, brackets=FALSE, sep=if(brackets)";"else if(quantiles) "-" else " - ", left="[", right="]", range=FALSE, labels=NULL, ...)
coarsen(x,...) ## S3 method for class 'numeric' coarsen(x, n=5, pretty=TRUE, quantiles=!pretty, breaks=NULL, brackets=FALSE, sep=if(brackets)";"else if(quantiles) "-" else " - ", left="[", right="]", range=FALSE, labels=NULL, ...)
x |
a vector, usually a numeric vector |
n |
number of categories of the resulting factor |
pretty |
a logical value, whether |
quantiles |
a logical value, whether |
breaks |
a vector of break points or |
brackets |
a logical value, whether the labels should include brackets. |
sep |
a character string, used as a separator between upper and lower boundaries in the labels. |
left |
a character string, to be used as the left bracket |
right |
a character string, to be used as the right bracket |
range |
a logical value, whether the minimum and maximum of
|
labels |
an optional character vector of labels. |
... |
further arguments, passed on to |
x <- rnorm(200) table(coarsen(x)) table(coarsen(x,quantiles=TRUE)) table(coarsen(x,brackets=TRUE)) table(coarsen(x,breaks=c(-1,0,1))) table(coarsen(x,breaks=c(-1,0,1), range=TRUE,labels=letters[1:4]))
x <- rnorm(200) table(coarsen(x)) table(coarsen(x,quantiles=TRUE)) table(coarsen(x,brackets=TRUE)) table(coarsen(x,breaks=c(-1,0,1))) table(coarsen(x,breaks=c(-1,0,1), range=TRUE,labels=letters[1:4]))
Function codebook
collects documentation about an item,
or the items in a data set or external data file. It returns
an object that, when show
n, print this documentation
in a nicely formatted way.
codebook(x, weights = NULL, unweighted = TRUE, ...) ## S4 method for signature 'item' codebook(x, weights = NULL, unweighted = TRUE, ...) ## S4 method for signature 'atomic' codebook(x, weights = NULL, unweighted = TRUE, ...) ## S4 method for signature 'factor' codebook(x, weights = NULL, unweighted = TRUE, ...) ## S4 method for signature 'data.set' codebook(x, weights = NULL, unweighted = TRUE, ...) ## S4 method for signature 'importer' codebook(x, weights = NULL, unweighted = TRUE, ...) ## S4 method for signature 'data.frame' codebook(x, weights = NULL, unweighted = TRUE, ...) ## S4 method for signature 'tbl_df' codebook(x, weights = NULL, unweighted = TRUE, ...)
codebook(x, weights = NULL, unweighted = TRUE, ...) ## S4 method for signature 'item' codebook(x, weights = NULL, unweighted = TRUE, ...) ## S4 method for signature 'atomic' codebook(x, weights = NULL, unweighted = TRUE, ...) ## S4 method for signature 'factor' codebook(x, weights = NULL, unweighted = TRUE, ...) ## S4 method for signature 'data.set' codebook(x, weights = NULL, unweighted = TRUE, ...) ## S4 method for signature 'importer' codebook(x, weights = NULL, unweighted = TRUE, ...) ## S4 method for signature 'data.frame' codebook(x, weights = NULL, unweighted = TRUE, ...) ## S4 method for signature 'tbl_df' codebook(x, weights = NULL, unweighted = TRUE, ...)
x |
an |
weights |
an optional vector of weights. |
unweighted |
an optional logical vector; if weights are given, it determines of only summaries of weighted data are show or also summaries of unweighted data. |
... |
other arguments, currently ignored. |
An object of class "codebook", for which a show
method exists that
produces a nicely formatted output.
Data <- data.set( vote = sample(c(1,2,3,8,9,97,99),size=300,replace=TRUE), region = sample(c(rep(1,3),rep(2,2),3,99),size=300,replace=TRUE), income = exp(rnorm(300,sd=.7))*2000 ) Data <- within(Data,{ description(vote) <- "Vote intention" description(region) <- "Region of residence" description(income) <- "Household income" wording(vote) <- "If a general election would take place next tuesday, the candidate of which party would you vote for?" wording(income) <- "All things taken into account, how much do all household members earn in sum?" foreach(x=c(vote,region),{ measurement(x) <- "nominal" }) measurement(income) <- "ratio" labels(vote) <- c( Conservatives = 1, Labour = 2, "Liberal Democrats" = 3, "Don't know" = 8, "Answer refused" = 9, "Not applicable" = 97, "Not asked in survey" = 99) labels(region) <- c( England = 1, Scotland = 2, Wales = 3, "Not applicable" = 97, "Not asked in survey" = 99) foreach(x=c(vote,region,income),{ annotation(x)["Remark"] <- "This is not a real survey item, of course ..." }) missing.values(vote) <- c(8,9,97,99) missing.values(region) <- c(97,99) }) description(Data) codebook(Data) codebook(Data)$vote codebook(Data)[2] codebook(Data[2]) DataFr <- as.data.frame(Data) DataHv <- as_haven(Data,user_na=TRUE) codebook(DataFr) codebook(DataHv) ## Not run: Write(description(Data), file="Data-desc.txt") Write(codebook(Data), file="Data-cdbk.txt") ## End(Not run)
Data <- data.set( vote = sample(c(1,2,3,8,9,97,99),size=300,replace=TRUE), region = sample(c(rep(1,3),rep(2,2),3,99),size=300,replace=TRUE), income = exp(rnorm(300,sd=.7))*2000 ) Data <- within(Data,{ description(vote) <- "Vote intention" description(region) <- "Region of residence" description(income) <- "Household income" wording(vote) <- "If a general election would take place next tuesday, the candidate of which party would you vote for?" wording(income) <- "All things taken into account, how much do all household members earn in sum?" foreach(x=c(vote,region),{ measurement(x) <- "nominal" }) measurement(income) <- "ratio" labels(vote) <- c( Conservatives = 1, Labour = 2, "Liberal Democrats" = 3, "Don't know" = 8, "Answer refused" = 9, "Not applicable" = 97, "Not asked in survey" = 99) labels(region) <- c( England = 1, Scotland = 2, Wales = 3, "Not applicable" = 97, "Not asked in survey" = 99) foreach(x=c(vote,region,income),{ annotation(x)["Remark"] <- "This is not a real survey item, of course ..." }) missing.values(vote) <- c(8,9,97,99) missing.values(region) <- c(97,99) }) description(Data) codebook(Data) codebook(Data)$vote codebook(Data)[2] codebook(Data[2]) DataFr <- as.data.frame(Data) DataHv <- as_haven(Data,user_na=TRUE) codebook(DataFr) codebook(DataHv) ## Not run: Write(description(Data), file="Data-desc.txt") Write(codebook(Data), file="Data-cdbk.txt") ## End(Not run)
The function codeplan()
creates a data frame that
describes the structure of an item list (a data.set
object or
an importer
object), so that this structure can be stored and
and recovered. The resulting data frame has a particular print method
that delimits the output to one line per variable.
With setCodeplan
an item list structure (as returned by codeplan()
)
can be applied to a data frame or data set. It is also possible to use an
assignment like codeplan(x) <- value
to a similar effect.
codeplan(x) ## S4 method for signature 'item.list' codeplan(x) ## S4 method for signature 'item' codeplan(x) setCodeplan(x,value) ## S4 method for signature 'data.frame,codeplan' setCodeplan(x,value) ## S4 method for signature 'data.frame,NULL' setCodeplan(x,value) ## S4 method for signature 'data.set,codeplan' setCodeplan(x,value) ## S4 method for signature 'data.set,NULL' setCodeplan(x,value) ## S4 method for signature 'item,codeplan' setCodeplan(x,value) ## S4 method for signature 'item,NULL' setCodeplan(x,value) ## S4 method for signature 'atomic,codeplan' setCodeplan(x,value) ## S4 method for signature 'atomic,NULL' setCodeplan(x,value) codeplan(x) <- value read_codeplan(filename,type) write_codeplan(x,filename,type,pretty)
codeplan(x) ## S4 method for signature 'item.list' codeplan(x) ## S4 method for signature 'item' codeplan(x) setCodeplan(x,value) ## S4 method for signature 'data.frame,codeplan' setCodeplan(x,value) ## S4 method for signature 'data.frame,NULL' setCodeplan(x,value) ## S4 method for signature 'data.set,codeplan' setCodeplan(x,value) ## S4 method for signature 'data.set,NULL' setCodeplan(x,value) ## S4 method for signature 'item,codeplan' setCodeplan(x,value) ## S4 method for signature 'item,NULL' setCodeplan(x,value) ## S4 method for signature 'atomic,codeplan' setCodeplan(x,value) ## S4 method for signature 'atomic,NULL' setCodeplan(x,value) codeplan(x) <- value read_codeplan(filename,type) write_codeplan(x,filename,type,pretty)
x |
for |
value |
an object as it would be returned by |
filename |
a character string, the name of the file that is to be read or to be written. |
type |
a character string (either "yaml" or "json") oder NULL (the default), gives the type
of the file into which the codeplan is written or from
which it is read.
If |
pretty |
a logical value, whether the JSON output created by |
If applicable, codeplan
returns a list with
additional S3 class attribute "codeplan"
. For arguments for
which the relevant information does not exist, the function returns NULL
.
The list has at least one element or several elements, named after the
variable in the "item.list" or "data.set" x
. Each list element
is a list itself with the following elements:
annotation |
a named character vector, |
labels |
a named list of labels and labelled values |
value.filter |
a list with at least two elements named "class" and "filter", and optionally another element named "range". The "class" element determines the class of the value filter and equals either "missing.values", "valid.values", or "valid.range". An element named "range" may only be needed if "class" is "missing.values", as it is possible (like in SPSS) to have both individual missing values and a range of missing values. |
mode |
a character string that describes storage mode, such as |
measurement |
a character string with the measurement level,
|
If codeplan(x)<-value
or setCodeplan(x,value)
is used
and value
is NULL
, all the special information about
annotation, labels, value filters, etc. is removed from the resulting
object, which then is usually a mere atomic vector or data frame.
Data1 <- data.set( vote = sample(c(1,2,3,8,9,97,99),size=300,replace=TRUE), region = sample(c(rep(1,3),rep(2,2),3,99),size=300,replace=TRUE), income = exp(rnorm(300,sd=.7))*2000 ) Data1 <- within(Data1,{ description(vote) <- "Vote intention" description(region) <- "Region of residence" description(income) <- "Household income" foreach(x=c(vote,region),{ measurement(x) <- "nominal" }) measurement(income) <- "ratio" labels(vote) <- c( Conservatives = 1, Labour = 2, "Liberal Democrats" = 3, "Don't know" = 8, "Answer refused" = 9, "Not applicable" = 97, "Not asked in survey" = 99) labels(region) <- c( England = 1, Scotland = 2, Wales = 3, "Not applicable" = 97, "Not asked in survey" = 99) foreach(x=c(vote,region,income),{ annotation(x)["Remark"] <- "This is not a real survey item, of course ..." }) missing.values(vote) <- c(8,9,97,99) missing.values(region) <- c(97,99) }) cpData1 <- codeplan(Data1) Data2 <- data.frame( vote = sample(c(1,2,3,8,9,97,99),size=300,replace=TRUE), region = sample(c(rep(1,3),rep(2,2),3,99),size=300,replace=TRUE), income = exp(rnorm(300,sd=.7))*2000 ) codeplan(Data2) <- cpData1 codeplan(Data2) codebook(Data2) # Note the difference between 'as.data.frame' and setting # the codeplan to NULL: Data2df <- as.data.frame(Data2) codeplan(Data2) <- NULL str(Data2) str(Data2df) codeplan(Data2) <- NULL # Does not change anything # Codeplans of survey items can also be inquired and manipulated: vote <- Data1$vote str(vote) cp.vote <- codeplan(vote) codeplan(vote) <- NULL str(vote) codeplan(vote) <- cp.vote vote fn.json <- paste0(tempfile(),".json") write_codeplan(codeplan(Data1),filename=fn.json) codeplan(Data2) <- read_codeplan(fn.json) codeplan(Data2)
Data1 <- data.set( vote = sample(c(1,2,3,8,9,97,99),size=300,replace=TRUE), region = sample(c(rep(1,3),rep(2,2),3,99),size=300,replace=TRUE), income = exp(rnorm(300,sd=.7))*2000 ) Data1 <- within(Data1,{ description(vote) <- "Vote intention" description(region) <- "Region of residence" description(income) <- "Household income" foreach(x=c(vote,region),{ measurement(x) <- "nominal" }) measurement(income) <- "ratio" labels(vote) <- c( Conservatives = 1, Labour = 2, "Liberal Democrats" = 3, "Don't know" = 8, "Answer refused" = 9, "Not applicable" = 97, "Not asked in survey" = 99) labels(region) <- c( England = 1, Scotland = 2, Wales = 3, "Not applicable" = 97, "Not asked in survey" = 99) foreach(x=c(vote,region,income),{ annotation(x)["Remark"] <- "This is not a real survey item, of course ..." }) missing.values(vote) <- c(8,9,97,99) missing.values(region) <- c(97,99) }) cpData1 <- codeplan(Data1) Data2 <- data.frame( vote = sample(c(1,2,3,8,9,97,99),size=300,replace=TRUE), region = sample(c(rep(1,3),rep(2,2),3,99),size=300,replace=TRUE), income = exp(rnorm(300,sd=.7))*2000 ) codeplan(Data2) <- cpData1 codeplan(Data2) codebook(Data2) # Note the difference between 'as.data.frame' and setting # the codeplan to NULL: Data2df <- as.data.frame(Data2) codeplan(Data2) <- NULL str(Data2) str(Data2df) codeplan(Data2) <- NULL # Does not change anything # Codeplans of survey items can also be inquired and manipulated: vote <- Data1$vote str(vote) cp.vote <- codeplan(vote) codeplan(vote) <- NULL str(vote) codeplan(vote) <- cp.vote vote fn.json <- paste0(tempfile(),".json") write_codeplan(codeplan(Data1),filename=fn.json) codeplan(Data2) <- read_codeplan(fn.json) codeplan(Data2)
collect
gathers several objects into one, matching the
elements or subsets of the objects by names
or dimnames
.
collect(...,names=NULL,inclusive=TRUE) ## Default S3 method: collect(...,names=NULL,inclusive=TRUE) ## S3 method for class 'array' collect(...,names=NULL,inclusive=TRUE) ## S3 method for class 'matrix' collect(...,names=NULL,inclusive=TRUE) ## S3 method for class 'table' collect(...,names=NULL,sourcename=".origin",fill=0) ## S3 method for class 'data.frame' collect(...,names=NULL,inclusive=TRUE, fussy=FALSE,warn=TRUE, detailed.warnings=FALSE,use.last=FALSE, sourcename=".origin") ## S3 method for class 'data.set' collect(...,names=NULL,inclusive=TRUE, fussy=FALSE,warn=TRUE, detailed.warnings=FALSE,use.last=FALSE, sourcename=".origin")
collect(...,names=NULL,inclusive=TRUE) ## Default S3 method: collect(...,names=NULL,inclusive=TRUE) ## S3 method for class 'array' collect(...,names=NULL,inclusive=TRUE) ## S3 method for class 'matrix' collect(...,names=NULL,inclusive=TRUE) ## S3 method for class 'table' collect(...,names=NULL,sourcename=".origin",fill=0) ## S3 method for class 'data.frame' collect(...,names=NULL,inclusive=TRUE, fussy=FALSE,warn=TRUE, detailed.warnings=FALSE,use.last=FALSE, sourcename=".origin") ## S3 method for class 'data.set' collect(...,names=NULL,inclusive=TRUE, fussy=FALSE,warn=TRUE, detailed.warnings=FALSE,use.last=FALSE, sourcename=".origin")
... |
more atomic vectors, arrays, matrices, tables, data.frames or data.sets |
names |
optional character vector; in case of the default and array methods,
giving |
inclusive |
logical, defaults to TRUE; should unmatched elements included? See details below. |
fussy |
logical, defaults to FALSE; should it count as an error, if variables with same names of collected data.frames/data.sets have different attributes? |
warn |
logical, defaults to TRUE; should an warning be given, if variables with same names of collected data.frames/data.sets have different attributes? |
detailed.warnings |
logical, whether the attributes of each
variable should be printed if they differ, and if |
use.last |
logical, defaults to FALSE. If the function is applied to data frames or similar objects, attributes of variables may differ between data frames (or other objects, respectively). If this argument is TRUE, then the attributes are harmonised based on the variables in the last data frame/object, otherwise the attributes of variables in the first data frame/object are used for harmonisation. |
sourcename |
name of the factor that identifies the collected data.frames or data.sets |
fill |
numeric; with what to fill empty table cells, defaults to zero, assuming the table contains counts |
If x
and all following ... arguments are vectors of the same mode (numeric,character, or logical)
the result is a matrix with as many columns as vectors. If argument inclusive
is TRUE,
then the number of rows equals the number of names that appear at least once in each of the
vector names and the matrix is filled with NA
where necessary,
otherwise the number of rows equals the number of names that are present in all
vector names.
If x
and all ... arguments are matrices or arrays of the same mode (numeric,character, or logical)
and dimension the result will be a
dimensional array or table. The extend of the
th dimension equals the number of matrix, array or table arguments,
the extends of the lower dimension depends on the
inclusive
argument:
either they equal to the number of dimnames that appear at least once for each given
dimension and the array is filled with NA
where necessary,
or they equal to the number of dimnames that appear in all arguments
for each given dimension.
If x
and all ... arguments are data frames or data sets, the
result is a data frame or data set.
The number of variables of the resulting data frame or data set depends on
the inclusive
argument. If it is true, the number of variables
equals the number of variables that appear in each of the arguments at least once
and variables are filled with NA
where necessary, otherwise the
number of variables equals the number of variables that are present in
all arguments.
x <- c(a=1,b=2) y <- c(a=10,c=30) x y collect(x,y) collect(x,y,inclusive=FALSE) X <- matrix(1,nrow=2,ncol=2,dimnames=list(letters[1:2],LETTERS[1:2])) Y <- matrix(2,nrow=3,ncol=2,dimnames=list(letters[1:3],LETTERS[1:2])) Z <- matrix(3,nrow=2,ncol=3,dimnames=list(letters[1:2],LETTERS[1:3])) X Y Z collect(X,Y,Z) collect(X,Y,Z,inclusive=FALSE) X <- matrix(1,nrow=2,ncol=2,dimnames=list(a=letters[1:2],b=LETTERS[1:2])) Y <- matrix(2,nrow=3,ncol=2,dimnames=list(a=letters[1:3],c=LETTERS[1:2])) Z <- matrix(3,nrow=2,ncol=3,dimnames=list(a=letters[1:2],c=LETTERS[1:3])) collect(X,Y,Z) collect(X,Y,Z,inclusive=FALSE) df1 <- data.frame(a=rep(1,5),b=rep(1,5)) df2 <- data.frame(a=rep(2,5),b=rep(2,5),c=rep(2,5)) collect(df1,df2) collect(df1,df2,inclusive=FALSE) data(UCBAdmissions) Male <- as.table(UCBAdmissions[,1,]) Female <- as.table(UCBAdmissions[,2,]) collect(Male,Female,sourcename="Gender") collect(unclass(Male),unclass(Female)) Male1 <- as.table(UCBAdmissions[,1,-1]) Female2 <- as.table(UCBAdmissions[,2,-2]) Female3 <- as.table(UCBAdmissions[,2,-3]) collect(Male=Male1,Female=Female2,sourcename="Gender") collect(Male=Male1,Female=Female3,sourcename="Gender") collect(Male=Male1,Female=Female3,sourcename="Gender",fill=NA) f1 <- gl(3,5,labels=letters[1:3]) f2 <- gl(3,6,labels=letters[1:3]) collect(f1=table(f1),f2=table(f2)) ds1 <- data.set(x = 1:3) ds2 <- data.set(x = 4:9, y = 1:6) collect(ds1,ds2)
x <- c(a=1,b=2) y <- c(a=10,c=30) x y collect(x,y) collect(x,y,inclusive=FALSE) X <- matrix(1,nrow=2,ncol=2,dimnames=list(letters[1:2],LETTERS[1:2])) Y <- matrix(2,nrow=3,ncol=2,dimnames=list(letters[1:3],LETTERS[1:2])) Z <- matrix(3,nrow=2,ncol=3,dimnames=list(letters[1:2],LETTERS[1:3])) X Y Z collect(X,Y,Z) collect(X,Y,Z,inclusive=FALSE) X <- matrix(1,nrow=2,ncol=2,dimnames=list(a=letters[1:2],b=LETTERS[1:2])) Y <- matrix(2,nrow=3,ncol=2,dimnames=list(a=letters[1:3],c=LETTERS[1:2])) Z <- matrix(3,nrow=2,ncol=3,dimnames=list(a=letters[1:2],c=LETTERS[1:3])) collect(X,Y,Z) collect(X,Y,Z,inclusive=FALSE) df1 <- data.frame(a=rep(1,5),b=rep(1,5)) df2 <- data.frame(a=rep(2,5),b=rep(2,5),c=rep(2,5)) collect(df1,df2) collect(df1,df2,inclusive=FALSE) data(UCBAdmissions) Male <- as.table(UCBAdmissions[,1,]) Female <- as.table(UCBAdmissions[,2,]) collect(Male,Female,sourcename="Gender") collect(unclass(Male),unclass(Female)) Male1 <- as.table(UCBAdmissions[,1,-1]) Female2 <- as.table(UCBAdmissions[,2,-2]) Female3 <- as.table(UCBAdmissions[,2,-3]) collect(Male=Male1,Female=Female2,sourcename="Gender") collect(Male=Male1,Female=Female3,sourcename="Gender") collect(Male=Male1,Female=Female3,sourcename="Gender",fill=NA) f1 <- gl(3,5,labels=letters[1:3]) f2 <- gl(3,6,labels=letters[1:3]) collect(f1=table(f1),f2=table(f2)) ds1 <- data.set(x = 1:3) ds2 <- data.set(x = 4:9, y = 1:6) collect(ds1,ds2)
This package provides modified versions of
contr.treatment
and
contr.sum
. contr.sum
gains an optional base
argument, analog to the
one of contr.treatment
, furthermore,
the base
argument may be the name of a
factor level.
contr
returns a function that calls either
contr.treatment
, contr.sum
, etc.,
according to the value given to its first argument.
The contrasts
method for "item"
objects
returns a contrast matrix or a function to produce
a contrast matrix for the factor into which
the item would be coerced via as.factor
or as.ordered
.
This matrix or function can be specified by
using contrasts(x)<-value
contr(type,...) contr.treatment(n, base=1,contrasts=TRUE) contr.sum(n,base=NULL,contrasts=TRUE) ## S4 method for signature 'item' contrasts(x,contrasts=TRUE,...) ## S4 replacement method for signature 'item' contrasts(x,how.many) <- value # These methods are defined implicitely by making 'contrasts' generic. ## S4 method for signature 'ANY' contrasts(x,contrasts=TRUE,...) ## S4 replacement method for signature 'ANY' contrasts(x,how.many) <- value
contr(type,...) contr.treatment(n, base=1,contrasts=TRUE) contr.sum(n,base=NULL,contrasts=TRUE) ## S4 method for signature 'item' contrasts(x,contrasts=TRUE,...) ## S4 replacement method for signature 'item' contrasts(x,how.many) <- value # These methods are defined implicitely by making 'contrasts' generic. ## S4 method for signature 'ANY' contrasts(x,contrasts=TRUE,...) ## S4 replacement method for signature 'ANY' contrasts(x,how.many) <- value
type |
a character vector, specifying the type of the contrasts.
This argument should have a value such that, if e.g. |
... |
further arguments, passed to |
n |
a number of factor levels or a vector of factor levels names, see e.g. |
base |
a number of a factor level or the names of a factor level,
which specifies the baseline category,
see e.g. |
contrasts |
a logical value, see |
how.many |
the number of contrasts to generate, see |
x |
a factor or an object of class "item" |
value |
a matrix, a function or the name of a function |
contr
returns a funtion that calls one of contr.treatment
,
contr.sum,...
.
contr.treatment
and contr.sum
return contrast matrices.
contrasts(x)
returns the "contrasts" attribute of an
object, which may be a function name, a function, a contrast matrix or NULL.
ctr.t <- contr("treatment",base="c") ctr.t ctr.s <- contr("sum",base="c") ctr.h <- contr("helmert") ctr.t(letters[1:7]) ctr.s(letters[1:7]) ctr.h(letters[1:7]) x <- factor(rep(letters[1:5],3)) contrasts(x) x <- as.item(x) contrasts(x) contrasts(x) <- contr.sum(letters[1:5],base="c") contrasts(x) missing.values(x) <- 5 contrasts(x) contrasts(as.factor(x)) # Obviously setting missing values after specifying # contrast matrix breaks the contrasts. # Using the 'contr' function, however, prevents this: missing.values(x) <- NULL contrasts(x) <- contr("sum",base="c") contrasts(x) missing.values(x) <- 5 contrasts(x) contrasts(as.factor(x))
ctr.t <- contr("treatment",base="c") ctr.t ctr.s <- contr("sum",base="c") ctr.h <- contr("helmert") ctr.t(letters[1:7]) ctr.s(letters[1:7]) ctr.h(letters[1:7]) x <- factor(rep(letters[1:5],3)) contrasts(x) x <- as.item(x) contrasts(x) contrasts(x) <- contr.sum(letters[1:5],base="c") contrasts(x) missing.values(x) <- 5 contrasts(x) contrasts(as.factor(x)) # Obviously setting missing values after specifying # contrast matrix breaks the contrasts. # Using the 'contr' function, however, prevents this: missing.values(x) <- NULL contrasts(x) <- contr("sum",base="c") contrasts(x) missing.values(x) <- 5 contrasts(x) contrasts(as.factor(x))
contract()
contracts data into pattern-frequency format, similar
to a contatenation of table()
(or xtabs
) and
as.data.frame()
. Yet it uses much less memory if patterns
are sparse, because it does not create rows for patterns that do not occur.
contract(x,...) ## S3 method for class 'data.frame' contract(x,by=NULL, weights=NULL,name="Freq", force.name=FALSE,sort=FALSE,drop.na=TRUE,...) ## S3 method for class 'data.set' contract(x,by=NULL, weights=NULL,name="Freq", force.name=FALSE,sort=FALSE,drop.na=TRUE,...)
contract(x,...) ## S3 method for class 'data.frame' contract(x,by=NULL, weights=NULL,name="Freq", force.name=FALSE,sort=FALSE,drop.na=TRUE,...) ## S3 method for class 'data.set' contract(x,by=NULL, weights=NULL,name="Freq", force.name=FALSE,sort=FALSE,drop.na=TRUE,...)
x |
an object of class |
by |
the formula or a vector of variable names (quoted or not quoted).
Specifies the patterns (and optionally weights).
If |
weights |
a numeric vector of weights or |
name |
a character string, the name of the variable that containts the frequency counts of the value patterns. |
force.name |
a logical value, defaults to |
sort |
a logical value, defaults to |
drop.na |
a logical value, defaults to |
... |
further arguments, passed to methods or ignored. |
If x
is a data fame, the value of contract()
is also a
data frame. If it is a "data.set"
object, the result is also a
"data.set"
object.
iris_ <- sample(iris,size=nrow(iris),replace=TRUE) w <- rep(1,nrow(iris_)) contract(iris[4:5]) contract(iris[4:5],sort=TRUE) contract(iris[4:5],weights=w,sort=TRUE) contract(iris,by=c(Petal.Width,Species),sort=TRUE) contract(iris,by=~Petal.Width+Species) contract(iris,by=w~Species) library(MASS) contract(housing, by=Sat~Infl+Type+Cont, weights=Freq) contract(housing, by=Sat~Infl+Type+Cont, weights=Freq, name="housing",force.name=TRUE )
iris_ <- sample(iris,size=nrow(iris),replace=TRUE) w <- rep(1,nrow(iris_)) contract(iris[4:5]) contract(iris[4:5],sort=TRUE) contract(iris[4:5],weights=w,sort=TRUE) contract(iris,by=c(Petal.Width,Species),sort=TRUE) contract(iris,by=~Petal.Width+Species) contract(iris,by=w~Species) library(MASS) contract(housing, by=Sat~Infl+Type+Cont, weights=Freq) contract(housing, by=Sat~Infl+Type+Cont, weights=Freq, name="housing",force.name=TRUE )
"data.set"
objects are collections of "item"
objects,
with similar semantics as data frames. They are distinguished
from data frames so that coercion by as.data.fame
leads to a data frame that contains only vectors and factors.
Nevertheless most methods for data frames are inherited by
data sets, except for the method for the within
generic
function. For the within
method for data sets, see the details section.
Thus data preparation using data sets retains all informations about item annotations, labels, missing values etc. While (mostly automatic) conversion of data sets into data frames makes the data amenable for the use of R's statistical functions.
dsView
is a function that displays data sets in a similar
manner as View
displays data frames. (View
works
with data sets as well, but changes them first into data frames.)
data.set(...,row.names = NULL, check.rows = FALSE, check.names = TRUE, stringsAsFactors = FALSE, document = NULL) as.data.set(x, row.names=NULL, ...) ## S4 method for signature 'list' as.data.set(x,row.names=NULL,...) is.data.set(x) ## S3 method for class 'data.set' as.data.frame(x, row.names = NULL, optional = FALSE, ...) ## S4 method for signature 'data.set' within(data, expr, ...) dsView(x) ## S4 method for signature 'data.set' head(x,n=20,...) ## S4 method for signature 'data.set' tail(x,n=20,...)
data.set(...,row.names = NULL, check.rows = FALSE, check.names = TRUE, stringsAsFactors = FALSE, document = NULL) as.data.set(x, row.names=NULL, ...) ## S4 method for signature 'list' as.data.set(x,row.names=NULL,...) is.data.set(x) ## S3 method for class 'data.set' as.data.frame(x, row.names = NULL, optional = FALSE, ...) ## S4 method for signature 'data.set' within(data, expr, ...) dsView(x) ## S4 method for signature 'data.set' head(x,n=20,...) ## S4 method for signature 'data.set' tail(x,n=20,...)
... |
For the |
row.names , check.rows , check.names , stringsAsFactors , optional
|
arguments
as in |
document |
NULL or an optional character vector that contains documenation of the data. |
x |
for |
data |
a data set, that is, an object of class "data.set". |
expr |
an expression, or several expressions enclosed in curly braces. |
n |
integer; the number of rows to be shown by |
The as.data.frame
method for data sets is just a copy
of the method for list. Consequently, all items in the data set
are coerced in accordance to their measurement
setting,
see as.vector,item-method
and measurement
.
The within
method for data sets has the same effect as
the within
method for data frames, apart from two differences:
all results of the computations are coerced into items if
they have the appropriate length, otherwise, they are automatically
dropped.
Currently only one method for the generic function as.data.set
is defined: a method for "importer" objects.
data.set
and the within
method for
data sets returns a "data.set" object, is.data.set
returns a logical value, and as.data.frame
returns
a data frame.
Data <- data.set( vote = sample(c(1,2,3,8,9,97,99),size=300,replace=TRUE), region = sample(c(rep(1,3),rep(2,2),3,99),size=300,replace=TRUE), income = exp(rnorm(300,sd=.7))*2000 ) Data <- within(Data,{ description(vote) <- "Vote intention" description(region) <- "Region of residence" description(income) <- "Household income" wording(vote) <- "If a general election would take place next tuesday, the candidate of which party would you vote for?" wording(income) <- "All things taken into account, how much do all household members earn in sum?" foreach(x=c(vote,region),{ measurement(x) <- "nominal" }) measurement(income) <- "ratio" labels(vote) <- c( Conservatives = 1, Labour = 2, "Liberal Democrats" = 3, "Don't know" = 8, "Answer refused" = 9, "Not applicable" = 97, "Not asked in survey" = 99) labels(region) <- c( England = 1, Scotland = 2, Wales = 3, "Not applicable" = 97, "Not asked in survey" = 99) foreach(x=c(vote,region,income),{ annotation(x)["Remark"] <- "This is not a real survey item, of course ..." }) missing.values(vote) <- c(8,9,97,99) missing.values(region) <- c(97,99) # These to variables do not appear in the # the resulting data set, since they have the wrong length. junk1 <- 1:5 junk2 <- matrix(5,4,4) }) # Since data sets may be huge, only a # part of them are 'show'n Data ## Not run: # If we insist on seeing all, we can use 'print' instead print(Data) ## End(Not run) str(Data) summary(Data) ## Not run: # If we want to 'View' a data set we can use 'dsView' dsView(Data) # Works also, but changes the data set into a data frame first: View(Data) ## End(Not run) Data[[1]] Data[1,] head(as.data.frame(Data)) EnglandData <- subset(Data,region == "England") EnglandData xtabs(~vote+region,data=Data) xtabs(~vote+region,data=within(Data, vote <- include.missings(vote)))
Data <- data.set( vote = sample(c(1,2,3,8,9,97,99),size=300,replace=TRUE), region = sample(c(rep(1,3),rep(2,2),3,99),size=300,replace=TRUE), income = exp(rnorm(300,sd=.7))*2000 ) Data <- within(Data,{ description(vote) <- "Vote intention" description(region) <- "Region of residence" description(income) <- "Household income" wording(vote) <- "If a general election would take place next tuesday, the candidate of which party would you vote for?" wording(income) <- "All things taken into account, how much do all household members earn in sum?" foreach(x=c(vote,region),{ measurement(x) <- "nominal" }) measurement(income) <- "ratio" labels(vote) <- c( Conservatives = 1, Labour = 2, "Liberal Democrats" = 3, "Don't know" = 8, "Answer refused" = 9, "Not applicable" = 97, "Not asked in survey" = 99) labels(region) <- c( England = 1, Scotland = 2, Wales = 3, "Not applicable" = 97, "Not asked in survey" = 99) foreach(x=c(vote,region,income),{ annotation(x)["Remark"] <- "This is not a real survey item, of course ..." }) missing.values(vote) <- c(8,9,97,99) missing.values(region) <- c(97,99) # These to variables do not appear in the # the resulting data set, since they have the wrong length. junk1 <- 1:5 junk2 <- matrix(5,4,4) }) # Since data sets may be huge, only a # part of them are 'show'n Data ## Not run: # If we insist on seeing all, we can use 'print' instead print(Data) ## End(Not run) str(Data) summary(Data) ## Not run: # If we want to 'View' a data set we can use 'dsView' dsView(Data) # Works also, but changes the data set into a data frame first: View(Data) ## End(Not run) Data[[1]] Data[1,] head(as.data.frame(Data)) EnglandData <- subset(Data,region == "England") EnglandData xtabs(~vote+region,data=Data) xtabs(~vote+region,data=within(Data, vote <- include.missings(vote)))
Like data frames, data.set
objects have
subset
, unique
,
cbind
, rbind
,
merge
methods defined for them.
The semantics are basically the same as the methods defined
for data frames in the base
package, with the only difference
that the return values are data.set
objects.
In fact, the methods described here are front-ends to the
corresponding methods for data frames, which are constructed
such that the "extra" information attached to variables within
data.set
objects, that is, to item
objects.
## S3 method for class 'data.set' subset(x, subset, select, drop = FALSE, ...) ## S4 method for signature 'data.set' unique(x, incomparables = FALSE, ...) ## S3 method for class 'data.set' cbind(..., deparse.level = 1) ## S3 method for class 'data.set' rbind(..., deparse.level = 1) ## S4 method for signature 'data.set,data.set' merge(x,y, ...) ## S4 method for signature 'data.set,data.frame' merge(x,y, ...) ## S4 method for signature 'data.frame,data.set' merge(x,y, ...)
## S3 method for class 'data.set' subset(x, subset, select, drop = FALSE, ...) ## S4 method for signature 'data.set' unique(x, incomparables = FALSE, ...) ## S3 method for class 'data.set' cbind(..., deparse.level = 1) ## S3 method for class 'data.set' rbind(..., deparse.level = 1) ## S4 method for signature 'data.set,data.set' merge(x,y, ...) ## S4 method for signature 'data.set,data.frame' merge(x,y, ...) ## S4 method for signature 'data.frame,data.set' merge(x,y, ...)
x , y
|
|
subset |
a logical expression, used to select observations from the data set. |
select |
a vector with variablen names, which are retained in the data subset. |
drop |
logical; if |
... |
for |
incomparables |
a vector of values that cannot be compared. See
|
deparse.level |
an argument retained for
reasons of compatibility of the default methods
of |
ds1 <- data.set( a = rep(1:3,5), b = rep(1:5,each=3) ) ds2 <- data.set( a = c(3:1,3,3), b = 1:5 ) ds1 <- within(ds1,{ description(a) <- "Example variable 'a'" description(b) <- "Example variable 'b'" }) ds2 <- within(ds2,{ description(a) <- "Example variable 'a'" description(b) <- "Example variable 'b'" }) str(ds3 <- rbind(ds1,ds2)) description(ds3) ds3 <- within(ds1,{ c <- a d <- b description(c) <- "Copy of variable 'a'" description(d) <- "Copy of variable 'b'" rm(a,b) }) str(ds4 <- cbind(ds1,ds3)) description(ds4) ds5 <- data.set( c = 1:3, d = c(1,1,2) ) ds5 <- within(ds5,{ description(c) <- "Example variable 'c'" description(d) <- "Example variable 'd'" }) str(ds6 <- merge(ds1,ds5,by.x="a",by.y="c")) # Note that the attributes of the left-hand variables # have priority. description(ds6)
ds1 <- data.set( a = rep(1:3,5), b = rep(1:5,each=3) ) ds2 <- data.set( a = c(3:1,3,3), b = 1:5 ) ds1 <- within(ds1,{ description(a) <- "Example variable 'a'" description(b) <- "Example variable 'b'" }) ds2 <- within(ds2,{ description(a) <- "Example variable 'a'" description(b) <- "Example variable 'b'" }) str(ds3 <- rbind(ds1,ds2)) description(ds3) ds3 <- within(ds1,{ c <- a d <- b description(c) <- "Copy of variable 'a'" description(d) <- "Copy of variable 'b'" rm(a,b) }) str(ds4 <- cbind(ds1,ds3)) description(ds4) ds5 <- data.set( c = 1:3, d = c(1,1,2) ) ds5 <- within(ds5,{ description(c) <- "Example variable 'c'" description(d) <- "Example variable 'd'" }) str(ds6 <- merge(ds1,ds5,by.x="a",by.y="c")) # Note that the attributes of the left-hand variables # have priority. description(ds6)
The function deduplicate_labels
can be used with "item" objects,
"importer" objects or "data.set" objects to deal with
duplicate labels,
i.e. labels that are attached to more than
one code. There are several ways to de-duplicate labels: by combining
values that share their label or by making labels duplicate labels distinct.
deduplicate_labels(x,...) ## S3 method for class 'item' deduplicate_labels(x, method=c("combine codes", "prefix values", "postfix values"),...) # Applicable to 'importer' objects and 'data.set' objects ## S3 method for class 'item.list' deduplicate_labels(x,...)
deduplicate_labels(x,...) ## S3 method for class 'item' deduplicate_labels(x, method=c("combine codes", "prefix values", "postfix values"),...) # Applicable to 'importer' objects and 'data.set' objects ## S3 method for class 'item.list' deduplicate_labels(x,...)
x |
an item with value labels or that contains items with value labels |
method |
a character string that determines the method to make value labels unique. |
... |
other arguments, passed to specific methods of the generic function. |
The function deduplicate_labels
a copy of x
that has unqiue value labels.
x1 <- as.item(rep(1:5,4), labels=c( A = 1, A = 2, B = 3, B = 4, C = 5 ), annotation = c( description="Yet another test" )) x2 <- as.item(rep(1:4,5), labels=c( i = 1, ii = 2, iii = 3, iii = 4 ), annotation = c( description="Still another test" )) x3 <- as.item(rep(1:2,10), labels=c( a = 1, b = 2 ), annotation = c( description="Still another test" )) codebook(deduplicate_labels(x1)) codebook(deduplicate_labels(x1,method="prefix")) codebook(deduplicate_labels(x1,method="postfix")) ds <- data.set(x1,x2,x3) codebook(deduplicate_labels(ds)) codebook(deduplicate_labels(ds,method="prefix")) codebook(deduplicate_labels(ds,method="postfix"))
x1 <- as.item(rep(1:5,4), labels=c( A = 1, A = 2, B = 3, B = 4, C = 5 ), annotation = c( description="Yet another test" )) x2 <- as.item(rep(1:4,5), labels=c( i = 1, ii = 2, iii = 3, iii = 4 ), annotation = c( description="Still another test" )) x3 <- as.item(rep(1:2,10), labels=c( a = 1, b = 2 ), annotation = c( description="Still another test" )) codebook(deduplicate_labels(x1)) codebook(deduplicate_labels(x1,method="prefix")) codebook(deduplicate_labels(x1,method="postfix")) ds <- data.set(x1,x2,x3) codebook(deduplicate_labels(ds)) codebook(deduplicate_labels(ds,method="prefix")) codebook(deduplicate_labels(ds,method="postfix"))
Descriptives(x)
gives a vector of sample statistics
for use in codebook
.
Descriptives(x,...) ## S4 method for signature 'atomic' Descriptives(x, weights = NULL, ...) ## S4 method for signature 'item.vector' Descriptives(x, weights = NULL, ...)
Descriptives(x,...) ## S4 method for signature 'atomic' Descriptives(x, weights = NULL, ...) ## S4 method for signature 'item.vector' Descriptives(x, weights = NULL, ...)
x |
an atomic vector or |
weights |
an optional vector of weights. |
... |
further arguments, to be passed to future methods. |
A numeric vector of sample statistics, containing the range, the mean, the standard deviation, the skewness and the (excess) kurtosis.
x <- rnorm(100) Descriptives(x)
x <- rnorm(100) Descriptives(x)
These functions provide an easy way to change the dimnames
, rownames
or colnames
of
an array.
dimrename(x, dim = 1, ..., gsub = FALSE, fixed = TRUE, warn = TRUE) rowrename(x, ..., gsub = FALSE, fixed = TRUE, warn = TRUE) colrename(x, ..., gsub = FALSE, fixed = TRUE, warn = TRUE)
dimrename(x, dim = 1, ..., gsub = FALSE, fixed = TRUE, warn = TRUE) rowrename(x, ..., gsub = FALSE, fixed = TRUE, warn = TRUE) colrename(x, ..., gsub = FALSE, fixed = TRUE, warn = TRUE)
x |
An array with dimnames |
dim |
A vector that indicates the dimensions |
... |
A sequence of named arguments |
gsub |
a logical value; if TRUE, |
fixed |
a logical value, passed to |
warn |
logical; should a warning be issued if the pattern is not found? |
dimrename
changes the dimnames of x
along dimension(s) dim
according to the
remaining arguments. The argument names are the old
names, the values are the new names.
rowrename
is a shorthand for changing the rownames,
colrename
is a shorthand for changing the colnames of a matrix
or matrix-like object.
If gsub
is FALSE, argument tags are the old
dimnames
, the values are the new dimnames
.
If gsub
is TRUE, arguments are substrings of the dimnames
that are substituted by the argument values.
Object x
with changed dimnames.
m <- matrix(1,2,2) rownames(m) <- letters[1:2] colnames(m) <- LETTERS[1:2] m dimrename(m,1,a="first",b="second") dimrename(m,1,A="first",B="second") dimrename(m,2,"A"="first",B="second") rowrename(m,a="first",b="second") colrename(m,"A"="first",B="second") # Since version 0.99.22 - the following also works: dimrename(m,1,a=first,b=second) dimrename(m,1,A=first,B=second) dimrename(m,2,A=first,B=second)
m <- matrix(1,2,2) rownames(m) <- letters[1:2] colnames(m) <- LETTERS[1:2] m dimrename(m,1,a="first",b="second") dimrename(m,1,A="first",B="second") dimrename(m,2,"A"="first",B="second") rowrename(m,a="first",b="second") colrename(m,"A"="first",B="second") # Since version 0.99.22 - the following also works: dimrename(m,1,a=first,b=second) dimrename(m,1,A=first,B=second) dimrename(m,2,A=first,B=second)
The function duplicated_labels
can be used with "item" objects,
"importer" objects or "data.set" objects to check whether items
contain duplicate labels, i.e. labels that are attached to more than
one code.
duplicated_labels(x) ## S3 method for class 'item' duplicated_labels(x) # Applicable to 'importer' objects and 'data.set' objects ## S3 method for class 'item.list' duplicated_labels(x)
duplicated_labels(x) ## S3 method for class 'item' duplicated_labels(x) # Applicable to 'importer' objects and 'data.set' objects ## S3 method for class 'item.list' duplicated_labels(x)
x |
an item with value labels or that contains items with value labels |
The function duplicate.labels
returns a list with a class
attribute, which allows pretty printing of duplicated value labels
x1 <- as.item(rep(1:5,4), labels=c( A = 1, A = 2, B = 3, B = 4, C = 5 ), annotation = c( description="Yet another test" )) x2 <- as.item(rep(1:4,5), labels=c( i = 1, ii = 2, iii = 3, iii = 4 ), annotation = c( description="Still another test" )) x3 <- as.item(rep(1:2,10), labels=c( a = 1, b = 2 ), annotation = c( description="Still another test" )) duplicated_labels(x1) ds <- data.set(x1,x2,x3) duplicated_labels(ds) codebook(ds) nes1948.por <- unzip(system.file("anes/NES1948.ZIP",package="memisc"), "NES1948.POR",exdir=tempfile()) nes1948 <- spss.portable.file(nes1948.por) duplicated_labels(nes1948)
x1 <- as.item(rep(1:5,4), labels=c( A = 1, A = 2, B = 3, B = 4, C = 5 ), annotation = c( description="Yet another test" )) x2 <- as.item(rep(1:4,5), labels=c( i = 1, ii = 2, iii = 3, iii = 4 ), annotation = c( description="Still another test" )) x3 <- as.item(rep(1:2,10), labels=c( a = 1, b = 2 ), annotation = c( description="Still another test" )) duplicated_labels(x1) ds <- data.set(x1,x2,x3) duplicated_labels(ds) codebook(ds) nes1948.por <- unzip(system.file("anes/NES1948.ZIP",package="memisc"), "NES1948.POR",exdir=tempfile()) nes1948 <- spss.portable.file(nes1948.por) duplicated_labels(nes1948)
foreach
evaluates an expression given as untagged argument by substituting
in variables. The expression may also contain assignments, which take effect in
the caller's environment.
foreach(...,.sorted,.outer=FALSE)
foreach(...,.sorted,.outer=FALSE)
... |
tagged and untagged arguments. The tagged arguments define the 'variables' that are looped over, the first untagged argument defines the expression wich is evaluated. |
.sorted |
an optional logical value; relevant only
when a range of variable is specified using the column operator
" If this argument missing, its default value is TRUE, if |
.outer |
an optional logical value; if TRUE, each combination of the variables is used to evaluate the expression, if FALSE (the default) then the variables all need to have the same length and the corresponding values of the variables are used in the evaluation of the expression. |
x <- 1:3 y <- -(1:3) z <- c("Uri","Schwyz","Unterwalden") print(x) print(y) print(z) foreach(var=c(x,y,z), # assigns names names(var) <- letters[1:3] # to the elements of x, y, and z ) print(x) print(y) print(z) ds <- data.set( a = c(1,2,3,2,3,8,9), b = c(2,8,3,2,1,8,9), c = c(1,3,2,1,2,8,8) ) print(ds) ds <- within(ds,{ description(a) <- "First item in questionnaire" description(b) <- "Second item in questionnaire" description(c) <- "Third item in questionnaire" wording(a) <- "What number do you like first?" wording(b) <- "What number do you like second?" wording(c) <- "What number do you like third?" foreach(x=a:c,{ # Lazy data documentation: labels(x) <- c( # a,b,c get value labels in one statement one = 1, two = 2, three = 3, "don't know" = 8, "refused to answer" = 9) missing.values(x) <- c(8,9) }) }) codebook(ds) # The colon-operator respects the order of the variables # in the data set, if .sorted=FALSE with(ds[c(3,1,2)], foreach(x=a:c, print(description(x)) )) # Since .sorted=TRUE, the colon operator creates a range # of alphabetically sorted variables. with(ds[c(3,1,2)], foreach(x=a:c, print(description(x)), .sorted=TRUE )) # The variables in reverse order with(ds, foreach(x=c:a, print(description(x)) )) # The colon operator can be combined with the # concatenation function with(ds, foreach(x=c(a:b,c,c,b:a), print(description(x)) )) # Variables can also be selected by regular expressions. with(ds, foreach(x=rx("[a-b]"), print(description(x)) )) # A demonstration for '.outer=TRUE' foreach(l=letters[1:2], i=1:3, cat(paste0(l,i,"\n")), .outer=TRUE)
x <- 1:3 y <- -(1:3) z <- c("Uri","Schwyz","Unterwalden") print(x) print(y) print(z) foreach(var=c(x,y,z), # assigns names names(var) <- letters[1:3] # to the elements of x, y, and z ) print(x) print(y) print(z) ds <- data.set( a = c(1,2,3,2,3,8,9), b = c(2,8,3,2,1,8,9), c = c(1,3,2,1,2,8,8) ) print(ds) ds <- within(ds,{ description(a) <- "First item in questionnaire" description(b) <- "Second item in questionnaire" description(c) <- "Third item in questionnaire" wording(a) <- "What number do you like first?" wording(b) <- "What number do you like second?" wording(c) <- "What number do you like third?" foreach(x=a:c,{ # Lazy data documentation: labels(x) <- c( # a,b,c get value labels in one statement one = 1, two = 2, three = 3, "don't know" = 8, "refused to answer" = 9) missing.values(x) <- c(8,9) }) }) codebook(ds) # The colon-operator respects the order of the variables # in the data set, if .sorted=FALSE with(ds[c(3,1,2)], foreach(x=a:c, print(description(x)) )) # Since .sorted=TRUE, the colon operator creates a range # of alphabetically sorted variables. with(ds[c(3,1,2)], foreach(x=a:c, print(description(x)), .sorted=TRUE )) # The variables in reverse order with(ds, foreach(x=c:a, print(description(x)) )) # The colon operator can be combined with the # concatenation function with(ds, foreach(x=c(a:b,c,c,b:a), print(description(x)) )) # Variables can also be selected by regular expressions. with(ds, foreach(x=rx("[a-b]"), print(description(x)) )) # A demonstration for '.outer=TRUE' foreach(l=letters[1:2], i=1:3, cat(paste0(l,i,"\n")), .outer=TRUE)
show_html
is for showing objects in a convenient way in HTML format.
write_html
writes them in HTML format into a file.
Both functions call the generic format_html
for the format conversion.
show_html(x, output = NULL, ...) write_html(x, file, ..., standalone = TRUE) format_html(x, ...) ## S3 method for class 'data.frame' format_html(x, toprule=2,midrule=1,bottomrule=2, split.dec=TRUE, row.names=TRUE, digits=getOption("digits"), format="f", style=df_format_stdstyle, margin="2ex auto", ...) ## S3 method for class 'matrix' format_html(x, toprule=2,midrule=1,bottomrule=2, split.dec=TRUE, formatC=FALSE, digits=getOption("digits"), format="f", style=mat_format_stdstyle, margin="2ex auto", ...)
show_html(x, output = NULL, ...) write_html(x, file, ..., standalone = TRUE) format_html(x, ...) ## S3 method for class 'data.frame' format_html(x, toprule=2,midrule=1,bottomrule=2, split.dec=TRUE, row.names=TRUE, digits=getOption("digits"), format="f", style=df_format_stdstyle, margin="2ex auto", ...) ## S3 method for class 'matrix' format_html(x, toprule=2,midrule=1,bottomrule=2, split.dec=TRUE, formatC=FALSE, digits=getOption("digits"), format="f", style=mat_format_stdstyle, margin="2ex auto", ...)
x |
an object. |
output |
character string or a function that determines how the HTML formatted object is shown. If If This arguments has different defaults, depending of the type of the session. In non-interactive sessions, the default is "console", in interactive sessions other than RStudio, it is "browser", in interactive sessions with RStudio it is "file-show". These default settings can be overriden by the option "html_viewer"
(see |
file |
character string; name or path of the file where to write the HTML code to. |
toprule |
integer; thickness in pixels of rule at the top of the table. |
midrule |
integer; thickness in pixels of rules within the table. |
bottomrule |
integer; thickness in pixels of rule at the bottom of the table. |
split.dec |
logical; whether numbers should be centered at the decimal point by splitting the table cells. |
row.names |
logical; whether row names should be shown/exported. |
digits |
number of digits to be shown after the decimal dot. This is only useful, if
the "ftable" object was created from a table created with |
formatC |
logical; whether to use |
format |
a format string for |
style |
string containing the stanard CSS styling of table cells. |
margin |
character string, determines the margin and thus the position of the HTML table. |
... |
other arguments, passed on to formatter functions. |
standalone |
logical; should HTML file contain a "!DOCTYPE" header? |
format_html
character string with code suitable for inclusion into a HTML-file.
This is the method of format_html
for "codebook" objects as created
by the eponymous function (see codebook
)
## S3 method for class 'codebook' format_html(x, toprule = 2, midrule = 1, indent = "3ex", style = codebook_format_stdstyle, var_tag = "code", varid_prefix = "", title_tag = "p",...)
## S3 method for class 'codebook' format_html(x, toprule = 2, midrule = 1, indent = "3ex", style = codebook_format_stdstyle, var_tag = "code", varid_prefix = "", title_tag = "p",...)
x |
a "codebook" object |
toprule |
a non-negative integer; thickness of the line (in pixels) at the top of each codebook entry |
midrule |
a non-negative integer; thickness of the line (in pixels) that separates the header of an codebook entry from its body |
indent |
character string; indentation (by padding) of the codebook entry contents |
style |
string containing the standard CSS styling of codebook table cells. |
var_tag |
character string; the HTML tag that contains the name of the variable |
varid_prefix |
character string; a prefix added to the anchor IDs of the code entry titles (to facilitate the creation of tables of contents etc.) |
title_tag |
character string; the HTML tag that contains the title of the codebook entry (the variable name and its description) |
... |
further arguments, ignored. |
See Also as format_html
, show_html
, write_html
.
This is the method of format_html
for "ftable" objects (i.e. flattened
contingency tables)
## S3 method for class 'ftable' format_html(x, show.titles = TRUE, digits = 0, format = "f", toprule = 2, midrule = 1, bottomrule = 2, split.dec = TRUE, style = ftable_format_stdstyle, margin="2ex auto", ...) ## S3 method for class 'ftable_matrix' format_html(x, show.titles=TRUE, digits=0, format="f", toprule=2,midrule=1,bottomrule=2, split.dec=TRUE, style = ftable_format_stdstyle, margin="2ex auto", varontop, varinfront, grouprules=1, multi_digits=NULL, ...)
## S3 method for class 'ftable' format_html(x, show.titles = TRUE, digits = 0, format = "f", toprule = 2, midrule = 1, bottomrule = 2, split.dec = TRUE, style = ftable_format_stdstyle, margin="2ex auto", ...) ## S3 method for class 'ftable_matrix' format_html(x, show.titles=TRUE, digits=0, format="f", toprule=2,midrule=1,bottomrule=2, split.dec=TRUE, style = ftable_format_stdstyle, margin="2ex auto", varontop, varinfront, grouprules=1, multi_digits=NULL, ...)
x |
an object of class |
show.titles |
logical; should the names of the cross-classified variables be shown? |
digits |
number of digits to be shown after the decimal dot. This is only useful, if
the "ftable" object was created from a table created with |
format |
a format string for |
toprule |
integer; thickness in pixels of rule at the top of the table. |
midrule |
integer; thickness in pixels of rules within the table. |
bottomrule |
integer; thickness in pixels of rule at the bottom of the table. |
split.dec |
logical; whether numbers should be centered at the decimal point by splitting the table cells. |
style |
string containing the standard CSS styling of table cells. |
margin |
character string, determines the margin and thus the position of the HTML table. |
varontop |
logical; whether names of column variables should appear on top of factor levels |
varinfront |
logical; whether names of row variables should appear in front of factor levels |
grouprules |
integer, should be either 1 or 2; whether one or two rules should drawn to distinguish groups of rows. |
multi_digits |
NULL, a numeric vector, or a list. If it is a list it should have as many elements as the "ftable_matrix" contains columns, where each vector has as many columns as the respective "ftable". If it is a vector, it is put into a list with replicated elements according to the "ftable" components. The elements of these vectors can be used to specify a separate number of digits for each column of the respective "ftable". |
... |
further arguments, ignored. |
See Also as format_html
, show_html
, write_html
.
format_md
is for showing objects in a convenient way in Markdown
format. Can be included to Rmarkdown file with the cat()
function and the
results='asis'
code block option. The following example should be runned
in a Rmd file with different output formats.
## S3 method for class 'codebook' format_md(x, ...) ## S3 method for class 'codebookEntry' format_md(x, name = "", add_rules = TRUE, ...)
## S3 method for class 'codebook' format_md(x, ...) ## S3 method for class 'codebookEntry' format_md(x, name = "", add_rules = TRUE, ...)
x |
a "codebook" or "codebookEntry" object |
name |
a string; the variable name |
add_rules |
a boolean value; if TRUE adds a horizontal rules before and after the title |
... |
further arguments, passed to other functions |
format_md
character string with code suitable for inclusion into a Markdown-file.
library(memisc) Data1 <- data.set( vote = sample(c(1,2,3,8,9,97,99),size=300,replace=TRUE), region = sample(c(rep(1,3),rep(2,2),3,99),size=300,replace=TRUE), income = exp(rnorm(300,sd=.7))*2000 ) Data1 <- within(Data1,{ description(vote) <- "Vote intention" description(region) <- "Region of residence" description(income) <- "Household income" foreach(x=c(vote,region),{ measurement(x) <- "nominal" }) measurement(income) <- "ratio" labels(vote) <- c( Conservatives = 1, Labour = 2, "Liberal Democrats" = 3, "Don't know" = 8, "Answer refused" = 9, "Not applicable" = 97, "Not asked in survey" = 99) labels(region) <- c( England = 1, Scotland = 2, Wales = 3, "Not applicable" = 97, "Not asked in survey" = 99) foreach(x=c(vote,region,income),{ annotation(x)["Remark"] <- "This is not a real survey item, of course ..." }) missing.values(vote) <- c(8,9,97,99) missing.values(region) <- c(97,99) }) codebook_data <- codebook(Data1) codebook_md <- format_md(codebook_data, digits = 2) writeLines(codebook_md) ## Not run: writeLines(codebook_md,con="codebook-example.md") ## End(Not run)
library(memisc) Data1 <- data.set( vote = sample(c(1,2,3,8,9,97,99),size=300,replace=TRUE), region = sample(c(rep(1,3),rep(2,2),3,99),size=300,replace=TRUE), income = exp(rnorm(300,sd=.7))*2000 ) Data1 <- within(Data1,{ description(vote) <- "Vote intention" description(region) <- "Region of residence" description(income) <- "Household income" foreach(x=c(vote,region),{ measurement(x) <- "nominal" }) measurement(income) <- "ratio" labels(vote) <- c( Conservatives = 1, Labour = 2, "Liberal Democrats" = 3, "Don't know" = 8, "Answer refused" = 9, "Not applicable" = 97, "Not asked in survey" = 99) labels(region) <- c( England = 1, Scotland = 2, Wales = 3, "Not applicable" = 97, "Not asked in survey" = 99) foreach(x=c(vote,region,income),{ annotation(x)["Remark"] <- "This is not a real survey item, of course ..." }) missing.values(vote) <- c(8,9,97,99) missing.values(region) <- c(97,99) }) codebook_data <- codebook(Data1) codebook_md <- format_md(codebook_data, digits = 2) writeLines(codebook_md) ## Not run: writeLines(codebook_md,con="codebook-example.md") ## End(Not run)
With the method functions described here, flattened (contingency) tables can be combined
into more complex objects, of class "ftable_matrix"
. For objects of these class
format
and print
methods are provided
## S3 method for class 'ftable' cbind(..., deparse.level=1) ## S3 method for class 'ftable' rbind(..., deparse.level=1) ## S3 method for class 'ftable_matrix' cbind(..., deparse.level=1) ## S3 method for class 'ftable_matrix' rbind(..., deparse.level=1) ## S3 method for class 'ftable_matrix' format(x,quote=TRUE,digits=0,format="f",...) ## S3 method for class 'ftable_matrix' Write(x, file = "", quote = TRUE, append = FALSE, digits = 0, ...) ## S3 method for class 'ftable_matrix' print(x,quote=FALSE,...)
## S3 method for class 'ftable' cbind(..., deparse.level=1) ## S3 method for class 'ftable' rbind(..., deparse.level=1) ## S3 method for class 'ftable_matrix' cbind(..., deparse.level=1) ## S3 method for class 'ftable_matrix' rbind(..., deparse.level=1) ## S3 method for class 'ftable_matrix' format(x,quote=TRUE,digits=0,format="f",...) ## S3 method for class 'ftable_matrix' Write(x, file = "", quote = TRUE, append = FALSE, digits = 0, ...) ## S3 method for class 'ftable_matrix' print(x,quote=FALSE,...)
... |
for |
deparse.level |
ignored, retained for compatibility reasons only. |
x |
an object used to select a method. |
quote |
logical, indicating whether or not strings should be printed with surrounding quotes. |
digits |
numeric or integer, number of significant digits to be shown. |
format |
a format string as in |
file |
character string, containing a file path. |
append |
logical, should the output appended to the file? |
cbind
and rbind
, when used with "ftable"
or "ftable_matrix"
objects, return objects of class "ftable_matrix"
.
ft1 <- ftable(Sex~Survived,Titanic) ft2 <- ftable(Age+Class~Survived,Titanic) ft3 <- ftable(Survived~Class,Titanic) ft4 <- ftable(Survived~Age,Titanic) ft5 <- ftable(Survived~Sex,Titanic) tab10 <- xtabs(Freq~Survived,Titanic) (c12.10 <- cbind(ft1,ft2,Total=tab10)) (r345.10 <- rbind(ft3,ft4,ft5,Total=tab10)) ## Not run: tf <- tempfile() Write(c12.10,file=tf) file.show(tf) ## End(Not run)
ft1 <- ftable(Sex~Survived,Titanic) ft2 <- ftable(Age+Class~Survived,Titanic) ft3 <- ftable(Survived~Class,Titanic) ft4 <- ftable(Survived~Age,Titanic) ft5 <- ftable(Survived~Sex,Titanic) tab10 <- xtabs(Freq~Survived,Titanic) (c12.10 <- cbind(ft1,ft2,Total=tab10)) (r345.10 <- rbind(ft3,ft4,ft5,Total=tab10)) ## Not run: tf <- tempfile() Write(c12.10,file=tf) file.show(tf) ## End(Not run)
genTable
creates a table of arbitrary summaries conditional on
given values of independent variables given by a formula.
Aggregate
does the same, but returns a data.frame
instead.
fapply
is a generic function that dispatches on its data
argument. It is called internally by Aggregate
and genTable
.
Methods for this function can be used to adapt Aggregate
and
genTable
to data sources other than data frames.
Aggregate(formula, data=parent.frame(), subset=NULL, names=NULL, addFreq=TRUE, drop = TRUE, as.vars=1, ...) genTable(formula, data=parent.frame(), subset=NULL, names=NULL, addFreq=TRUE,...)
Aggregate(formula, data=parent.frame(), subset=NULL, names=NULL, addFreq=TRUE, drop = TRUE, as.vars=1, ...) genTable(formula, data=parent.frame(), subset=NULL, names=NULL, addFreq=TRUE,...)
formula |
a formula. The right hand side includes one or more grouping variables separated by '+'. These may be factors, numeric, or character vectors. The left hand side may be empty, a numerical variable, a factor, or an expression. See details below. |
data |
an environment or data frame or an object coercable into a data frame. |
subset |
an optional vector specifying a subset of observations to be used. |
names |
an optional character vector giving names to the
result(s) yielded by the expression on the left hand side of |
addFreq |
a logical value. If |
drop |
a logical value. If |
as.vars |
an integer; relevant only if the left hand side of the formula returns an array or a matrix - which dimension (rows, columns, or layers etc.) will transformed to variables? Defaults to columns in case of matrices and to the highest dimensional extend in case of arrays. |
... |
further arguments, passed to methods or ignored. |
If an expression is given as left hand side of the formula, its
value is computed for any combination of values of the values on the
right hand side. If the right hand side is a dot, then all
variables in data
are added to the right hand side of the
formula.
If no expression is given as left hand side, then the frequency counts for the respective value combinations of the right hand variables are computed.
If a single factor is on the left hand side, then the left hand side is
translated into an appropriate
call to table()
. Note that also in this case addFreq
takes effect.
If a single numeric variable is on the left hand side, frequency
counts weighted by this variable are computed. In these cases,
genTable
is equivalent to xtabs
and
Aggregate
is equivalent to as.data.frame(xtabs(...))
.
Aggregate
results in a data frame with conditional summaries and unique value combinations
of conditioning variables.
genTable
returns a table, that is, an array with class "table"
.
ex.data <- expand.grid(mu=c(0,100),sigma=c(1,10))[rep(1:4,rep(100,4)),] ex.data <- within(ex.data, x<-rnorm( n=nrow(ex.data), mean=mu, sd=sigma ) ) Aggregate(~mu+sigma,data=ex.data) Aggregate(mean(x)~mu+sigma,data=ex.data) Aggregate(mean(x)~mu+sigma,data=ex.data,name="Average") Aggregate(c(mean(x),sd(x))~mu+sigma,data=ex.data) Aggregate(c(Mean=mean(x),StDev=sd(x),N=length(x))~mu+sigma,data=ex.data) genTable(c(Mean=mean(x),StDev=sd(x),N=length(x))~mu+sigma,data=ex.data) Aggregate(table(Admit)~.,data=UCBAdmissions) Aggregate(Table(Admit,Freq)~.,data=UCBAdmissions) Aggregate(Admit~.,data=UCBAdmissions) Aggregate(percent(Admit)~.,data=UCBAdmissions) Aggregate(percent(Admit)~Gender,data=UCBAdmissions) Aggregate(percent(Admit)~Dept,data=UCBAdmissions) Aggregate(percent(Gender)~Dept,data=UCBAdmissions) Aggregate(percent(Admit)~Dept,data=UCBAdmissions,Gender=="Female") genTable(percent(Admit)~Dept,data=UCBAdmissions,Gender=="Female")
ex.data <- expand.grid(mu=c(0,100),sigma=c(1,10))[rep(1:4,rep(100,4)),] ex.data <- within(ex.data, x<-rnorm( n=nrow(ex.data), mean=mu, sd=sigma ) ) Aggregate(~mu+sigma,data=ex.data) Aggregate(mean(x)~mu+sigma,data=ex.data) Aggregate(mean(x)~mu+sigma,data=ex.data,name="Average") Aggregate(c(mean(x),sd(x))~mu+sigma,data=ex.data) Aggregate(c(Mean=mean(x),StDev=sd(x),N=length(x))~mu+sigma,data=ex.data) genTable(c(Mean=mean(x),StDev=sd(x),N=length(x))~mu+sigma,data=ex.data) Aggregate(table(Admit)~.,data=UCBAdmissions) Aggregate(Table(Admit,Freq)~.,data=UCBAdmissions) Aggregate(Admit~.,data=UCBAdmissions) Aggregate(percent(Admit)~.,data=UCBAdmissions) Aggregate(percent(Admit)~Gender,data=UCBAdmissions) Aggregate(percent(Admit)~Dept,data=UCBAdmissions) Aggregate(percent(Gender)~Dept,data=UCBAdmissions) Aggregate(percent(Admit)~Dept,data=UCBAdmissions,Gender=="Female") genTable(percent(Admit)~Dept,data=UCBAdmissions,Gender=="Female")
A generic function and methods to collect coefficients
and summary statistics from a model object. It is used in mtable
## S3 method for class 'lm' getSummary(obj, alpha=.05,...) ## S3 method for class 'glm' getSummary(obj, alpha=.05,...) ## S3 method for class 'merMod' getSummary(obj, alpha=.05, ...) # These are contributed by Christopher N. Lawrence ## S3 method for class 'clm' getSummary(obj, alpha=.05,...) ## S3 method for class 'polr' getSummary(obj, alpha=.05,...) ## S3 method for class 'simex' getSummary(obj, alpha=.05,...) # These are contributed by Jason W. Morgan ## S3 method for class 'aftreg' getSummary(obj, alpha=.05,...) ## S3 method for class 'coxph' getSummary(obj, alpha=.05,...) ## S3 method for class 'phreg' getSummary(obj, alpha=.05,...) ## S3 method for class 'survreg' getSummary(obj, alpha=.05,...) ## S3 method for class 'weibreg' getSummary(obj, alpha=.05,...) # These are contributed by Achim Zeileis ## S3 method for class 'ivreg' getSummary(obj, alpha=.05,...) ## S3 method for class 'tobit' getSummary(obj, alpha=.05,...) ## S3 method for class 'hurdle' getSummary(obj, alpha=.05,...) ## S3 method for class 'zeroinfl' getSummary(obj, alpha=.05,...) ## S3 method for class 'betareg' getSummary(obj, alpha=.05,...) ## S3 method for class 'multinom' getSummary(obj, alpha=.05,...) # A variant that reports exponentiated coefficients. # The default method calls 'getSummary()' internally and should # be applicable to all classes for which 'getSummary()' methods exist. getSummary_expcoef(obj, alpha=.05,...) ## Default S3 method: getSummary_expcoef(obj, alpha=.05,...)
## S3 method for class 'lm' getSummary(obj, alpha=.05,...) ## S3 method for class 'glm' getSummary(obj, alpha=.05,...) ## S3 method for class 'merMod' getSummary(obj, alpha=.05, ...) # These are contributed by Christopher N. Lawrence ## S3 method for class 'clm' getSummary(obj, alpha=.05,...) ## S3 method for class 'polr' getSummary(obj, alpha=.05,...) ## S3 method for class 'simex' getSummary(obj, alpha=.05,...) # These are contributed by Jason W. Morgan ## S3 method for class 'aftreg' getSummary(obj, alpha=.05,...) ## S3 method for class 'coxph' getSummary(obj, alpha=.05,...) ## S3 method for class 'phreg' getSummary(obj, alpha=.05,...) ## S3 method for class 'survreg' getSummary(obj, alpha=.05,...) ## S3 method for class 'weibreg' getSummary(obj, alpha=.05,...) # These are contributed by Achim Zeileis ## S3 method for class 'ivreg' getSummary(obj, alpha=.05,...) ## S3 method for class 'tobit' getSummary(obj, alpha=.05,...) ## S3 method for class 'hurdle' getSummary(obj, alpha=.05,...) ## S3 method for class 'zeroinfl' getSummary(obj, alpha=.05,...) ## S3 method for class 'betareg' getSummary(obj, alpha=.05,...) ## S3 method for class 'multinom' getSummary(obj, alpha=.05,...) # A variant that reports exponentiated coefficients. # The default method calls 'getSummary()' internally and should # be applicable to all classes for which 'getSummary()' methods exist. getSummary_expcoef(obj, alpha=.05,...) ## Default S3 method: getSummary_expcoef(obj, alpha=.05,...)
obj |
a model object, e.g. of class |
alpha |
level of the confidence intervals; their coverage should be 1-alpha/2 |
... |
further arguments; ignored. |
The generic function getSummary
is called by mtable
in order to obtain the coefficients and summaries of model objects.
In order to adapt mtable
to models of classes other
than lm
or glm
one needs to
define getSummary
methods for these classes and
to set a summary template via setSummaryTemplate
Any method of getSummary
must return a list with the following
components:
coef |
an array with coefficient estimates; the lowest dimension must have the following names and meanings:
The higher dimensions of the array correspond to the individual coefficients and, in multi-equation models, to the model equations. |
|||||||||||||||||||
sumstat |
a vector containing the model summary statistics; the components may have arbitrary names. |
Group
creates a grouped variant of an object of
class "data.frame" or of class "data.set", for which methods for
with
and within
are defined, so that these well-known
functions can be applied "groupwise".
# Create an object of class "grouped.data" from a # data frame or a data set. Groups(data,by,...) ## S3 method for class 'data.frame' Groups(data,by,...) ## S3 method for class 'data.set' Groups(data,by,...) ## S3 method for class 'grouped.data' Groups(data,by,...) # Recombine grouped data into a data fame or a data set recombine(x,...) ## S3 method for class 'grouped.data.frame' recombine(x,...) ## S3 method for class 'grouped.data.set' recombine(x,...) # Recombine grouped data and coerce the result appropriately: ## S3 method for class 'grouped.data' as.data.frame(x,...) ## S4 method for signature 'grouped.data.frame' as.data.set(x,row.names=NULL,...) ## S4 method for signature 'grouped.data.set' as.data.set(x,row.names=NULL,...) # Methods of the generics "with" and "within" for grouped data ## S3 method for class 'grouped.data' with(data,expr,...) ## S3 method for class 'grouped.data' within(data,expr,recombine=FALSE,...) # This is equivalent to with(Groups(data,by),expr,...) withGroups(data,by,expr,...) # This is equivalent to within(Groups(data,by),expr,recombine,...) withinGroups(data,by,expr,recombine=TRUE,...)
# Create an object of class "grouped.data" from a # data frame or a data set. Groups(data,by,...) ## S3 method for class 'data.frame' Groups(data,by,...) ## S3 method for class 'data.set' Groups(data,by,...) ## S3 method for class 'grouped.data' Groups(data,by,...) # Recombine grouped data into a data fame or a data set recombine(x,...) ## S3 method for class 'grouped.data.frame' recombine(x,...) ## S3 method for class 'grouped.data.set' recombine(x,...) # Recombine grouped data and coerce the result appropriately: ## S3 method for class 'grouped.data' as.data.frame(x,...) ## S4 method for signature 'grouped.data.frame' as.data.set(x,row.names=NULL,...) ## S4 method for signature 'grouped.data.set' as.data.set(x,row.names=NULL,...) # Methods of the generics "with" and "within" for grouped data ## S3 method for class 'grouped.data' with(data,expr,...) ## S3 method for class 'grouped.data' within(data,expr,recombine=FALSE,...) # This is equivalent to with(Groups(data,by),expr,...) withGroups(data,by,expr,...) # This is equivalent to within(Groups(data,by),expr,recombine,...) withinGroups(data,by,expr,recombine=TRUE,...)
data |
an object of the classes "data.frame", "data.set" if an
argument to |
by |
a formula with the factors the levels of which define the groups. |
expr |
an expression, or several expressions enclosed in curly braces. |
recombine |
a logical vector; should the resulting grouped data be recombined? |
x |
an object of class "grouped.data". |
row.names |
an optional character vector with row names. |
... |
other arguments, ignored. |
When applied to a data frame Groups
returns an object with class attributes
"grouped.data.frame", "grouped.data", and "data.frame", when applied do an object with class
"data.set", it returns an object with class attributes "grouped.data.set",
"grouped.data", and "data.set".
When applied to objects with class attributed
"grouped.data", both the functions with()
amd within()
evaluate expr
separately for each group defined by
Groups
. with()
returns an array composed of the results
of expr
, while within()
returns a modified copy of its
data
argument, which will be a "grouped.data" object
("grouped.data.frame" or "grouped.data.set"), unless the argument
recombine=TRUE
is set.
The expression expr
may contain references to the variables
n_
, N_
, and i_
. n_
is equal to the size of
the respective group (the number of rows belonging to it), while
N_
is equal to the total number of observations in all
groups. The variable i_
equals to the indices of the rows
belonging to the respective group of observations.
some.data <- data.frame(x=rnorm(n=100)) some.data <- within(some.data,{ f <- factor(rep(1:4,each=25),labels=letters[1:4]) g <- factor(rep(1:5,each=4,5),labels=LETTERS[1:5]) y <- x + rep(1:4,each=25) + 0.75*rep(1:5,each=4,5) }) # For demonstration purposes, we create an # 'empty' group: some.data <- subset(some.data, f!="a" | g!="C") some.grouped.data <- Groups(some.data, ~f+g) # Computing the means of y for each combination f and g group.means <- with(some.grouped.data, mean(y)) group.means # Obtaining a groupwise centered variant of y some.grouped.data <- within(some.grouped.data,{ y.cent <- y - mean(y) },recombine=FALSE) # The groupwise centered variable should have zero mean # whithin each group group.means <- with(some.grouped.data, round(mean(y.cent),15)) group.means # The following demonstrates the use of n_, N_, and i_ # An external copy of y y1 <- some.data$y group.means.n <- with(some.grouped.data, c(mean(y), # Group means for y n_, # Group sizes sum(y)/n_,# Group means for y n_/N_, # Relative group sizes sum(y1)/N_,# NOT the grand mean sum(y1[i_])/n_)) # Group mean for y1 group.means.n # Names can be attached to the groupwise results with(some.grouped.data, c(Centered=round(mean(y.cent),15), Uncentered=mean(y))) some.data.ungrouped <- recombine(some.grouped.data) str(some.data.ungrouped) # It all works with "data.set" objects some.dataset <- as.data.set(some.data) some.grouped.dataset <- Groups(some.dataset,~f+g) with(some.grouped.dataset, c(Mean=mean(y), Variance=var(y))) # The following two expressions are equivalent: with(Groups(some.data,~f+g),mean(y)) withGroups(some.data,~f+g,mean(y)) # The following two expressions are equivalent: some.data <- within(Groups(some.data,~f+g),{ y.cent <- y - mean(y) y.cent.1 <- y - sum(y)/n_ }) some.data <- withinGroups(some.data,~f+g,{ y.cent <- y - mean(y) y.cent.1 <- y - sum(y)/n_ }) # Both variants of groupwise centred varaibles should # have zero groupwise means: withGroups(some.data,~f+g,{ c(round(mean(y.cent),15), round(mean(y.cent.1),15)) })
some.data <- data.frame(x=rnorm(n=100)) some.data <- within(some.data,{ f <- factor(rep(1:4,each=25),labels=letters[1:4]) g <- factor(rep(1:5,each=4,5),labels=LETTERS[1:5]) y <- x + rep(1:4,each=25) + 0.75*rep(1:5,each=4,5) }) # For demonstration purposes, we create an # 'empty' group: some.data <- subset(some.data, f!="a" | g!="C") some.grouped.data <- Groups(some.data, ~f+g) # Computing the means of y for each combination f and g group.means <- with(some.grouped.data, mean(y)) group.means # Obtaining a groupwise centered variant of y some.grouped.data <- within(some.grouped.data,{ y.cent <- y - mean(y) },recombine=FALSE) # The groupwise centered variable should have zero mean # whithin each group group.means <- with(some.grouped.data, round(mean(y.cent),15)) group.means # The following demonstrates the use of n_, N_, and i_ # An external copy of y y1 <- some.data$y group.means.n <- with(some.grouped.data, c(mean(y), # Group means for y n_, # Group sizes sum(y)/n_,# Group means for y n_/N_, # Relative group sizes sum(y1)/N_,# NOT the grand mean sum(y1[i_])/n_)) # Group mean for y1 group.means.n # Names can be attached to the groupwise results with(some.grouped.data, c(Centered=round(mean(y.cent),15), Uncentered=mean(y))) some.data.ungrouped <- recombine(some.grouped.data) str(some.data.ungrouped) # It all works with "data.set" objects some.dataset <- as.data.set(some.data) some.grouped.dataset <- Groups(some.dataset,~f+g) with(some.grouped.dataset, c(Mean=mean(y), Variance=var(y))) # The following two expressions are equivalent: with(Groups(some.data,~f+g),mean(y)) withGroups(some.data,~f+g,mean(y)) # The following two expressions are equivalent: some.data <- within(Groups(some.data,~f+g),{ y.cent <- y - mean(y) y.cent.1 <- y - sum(y)/n_ }) some.data <- withinGroups(some.data,~f+g,{ y.cent <- y - mean(y) y.cent.1 <- y - sum(y)/n_ }) # Both variants of groupwise centred varaibles should # have zero groupwise means: withGroups(some.data,~f+g,{ c(round(mean(y.cent),15), round(mean(y.cent.1),15)) })
The functions described here form building blocks for
the format_html
methods functions for codebook
,
ftable
, ftable_matrix
, and mtable
objects, etc.
The most basic of these functions is html
, which constructs an
object that represents a minimal piece of HTML code and is member of the
class "html_elem"
. Unlike a character string containing HTML
code, the resulting code element can relatively easily modified using
other functions presented here. The actual code is created when the
function as.character
is applied to these objects.
Longer sequences of HTML code can be prepared by
concatenating them with c
, or by html_group
,
or by applying as.html_group
to a list of
"html_elem"
objects. All these result in objects
of class "html_group"
.
Attributes (such as class, id etc.) of HTML elements can be added to the
call to html
, but can also later recalled or modified with
attribs
or setAttribs
. An important attribute
is the style attribute, which can contain CSS styling. It can
be recalled or modified with style
or setStyle
. Styling
strings can also be created with hmtl_style
or as.css
html(tag, ..., .content = NULL, linebreak = FALSE) html_group(...) as.html_group(x) content(x) content(x)<-value setContent(x,value) attribs(x) attribs(x)<-value setAttribs(x,...) ## S3 method for class 'character' setAttribs(x,...) ## S3 method for class 'html_elem' setAttribs(x,...) ## S3 method for class 'html_group' setAttribs(x,...) css(...) as.css(x) style(x) style(x) <- value setStyle(x,...) ## S3 method for class 'character' setStyle(x,...) ## S3 method for class 'html_elem' setStyle(x,...) ## S3 method for class 'html_group' setStyle(x,...)
html(tag, ..., .content = NULL, linebreak = FALSE) html_group(...) as.html_group(x) content(x) content(x)<-value setContent(x,value) attribs(x) attribs(x)<-value setAttribs(x,...) ## S3 method for class 'character' setAttribs(x,...) ## S3 method for class 'html_elem' setAttribs(x,...) ## S3 method for class 'html_group' setAttribs(x,...) css(...) as.css(x) style(x) style(x) <- value setStyle(x,...) ## S3 method for class 'character' setStyle(x,...) ## S3 method for class 'html_elem' setStyle(x,...) ## S3 method for class 'html_group' setStyle(x,...)
tag |
a character string that determines the opening and closing tags of the HTML element. (The closing tag is relevant only if the element has a content.) |
... |
optional further arguments, named or not. For For For For For |
.content |
an optional character string, |
linebreak |
a logical value or vector of length 2, determines whether linebreaks are inserted after the HTML tags. |
x |
an object. For |
value |
an object of appropriate class. For For |
Objects created with html
are lists with class attribute
"html_elem"
and components
a character string
a named character vector
a character vector, an "html_elem"
or "html_group"
object, or a list of such.
a logical value or vector of length 2.
Objects created with html_group
or by concatenation
of "html_elem"
or "html_group"
object
are lists of such objects, with class attribute "html_group"
.
html("img") html("img",src="test.png") html("div",class="element",id="first","Sisyphus") html("div",class="element",id="first",.content="Sisyphus") div <- html("div",class="element",id="first",linebreak=c(TRUE,TRUE)) content(div) <- "Sisyphus" div tag <- html("tag",linebreak=TRUE) attribs(tag)["class"] <- "something" attribs(tag)["class"] tag style(tag) <- c(color="#342334") style(tag) tag style(tag)["bg"] <- "white" tag setStyle(tag,bg="black") setStyle(tag,c(bg="black")) c(div,tag,tag) c( c(div,tag), c(div,tag,tag) ) c( c(div,tag), div,tag,tag ) c( div,tag, c(div,tag,tag) ) content(div) <- c(tag,tag,tag) div css("background-color"="black", color="white") as.css(c("background-color"="black", color="white")) Hello <- "Hello World!" Hello <- html("p",Hello,linebreak=c(TRUE,TRUE)) style(Hello) <- c(color="white", "font-size"="40px", "text-align"="center") Link <- html("a","More examples here ...", href="http://elff.eu/software/memisc", title="More examples here ...", style=css(color="white"), linebreak=c(TRUE,FALSE)) Link <- html("p"," (",Link,")",linebreak=c(TRUE,TRUE)) style(Link) <- c(color="white", "font-size"="15px", "text-align"="center") Hello <- html("div",c(Hello,Link),linebreak=c(TRUE,TRUE)) style(Hello) <- c("background-color"="#160666", padding="20px") Hello show_html(Hello)
html("img") html("img",src="test.png") html("div",class="element",id="first","Sisyphus") html("div",class="element",id="first",.content="Sisyphus") div <- html("div",class="element",id="first",linebreak=c(TRUE,TRUE)) content(div) <- "Sisyphus" div tag <- html("tag",linebreak=TRUE) attribs(tag)["class"] <- "something" attribs(tag)["class"] tag style(tag) <- c(color="#342334") style(tag) tag style(tag)["bg"] <- "white" tag setStyle(tag,bg="black") setStyle(tag,c(bg="black")) c(div,tag,tag) c( c(div,tag), c(div,tag,tag) ) c( c(div,tag), div,tag,tag ) c( div,tag, c(div,tag,tag) ) content(div) <- c(tag,tag,tag) div css("background-color"="black", color="white") as.css(c("background-color"="black", color="white")) Hello <- "Hello World!" Hello <- html("p",Hello,linebreak=c(TRUE,TRUE)) style(Hello) <- c(color="white", "font-size"="40px", "text-align"="center") Link <- html("a","More examples here ...", href="http://elff.eu/software/memisc", title="More examples here ...", style=css(color="white"), linebreak=c(TRUE,FALSE)) Link <- html("p"," (",Link,")",linebreak=c(TRUE,TRUE)) style(Link) <- c(color="white", "font-size"="15px", "text-align"="center") Hello <- html("div",c(Hello,Link),linebreak=c(TRUE,TRUE)) style(Hello) <- c("background-color"="#160666", padding="20px") Hello show_html(Hello)
This function uses the base package function iconv
to translate variable descriptions (a.k.a variable labels) and
value labels of item
, data.set
,
and importer
objects into a specified encoding.
It will be useful in UTF-8 systems when data file come in some ancient encoding like 'Latin-1' as long used by Windows systems.
Iconv(x,from="",to="",...) ## S3 method for class 'character' Iconv(x,from="",to="",...) ## S3 method for class 'annotation' Iconv(x,from="",to="",...) ## S3 method for class 'data.set' Iconv(x,from="",to="",...) ## S3 method for class 'importer' Iconv(x,from="",to="",...) ## S3 method for class 'item' Iconv(x,from="",to="",...) ## S3 method for class 'value.labels' Iconv(x,from="",to="",...)
Iconv(x,from="",to="",...) ## S3 method for class 'character' Iconv(x,from="",to="",...) ## S3 method for class 'annotation' Iconv(x,from="",to="",...) ## S3 method for class 'data.set' Iconv(x,from="",to="",...) ## S3 method for class 'importer' Iconv(x,from="",to="",...) ## S3 method for class 'item' Iconv(x,from="",to="",...) ## S3 method for class 'value.labels' Iconv(x,from="",to="",...)
x |
a character vector or an object of which character data or attributes are to be re-encoded. |
from |
a character string describing the original encoding |
to |
a character string describing the target encoding |
... |
further arguments, passed to |
Iconv
returns a copy of its first argument with re-encoded
character data or attributes.
## Not run: # Locate an SPSS 'system' file and get info on variables, their labels etc. ZA5302 <- spss.system.file("Daten/ZA5302_v6-0-0.sav",to.lower=FALSE) # Convert labels etc. from 'latin1' to the encoding of the current locale. ZA5302 <- Iconv(ZA5302,from="latin1") # Write out the codebook writeLines(as.character(codebook(ZA5302)), con="ZA5302-cdbk.txt") # Write out the description of the varialbes (their 'variable labels') writeLines(as.character(description(ZA5302)), con="ZA5302-description.txt") ## End(Not run)
## Not run: # Locate an SPSS 'system' file and get info on variables, their labels etc. ZA5302 <- spss.system.file("Daten/ZA5302_v6-0-0.sav",to.lower=FALSE) # Convert labels etc. from 'latin1' to the encoding of the current locale. ZA5302 <- Iconv(ZA5302,from="latin1") # Write out the codebook writeLines(as.character(codebook(ZA5302)), con="ZA5302-cdbk.txt") # Write out the description of the varialbes (their 'variable labels') writeLines(as.character(description(ZA5302)), con="ZA5302-description.txt") ## End(Not run)
Importer objects are objects that refer to an external data file. Currently only Stata files, SPSS system, portable, and fixed-column files are supported.
Data are actually imported by ‘translating’ an
importer file into a data.set
using
as.data.set
or subset
.
The importer
mechanism is more flexible and extensible
than read.spss
and read.dta
of package "foreign", as most of the parsing of the file headers is done in R.
It is also adapted to efficiently load large data sets.
Most importantly, importer objects support the
labels
, missing.values
,
and description
s, provided by this package.
spss.file(file,...) spss.fixed.file(file, columns.file, varlab.file=NULL, codes.file=NULL, missval.file=NULL, count.cases=TRUE, to.lower=getOption("spss.fixed.to.lower",FALSE), iconv=TRUE, encoded=getOption("spss.fixed.encoding","cp1252"), negative2missing = FALSE) spss.portable.file(file, varlab.file=NULL, codes.file=NULL, missval.file=NULL, count.cases=TRUE, to.lower=getOption("spss.por.to.lower",FALSE), iconv=TRUE, encoded=getOption("spss.por.encoding","cp1252"), negative2missing = FALSE) spss.system.file(file, varlab.file=NULL, codes.file=NULL, missval.file=NULL, count.cases=TRUE, to.lower=getOption("spss.sav.to.lower",FALSE), iconv=TRUE, encoded=getOption("spss.sav.encoding","cp1252"), ignore.scale.info = FALSE, negative2missing = FALSE) Stata.file(file, iconv=TRUE, encoded=if(new_format) getOption("Stata.new.encoding","utf-8") else getOption("Stata.old.encoding","cp1252"), negative2missing = FALSE) ## The most important methods for "importer" objects are: ## S3 method for class 'spss.system.importer' subset(x, subset, select, drop = FALSE, ...) ## S3 method for class 'spss.portable.importer' subset(x, subset, select, drop = FALSE, ...) ## S3 method for class 'spss.fixed.importer' subset(x, subset, select, drop = FALSE, ...) ## S3 method for class 'Stata.importer' subset(x, subset, select, drop = FALSE, ...) ## S3 method for class 'Stata_new.importer' subset(x, subset, select, drop = FALSE, ...) ## S4 method for signature 'importer' as.data.set(x,row.names=NULL,optional=NULL, compress.storage.modes=FALSE,...) ## S4 method for signature 'importer' head(x,n=20,...) ## S4 method for signature 'importer' tail(x,n=20,...)
spss.file(file,...) spss.fixed.file(file, columns.file, varlab.file=NULL, codes.file=NULL, missval.file=NULL, count.cases=TRUE, to.lower=getOption("spss.fixed.to.lower",FALSE), iconv=TRUE, encoded=getOption("spss.fixed.encoding","cp1252"), negative2missing = FALSE) spss.portable.file(file, varlab.file=NULL, codes.file=NULL, missval.file=NULL, count.cases=TRUE, to.lower=getOption("spss.por.to.lower",FALSE), iconv=TRUE, encoded=getOption("spss.por.encoding","cp1252"), negative2missing = FALSE) spss.system.file(file, varlab.file=NULL, codes.file=NULL, missval.file=NULL, count.cases=TRUE, to.lower=getOption("spss.sav.to.lower",FALSE), iconv=TRUE, encoded=getOption("spss.sav.encoding","cp1252"), ignore.scale.info = FALSE, negative2missing = FALSE) Stata.file(file, iconv=TRUE, encoded=if(new_format) getOption("Stata.new.encoding","utf-8") else getOption("Stata.old.encoding","cp1252"), negative2missing = FALSE) ## The most important methods for "importer" objects are: ## S3 method for class 'spss.system.importer' subset(x, subset, select, drop = FALSE, ...) ## S3 method for class 'spss.portable.importer' subset(x, subset, select, drop = FALSE, ...) ## S3 method for class 'spss.fixed.importer' subset(x, subset, select, drop = FALSE, ...) ## S3 method for class 'Stata.importer' subset(x, subset, select, drop = FALSE, ...) ## S3 method for class 'Stata_new.importer' subset(x, subset, select, drop = FALSE, ...) ## S4 method for signature 'importer' as.data.set(x,row.names=NULL,optional=NULL, compress.storage.modes=FALSE,...) ## S4 method for signature 'importer' head(x,n=20,...) ## S4 method for signature 'importer' tail(x,n=20,...)
file |
character string; the path to the file containing the data |
... |
Other arguments. |
columns.file |
character string; the path to an
SPSS/PSPP syntax file with a |
varlab.file |
character string; the path to an
SPSS/PSPP syntax file with a |
codes.file |
character string; the path to an
SPSS/PSPP syntax file with a |
missval.file |
character string; the path to an
SPSS/PSPP syntax file with a |
count.cases |
logical; should cases in file be counted? This takes effect only if the data file does not already contain information about the number of cases. |
to.lower |
logical; should variable names changed to lower case? |
iconv |
logical; should strings (in labels and variables) changed into encoding of the platform? |
encoded |
a cacharacter string; the way characters are encoded
in the improrted file. For the available encoding options
see |
negative2missing |
logical; should negative values be marked as missing values? This is the convention of some newer data sets that are available e.g. from the GESIS data archive. |
ignore.scale.info |
logical; should information about measuremnt scale levels provided in the file be ignored? |
x |
an object that inherits from class |
subset |
a logical vector or an expression containing variables from the external data file that evaluates to logical. |
select |
a vector of variable names from the external data file. This may also be a named vector, where the names give the names into which the variables from the external data file are renamed. |
drop |
a logical value, that determines what happens if
only one column is selected. If TRUE and only one column
is selected, |
row.names |
ignored, present only for compatibility. |
optional |
ignored, present only for compatibility. |
compress.storage.modes |
logical value; if TRUE floating point values are converted to integers if possible without loss of information. |
n |
integer; the number of rows to be shown by |
A call to a ‘constructor’ for an importer object, that is,
spss.fixed.file
, spss.portable.file
, spss.sysntax.file
,
or Stata.file
,
causes R to read in the header of the data file and/or
the syntax files that contain information about
the variables, such as the columns that they occupy
(in case of spss.fixed.file
), variable labels,
value labels and missing values.
The information in the file header and/or the accompagnying
files is then processed to prepare the file for importing.
Thus the inner structure of an importer
object may
well vary according to what type of file is to imported and
what additional information is given.
The as.data.set
and subset
methods
for "importer"
objects internally use the
generic functions seekData
, readData
, readSlice
,
and readChunk
, which have methods for the
subclasses of "importer"
.
These functions are not callable
from outside the package, however.
The subset
method for "importer"
objects reads in
the data ‘chunk-wise’ to create the subset of observations if
the option "subset.chunk.size"
is set to a non-NULL
value, e.g. by options(subset.chunk.size=1000)
. This may be
useful in case of very large data sets from which only a tiny subset
of observations is needed for analysis.
Since the functions described here are more or less complete rewrite
based on the description of the file structure provided
by the documenation for PSPP, they are perhaps not as thorougly tested as the
functions in the foreign
package, apart from the frequent use
by the author of this package.
spss.fixed.file
, spss.portable.file
,
spss.system.file
, and Stata.file
return, respectively, objects of class
"spss.fixed.importer"
, "spss.portable.importer"
,
"spss.system.importer"
, "Stata.importer"
, or "Stata_new.importer"
,
which, by inheritance, are also objects of class "importer"
.
"Stata.importer"
is for files in the format of Stata versions up
to 12, while "Stata_new.importer"
is for files in the newer
format of Stata versions from 13.
Objects of class "importer"
have at least the following two slots:
ptr |
an external pointer |
variables |
a list of objects of class |
The as.data.frame
for importer
objects does
the actual data import and returns a data frame. Note that in contrast
to read.spss
, the variable names of the
resulting data frame will be lower case, unless the importer function
is called with to.lower=FALSE
. If long variable names
are defined (in case of a PSPP/SPSS system file), they take
precedence and are not coerced to lower case.
codebook
, description
,
read.spss
# Extract American National Election Study of 1948 nes1948.por <- unzip(system.file("anes/NES1948.ZIP",package="memisc"), "NES1948.POR",exdir=tempfile()) # Get information about the variables contained. nes1948 <- spss.portable.file(nes1948.por) # The data are not yet loaded: show(nes1948) # ... but one can see what variables are present: description(nes1948) # Now a subset of the data is loaded: vote.socdem.48 <- subset(nes1948, select=c( V480018, V480029, V480030, V480045, V480046, V480047, V480048, V480049, V480050 )) # Let's make the names more descriptive: vote.socdem.48 <- rename(vote.socdem.48, V480018 = "vote", V480029 = "occupation.hh", V480030 = "unionized.hh", V480045 = "gender", V480046 = "race", V480047 = "age", V480048 = "education", V480049 = "total.income", V480050 = "religious.pref" ) # It is also possible to do both # in one step: # vote.socdem.48 <- subset(nes1948, # select=c( # vote = V480018, # occupation.hh = V480029, # unionized.hh = V480030, # gender = V480045, # race = V480046, # age = V480047, # education = V480048, # total.income = V480049, # religious.pref = V480050 # )) # We examine the data more closely: codebook(vote.socdem.48) # ... and conduct some analyses. # t(genTable(percent(vote)~occupation.hh,data=vote.socdem.48)) # We consider only the two main candidates. vote.socdem.48 <- within(vote.socdem.48,{ truman.dewey <- vote valid.values(truman.dewey) <- 1:2 truman.dewey <- relabel(truman.dewey, "VOTED - FOR TRUMAN" = "Truman", "VOTED - FOR DEWEY" = "Dewey") }) summary(truman.relig.glm <- glm((truman.dewey=="Truman")~religious.pref, data=vote.socdem.48, family="binomial", ))
# Extract American National Election Study of 1948 nes1948.por <- unzip(system.file("anes/NES1948.ZIP",package="memisc"), "NES1948.POR",exdir=tempfile()) # Get information about the variables contained. nes1948 <- spss.portable.file(nes1948.por) # The data are not yet loaded: show(nes1948) # ... but one can see what variables are present: description(nes1948) # Now a subset of the data is loaded: vote.socdem.48 <- subset(nes1948, select=c( V480018, V480029, V480030, V480045, V480046, V480047, V480048, V480049, V480050 )) # Let's make the names more descriptive: vote.socdem.48 <- rename(vote.socdem.48, V480018 = "vote", V480029 = "occupation.hh", V480030 = "unionized.hh", V480045 = "gender", V480046 = "race", V480047 = "age", V480048 = "education", V480049 = "total.income", V480050 = "religious.pref" ) # It is also possible to do both # in one step: # vote.socdem.48 <- subset(nes1948, # select=c( # vote = V480018, # occupation.hh = V480029, # unionized.hh = V480030, # gender = V480045, # race = V480046, # age = V480047, # education = V480048, # total.income = V480049, # religious.pref = V480050 # )) # We examine the data more closely: codebook(vote.socdem.48) # ... and conduct some analyses. # t(genTable(percent(vote)~occupation.hh,data=vote.socdem.48)) # We consider only the two main candidates. vote.socdem.48 <- within(vote.socdem.48,{ truman.dewey <- vote valid.values(truman.dewey) <- 1:2 truman.dewey <- relabel(truman.dewey, "VOTED - FOR TRUMAN" = "Truman", "VOTED - FOR DEWEY" = "Dewey") }) summary(truman.relig.glm <- glm((truman.dewey=="Truman")~religious.pref, data=vote.socdem.48, family="binomial", ))
Objects of class item
are data vectors with additional information
attached to them like “value labels” and “user-defined missing values”
known from software packages like SPSS or Stata.
The class item
is intended to facilitate data management of
survey data. Objects in this class should not directly used
in data analysis. Instead they should changed into "ordinary" vectors
or factors before. For this see the documentation for as.vector,item-method
.
## The constructor for objects of class "item" ## more convenient than new("item",...) ## S4 method for signature 'numeric' as.item(x, labels=NULL, missing.values=NULL, valid.values=NULL, valid.range=NULL, value.filter=NULL, measurement=NULL, annotation=attr(x,"annotation"), ... ) ## S4 method for signature 'character' as.item(x, labels=NULL, missing.values=NULL, valid.values=NULL, valid.range=NULL, value.filter=NULL, measurement=NULL, annotation=attr(x,"annotation"), ... ) ## S4 method for signature 'logical' as.item(x,...) # x is first coerced to integer, # arguments in ... are then passed to the "numeric" # method. ## S4 method for signature 'factor' as.item(x,...) ## S4 method for signature 'ordered' as.item(x,...) ## S4 method for signature 'POSIXct' as.item(x,...) ## S4 method for signature 'double.item' as.item(x, labels=NULL, missing.values=NULL, valid.values=NULL, valid.range=NULL, value.filter=NULL, measurement=NULL, annotation=attr(x,"annotation"), ... ) ## S4 method for signature 'integer.item' as.item(x, labels=NULL, missing.values=NULL, valid.values=NULL, valid.range=NULL, value.filter=NULL, measurement=NULL, annotation=attr(x,"annotation"), ... ) ## S4 method for signature 'character.item' as.item(x, labels=NULL, missing.values=NULL, valid.values=NULL, valid.range=NULL, value.filter=NULL, measurement=NULL, annotation=attr(x,"annotation"), ... ) ## S4 method for signature 'datetime.item' as.item(x, labels=NULL, missing.values=NULL, valid.values=NULL, valid.range=NULL, value.filter=NULL, measurement=NULL, annotation=attr(x,"annotation"), ... )
## The constructor for objects of class "item" ## more convenient than new("item",...) ## S4 method for signature 'numeric' as.item(x, labels=NULL, missing.values=NULL, valid.values=NULL, valid.range=NULL, value.filter=NULL, measurement=NULL, annotation=attr(x,"annotation"), ... ) ## S4 method for signature 'character' as.item(x, labels=NULL, missing.values=NULL, valid.values=NULL, valid.range=NULL, value.filter=NULL, measurement=NULL, annotation=attr(x,"annotation"), ... ) ## S4 method for signature 'logical' as.item(x,...) # x is first coerced to integer, # arguments in ... are then passed to the "numeric" # method. ## S4 method for signature 'factor' as.item(x,...) ## S4 method for signature 'ordered' as.item(x,...) ## S4 method for signature 'POSIXct' as.item(x,...) ## S4 method for signature 'double.item' as.item(x, labels=NULL, missing.values=NULL, valid.values=NULL, valid.range=NULL, value.filter=NULL, measurement=NULL, annotation=attr(x,"annotation"), ... ) ## S4 method for signature 'integer.item' as.item(x, labels=NULL, missing.values=NULL, valid.values=NULL, valid.range=NULL, value.filter=NULL, measurement=NULL, annotation=attr(x,"annotation"), ... ) ## S4 method for signature 'character.item' as.item(x, labels=NULL, missing.values=NULL, valid.values=NULL, valid.range=NULL, value.filter=NULL, measurement=NULL, annotation=attr(x,"annotation"), ... ) ## S4 method for signature 'datetime.item' as.item(x, labels=NULL, missing.values=NULL, valid.values=NULL, valid.range=NULL, value.filter=NULL, measurement=NULL, annotation=attr(x,"annotation"), ... )
x |
for |
labels |
a named vector of the same mode as |
missing.values |
either a vector of the same mode as |
valid.values |
either a vector of the same mode as |
valid.range |
either a vector of the same mode as |
value.filter |
an object of class |
measurement |
level of measurement; one of "nominal", "ordinal", "interval", or "ratio". |
annotation |
a named character vector,
or an object of class |
... |
further arguments, ignored. |
annotation
labels
value.filter
x <- as.item(rep(1:5,4), labels=c( "First" = 1, "Second" = 2, "Third" = 3, "Fourth" = 4, "Don't know" = 5 ), missing.values=5, annotation = c( description="test" )) str(x) summary(x) as.numeric(x) test <- as.item(rep(1:6,2),labels=structure(1:6, names=letters[1:6])) test test == 1 test != 1 test == "a" test != "a" test == c("a","z") test != c("a","z") test test codebook(test) Test <- as.item(rep(letters[1:6],2), labels=structure(letters[1:6], names=LETTERS[1:6])) Test Test == "a" Test != "a" Test == "A" Test != "A" Test == c("a","z") Test != c("a","z") Test Test as.factor(test) as.factor(Test) as.numeric(test) as.character(test) as.character(Test) as.data.frame(test)[[1]]
x <- as.item(rep(1:5,4), labels=c( "First" = 1, "Second" = 2, "Third" = 3, "Fourth" = 4, "Don't know" = 5 ), missing.values=5, annotation = c( description="test" )) str(x) summary(x) as.numeric(x) test <- as.item(rep(1:6,2),labels=structure(1:6, names=letters[1:6])) test test == 1 test != 1 test == "a" test != "a" test == c("a","z") test != c("a","z") test test codebook(test) Test <- as.item(rep(letters[1:6],2), labels=structure(letters[1:6], names=LETTERS[1:6])) Test Test == "a" Test != "a" Test == "A" Test != "A" Test == c("a","z") Test != c("a","z") Test Test as.factor(test) as.factor(Test) as.numeric(test) as.character(test) as.character(Test) as.data.frame(test)[[1]]
Survey item objects in are numeric or character vectors with some extra information
that may helpful for for managing and documenting survey data, but they are not suitable
for statistical data analysis. To run regressions etc. one should convert
item
objects into "ordinary" numeric vectors or factors.
This means that codes or values declared as "missing" (if present) are translated into
the generial missing value NA
, while value labels (if defined) are translated into
factor levels.
# The following methods can be used to covert items into # vectors with a given mode or into factors. ## S4 method for signature 'item' as.vector(x, mode = "any") ## S4 method for signature 'item' as.numeric(x, ...) ## S4 method for signature 'item' as.integer(x, ...) ## S4 method for signature 'item.vector' as.factor(x) ## S4 method for signature 'item.vector' as.ordered(x) ## S4 method for signature 'item.vector' as.character(x, use.labels = TRUE, include.missings = FALSE, ...) ## S4 method for signature 'datetime.item.vector' as.character() ## S4 method for signature 'Date.item.vector' as.character() # The following methods are unlikely to be useful in practice, other than # that they are called internally by the 'as.data.frame()' method for "data.set" # objects. ## S3 method for class 'character.item' as.data.frame(x, row.names = NULL, optional = FALSE, ...) ## S3 method for class 'double.item' as.data.frame(x, row.names = NULL, optional = FALSE, ...) ## S3 method for class 'integer.item' as.data.frame(x, row.names = NULL, optional = FALSE, ...) ## S3 method for class 'Date.item' as.data.frame(x, row.names = NULL, optional = FALSE, ...) ## S3 method for class 'datetime.item' as.data.frame(x, row.names = NULL, optional = FALSE, ...)
# The following methods can be used to covert items into # vectors with a given mode or into factors. ## S4 method for signature 'item' as.vector(x, mode = "any") ## S4 method for signature 'item' as.numeric(x, ...) ## S4 method for signature 'item' as.integer(x, ...) ## S4 method for signature 'item.vector' as.factor(x) ## S4 method for signature 'item.vector' as.ordered(x) ## S4 method for signature 'item.vector' as.character(x, use.labels = TRUE, include.missings = FALSE, ...) ## S4 method for signature 'datetime.item.vector' as.character() ## S4 method for signature 'Date.item.vector' as.character() # The following methods are unlikely to be useful in practice, other than # that they are called internally by the 'as.data.frame()' method for "data.set" # objects. ## S3 method for class 'character.item' as.data.frame(x, row.names = NULL, optional = FALSE, ...) ## S3 method for class 'double.item' as.data.frame(x, row.names = NULL, optional = FALSE, ...) ## S3 method for class 'integer.item' as.data.frame(x, row.names = NULL, optional = FALSE, ...) ## S3 method for class 'Date.item' as.data.frame(x, row.names = NULL, optional = FALSE, ...) ## S3 method for class 'datetime.item' as.data.frame(x, row.names = NULL, optional = FALSE, ...)
x |
an object in class "item","item.vector", etc., as relevant for the respective conversion method. |
mode |
the mode of the vector to be returned, usually |
use.labels |
logical,should value labels be used for creating the character vector? |
include.missings |
logical; if |
row.names |
optional row names, see |
optional |
a logical value, see |
... |
other arguments, ignored. |
The function as.vector()
returns a logical, numeric, or character
depending on the mode=
argument. If mode="any"
, the vector
has the mode that corresponds to the (internal) mode of the item
vector, that is, an item in class "integer.item" will become an integer
vector, an item in class "double.item" will become a double-precision
numeric vector, an item in class "character.item" will become a
character vector; since the internal mode of a "dateitem.item" or a
"Date.item" vector is numeric, a numeric vector will be returned.
The functions as.integer()
, as.numeric()
, as.character()
,
as.factor()
, and as.ordered()
return an integer, numeric,
or character vector, or an ordered or unordered factor, respectively.
When as.data.frame()
is applied to an survey item object, the
result is a single-column data frame, where the single column is a
numeric vector or character vector or factor depending on the
measurement
attribute of the item. In particular, if the
measurement
attribute equals "ratio"
or
"interval"
this column will be the result of as.vector()
,
if the measurement
attribute equals "ordinal"
this
column will be an ordered factor (see ordered
), and if
the measurement
attribute equals "nominal"
this
column will be an unordered factor (see factor
).
All these functions have in common that values declared as "missing" by
virtue of the value.filter
attribute will be turned into NA
.
items
annotation
labels
value.filter
x <- as.item(rep(1:5,4), labels=c( "First" = 1, "Second" = 2, "Third" = 3, "Fourth" = 4, "Don't know" = 5 ), missing.values=5, annotation = c( description="test" )) str(x) summary(x) as.numeric(x) test <- as.item(rep(1:6,2),labels=structure(1:6, names=letters[1:6])) as.factor(test) as.numeric(test) as.character(test) as.character(test,include.missings=TRUE) as.data.frame(test)[[1]]
x <- as.item(rep(1:5,4), labels=c( "First" = 1, "Second" = 2, "Third" = 3, "Fourth" = 4, "Don't know" = 5 ), missing.values=5, annotation = c( description="test" )) str(x) summary(x) as.numeric(x) test <- as.item(rep(1:6,2),labels=structure(1:6, names=letters[1:6])) as.factor(test) as.numeric(test) as.character(test) as.character(test,include.missings=TRUE) as.data.frame(test)[[1]]
Value labels associate character labels to possible values of an encoded survey item. Value labels are represented as objects of class "value.labels".
Value labels of an item can be obtained
using labels(x)
and
can be associated to items and to vectors
using labels(x) <- value
Value labels also can be updated using the +
and -
operators.
labels(object,...) labels(x) <- value
labels(object,...) labels(x) <- value
object |
any object. |
... |
further arguments for other methods. |
x |
a vector or "item" object. |
value |
an object of class "value.labels" or a vector that can be coerced into an "value.labels" object or NULL |
x <- as.item(rep(1:5,4), labels=c( "First" = 1, "Second" = 2, "Third" = 3, "Fourth" = 4, "Don't know" = 5 ), missing.values=5, annotation = c( description="test" )) labels(x) labels(x) <- labels(x) - c("Second"=2) labels(x) labels(x) <- labels(x) + c("Second"=2) labels(x) puvl <- getOption("print.use.value.labels") options(print.use.value.labels=FALSE) x options(print.use.value.labels=TRUE) x options(print.use.value.labels=puvl)
x <- as.item(rep(1:5,4), labels=c( "First" = 1, "Second" = 2, "Third" = 3, "Fourth" = 4, "Don't know" = 5 ), missing.values=5, annotation = c( description="test" )) labels(x) labels(x) <- labels(x) - c("Second"=2) labels(x) labels(x) <- labels(x) + c("Second"=2) labels(x) puvl <- getOption("print.use.value.labels") options(print.use.value.labels=FALSE) x options(print.use.value.labels=TRUE) x options(print.use.value.labels=puvl)
List
creates a list and names its elements after the
arguments given, in a manner analogously to data.frame
List(...)
List(...)
... |
tagged or untagged arguments from which the list is formed. If the untagged arguments are variables from the englosing environment, their names become the names of the list elements. |
num <- 1:3 strng <- c("a","b","A","B") logi <- rep(FALSE,7) List(num,strng,logi)
num <- 1:3 strng <- c("a","b","A","B") logi <- rep(FALSE,7) List(num,strng,logi)
Mean()
, Median()
, etc. are mere wrappers of
the functions mean()
, median()
, etc. with the
na.rm=
optional argument set TRUE
by default.
Mean(x, na.rm=TRUE, ...) Median(x, na.rm=TRUE, ...) Min(x, na.rm=TRUE, ...) Max(x, na.rm=TRUE, ...) Weighted.Mean(x, w, ..., na.rm = TRUE) Var(x, na.rm=TRUE, ...) StdDev(x, na.rm=TRUE, ...) Cov(x, y = NULL, use = "pairwise.complete.obs", ...) Cor(x, y = NULL, use = "pairwise.complete.obs", ...) Range(..., na.rm = TRUE, finite = FALSE)
Mean(x, na.rm=TRUE, ...) Median(x, na.rm=TRUE, ...) Min(x, na.rm=TRUE, ...) Max(x, na.rm=TRUE, ...) Weighted.Mean(x, w, ..., na.rm = TRUE) Var(x, na.rm=TRUE, ...) StdDev(x, na.rm=TRUE, ...) Cov(x, y = NULL, use = "pairwise.complete.obs", ...) Cor(x, y = NULL, use = "pairwise.complete.obs", ...) Range(..., na.rm = TRUE, finite = FALSE)
x |
a (numeric) vector. |
y |
a (numeric) vector or |
w |
a (numeric) vector of weights. |
na.rm |
a logical value, see |
use |
a character string, see |
... |
other arguments, passed to the wrapped functions. |
finite |
a logical value, see |
The function Means()
creates a table of group
means, optionally with standard errors, confidence intervals, and
numbers of valid observations.
Means(data, ...) ## S3 method for class 'data.frame' Means(data, by, weights=NULL, subset=NULL, default=NA, se=FALSE, ci=FALSE, ci.level=.95, counts=FALSE, ...) ## S3 method for class 'formula' Means(data, subset, weights, ...) ## S3 method for class 'numeric' Means(data, ...) ## S3 method for class 'means.table' as.data.frame(x, row.names=NULL, optional=TRUE, drop=TRUE, ...) ## S3 method for class 'xmeans.table' as.data.frame(x, row.names=NULL, optional=TRUE, drop=TRUE, ...)
Means(data, ...) ## S3 method for class 'data.frame' Means(data, by, weights=NULL, subset=NULL, default=NA, se=FALSE, ci=FALSE, ci.level=.95, counts=FALSE, ...) ## S3 method for class 'formula' Means(data, subset, weights, ...) ## S3 method for class 'numeric' Means(data, ...) ## S3 method for class 'means.table' as.data.frame(x, row.names=NULL, optional=TRUE, drop=TRUE, ...) ## S3 method for class 'xmeans.table' as.data.frame(x, row.names=NULL, optional=TRUE, drop=TRUE, ...)
data |
an object usually containing data, or a formula. If If |
by |
a formula, a vector of variable names or a data frame or list of factors. If If If |
weights |
an optional vector of weights, usually a variable in |
subset |
an optional logical vector to select observations,
usually the result of an expression in variables from |
default |
a default value used for empty cells without observations. |
se |
a logical value, indicates whether standard errors should be computed. |
ci |
a logical value, indicates whether limits of confidence intervals should be computed. |
ci.level |
a number, the confidence level of the confidence interval |
counts |
a logical value, indicates whether numbers of valid observations should be reported. |
x |
for |
row.names |
an optional character vector. This argmument presently is
inconsequential and only included for reasons of compatiblity
with the standard methods of |
optional |
an optional logical value. This argmument presently is
inconsequential and only included for reasons of compatiblity
with the standard methods of |
drop |
a logical value, determines whether "empty cells" should be dropped from the resulting data frame. |
... |
other arguments, either ignored or passed on to other methods where applicable. |
An array that inherits classes "means.table" and "table". If
Means
was called with se=TRUE
or ci=TRUE
then the result additionally inherits class "xmeans.table".
# Preparing example data USstates <- as.data.frame(state.x77) USstates <- within(USstates,{ region <- state.region name <- state.name abb <- state.abb division <- state.division }) USstates$w <- sample(runif(n=6),size=nrow(USstates),replace=TRUE) # Using the data frame method Means(USstates[c("Murder","division","region")],by=c("division","region")) Means(USstates[c("Murder","division","region")],by=USstates[c("division","region")]) Means(USstates[c("Murder")],1) Means(USstates[c("Murder","region")],by=c("region")) # Using the formula method # One 'dependent' variable Means(Murder~1, data=USstates) Means(Murder~division, data=USstates) Means(Murder~division, data=USstates,weights=w) Means(Murder~division+region, data=USstates) as.data.frame(Means(Murder~division+region, data=USstates)) # Standard errors and counts Means(Murder~division, data=USstates, se=TRUE, counts=TRUE) drop(Means(Murder~division, data=USstates, se=TRUE, counts=TRUE)) as.data.frame(Means(Murder~division, data=USstates, se=TRUE, counts=TRUE)) # Confidence intervals Means(Murder~division, data=USstates, ci=TRUE) drop(Means(Murder~division, data=USstates, ci=TRUE)) as.data.frame(Means(Murder~division, data=USstates, ci=TRUE)) # More than one dependent variable Means(Murder+Illiteracy~division, data=USstates) as.data.frame(Means(Murder+Illiteracy~division, data=USstates)) # Confidence intervals Means(Murder+Illiteracy~division, data=USstates, ci=TRUE) as.data.frame(Means(Murder+Illiteracy~division, data=USstates, ci=TRUE)) # Some 'non-standard' but still valid usages: with(USstates, Means(Murder~division+region,subset=region!="Northeast")) with(USstates, Means(Murder,by=list(division,region)))
# Preparing example data USstates <- as.data.frame(state.x77) USstates <- within(USstates,{ region <- state.region name <- state.name abb <- state.abb division <- state.division }) USstates$w <- sample(runif(n=6),size=nrow(USstates),replace=TRUE) # Using the data frame method Means(USstates[c("Murder","division","region")],by=c("division","region")) Means(USstates[c("Murder","division","region")],by=USstates[c("division","region")]) Means(USstates[c("Murder")],1) Means(USstates[c("Murder","region")],by=c("region")) # Using the formula method # One 'dependent' variable Means(Murder~1, data=USstates) Means(Murder~division, data=USstates) Means(Murder~division, data=USstates,weights=w) Means(Murder~division+region, data=USstates) as.data.frame(Means(Murder~division+region, data=USstates)) # Standard errors and counts Means(Murder~division, data=USstates, se=TRUE, counts=TRUE) drop(Means(Murder~division, data=USstates, se=TRUE, counts=TRUE)) as.data.frame(Means(Murder~division, data=USstates, se=TRUE, counts=TRUE)) # Confidence intervals Means(Murder~division, data=USstates, ci=TRUE) drop(Means(Murder~division, data=USstates, ci=TRUE)) as.data.frame(Means(Murder~division, data=USstates, ci=TRUE)) # More than one dependent variable Means(Murder+Illiteracy~division, data=USstates) as.data.frame(Means(Murder+Illiteracy~division, data=USstates)) # Confidence intervals Means(Murder+Illiteracy~division, data=USstates, ci=TRUE) as.data.frame(Means(Murder+Illiteracy~division, data=USstates, ci=TRUE)) # Some 'non-standard' but still valid usages: with(USstates, Means(Murder~division+region,subset=region!="Northeast")) with(USstates, Means(Murder,by=list(division,region)))
The measurement level of a "item"
object, which is one of "nominal", "ordinal", "interval", "ratio",
determines what happens to it, if it or the data.set
containing it is coerced into a data.frame
.
If the level of measurement level is "nominal", the it will be
converted into an (unordered) factor, if the level of measurement is "ordinal",
the item will be converted into an ordered vector. If the measurement
is "interval" or "ratio", the item will be converted into a numerical vector.
## S4 method for signature 'item' measurement(x) ## S4 replacement method for signature 'item' measurement(x) <- value ## S4 method for signature 'data.set' measurement(x) ## S4 replacement method for signature 'data.set' measurement(x) <- value is.nominal(x) is.ordinal(x) is.interval(x) is.ratio(x) as.nominal(x) as.ordinal(x) as.interval(x) as.ratio(x) set_measurement(x,...)
## S4 method for signature 'item' measurement(x) ## S4 replacement method for signature 'item' measurement(x) <- value ## S4 method for signature 'data.set' measurement(x) ## S4 replacement method for signature 'data.set' measurement(x) <- value is.nominal(x) is.ordinal(x) is.interval(x) is.ratio(x) as.nominal(x) as.ordinal(x) as.interval(x) as.ratio(x) set_measurement(x,...)
x |
an object, usually of class |
value |
for the |
... |
vectors of variable names, either symbols or character strings, tagged with the intended measurement level. |
The item
method of measurement(x)
returns a character
string, the data.set
method returns a named character vector,
where the name of each element is a variable name and each.
as.nominal
, as.ordinal
, as.interval
, as.ratio
return an item with the requested level of measurement setting.
is.nominal
, is.ordinal
, is.interval
, is.ratio
return a logical value.
Stevens, Stanley S. 1946. "On the theory of scales of measurement." Science 103: 677-680.
vote <- sample(c(1,2,3,8,9),size=30,replace=TRUE) labels(vote) <- c(Conservatives = 1, Labour = 2, "Liberal Democrats" = 3, "Don't know" = 8, "Answer refused" = 9 ) missing.values(vote) <- c(8,9) as.data.frame(vote)[[1]] measurement(vote) <- "interval" as.data.frame(vote)[[1]] vote <- as.nominal(vote) as.data.frame(vote)[[1]] group <- sample(c(1,2),size=30,replace=TRUE) labels(group) <- c(A=1,B=2) DataS <- data.set(group,vote) measurement(DataS) measurement(DataS) <- list(interval=c("group","vote")) head(as.data.frame(DataS)) DataS <- set_measurement(DataS, nominal=c(group,vote)) head(as.data.frame(DataS))
vote <- sample(c(1,2,3,8,9),size=30,replace=TRUE) labels(vote) <- c(Conservatives = 1, Labour = 2, "Liberal Democrats" = 3, "Don't know" = 8, "Answer refused" = 9 ) missing.values(vote) <- c(8,9) as.data.frame(vote)[[1]] measurement(vote) <- "interval" as.data.frame(vote)[[1]] vote <- as.nominal(vote) as.data.frame(vote)[[1]] group <- sample(c(1,2),size=30,replace=TRUE) labels(group) <- c(A=1,B=2) DataS <- data.set(group,vote) measurement(DataS) measurement(DataS) <- list(interval=c("group","vote")) head(as.data.frame(DataS)) DataS <- set_measurement(DataS, nominal=c(group,vote)) head(as.data.frame(DataS))
The generic function measurement_autolevel
changes the measurement
levels of "item" objects to "nominal" or "ordinal", if
the proportion of its values that have labels is above a certain
threshold.
measurement_autolevel(x, ...) ## S4 method for signature 'ANY' measurement_autolevel(x, ...) # Returns its argument as is ## S4 method for signature 'item.vector' measurement_autolevel(x, to=getOption("measurement.adapt.default","nominal"), threshold=getOption("measurement.adapt.threshold",.75), ...) ## S4 method for signature 'data.set' measurement_autolevel(x, to=getOption("measurement.adapt.default","nominal"), threshold=getOption("measurement.adapt.threshold",.75), except=NULL, only=NULL, ...)
measurement_autolevel(x, ...) ## S4 method for signature 'ANY' measurement_autolevel(x, ...) # Returns its argument as is ## S4 method for signature 'item.vector' measurement_autolevel(x, to=getOption("measurement.adapt.default","nominal"), threshold=getOption("measurement.adapt.threshold",.75), ...) ## S4 method for signature 'data.set' measurement_autolevel(x, to=getOption("measurement.adapt.default","nominal"), threshold=getOption("measurement.adapt.threshold",.75), except=NULL, only=NULL, ...)
x |
an object from class "item.vector" or "data.set". |
to |
a character vector, the target measurement level |
threshold |
the proportion of values, if reached the target measurement level is set |
except |
a vector with variable names, either as symbols
(without quotation marks) or character strings (with quotation
markes), the variables in the data set that are not to be
changed by |
only |
a vector with variable names, either as symbols
(without quotation marks) or character strings (with quotation
markes), the variables in the data set that are to be
changed by |
... |
other arguments, currently ignored. |
exvect <- as.item(rep(1:2,5)) labels(exvect) <- c(a=1,b=2) codebook(exvect) codebook(measurement_autolevel(exvect)) avect <- as.item(sample(1:3,16,replace=TRUE)) labels(avect) <- c(a=1,b=2,c=3) bvect <- as.item(sample(1:4,16,replace=TRUE)) labels(bvect) <- c(A=1,B=2,C=3,D=4) ds <- data.set(a=avect,b=bvect) codebook(ds) codebook(measurement_autolevel(ds)) codebook(measurement_autolevel(ds,except=c(a,b))) codebook(measurement_autolevel(ds,only=a))
exvect <- as.item(rep(1:2,5)) labels(exvect) <- c(a=1,b=2) codebook(exvect) codebook(measurement_autolevel(exvect)) avect <- as.item(sample(1:3,16,replace=TRUE)) labels(avect) <- c(a=1,b=2,c=3) bvect <- as.item(sample(1:4,16,replace=TRUE)) labels(bvect) <- c(A=1,B=2,C=3,D=4) ds <- data.set(a=avect,b=bvect) codebook(ds) codebook(measurement_autolevel(ds)) codebook(measurement_autolevel(ds,except=c(a,b))) codebook(measurement_autolevel(ds,only=a))
This package collects an assortment of tools that are intended to make
work with R
easier for the author of this package
and are submitted to the public in the hope that they will be also be useful to others.
The tools in this package can be grouped into four major categories:
Data preparation and management
Data analysis
Presentation of analysis results
Programming
memisc
provides facilities to work with what users from other
packages like SPSS, SAS, or Stata know as ‘variable labels’, ‘value labels’
and ‘user-defined missing values’. In the context of this package these
aspects of the data are represented by the "description"
,
"labels"
, and "missing.values"
attributes of a
data vector.
These facilities are useful, for example, if you work with
survey data that contain coded items like vote intention that
may have the following structure:
Question: “If there was a parliamentary election next tuesday, which party would you vote for?”
1 | Conservative Party |
2 | Labour Party |
3 | Liberal Democrat Party |
4 | Scottish Nation Party |
5 | Plaid Cymru |
6 | Green Party |
7 | British National Party |
8 | Other party |
96 | Not allowed to vote |
97 | Would not vote |
98 | Would vote, do not know yet for which party |
99 | No answer |
A statistical package like SPSS allows to
attach labels like ‘Conservative Party’, ‘Labour Party’, etc.
to the codes 1,2,3, etc. and to mark
mark the codes 96, 97, 98, 99
as ‘missing’ and thus to exclude these variables from statistical
analyses. memisc
provides similar facilities.
Labels can be attached to codes by calls like labels(x) <- something
and expendanded by calls like labels(x) <- labels(x) + something
,
codes can be marked as ‘missing’ by
calls like missing.values(x) <- something
and
missing.values(x) <- missing.values(x) + something
.
memisc
defines a class called "data.set", which is similar to the class "data.frame".
The main difference is that it is especially geared toward containing survey item data.
Transformations of and within "data.set" objects retain the information about
value labels, missing values etc. Using as.data.frame
sets the data up for
R's statistical functions, but doing this explicitely is seldom necessary.
See data.set
.
Survey data sets are often relative large and contain up to a few thousand variables.
For specific analyses one needs however only a relatively small subset of these variables.
Although modern computers have enough RAM to load such data sets completely into an R session,
this is not very efficient having to drop most of the variables after loading. Also, loading
such a large data set completely can be time-consuming, because R has to allocate space for
each of the many variables. Loading just the subset of variables really needed for an analysis
is more efficient and convenient - it tends to be much quicker. Thus this package provides
facilities to load such subsets of variables, without the need to load a complete data set.
Further, the loading of data from SPSS files is organized in such a way that all informations
about variable labels, value labels, and user-defined missing values are retained.
This is made possible by the definition of importer
objects, for which
a subset
method exists. importer
objects contain only
the information about the variables in the external data set but not the data.
The data itself is loaded into memory when the functions subset
or as.data.set
are used.
memisc
also contains facilities for recoding
survey items. Simple recodings, for example collapsing answer
categories, can be done using the function recode
. More
complex recodings, for example the construction of indices from
multiple items, and complex case distinctions, can be done
using the function cases
. This function may also
be useful for programming, in so far as it is a generalization of
ifelse
.
There is a function codebook
which produces a code book of an
external data set or an internal "data.set" object. A codebook contains in a
conveniently formatted way concise information about every variable in a data set,
such as which value labels and missing values are defined and some univariate statistics.
An extended example of all these facilities is contained in the vignette "anes48",
and in demo(anes48)
genTable
is a generalization of xtabs
:
Instead of counts, also descriptive statistics like means or variances
can be reported conditional on levels of factors. Also conditional
percentages of a factor can be obtained using this function.
In addition an Aggregate
function is provided, which has the same syntax as genTable
, but
gives a data frame of descriptive statistics instead of a table
object.
By
is a variant of the
standard function by
: Conditioning factors
are specified by a formula and are
obtained from the data frame the subsets of which are to be analysed.
Therefore there is no need to attach
the data frame
or to use the dollar operator.
Journals of the Political and Social Sciences usually require that estimates of regression models are presented in the following form:
================================================== Model 1 Model 2 Model 3 -------------------------------------------------- Coefficients (Intercept) 30.628*** 6.360*** 28.566*** (7.409) (1.252) (7.355) pop15 -0.471** -0.461** (0.147) (0.145) pop75 -1.934 -1.691 (1.041) (1.084) dpi 0.001 -0.000 (0.001) (0.001) ddpi 0.529* 0.410* (0.210) (0.196) -------------------------------------------------- Summaries R-squared 0.262 0.162 0.338 adj. R-squared 0.230 0.126 0.280 N 50 50 50 ==================================================
Such tables of coefficient estimates can be produced
by mtable
. To see some of the possibilities of
this function, use example(mtable)
.
Output produced by mtable
can be transformed into
LaTeX tables by an appropriate method of the generic function
toLatex
which is defined in the package
utils
. In addition, memisc
defines toLatex
methods
for matrices and ftable
objects. Note that
results produced by genTable
can be coerced into
ftable
objects. Also, a default method
for the toLatex
function is defined which coerces its
argument to a matrix and applies the matrix method of toLatex
.
Sometimes users want to contruct loops that run over variables rather than values.
For example, if one wants to set the missing values of a battery of items.
For this purpose, the package contains the function foreach
.
To set 8 and 9 as missing values for the items knowledge1
,
knowledge2
, knowledge3
, one can use
foreach(x=c(knowledge1,knowledge2,knowledge3), missing.values(x) <- 8:9)
R
already makes it possible to change the names of an object.
Substituting the names
or dimnames
can be done with some programming tricks. This package defines
the function rename
,
dimrename
, colrename
, and rowrename
that implement these tricks in a convenient way, so that programmers
(like the author of this package) need not reinvent the weel in
every instance of changing names of an object.
lapply
and sapply
If a function that is involved in a call to
sapply
returns a result an array or a matrix, the
dimensional information gets lost. Also, if a list object to which
lapply
or sapply
are applied
have a dimension attribute, the result looses this information.
The functions Lapply
and
Sapply
defined in this package preserve such
dimensional information.
The generic function collect
collects several objects of the
same mode into one object, using their names, rownames
,
colnames
and/or dimnames
. There are methods for
atomic vectors, arrays (including matrices), and data frames.
For example
a <- c(a=1,b=2) b <- c(a=10,c=30) collect(a,b)
leads to
x y a 1 10 b 2 NA c NA 30
The memisc
package includes a reorder
method for arrays and matrices. For example, the matrix
method by default reorders the rows of a matrix according the results
of a function.
These functions are provided for compatibility with older versions of memisc only, and may be defunct as soon as the next release.
fapply(formula,data,...) # calls UseMethod("fapply",data) ## Default S3 method: fapply(formula, data, subset=NULL, names=NULL, addFreq=TRUE,...)
fapply(formula,data,...) # calls UseMethod("fapply",data) ## Default S3 method: fapply(formula, data, subset=NULL, names=NULL, addFreq=TRUE,...)
formula |
a formula. The right hand side includes one or more grouping variables separated by '+'. These may be factors, numeric, or character vectors. The left hand side may be empty, a numerical variable, a factor, or an expression. See details below. |
data |
an environment or data frame or an object coercable into a data frame. |
subset |
an optional vector specifying a subset of observations to be used. |
names |
an optional character vector giving names to the
result(s) yielded by the expression on the left hand side of |
addFreq |
a logical value. If TRUE and
|
... |
further arguments, passed to methods or ignored. |
mtable
produces a table of estimates for several models.
mtable(...,coef.style=getOption("coef.style"), summary.stats=TRUE, signif.symbols=getOption("signif.symbols"), factor.style=getOption("factor.style"), show.baselevel=getOption("show.baselevel"), baselevel.sep=getOption("baselevel.sep"), getSummary=eval.parent(quote(getSummary)), float.style=getOption("float.style"), digits=min(3,getOption("digits")), sdigits=digits, show.eqnames=getOption("mtable.show.eqnames",NA), gs.options=NULL, controls=NULL, collapse.controls=FALSE, control.var.indicator=getOption("control.var.indicator",c("Yes","No")) ) ## S3 method for class 'memisc_mtable' relabel(x, ..., gsub = FALSE, fixed = !gsub, warn = FALSE) ## S3 method for class 'memisc_mtable' format(x,target=c("print","LaTeX","HTML","delim"), ... ) ## S3 method for class 'memisc_mtable' print(x, center.at=getOption("OutDec"), topsep="=",bottomsep="=",sectionsep="-",...) write.mtable(object,file="", format=c("delim","LaTeX","HTML"),...) ## S3 method for class 'memisc_mtable' toLatex(object,...)
mtable(...,coef.style=getOption("coef.style"), summary.stats=TRUE, signif.symbols=getOption("signif.symbols"), factor.style=getOption("factor.style"), show.baselevel=getOption("show.baselevel"), baselevel.sep=getOption("baselevel.sep"), getSummary=eval.parent(quote(getSummary)), float.style=getOption("float.style"), digits=min(3,getOption("digits")), sdigits=digits, show.eqnames=getOption("mtable.show.eqnames",NA), gs.options=NULL, controls=NULL, collapse.controls=FALSE, control.var.indicator=getOption("control.var.indicator",c("Yes","No")) ) ## S3 method for class 'memisc_mtable' relabel(x, ..., gsub = FALSE, fixed = !gsub, warn = FALSE) ## S3 method for class 'memisc_mtable' format(x,target=c("print","LaTeX","HTML","delim"), ... ) ## S3 method for class 'memisc_mtable' print(x, center.at=getOption("OutDec"), topsep="=",bottomsep="=",sectionsep="-",...) write.mtable(object,file="", format=c("delim","LaTeX","HTML"),...) ## S3 method for class 'memisc_mtable' toLatex(object,...)
... |
as argument to |
coef.style |
a character string which specifies the style of
coefficient values, whether standard errors, Wald/t-statistics,
or significance levels are reported, etc. See |
summary.stats |
if This argument may also contain a character vector with
the names of the summary statistics to report, or a list of
character vectors with names of summary statistics for each
object passed as argument in |
signif.symbols |
a named numeric vector to specify the "significance levels" and corresponding symbols. The numeric elements define the significance levels, the attached names define the associated symbols. |
factor.style |
a character string that specifies the style in
which factor contrasts are labled. See |
show.baselevel |
logical; determines whether base levels of factors are indicated for dummy coefficients |
baselevel.sep |
character that is used to separate the base level from the level that a dummy variable represents |
getSummary |
a function that computes model-related statistics that
appear in the table. See |
float.style |
default format for floating point numbers if
no format is specified by |
.
digits |
number of significant digits if not specified by
the template returned from |
sdigits |
integer; number of digits after decimal dot for summary statistics. |
show.eqnames |
logical; if |
gs.options |
an optional list of arguments passed on to
|
controls |
an optional formula or character vector that designates "control variables" for which no coefficients are reported, but only whether they are present in the model. |
collapse.controls |
a logical values; should the report about inclusion of control variables collapsed to a single value? If yes, models should either contain none or all of the control variables. |
control.var.indicator |
a character vector with to elements; the first element being used
to indicate the presence of a control variable or all
control variables (if |
x , object
|
an object of class |
gsub , warn , fixed
|
logical values, see |
target |
a character string which indicates the target format.
Currenlty the targets
"print" (see |
center.at |
a character string on which resulting values are centered.
Typically equal to ".". This is the default when |
topsep |
a character string that is recycled to a top rule. |
bottomsep |
a character string that is recycled to a bottom rule. |
sectionsep |
a character string that is recycled to seperate coefficients from summary statistics. |
file |
name of the file where to write to; defaults to console output. |
format |
character string that specifies the desired format. |
mtable
constructs a table of estimates for regression-type models.
format.memisc_mtable
formats suitable for use with output or conversion functions
such as print.memisc_mtable
, toLatex.memisc_mtable
, or
write.memisc_mtable
.
A call to mtable
results in an object of class "mtable"
with the following components:
coefficients |
a list that contains the model coefficients, |
summaries |
a matrix that contains the model summaries, |
calls |
a list of calls that created the model estimates being summarised. |
#### Basic workflow lm0 <- lm(sr ~ pop15 + pop75, data = LifeCycleSavings) lm1 <- lm(sr ~ dpi + ddpi, data = LifeCycleSavings) lm2 <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings) options(summary.stats.lm=c("R-squared","N")) mtable("Model 1"=lm0,"Model 2"=lm1,"Model 3"=lm2) options(summary.stats.lm=c("sigma","R-squared","N")) mtable("Model 1"=lm0,"Model 2"=lm1,"Model 3"=lm2) options(summary.stats.lm=NULL) mtable123 <- mtable("Model 1"=lm0,"Model 2"=lm1,"Model 3"=lm2, summary.stats=c("sigma","R-squared","F","p","N")) (mtable123 <- relabel(mtable123, "(Intercept)" = "Constant", pop15 = "Percentage of population under 15", pop75 = "Percentage of population over 75", dpi = "Real per-capita disposable income", ddpi = "Growth rate of real per-capita disp. income" )) # This produces output in tab-delimited format: write.mtable(mtable123) ## Not run: # This produces output in tab-delimited format: file123 <- "mtable123.txt" write.mtable(mtable123,file=file123) file.show(file123) # The contents of this file can be pasted into Word # and converted into a Word table. ## End(Not run) ## Not run: texfile123 <- "mtable123.tex" write.mtable(mtable123,format="LaTeX",file=texfile123) file.show(texfile123) ## End(Not run) #### Examples with UC Berkeley data berkeley <- Aggregate(Table(Admit,Freq)~.,data=UCBAdmissions) berk0 <- glm(cbind(Admitted,Rejected)~1,data=berkeley,family="binomial") berk1 <- glm(cbind(Admitted,Rejected)~Gender,data=berkeley,family="binomial") berk2 <- glm(cbind(Admitted,Rejected)~Gender+Dept,data=berkeley,family="binomial") mtable(berk0,summary.stats=c("Deviance","N")) mtable(berk1,summary.stats=c("Deviance","N")) mtable(berk0,berk1,berk2,summary.stats=c("Deviance","N")) mtable(berk0,berk1,berk2, coef.style="horizontal", summary.stats=c("Deviance","AIC","N")) mtable(berk0,berk1,berk2, coef.style="stat", summary.stats=c("Deviance","AIC","N")) mtable(berk0,berk1,berk2, coef.style="ci", summary.stats=c("Deviance","AIC","N")) mtable(berk0,berk1,berk2, coef.style="ci.se", summary.stats=c("Deviance","AIC","N")) mtable(berk0,berk1,berk2, coef.style="ci.se.horizontal", summary.stats=c("Deviance","AIC","N")) mtable(berk0,berk1,berk2, coef.style="ci.p.horizontal", summary.stats=c("Deviance","AIC","N")) mtable(berk0,berk1,berk2, coef.style="ci.horizontal", summary.stats=c("Deviance","AIC","N")) mtable(berk0,berk1,berk2, coef.style="all", summary.stats=c("Deviance","AIC","N")) mtable(berk0,berk1,berk2, coef.style="all.nostar", summary.stats=c("Deviance","AIC","N")) mtable(by(berkeley,berkeley$Dept, function(x)glm(cbind(Admitted,Rejected)~Gender, data=x,family="binomial")), summary.stats=c("Likelihood-ratio","N")) mtable(By(~Gender, glm(cbind(Admitted,Rejected)~Dept, family="binomial"), data=berkeley), summary.stats=c("Likelihood-ratio","N")) berkfull <- glm(cbind(Admitted,Rejected)~Dept/Gender - 1, data=berkeley,family="binomial") relabel(mtable(berkfull),Dept="Department",gsub=TRUE) #### Array-like semantics mtable123 <- mtable("Model 1"=lm0,"Model 2"=lm1,"Model 3"=lm2, summary.stats=c("sigma","R-squared","F","p","N")) dim(mtable123) dimnames(mtable123) mtable123[c("dpi","ddpi"), c("Model 2","Model 3")] #### Concatention mt01 <- mtable(lm0,lm1,summary.stats=c("R-squared","N")) mt12 <- mtable(lm1,lm2,summary.stats=c("R-squared","F","N")) c(mt01,mt12) # not that this makes sense, but ... c("Group 1"=mt01, "Group 2"=mt12)
#### Basic workflow lm0 <- lm(sr ~ pop15 + pop75, data = LifeCycleSavings) lm1 <- lm(sr ~ dpi + ddpi, data = LifeCycleSavings) lm2 <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings) options(summary.stats.lm=c("R-squared","N")) mtable("Model 1"=lm0,"Model 2"=lm1,"Model 3"=lm2) options(summary.stats.lm=c("sigma","R-squared","N")) mtable("Model 1"=lm0,"Model 2"=lm1,"Model 3"=lm2) options(summary.stats.lm=NULL) mtable123 <- mtable("Model 1"=lm0,"Model 2"=lm1,"Model 3"=lm2, summary.stats=c("sigma","R-squared","F","p","N")) (mtable123 <- relabel(mtable123, "(Intercept)" = "Constant", pop15 = "Percentage of population under 15", pop75 = "Percentage of population over 75", dpi = "Real per-capita disposable income", ddpi = "Growth rate of real per-capita disp. income" )) # This produces output in tab-delimited format: write.mtable(mtable123) ## Not run: # This produces output in tab-delimited format: file123 <- "mtable123.txt" write.mtable(mtable123,file=file123) file.show(file123) # The contents of this file can be pasted into Word # and converted into a Word table. ## End(Not run) ## Not run: texfile123 <- "mtable123.tex" write.mtable(mtable123,format="LaTeX",file=texfile123) file.show(texfile123) ## End(Not run) #### Examples with UC Berkeley data berkeley <- Aggregate(Table(Admit,Freq)~.,data=UCBAdmissions) berk0 <- glm(cbind(Admitted,Rejected)~1,data=berkeley,family="binomial") berk1 <- glm(cbind(Admitted,Rejected)~Gender,data=berkeley,family="binomial") berk2 <- glm(cbind(Admitted,Rejected)~Gender+Dept,data=berkeley,family="binomial") mtable(berk0,summary.stats=c("Deviance","N")) mtable(berk1,summary.stats=c("Deviance","N")) mtable(berk0,berk1,berk2,summary.stats=c("Deviance","N")) mtable(berk0,berk1,berk2, coef.style="horizontal", summary.stats=c("Deviance","AIC","N")) mtable(berk0,berk1,berk2, coef.style="stat", summary.stats=c("Deviance","AIC","N")) mtable(berk0,berk1,berk2, coef.style="ci", summary.stats=c("Deviance","AIC","N")) mtable(berk0,berk1,berk2, coef.style="ci.se", summary.stats=c("Deviance","AIC","N")) mtable(berk0,berk1,berk2, coef.style="ci.se.horizontal", summary.stats=c("Deviance","AIC","N")) mtable(berk0,berk1,berk2, coef.style="ci.p.horizontal", summary.stats=c("Deviance","AIC","N")) mtable(berk0,berk1,berk2, coef.style="ci.horizontal", summary.stats=c("Deviance","AIC","N")) mtable(berk0,berk1,berk2, coef.style="all", summary.stats=c("Deviance","AIC","N")) mtable(berk0,berk1,berk2, coef.style="all.nostar", summary.stats=c("Deviance","AIC","N")) mtable(by(berkeley,berkeley$Dept, function(x)glm(cbind(Admitted,Rejected)~Gender, data=x,family="binomial")), summary.stats=c("Likelihood-ratio","N")) mtable(By(~Gender, glm(cbind(Admitted,Rejected)~Dept, family="binomial"), data=berkeley), summary.stats=c("Likelihood-ratio","N")) berkfull <- glm(cbind(Admitted,Rejected)~Dept/Gender - 1, data=berkeley,family="binomial") relabel(mtable(berkfull),Dept="Department",gsub=TRUE) #### Array-like semantics mtable123 <- mtable("Model 1"=lm0,"Model 2"=lm1,"Model 3"=lm2, summary.stats=c("sigma","R-squared","F","p","N")) dim(mtable123) dimnames(mtable123) mtable123[c("dpi","ddpi"), c("Model 2","Model 3")] #### Concatention mt01 <- mtable(lm0,lm1,summary.stats=c("R-squared","N")) mt12 <- mtable(lm1,lm2,summary.stats=c("R-squared","F","N")) c(mt01,mt12) # not that this makes sense, but ... c("Group 1"=mt01, "Group 2"=mt12)
mtable_mtable_print
formats 'mtable' in a way suitable for output into a file
with write.table
mtable_format_delim(x, colsep="\t", rowsep="\n", interaction.sep = " x ", ... )
mtable_format_delim(x, colsep="\t", rowsep="\n", interaction.sep = " x ", ... )
x |
an object of class |
colsep |
a character string which seperates the columns in the output. |
rowsep |
a character string which seperates the rows in the output. |
interaction.sep |
a character string that separates factors that are involved in an interaction effect |
... |
further arguments, ignored. |
A character string.
These functions formats 'mtable' objects into HTML format.
mtable_format_html(x, interaction.sep = NULL, toprule=2,midrule=1,bottomrule=2, split.dec=TRUE, style=mtable_format_stdstyle, margin="2ex auto", sig.notes.style=c(width="inherit"), ... ) ## S3 method for class 'memisc_mtable' format_html(x, interaction.sep = NULL, toprule=2,midrule=1,bottomrule=2, split.dec=TRUE, style=mtable_format_stdstyle, margin="2ex auto", sig.notes.style=c(width="inherit"), ... )
mtable_format_html(x, interaction.sep = NULL, toprule=2,midrule=1,bottomrule=2, split.dec=TRUE, style=mtable_format_stdstyle, margin="2ex auto", sig.notes.style=c(width="inherit"), ... ) ## S3 method for class 'memisc_mtable' format_html(x, interaction.sep = NULL, toprule=2,midrule=1,bottomrule=2, split.dec=TRUE, style=mtable_format_stdstyle, margin="2ex auto", sig.notes.style=c(width="inherit"), ... )
x |
an object of class |
toprule |
integer; thickness in pixels of rule at the top of the table. |
midrule |
integer; thickness in pixels of rules within the table. |
bottomrule |
integer; thickness in pixels of rule at the bottom of the table. |
interaction.sep |
a character string that separates factors that are involved in an interaction effect or NULL. If NULL then a reasonable default is used (either a unicode character or an ampersand encoded HTML entity). |
split.dec |
logical; whether numbers should be centered at the decimal point by splitting the table cells. |
style |
string containing default the CSS styling. |
margin |
character string, determines the margin and thus the position of the HTML table. |
sig.notes.style |
a character vector with named elements, allows extra styling of the p-values notes at the bottom of the table. |
... |
further arguments, ignored. |
A character string with code suitable for inclusion into a HTML-file.
lm0 <- lm(sr ~ pop15 + pop75, data = LifeCycleSavings) lm1 <- lm(sr ~ dpi + ddpi, data = LifeCycleSavings) lm2 <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings) mtable123 <- mtable("Model 1"=lm0,"Model 2"=lm1,"Model 3"=lm2, summary.stats=c("sigma","R-squared","F","p","N")) (mtable123 <- relabel(mtable123, "(Intercept)" = "Constant", pop15 = "Percentage of population under 15", pop75 = "Percentage of population over 75", dpi = "Real per-capita disposable income", ddpi = "Growth rate of real per-capita disp. income" )) # Use HTML entity '−' for minus sign options(html.use.ampersand=TRUE) show_html(mtable123) show_html(mtable123[1:2], sig.notes.style=c(width="30ex")) # Use unicode for minus sign (default) options(html.use.ampersand=FALSE) show_html(mtable123)
lm0 <- lm(sr ~ pop15 + pop75, data = LifeCycleSavings) lm1 <- lm(sr ~ dpi + ddpi, data = LifeCycleSavings) lm2 <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings) mtable123 <- mtable("Model 1"=lm0,"Model 2"=lm1,"Model 3"=lm2, summary.stats=c("sigma","R-squared","F","p","N")) (mtable123 <- relabel(mtable123, "(Intercept)" = "Constant", pop15 = "Percentage of population under 15", pop75 = "Percentage of population over 75", dpi = "Real per-capita disposable income", ddpi = "Growth rate of real per-capita disp. income" )) # Use HTML entity '−' for minus sign options(html.use.ampersand=TRUE) show_html(mtable123) show_html(mtable123[1:2], sig.notes.style=c(width="30ex")) # Use unicode for minus sign (default) options(html.use.ampersand=FALSE) show_html(mtable123)
This function formats objects created by mtable
for inclusion
into LaTeX files.
mtable_format_latex(x, useDcolumn=getOption("useDcolumn",TRUE), colspec=if(useDcolumn) paste("D{.}{",LaTeXdec,"}{",ddigits,"}",sep="") else "l", LaTeXdec=".", ddigits=min(3,getOption("digits")), useBooktabs=getOption("useBooktabs",TRUE), toprule=if(useBooktabs) "\\toprule" else "\\hline\\hline", midrule=if(useBooktabs) "\\midrule" else "\\hline", cmidrule=if(useBooktabs) "\\cmidrule" else "\\cline", bottomrule=if(useBooktabs) "\\bottomrule" else "\\hline\\hline", interaction.sep = " $\\times$ ", sdigits=min(1,ddigits), compact=FALSE, sumry.multicol=FALSE, escape.tex=getOption("toLatex.escape.tex",FALSE), signif.notes.type=getOption("toLatex.signif.notes.type","include"), signif.notes.spec=getOption("toLatex.signif.notes.spec","p{.5\\linewidth}"), ... )
mtable_format_latex(x, useDcolumn=getOption("useDcolumn",TRUE), colspec=if(useDcolumn) paste("D{.}{",LaTeXdec,"}{",ddigits,"}",sep="") else "l", LaTeXdec=".", ddigits=min(3,getOption("digits")), useBooktabs=getOption("useBooktabs",TRUE), toprule=if(useBooktabs) "\\toprule" else "\\hline\\hline", midrule=if(useBooktabs) "\\midrule" else "\\hline", cmidrule=if(useBooktabs) "\\cmidrule" else "\\cline", bottomrule=if(useBooktabs) "\\bottomrule" else "\\hline\\hline", interaction.sep = " $\\times$ ", sdigits=min(1,ddigits), compact=FALSE, sumry.multicol=FALSE, escape.tex=getOption("toLatex.escape.tex",FALSE), signif.notes.type=getOption("toLatex.signif.notes.type","include"), signif.notes.spec=getOption("toLatex.signif.notes.spec","p{.5\\linewidth}"), ... )
x |
an object of class |
useDcolumn |
should the |
colspec |
LaTeX table column format specifyer(s). |
LaTeXdec |
the decimal point in the final LaTeX output. |
ddigits |
alignment specification or digits after the decimal point. |
useBooktabs |
should the |
toprule |
appearance of the top border of the LaTeX |
midrule |
how are coefficients and summary statistics
separated in the LaTeX |
cmidrule |
appearance of rules under section headings. |
bottomrule |
appearance of the bottom border of the LaTeX |
interaction.sep |
a character string that separates factors that are involved in an interaction effect |
sdigits |
integer; number of digits after decimal dot for summary statistics. |
compact |
logical; should the table be compact, without extra columns between multi-equation models? |
sumry.multicol |
logical, should summaries enclosed into
|
escape.tex |
logical, should symbols |
signif.notes.type |
character string; should be either
|
signif.notes.spec |
character string; specifies format
of cells that include notes about p-values; relevant only if
|
... |
further arguments, ignored. |
A character string with code suitable for inclusion into a LaTeX-file.
mtable_format_print
formats 'mtable' in a way suitable for screen output
with 'print'.
mtable_format_print(x, topsep="=", bottomsep="=", sectionsep="-", interaction.sep = " x ", center.at=getOption("OutDec"), align.integers=c("dot","right","left"), padding = " ", ... )
mtable_format_print(x, topsep="=", bottomsep="=", sectionsep="-", interaction.sep = " x ", center.at=getOption("OutDec"), align.integers=c("dot","right","left"), padding = " ", ... )
x |
an object of class |
topsep |
a character string that is recycled to a top rule. |
bottomsep |
a character string that is recycled to a bottom rule. |
sectionsep |
a character string that is recycled to seperate coefficients from summary statistics. |
interaction.sep |
a character string that separates factors that are involved in an interaction effect |
center.at |
a character string on which resulting values are centered.
Typically equal to ".". This is the default when |
align.integers |
how to align integer values. |
padding |
a character string, usually whitespace, used to insert left- and right-padding of table contents. |
... |
further arguments, ignored. |
A character string.
In many newer survey data sets available from social
science data archives non-valid responses (such as "don't know" or
"answer refused") are given negative codes. The function
neg2miss
allows to mark them as missing values.)
neg2mis(x,all=FALSE,exclude=NULL,select=NULL,zero=FALSE)
neg2mis(x,all=FALSE,exclude=NULL,select=NULL,zero=FALSE)
x |
an object that inherits from class "item.list", e.g. a "data.set" or an "importer" object. |
all |
logical; should the marking of negative values as missing applied to all variables? |
exclude |
an optional vector of variable naems to which the marking of negative values as missing should not be applied. |
select |
an optional vector of variable names to which the marking of negative values as missing should be applied. |
zero |
logical; should zeroes also be marked as missing? |
ds <- data.set( var1 = c(0,1,-1,2,3), var2 = c(-1,-1,1,1,1), var3 = c(1,2,3,4,5) ) neg2mis(ds,all=TRUE) neg2mis(ds,all=TRUE,zero=TRUE) neg2mis(ds,exclude=var1) neg2mis(ds,select=var1)
ds <- data.set( var1 = c(0,1,-1,2,3), var2 = c(-1,-1,1,1,1), var3 = c(1,2,3,4,5) ) neg2mis(ds,all=TRUE) neg2mis(ds,all=TRUE,zero=TRUE) neg2mis(ds,exclude=var1) neg2mis(ds,select=var1)
%nin%
is a convenience operator:
x %nin% table
is equivalent to
!(x %in% table).
x %nin% table
x %nin% table
x |
the values to be matched |
table |
a values to be match against |
A logical vector
x <- sample(1:6,12,replace=TRUE) x %in% 1:3 x %nin% 1:3
x <- sample(1:6,12,replace=TRUE) x %in% 1:3 x %nin% 1:3
percent
returns a table of percentages along with
the percentage base. It will be useful
in conjunction with Aggregate
or genTable
.
percent(x,...) ## Default S3 method: percent(x,weights=NULL,total=!(se || ci), se=FALSE,ci=FALSE,ci.level=.95, total.name="N",perc.label="Percentage",...) ## S3 method for class 'logical' percent(x,weights=NULL,total=!(se || ci), se=FALSE,ci=FALSE,ci.level=.95, total.name="N",perc.label="Percentage",...)
percent(x,...) ## Default S3 method: percent(x,weights=NULL,total=!(se || ci), se=FALSE,ci=FALSE,ci.level=.95, total.name="N",perc.label="Percentage",...) ## S3 method for class 'logical' percent(x,weights=NULL,total=!(se || ci), se=FALSE,ci=FALSE,ci.level=.95, total.name="N",perc.label="Percentage",...)
x |
a numeric vector or factor. |
weights |
a optional numeric vector of weights of the same length as |
total |
logical; should the total sum of counts from which the percentages are computed be included into the output? |
se |
logical; should standard errors of the percentages be included? |
ci |
logical; should confidence intervals of the percentages be included? |
ci.level |
numeric; nominal coverage of confidence intervals |
total.name |
character; name given for the total sum of counts |
perc.label |
character; label given for the percentages if the
table has more than one dimensions, e.g. if |
... |
for |
A table of percentages.
x <- rnorm(100) y <- rnorm(100) z <- rnorm(100) f <- sample(1:3,100,replace=TRUE) f <- factor(f,labels=c("a","b","c")) percent(x>0) percent(f) genTable( cbind(percent(x>0), percent(y>0), percent(z>0)) ~ f ) gt <- genTable( cbind("x > 0" = percent(x>0,ci=TRUE), "y > 0" = percent(y>0,ci=TRUE), "z > 0" = percent(z>0,ci=TRUE)) ~ f ) ftable(gt,row.vars=3:2,col.vars=1) ex.data <- expand.grid(mean=c(0,25,50),sd=c(1,10,100))[rep(1:9,rep(250,9)),] ex.data <- within(ex.data,x <- rnorm(n=nrow(ex.data),mean=ex.data$mean,sd=ex.data$sd)) ex.data <- within(ex.data,x.grp <- cases( x < 0, x >= 0 & x < 50, x >= 50 & x < 100, x >= 100 )) genTable(percent(x.grp)~mean+sd,data=ex.data) Aggregate(percent(Admit,weight=Freq)~Gender+Dept,data=UCBAdmissions)
x <- rnorm(100) y <- rnorm(100) z <- rnorm(100) f <- sample(1:3,100,replace=TRUE) f <- factor(f,labels=c("a","b","c")) percent(x>0) percent(f) genTable( cbind(percent(x>0), percent(y>0), percent(z>0)) ~ f ) gt <- genTable( cbind("x > 0" = percent(x>0,ci=TRUE), "y > 0" = percent(y>0,ci=TRUE), "z > 0" = percent(z>0,ci=TRUE)) ~ f ) ftable(gt,row.vars=3:2,col.vars=1) ex.data <- expand.grid(mean=c(0,25,50),sd=c(1,10,100))[rep(1:9,rep(250,9)),] ex.data <- within(ex.data,x <- rnorm(n=nrow(ex.data),mean=ex.data$mean,sd=ex.data$sd)) ex.data <- within(ex.data,x.grp <- cases( x < 0, x >= 0 & x < 50, x >= 50 & x < 100, x >= 100 )) genTable(percent(x.grp)~mean+sd,data=ex.data) Aggregate(percent(Admit,weight=Freq)~Gender+Dept,data=UCBAdmissions)
The generic function percentages
and its methods
create one- or multidimensional tables of percentages. As such,
the function percentages
can be viewed as a convenience
interface to prop.table
. However, it also
allows to obtain standard errors and confidence intervals.
percentages(obj, ...) ## S3 method for class 'table' percentages(obj, by=NULL, which=NULL, se=FALSE, ci=FALSE, ci.level=.95, ...) ## S3 method for class 'formula' percentages(obj, data=parent.frame(), weights=NULL, ...) ## Default S3 method: percentages(obj, weights=NULL, ...) ## S3 method for class 'data.frame' percentages(obj, weights=NULL, ...) ## S3 method for class 'list' percentages(obj, weights=NULL, ...) ## S3 method for class 'percentage.table' as.data.frame(x, ...) ## S3 method for class 'xpercentage.table' as.data.frame(x, ...)
percentages(obj, ...) ## S3 method for class 'table' percentages(obj, by=NULL, which=NULL, se=FALSE, ci=FALSE, ci.level=.95, ...) ## S3 method for class 'formula' percentages(obj, data=parent.frame(), weights=NULL, ...) ## Default S3 method: percentages(obj, weights=NULL, ...) ## S3 method for class 'data.frame' percentages(obj, weights=NULL, ...) ## S3 method for class 'list' percentages(obj, weights=NULL, ...) ## S3 method for class 'percentage.table' as.data.frame(x, ...) ## S3 method for class 'xpercentage.table' as.data.frame(x, ...)
obj |
an object; a contingency table or a formula. If it is a formula, its left-hand side determines the factor or combination of factors for which percentages are computed while its right-hand side determines the factor or combination of factors that define the groups within which percentages are computed. |
by |
a character vector with the names of the factor variables that define the groups within which percentages are computed. Percentages sum to 100 within combination of levels of these factors. |
which |
a character vector with the names of the factor variables for which percentages are computed. |
se |
a logical value; determines whether standard errors are computed. |
ci |
a logical value; determines whether confidence intervals are computed. Note that the confidence intervals are for infinite (or very large) populations. |
ci.level |
a numerical value, the required confidence level of the confidence intervals. |
data |
a contingency table (an object that inherits from "table") or a data frame or an object coercable into a data frame. |
weights |
an optional vector of weights. Should be NULL or a numeric vector. |
... |
Further arguments passed on to the
"table" method of |
x |
an object coerced into a data frame. |
An array that inherits classes "percentage.table" and "table". If
percentages
was called with se=TRUE
or ci=TRUE
then the result additionally inherits class "xpercentage.table".
percentages(UCBAdmissions) # Three equivalent ways to create the same table of conditional # percentages percentages(Admit~Gender+Dept,data=UCBAdmissions) percentages(UCBAdmissions,by=c("Gender","Dept")) percentages(UCBAdmissions,which="Admit") # Percentage table as data frame as.data.frame(percentages(Admit~Gender+Dept,data=UCBAdmissions)) # Standard errors and confidence intervals percentages(Admit~Dept,data=UCBAdmissions,se=TRUE) percentages(Admit~Dept,data=UCBAdmissions,ci=TRUE) (p<- percentages(Admit~Dept,data=UCBAdmissions,ci=TRUE,se=TRUE)) # An extended table of percentages as data frame as.data.frame(p) # A table of percentages of a factor percentages(iris$Species) UCBA <- as.data.frame(UCBAdmissions) percentages(UCBA$Admit,weights=UCBA$Freq) percentages(UCBA,weights=UCBA$Freq)
percentages(UCBAdmissions) # Three equivalent ways to create the same table of conditional # percentages percentages(Admit~Gender+Dept,data=UCBAdmissions) percentages(UCBAdmissions,by=c("Gender","Dept")) percentages(UCBAdmissions,which="Admit") # Percentage table as data frame as.data.frame(percentages(Admit~Gender+Dept,data=UCBAdmissions)) # Standard errors and confidence intervals percentages(Admit~Dept,data=UCBAdmissions,se=TRUE) percentages(Admit~Dept,data=UCBAdmissions,ci=TRUE) (p<- percentages(Admit~Dept,data=UCBAdmissions,ci=TRUE,se=TRUE)) # An extended table of percentages as data frame as.data.frame(p) # A table of percentages of a factor percentages(iris$Species) UCBA <- as.data.frame(UCBAdmissions) percentages(UCBA$Admit,weights=UCBA$Freq) percentages(UCBA,weights=UCBA$Freq)
The function query
can be used to search an object
for a keyword.
The data.set
and importer
methods perform such a search
through the annotations and value labels of
the items in the data set.
query(x,pattern,...) ## S4 method for signature 'data.set' query(x,pattern,...) ## S4 method for signature 'importer' query(x,pattern,...) ## S4 method for signature 'item' query(x,pattern,...) # (Called by the methods above.)
query(x,pattern,...) ## S4 method for signature 'data.set' query(x,pattern,...) ## S4 method for signature 'importer' query(x,pattern,...) ## S4 method for signature 'item' query(x,pattern,...) # (Called by the methods above.)
x |
an object |
pattern |
a character string that gives the pattern to be searched for |
... |
optional arguments such as
|
If both the annotation and the value labels of an item match the pattern
the query
method for 'item' objects returns a list containing the annotation
and the value labels, otherwise if only the annotation or the value labels
match the pattern, either the annotation or the value labels are returned,
otherwise if neither matches the pattern, query
returns NULL
.
The methods of query
for 'data.set' and 'importer' objects return
a list of all non-NULL
query results of all items contained by these
objects, or NULL
.
nes1948.por <- unzip(system.file("anes/NES1948.ZIP",package="memisc"), "NES1948.POR",exdir=tempfile()) nes1948 <- spss.portable.file(nes1948.por) query(nes1948,"TRUMAN")
nes1948.por <- unzip(system.file("anes/NES1948.ZIP",package="memisc"), "NES1948.POR",exdir=tempfile()) nes1948 <- spss.portable.file(nes1948.por) query(nes1948,"TRUMAN")
recode
substitutes old values of a factor or a numeric
vector by new ones, just like the recoding facilities in some
commercial statistical packages.
recode(x,..., copy=getOption("recode_copy",identical(otherwise,"copy")), otherwise=NA) ## S4 method for signature 'vector' recode(x,..., copy=getOption("recode_copy",identical(otherwise,"copy")), otherwise=NA) ## S4 method for signature 'factor' recode(x,..., copy=getOption("recode_copy",identical(otherwise,"copy")), otherwise=NA) ## S4 method for signature 'item' recode(x,..., copy=getOption("recode_copy",identical(otherwise,"copy")), otherwise=NA)
recode(x,..., copy=getOption("recode_copy",identical(otherwise,"copy")), otherwise=NA) ## S4 method for signature 'vector' recode(x,..., copy=getOption("recode_copy",identical(otherwise,"copy")), otherwise=NA) ## S4 method for signature 'factor' recode(x,..., copy=getOption("recode_copy",identical(otherwise,"copy")), otherwise=NA) ## S4 method for signature 'item' recode(x,..., copy=getOption("recode_copy",identical(otherwise,"copy")), otherwise=NA)
x |
An object |
... |
One or more assignment expressions, each
of the form Each In case of the method for If the |
copy |
logical; should those values of |
otherwise |
a character string or some other value
that the result may obtain. If equal to |
recode
relies on the lazy evaluation mechanism of R:
Arguments are not evaluated until required by the function they are given to.
recode
does not cause arguments that appear in ...
to be evaluated.
Instead, recode
parses the ...
arguments. Therefore, although
expressions like 1 <- 1:4
would cause an error action, if evaluated
at any place elsewhere in R, they will not cause an error action,
if given to recode
as an argument. However, a call of the
form recode(x,1=1:4)
, would be a syntax error.
If John Fox' package "car" is installed, recode
will also be callable
with the syntax of the recode
function of that package.
A numerical vector, factor or an item
object.
recode
of package "car".
x <- as.item(sample(1:6,20,replace=TRUE), labels=c( a=1, b=2, c=3, d=4, e=5, f=6)) print(x) codebook( recode(x, a = 1 <- 1:2, b = 2 <- 4:6)) codebook( recode(x, a = 1 <- 1:2, b = 2 <- 4:6, copy = TRUE)) # Note the handling of labels if the recoding rules are bijective codebook( recode(x, 1 <- 2, 2 <- 1, copy=TRUE)) codebook( recode(x, a = 1 <- 2, b = 2 <- 1, copy=TRUE)) # A recoded version of x is returned # containing the values 1, 2, 3, which are # labelled as "A", "B", "C". recode(x, A = 1 <- range(min,2), B = 2 <- 3:4, C = 3 <- range(5,max), # this last comma is ignored ) # This causes an error action: the sets # of original values overlap. try(recode(x, A = 1 <- range(min,2), B = 2 <- 2:4, C = 3 <- range(5,max) )) recode(x, A = 1 <- range(min,2), B = 2 <- 3:4, C = 3 <- range(5,6), D = 4 <- 7 ) # This results in an all-missing vector: recode(x, D = 4 <- 7, E = 5 <- 8 ) f <- as.factor(x) x <- as.integer(x) recode(x, 1 <- range(min,2), 2 <- 3:4, 3 <- range(5,max) ) # This causes another error action: # the third argument is an invalid # expression for a recoding. try(recode(x, 1 <- range(min,2), 3:4, 3 <- range(5,max) )) # The new values are character strings, # therefore a factor is returned. recode(x, "a" <- range(min,2), "b" <- 3:4, "c" <- range(5,6) ) recode(x, 1 <- 1:3, 2 <- 4:6 ) recode(x, 4 <- 7, 5 <- 8, otherwise = "copy" ) recode(f, "A" <- c("a","b"), "B" <- c("c","d"), otherwise="copy" ) recode(f, "A" <- c("a","b"), "B" <- c("c","d"), otherwise="C" ) recode(f, "A" <- c("a","b"), "B" <- c("c","d") ) DS <- data.set(x=as.item(sample(1:6,20,replace=TRUE), labels=c( a=1, b=2, c=3, d=4, e=5, f=6))) print(DS) DS <- within(DS,{ xf <- recode(x, "a" <- range(min,2), "b" <- 3:4, "c" <- range(5,6) ) xn <- [email protected] xc <- recode(xn, "a" <- range(min,2), "b" <- 3:4, "c" <- range(5,6) ) xc <- as.character(x) xcc <- recode(xc, 1 <- letters[1:2], 2 <- letters[3:4], 3 <- letters[5:6] ) }) DS DS <- within(DS,{ xf <- recode(x, "a" <- range(min,2), "b" <- 3:4, "c" <- range(5,6) ) x1 <- recode(x, 1 <- range(1,2), 2 <- range(3,4), copy=TRUE ) xf1 <- recode(x, "A" <- range(1,2), "B" <- range(3,4), copy=TRUE ) }) DS codebook(DS) DF <- data.frame(x=rep(1:6,4,replace=TRUE)) DF <- within(DF,{ xf <- recode(x, "a" <- range(min,2), "b" <- 3:4, "c" <- range(5,6) ) x1 <- recode(x, 1 <- range(1,2), 2 <- range(3,4), copy=TRUE ) xf1 <- recode(x, "A" <- range(1,2), "B" <- range(3,4), copy=TRUE ) xf2 <- recode(x, "B" <- range(3,4), "A" <- range(1,2), copy=TRUE ) }) DF codebook(DF)
x <- as.item(sample(1:6,20,replace=TRUE), labels=c( a=1, b=2, c=3, d=4, e=5, f=6)) print(x) codebook( recode(x, a = 1 <- 1:2, b = 2 <- 4:6)) codebook( recode(x, a = 1 <- 1:2, b = 2 <- 4:6, copy = TRUE)) # Note the handling of labels if the recoding rules are bijective codebook( recode(x, 1 <- 2, 2 <- 1, copy=TRUE)) codebook( recode(x, a = 1 <- 2, b = 2 <- 1, copy=TRUE)) # A recoded version of x is returned # containing the values 1, 2, 3, which are # labelled as "A", "B", "C". recode(x, A = 1 <- range(min,2), B = 2 <- 3:4, C = 3 <- range(5,max), # this last comma is ignored ) # This causes an error action: the sets # of original values overlap. try(recode(x, A = 1 <- range(min,2), B = 2 <- 2:4, C = 3 <- range(5,max) )) recode(x, A = 1 <- range(min,2), B = 2 <- 3:4, C = 3 <- range(5,6), D = 4 <- 7 ) # This results in an all-missing vector: recode(x, D = 4 <- 7, E = 5 <- 8 ) f <- as.factor(x) x <- as.integer(x) recode(x, 1 <- range(min,2), 2 <- 3:4, 3 <- range(5,max) ) # This causes another error action: # the third argument is an invalid # expression for a recoding. try(recode(x, 1 <- range(min,2), 3:4, 3 <- range(5,max) )) # The new values are character strings, # therefore a factor is returned. recode(x, "a" <- range(min,2), "b" <- 3:4, "c" <- range(5,6) ) recode(x, 1 <- 1:3, 2 <- 4:6 ) recode(x, 4 <- 7, 5 <- 8, otherwise = "copy" ) recode(f, "A" <- c("a","b"), "B" <- c("c","d"), otherwise="copy" ) recode(f, "A" <- c("a","b"), "B" <- c("c","d"), otherwise="C" ) recode(f, "A" <- c("a","b"), "B" <- c("c","d") ) DS <- data.set(x=as.item(sample(1:6,20,replace=TRUE), labels=c( a=1, b=2, c=3, d=4, e=5, f=6))) print(DS) DS <- within(DS,{ xf <- recode(x, "a" <- range(min,2), "b" <- 3:4, "c" <- range(5,6) ) xn <- x@.Data xc <- recode(xn, "a" <- range(min,2), "b" <- 3:4, "c" <- range(5,6) ) xc <- as.character(x) xcc <- recode(xc, 1 <- letters[1:2], 2 <- letters[3:4], 3 <- letters[5:6] ) }) DS DS <- within(DS,{ xf <- recode(x, "a" <- range(min,2), "b" <- 3:4, "c" <- range(5,6) ) x1 <- recode(x, 1 <- range(1,2), 2 <- range(3,4), copy=TRUE ) xf1 <- recode(x, "A" <- range(1,2), "B" <- range(3,4), copy=TRUE ) }) DS codebook(DS) DF <- data.frame(x=rep(1:6,4,replace=TRUE)) DF <- within(DF,{ xf <- recode(x, "a" <- range(min,2), "b" <- 3:4, "c" <- range(5,6) ) x1 <- recode(x, 1 <- range(1,2), 2 <- range(3,4), copy=TRUE ) xf1 <- recode(x, "A" <- range(1,2), "B" <- range(3,4), copy=TRUE ) xf2 <- recode(x, "B" <- range(3,4), "A" <- range(1,2), copy=TRUE ) }) DF codebook(DF)
Function relabel
changes the labels of a factor or any object
that has a names
, labels
, value.labels
, or variable.labels
attribute.
Function relabel4
is an (internal) generic which is called by relabel
to handle S4 objects.
## Default S3 method: relabel(x, ..., gsub = FALSE, fixed = TRUE, warn = TRUE) ## S3 method for class 'factor' relabel(x, ..., gsub = FALSE, fixed = TRUE, warn = TRUE) ## S4 method for signature 'item' relabel4(x, ...) # This is an internal method, see details. # Use relabel(x, \dots) for 'item' objects
## Default S3 method: relabel(x, ..., gsub = FALSE, fixed = TRUE, warn = TRUE) ## S3 method for class 'factor' relabel(x, ..., gsub = FALSE, fixed = TRUE, warn = TRUE) ## S4 method for signature 'item' relabel4(x, ...) # This is an internal method, see details. # Use relabel(x, \dots) for 'item' objects
x |
An object with a |
... |
A sequence of named arguments, all of type character |
gsub |
a logical value; if TRUE, |
fixed |
a logical value, passed to |
warn |
a logical value; if TRUE, a warning is issues if a a change of labels was unsuccessful. |
This function changes the names or labels of x
according to the
remaining arguments.
If gsub
is FALSE, argument tags are the old
labels, the values are the new labels.
If gsub
is TRUE, arguments are substrings of the labels
that are substituted by the argument values.
Function relabel
is S3 generic. If its first argument is an S4 object,
it calls the (internal) relabel4
generic function.
The object x
with new labels defined by the ... arguments.
f <- as.factor(rep(letters[1:4],5)) levels(f) F <- relabel(f, a="A", b="B", c="C", d="D" ) levels(F) f <- as.item(f) labels(f) F <- relabel(f, a="A", b="B", c="C", d="D" ) labels(F) # Since version 0.99.22 - the following also works: f <- as.factor(rep(letters[1:4],5)) levels(f) F <- relabel(f, a=A, b=B, c=C, d=D ) levels(F) f <- as.item(f) labels(f) F <- relabel(f, a=A, b=B, c=C, d=D ) labels(F)
f <- as.factor(rep(letters[1:4],5)) levels(f) F <- relabel(f, a="A", b="B", c="C", d="D" ) levels(F) f <- as.item(f) labels(f) F <- relabel(f, a="A", b="B", c="C", d="D" ) labels(F) # Since version 0.99.22 - the following also works: f <- as.factor(rep(letters[1:4],5)) levels(f) F <- relabel(f, a=A, b=B, c=C, d=D ) levels(F) f <- as.item(f) labels(f) F <- relabel(f, a=A, b=B, c=C, d=D ) labels(F)
rename
changes the names of a named object.
rename(x, ..., gsub = FALSE, fixed = TRUE, warn = TRUE)
rename(x, ..., gsub = FALSE, fixed = TRUE, warn = TRUE)
x |
Any named object |
... |
A sequence of named arguments, all of type character |
gsub |
a logical value; if TRUE, |
fixed |
a logical value, passed to |
warn |
a logical value; should a warning be issued if those names to change are not found? |
This function changes the names of x
according to the
remaining arguments.
If gsub
is FALSE, argument tags are the old
names, the values are the new names.
If gsub
is TRUE, arguments are substrings of the names
that are substituted by the argument values.
The object x
with new names defined by the ... arguments.
x <- c(a=1, b=2) rename(x,a="A",b="B") # Since version 0.99.22 - the following also works: rename(x,a=A,b=B) str(rename(iris, Sepal.Length="Sepal_Length", Sepal.Width ="Sepal_Width", Petal.Length="Petal_Length", Petal.Width ="Petal_Width" )) str(rename(iris, .="_" ,gsub=TRUE)) # Since version 0.99.22 - the following also works: str(rename(iris, Sepal.Length=Sepal_Length, Sepal.Width =Sepal_Width, Petal.Length=Petal_Length, Petal.Width =Petal_Width ))
x <- c(a=1, b=2) rename(x,a="A",b="B") # Since version 0.99.22 - the following also works: rename(x,a=A,b=B) str(rename(iris, Sepal.Length="Sepal_Length", Sepal.Width ="Sepal_Width", Petal.Length="Petal_Length", Petal.Width ="Petal_Width" )) str(rename(iris, .="_" ,gsub=TRUE)) # Since version 0.99.22 - the following also works: str(rename(iris, Sepal.Length=Sepal_Length, Sepal.Width =Sepal_Width, Petal.Length=Petal_Length, Petal.Width =Petal_Width ))
reorder.array
reorders an array along a specified
dimension according given names, indices or results of
a function applied.
## S3 method for class 'array' reorder(x,dim=1,names=NULL,indices=NULL,FUN=mean,...) ## S3 method for class 'matrix' reorder(x,dim=1,names=NULL,indices=NULL,FUN=mean,...)
## S3 method for class 'array' reorder(x,dim=1,names=NULL,indices=NULL,FUN=mean,...) ## S3 method for class 'matrix' reorder(x,dim=1,names=NULL,indices=NULL,FUN=mean,...)
x |
An array |
dim |
An integer specifying the dimension along which |
names |
A character vector |
indices |
A numeric vector |
FUN |
A function that can be used in |
... |
further arguments, ignored. |
Typical usages are
reorder(x,dim,names) reorder(x,dim,indices) reorder(x,dim,FUN)
The result of rename(x,dim,names)
is x
reordered such that dimnames(x)[[dim]]
is equal to
the concatenation of those elements of names
that are in dimnames(x)[[dim]]
and the remaining elements
of dimnames(x)[[dim]]
.
The result of rename(x,dim,indices)
is x
reordered along dim
according to indices
.
The result of rename(x,dim,FUN)
is x
reordered along dim
according to order(apply(x,dim,FUN))
.
The reordered object x
.
The default method of reorder
in package stats
.
(M <- matrix(rnorm(n=25),5,5,dimnames=list(LETTERS[1:5],letters[1:5]))) reorder(M,dim=1,names=c("E","A")) reorder(M,dim=2,indices=3:1) reorder(M,dim=1) reorder(M,dim=2)
(M <- matrix(rnorm(n=25),5,5,dimnames=list(LETTERS[1:5],letters[1:5]))) reorder(M,dim=1,names=c("E","A")) reorder(M,dim=2,indices=3:1) reorder(M,dim=1) reorder(M,dim=2)
Reshape
is a convenience
wrapper around reshape
with a somewhat simpler
syntax.
Reshape(data,...,id,within_id,drop,keep,direction)
Reshape(data,...,id,within_id,drop,keep,direction)
data |
a data frame or data set to be reshaped. |
... |
Further arguments that specify the variables in
long and in wide format as well as the time variable.
The name tags of the arguments given here specify
variable names in long format,
the arguments themselves specify the variables in wide format
(or observations in long vormat)
and the variable of the "time" variable.
The time variable is usually the last of these arguments.
An "automatic" time variable can be specified if only
a single argument in |
id |
a variable name or a concatenation of variable names
(either as character strings or as unquoted symbols), that identify
individual units. Defaults to |
within_id |
an optional variable name (either as character string or as unquoted symbol), that identifies individual observations on units. Relevant only if the data are reshaped from long to wide format. |
drop |
a variable name or a concatenation of variable names (either as character strings or as unquoted symbols), thast specifies the variables to be dropped before reshaping. |
keep |
a variable name or a concatenation of variable names (either as character strings or as unquoted symbols), thast specifies the variables to be kept after reshaping (including the ones used to define the reshaping). |
direction |
a character string, should be either equal "long" or "wide". |
example.data.wide <- data.frame( v = c(35,42), x1 = c(1.1,2.1), x2 = c(1.2,2.2), x3 = c(1.3,2.3), x4 = c(1.4,2.4), y1 = c(2.5,3.5), y2 = c(2.7,3.7), y3 = c(2.9,3.9)) example.data.wide # The following two calls are equivalent: example.data.long <- Reshape(data=example.data.wide, x=c(x1,x2,x3,x4), # N.B. it is possible to # specify 'empty' i.e. missing # measurements y=c(y1,y2,y3,), t=1:4, direction="long") example.data.long <- Reshape(data=example.data.wide, list( x=c(x1,x2,x3,x4), # N.B. it is possible to # specify 'empty' i.e. missing # measurements y=c(y1,y2,y3,) ), t=1:4, direction="long") example.data.long # Since the data frame contains an "reshapeLong" attribute # an id variable is already specified and part of the data # frame. example.data.wide <- Reshape(data=example.data.long, x=c(x1,x2,x3,x4), y=c(y1,y2,y3,), t=1:4, direction="wide") example.data.wide # Here we examine the case where no "reshapeLong" attribute # is present: example.data.wide <- Reshape(data=example.data.long, x=c(x1,x2,x3,x4), y=c(y1,y2,y3,), t=1:4, id=v, direction="wide") example.data.wide # Here, an "automatic" time variable is created. This works # only if there is a single argument other than the data= # and direction= arguments example.data.long <- Reshape(data=example.data.wide, list( x=c(x1,x2,x3,x4), y=c(y1,y2,y3,) ), direction="long") example.data.long example.data.wide <- Reshape(data=example.data.long, list( x=c(x1,x2,x3,x4), y=c(y1,y2,y3,) ), direction="wide") example.data.wide
example.data.wide <- data.frame( v = c(35,42), x1 = c(1.1,2.1), x2 = c(1.2,2.2), x3 = c(1.3,2.3), x4 = c(1.4,2.4), y1 = c(2.5,3.5), y2 = c(2.7,3.7), y3 = c(2.9,3.9)) example.data.wide # The following two calls are equivalent: example.data.long <- Reshape(data=example.data.wide, x=c(x1,x2,x3,x4), # N.B. it is possible to # specify 'empty' i.e. missing # measurements y=c(y1,y2,y3,), t=1:4, direction="long") example.data.long <- Reshape(data=example.data.wide, list( x=c(x1,x2,x3,x4), # N.B. it is possible to # specify 'empty' i.e. missing # measurements y=c(y1,y2,y3,) ), t=1:4, direction="long") example.data.long # Since the data frame contains an "reshapeLong" attribute # an id variable is already specified and part of the data # frame. example.data.wide <- Reshape(data=example.data.long, x=c(x1,x2,x3,x4), y=c(y1,y2,y3,), t=1:4, direction="wide") example.data.wide # Here we examine the case where no "reshapeLong" attribute # is present: example.data.wide <- Reshape(data=example.data.long, x=c(x1,x2,x3,x4), y=c(y1,y2,y3,), t=1:4, id=v, direction="wide") example.data.wide # Here, an "automatic" time variable is created. This works # only if there is a single argument other than the data= # and direction= arguments example.data.long <- Reshape(data=example.data.wide, list( x=c(x1,x2,x3,x4), y=c(y1,y2,y3,) ), direction="long") example.data.long example.data.wide <- Reshape(data=example.data.long, list( x=c(x1,x2,x3,x4), y=c(y1,y2,y3,) ), direction="wide") example.data.wide
retain
removes all objects from the environment
except those mentioned as argument.
retain(..., list = character(0), envir = parent.frame(),force=FALSE)
retain(..., list = character(0), envir = parent.frame(),force=FALSE)
... |
names of objects to be retained, as names (unquoted) or character strings(quoted). |
list |
a character vector naming the objects to be retained. |
envir |
the environment from which the objects are removed that are not to be retained. |
force |
logical value. As a measure of caution, this
function removes objects only from local environments,
unless |
local({ foreach(x=c(a,b,c,d,e,f,g,h),x<-1) cat("Objects before call to 'retain':\n") print(ls()) retain(a) cat("Objects after call to 'retain':\n") print(ls()) }) x <- 1 y <- 2 retain(x)
local({ foreach(x=c(a,b,c,d,e,f,g,h),x<-1) cat("Objects before call to 'retain':\n") print(ls()) retain(a) cat("Objects after call to 'retain':\n") print(ls()) }) x <- 1 y <- 2 retain(x)
The function reversed()
returns a copy of its argument with codes
or levels in reverse order.
reversed(x) ## S4 method for signature 'item.vector' reversed(x) ## S4 method for signature 'factor' reversed(x)
reversed(x) ## S4 method for signature 'item.vector' reversed(x) ## S4 method for signature 'factor' reversed(x)
x |
An object – an "item" object or a "data.set" object |
If the argument of the function reversed()
than either the
unique valid values or the labelled valid values recoded into the
reverse order.
If th argument is a factor than the function returns the factor with levels in reverse order.
ds <- data.set( x = as.item(sample(c(1:3,9),100,replace=TRUE), labels=c("One"=1, "Two"=2, "Three"=3, "Missing"=9))) df <- as.data.frame(ds) ds <- within(ds,{ xr <- reversed(x) }) codebook(ds) df <- within(df,{ xr <- reversed(x) }) codebook(df)
ds <- data.set( x = as.item(sample(c(1:3,9),100,replace=TRUE), labels=c("One"=1, "Two"=2, "Three"=3, "Missing"=9))) df <- as.data.frame(ds) ds <- within(ds,{ xr <- reversed(x) }) codebook(ds) df <- within(df,{ xr <- reversed(x) }) codebook(df)
The methods below are convenience short-cuts to take samples from data frames and data sets. They result in a data frame or data set, respectively, the rows of which are a sample of the complete data frame/data set.
## S4 method for signature 'data.frame' sample(x, size, replace = FALSE, prob = NULL) ## S4 method for signature 'data.set' sample(x, size, replace = FALSE, prob = NULL) ## S4 method for signature 'importer' sample(x, size, replace = FALSE, prob = NULL)
## S4 method for signature 'data.frame' sample(x, size, replace = FALSE, prob = NULL) ## S4 method for signature 'data.set' sample(x, size, replace = FALSE, prob = NULL) ## S4 method for signature 'importer' sample(x, size, replace = FALSE, prob = NULL)
x |
a data frame or data set. |
size |
an (optional) numerical value, the sample size,
defaults to the total number of rows of |
replace |
a logical value, determines whether sampling takes place with or without replacement. |
prob |
a vector of sampling probabities or NULL. |
A data frame or data set.
for(.i in 1:4) print(sample(iris,5))
for(.i in 1:4) print(sample(iris,5))
Sapply
is equivalent to sapply
, except
that it preserves the dimension and dimension names of the
argument X
. It also preserves the dimension of
results of the function FUN
.
It is intended for application to results e.g.
of a call to by
. Lapply
is an analog
to lapply
insofar as it does not try to simplify
the resulting list
of results of FUN
.
Sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE) Lapply(X, FUN, ...)
Sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE) Lapply(X, FUN, ...)
X |
a vector or list appropriate to a call to |
FUN |
a function. |
... |
optional arguments to |
simplify |
a logical value; should the result be simplified to a vector or matrix if possible? |
USE.NAMES |
logical; if |
If FUN
returns a scalar, then the result has the same dimension
as X
, otherwise the dimension of the result is enhanced relative
to X
.
berkeley <- Aggregate(Table(Admit,Freq)~.,data=UCBAdmissions) berktest1 <- By(~Dept+Gender, glm(cbind(Admitted,Rejected)~1,family="binomial"), data=berkeley) berktest2 <- By(~Dept, glm(cbind(Admitted,Rejected)~Gender,family="binomial"), data=berkeley) sapply(berktest1,coef) Sapply(berktest1,coef) sapply(berktest1,function(x)drop(coef(summary(x)))) Sapply(berktest1,function(x)drop(coef(summary(x)))) sapply(berktest2,coef) Sapply(berktest2,coef) sapply(berktest2,function(x)coef(summary(x))) Sapply(berktest2,function(x)coef(summary(x)))
berkeley <- Aggregate(Table(Admit,Freq)~.,data=UCBAdmissions) berktest1 <- By(~Dept+Gender, glm(cbind(Admitted,Rejected)~1,family="binomial"), data=berkeley) berktest2 <- By(~Dept, glm(cbind(Admitted,Rejected)~Gender,family="binomial"), data=berkeley) sapply(berktest1,coef) Sapply(berktest1,coef) sapply(berktest1,function(x)drop(coef(summary(x)))) Sapply(berktest1,function(x)drop(coef(summary(x)))) sapply(berktest2,coef) Sapply(berktest2,coef) sapply(berktest2,function(x)coef(summary(x))) Sapply(berktest2,function(x)coef(summary(x)))
The methods below return a sorted version of the data frame or data set, given as first argument.
## S3 method for class 'data.frame' sort(x,decreasing=FALSE,by=NULL,na.last=NA,...) ## S3 method for class 'data.set' sort(x,decreasing=FALSE,by=NULL,na.last=NA,...)
## S3 method for class 'data.frame' sort(x,decreasing=FALSE,by=NULL,na.last=NA,...) ## S3 method for class 'data.set' sort(x,decreasing=FALSE,by=NULL,na.last=NA,...)
x |
a data frame or data set. |
decreasing |
a logical value, should sorting be in increasing or decreasing order? |
by |
a character name of variable names, by which to sort; a formula giving the variables, by which to sort; NULL, in which case, the data frame / data set is sorted by all of its variables. |
na.last |
for controlling the treatment of 'NA's. If 'TRUE', missing values in the data are put last; if 'FALSE', they are put first; if 'NA', they are removed |
... |
other arguments, currently ignored. |
A sorted copy of x
.
DF <- data.frame( a = sample(1:2,size=20,replace=TRUE), b = sample(1:4,size=20,replace=TRUE)) sort(DF) sort(DF,by=~a+b) sort(DF,by=~b+a) sort(DF,by=c("b","a")) sort(DF,by=c("a","b"))
DF <- data.frame( a = sample(1:2,size=20,replace=TRUE), b = sample(1:4,size=20,replace=TRUE)) sort(DF) sort(DF,by=~a+b) sort(DF,by=~b+a) sort(DF,by=c("b","a")) sort(DF,by=c("a","b"))
Methods for setting and getting templates for formatting
model coefficients and summaries for use in mtable
.
setCoefTemplate(...) getCoefTemplate(style) getSummaryTemplate(x) setSummaryTemplate(...) summaryTemplate(x)
setCoefTemplate(...) getCoefTemplate(style) getSummaryTemplate(x) setSummaryTemplate(...) summaryTemplate(x)
... |
sevaral tagged arguments; in case of |
style |
a character string with the name of a coefficient style, if left empty, all coefficient templates are returned. |
x |
a model or a name of a model class, for example |
The style in which model coefficients are formatted by mtable
is by default selected from the coef.style
setting of options
,
"factory-fresh" setting being options(coef.style="default")
.
The appearance of factor levels in an mtable
can be influenced by the factor.style
setting of options
.
The "factory-fresh" setting is options(factor.style="($f): ($l)")
,
where ($f)
stands for the factor name and ($l)
stands
for the factor level. In case of treatment contrasts, the baseline level
will also appear in an mtable
separated from the current
factor level by the baselevel.sep
setting of options
.
The "factory-fresh" setting is options(baselevel.sep="-")
,
Users may specify additional coefficient styles by a call to setCoefTemplate
.
In order to adapt the display of summary statistics of other model classes, users need to
set a template for model summaries via a call to setSummaryTemplate
or to define a method of the generic function summaryTemplate
.
Substitute
differs from substitute
in so far as its first argument can be a variable that
contains an object of mode "language". In that case,
substitutions take place inside this object.
Substitute(lang,with)
Substitute(lang,with)
lang |
any object, unevaluated expression, or unevaluated language construct, such as a sequence of calls inside braces |
with |
a named list, environment, data frame or data set. |
The function body is just
do.call("substitute",list(lang,with))
.
An object of storage mode "language" or "symbol".
lang <- quote(sin(x)+z) substitute(lang,list(x=1,z=2)) Substitute(lang,list(x=1,z=2))
lang <- quote(sin(x)+z) substitute(lang,list(x=1,z=2)) Substitute(lang,list(x=1,z=2))
Table
is a generic function that
produces a table of counts or weighted counts
and/or the corresponding percentages of an atomic vector,
factor or "item.vector"
object.
This function is intended for use with
Aggregate
or genTable
.
The "item.vector"
method is the workhorse
of codebook
.
## S4 method for signature 'atomic' Table(x,weights=NULL,counts=TRUE,percentage=FALSE,...) ## S4 method for signature 'factor' Table(x,weights=NULL,counts=TRUE,percentage=FALSE,...) ## S4 method for signature 'item.vector' Table(x,weights=NULL,counts=TRUE,percentage=(style=="codebook"), style=c("table","codebook","nolabels"), include.missings=(style=="codebook"), missing.marker=if(style=="codebook") "M" else "*",...)
## S4 method for signature 'atomic' Table(x,weights=NULL,counts=TRUE,percentage=FALSE,...) ## S4 method for signature 'factor' Table(x,weights=NULL,counts=TRUE,percentage=FALSE,...) ## S4 method for signature 'item.vector' Table(x,weights=NULL,counts=TRUE,percentage=(style=="codebook"), style=c("table","codebook","nolabels"), include.missings=(style=="codebook"), missing.marker=if(style=="codebook") "M" else "*",...)
x |
an atomic vector, factor or |
counts |
logical value, should the table contain counts? |
percentage |
logical value, should the table contain percentages?
Either the |
style |
character string, the style of the names or rownames of the table. |
weights |
a numeric vector of weights of the same length as |
include.missings |
a logical value; should missing values included into the table? |
missing.marker |
a character string, used to mark missing values in the table (row)names. |
... |
other, currently ignored arguments. |
The atomic vector and factor methods return either a vector
of counts or vector of percentages or a matrix of counts and percentages.
The same applies to the "item.vector"
vector method unless
include.missing=TRUE
and percentage=TRUE
,
in which case total percentages and percentages of valid values
are given.
with(as.data.frame(UCBAdmissions),Table(Admit,Freq)) Aggregate(Table(Admit,Freq)~.,data=UCBAdmissions) A <- sample(c(1:5,9),size=100,replace=TRUE) labels(A) <- c(a=1,b=2,c=3,d=4,e=5,dk=9) missing.values(A) <- 9 Table(A,percentage=TRUE)
with(as.data.frame(UCBAdmissions),Table(Admit,Freq)) Aggregate(Table(Admit,Freq)~.,data=UCBAdmissions) A <- sample(c(1:5,9),size=100,replace=TRUE) labels(A) <- c(a=1,b=2,c=3,d=4,e=5,dk=9) missing.values(A) <- 9 Table(A,percentage=TRUE)
A as_tibble
method (as_table.data.set
) allows to transform "data.set"
objects
into objects of class "tbl_df"
as defined by the package
"tibble".
as.item
methods for objects of classes "haven_labelled"
and "have_labelled_spss"
allow to transform a "tibble" imported
using read_dta
, read_spss
, etc. from the package "haven"
into an object of class "data.set"
.
as_haven
can be used to transform "data.set"
objects
into objects of class "tbl_df"
with that additional information
that objects imported using the "haven" package usually have, i.e.
variable labels and value labels (as the "label"
and
"labels"
attributes of the columns).
as_tibble.data.set(x,...) ## S4 method for signature 'haven_labelled' as.item(x,...) ## S4 method for signature 'haven_labelled_spss' as.item(x,...) as_haven(x,...) ## S4 method for signature 'data.set' as_haven(x,user_na=FALSE,...) ## S4 method for signature 'item.vector' as_haven(x,user_na=FALSE,...) ## S4 method for signature 'tbl_df' as.data.set(x,row.names=NULL,...)
as_tibble.data.set(x,...) ## S4 method for signature 'haven_labelled' as.item(x,...) ## S4 method for signature 'haven_labelled_spss' as.item(x,...) as_haven(x,...) ## S4 method for signature 'data.set' as_haven(x,user_na=FALSE,...) ## S4 method for signature 'item.vector' as_haven(x,user_na=FALSE,...) ## S4 method for signature 'tbl_df' as.data.set(x,row.names=NULL,...)
x |
for |
user_na |
logical; if |
row.names |
|
... |
further arguments, passed through to other the the
|
as_tibble.data.set
and the "data.set"
-method of
as_haven
return a "tibble". The "item.vector"
-method
(which is for internal use only) returns a vector with S3 class either
"haven_labelled"
or "haven_labelled_spss"
.
to.data.frame
converts an array into a data frame, in such a way
that a chosen dimensional extent forms variables in the data frame.
The elements of the array must be either atomic, data frames
with matching variables, or coercable into such data frames.
to.data.frame(X,as.vars=1,name="Freq")
to.data.frame(X,as.vars=1,name="Freq")
X |
an array. |
as.vars |
a numeric value or a character string.
If it is a numeric value then it indicates the dimensional extend
which defines the variables. If it is a character string then it is
matched against the names of the dimenstional extents. This is
applicable e.g. if |
name |
a character string; the name of the variable
created if |
A data frame.
berkeley <- Aggregate(Table(Admit,Freq)~.,data=UCBAdmissions) berktest1 <- By(~Dept+Gender, glm(cbind(Admitted,Rejected)~1,family="binomial"), data=berkeley) berktest2 <- By(~Dept, glm(cbind(Admitted,Rejected)~Gender,family="binomial"), data=berkeley) Stest1 <- Lapply(berktest2,function(x)predict(x,,se.fit=TRUE)[c("fit","se.fit")]) Stest2 <- Sapply(berktest2,function(x)coef(summary(x))) Stest2.1 <- Lapply(berktest1,function(x)predict(x,,se.fit=TRUE)[c("fit","se.fit")]) to.data.frame(Stest1) to.data.frame(Stest2,as.vars=2) to.data.frame(Stest2.1) # Recasting a contingency table to.data.frame(UCBAdmissions,as.vars="Admit")
berkeley <- Aggregate(Table(Admit,Freq)~.,data=UCBAdmissions) berktest1 <- By(~Dept+Gender, glm(cbind(Admitted,Rejected)~1,family="binomial"), data=berkeley) berktest2 <- By(~Dept, glm(cbind(Admitted,Rejected)~Gender,family="binomial"), data=berkeley) Stest1 <- Lapply(berktest2,function(x)predict(x,,se.fit=TRUE)[c("fit","se.fit")]) Stest2 <- Sapply(berktest2,function(x)coef(summary(x))) Stest2.1 <- Lapply(berktest1,function(x)predict(x,,se.fit=TRUE)[c("fit","se.fit")]) to.data.frame(Stest1) to.data.frame(Stest2,as.vars=2) to.data.frame(Stest2.1) # Recasting a contingency table to.data.frame(UCBAdmissions,as.vars="Admit")
Methods for the generic function toLatex
of package “utils”
are provided for generating LaTeX representations
of matrices and flat contingency tables (see ftable
). Also a default method is defined
that coerces its first argument into a matrix and applies
the matrix method.
## Default S3 method: toLatex(object,...) ## S3 method for class 'matrix' toLatex(object, show.titles=TRUE, show.vars=FALSE, show.xvar=show.vars, show.yvar=show.vars, digits=if(is.table(object)) 0 else getOption("digits"), format="f", useDcolumn=getOption("useDcolumn",TRUE), colspec=if(useDcolumn) paste("D{.}{",LaTeXdec,"}{",ddigits,"}",sep="") else "r", LaTeXdec=".", ddigits=digits, useBooktabs=getOption("useBooktabs",TRUE), toprule=if(useBooktabs) "\\toprule" else "\\hline\\hline", midrule=if(useBooktabs) "\\midrule" else "\\hline", cmidrule=if(useBooktabs) "\\cmidrule" else "\\cline", bottomrule=if(useBooktabs) "\\bottomrule" else "\\hline\\hline", toLatex.escape.tex=getOption("toLatex.escape.tex",FALSE), ...) ## S3 method for class 'data.frame' toLatex(object, digits=getOption("digits"), format="f", useDcolumn=getOption("useDcolumn",TRUE), numeric.colspec=if(useDcolumn) paste("D{.}{",LaTeXdec,"}{",ddigits,"}",sep="") else "r", factor.colspec="l", LaTeXdec=".", ddigits=digits, useBooktabs=getOption("useBooktabs",TRUE), toprule=if(useBooktabs) "\\toprule" else "\\hline\\hline", midrule=if(useBooktabs) "\\midrule" else "\\hline", cmidrule=if(useBooktabs) "\\cmidrule" else "\\cline", bottomrule=if(useBooktabs) "\\bottomrule" else "\\hline\\hline", row.names=is.character(attr(object,"row.names")), NAas="", toLatex.escape.tex=getOption("toLatex.escape.tex",FALSE), ...) ## S3 method for class 'ftable' toLatex(object, show.titles=TRUE, digits=if(is.integer(object)) 0 else getOption("digits"), format=if(is.integer(object)) "d" else "f", useDcolumn=getOption("useDcolumn",TRUE), colspec=if(useDcolumn) paste("D{.}{",LaTeXdec,"}{",ddigits,"}",sep="") else "r", LaTeXdec=".", ddigits=digits, useBooktabs=getOption("useBooktabs",TRUE), toprule=if(useBooktabs) "\\toprule" else "\\hline\\hline", midrule=if(useBooktabs) "\\midrule" else "\\hline\n", cmidrule=if(useBooktabs) "\\cmidrule" else "\\cline", bottomrule=if(useBooktabs) "\\bottomrule" else "\\hline\\hline", extrarowsep = NULL, toLatex.escape.tex=getOption("toLatex.escape.tex",FALSE), fold.leaders=FALSE, ...) ## S3 method for class 'ftable_matrix' toLatex(object, show.titles=TRUE, digits=getOption("digits"), format="f", useDcolumn=getOption("useDcolumn",TRUE), colspec=if(useDcolumn) paste("D{.}{",LaTeXdec,"}{",ddigits,"}",sep="") else "r", LaTeXdec=".", ddigits=digits, useBooktabs=getOption("useBooktabs",TRUE), toprule=if(useBooktabs) "\\toprule" else "\\hline\\hline", midrule=if(useBooktabs) "\\midrule" else "\\hline", cmidrule=if(useBooktabs) "\\cmidrule" else "\\cline", bottomrule=if(useBooktabs) "\\bottomrule" else "\\hline\\hline", compact=FALSE, varontop,varinfront, groupsep="3pt", grouprule=midrule, toLatex.escape.tex=getOption("toLatex.escape.tex",FALSE), multi_digits=NULL, ...)
## Default S3 method: toLatex(object,...) ## S3 method for class 'matrix' toLatex(object, show.titles=TRUE, show.vars=FALSE, show.xvar=show.vars, show.yvar=show.vars, digits=if(is.table(object)) 0 else getOption("digits"), format="f", useDcolumn=getOption("useDcolumn",TRUE), colspec=if(useDcolumn) paste("D{.}{",LaTeXdec,"}{",ddigits,"}",sep="") else "r", LaTeXdec=".", ddigits=digits, useBooktabs=getOption("useBooktabs",TRUE), toprule=if(useBooktabs) "\\toprule" else "\\hline\\hline", midrule=if(useBooktabs) "\\midrule" else "\\hline", cmidrule=if(useBooktabs) "\\cmidrule" else "\\cline", bottomrule=if(useBooktabs) "\\bottomrule" else "\\hline\\hline", toLatex.escape.tex=getOption("toLatex.escape.tex",FALSE), ...) ## S3 method for class 'data.frame' toLatex(object, digits=getOption("digits"), format="f", useDcolumn=getOption("useDcolumn",TRUE), numeric.colspec=if(useDcolumn) paste("D{.}{",LaTeXdec,"}{",ddigits,"}",sep="") else "r", factor.colspec="l", LaTeXdec=".", ddigits=digits, useBooktabs=getOption("useBooktabs",TRUE), toprule=if(useBooktabs) "\\toprule" else "\\hline\\hline", midrule=if(useBooktabs) "\\midrule" else "\\hline", cmidrule=if(useBooktabs) "\\cmidrule" else "\\cline", bottomrule=if(useBooktabs) "\\bottomrule" else "\\hline\\hline", row.names=is.character(attr(object,"row.names")), NAas="", toLatex.escape.tex=getOption("toLatex.escape.tex",FALSE), ...) ## S3 method for class 'ftable' toLatex(object, show.titles=TRUE, digits=if(is.integer(object)) 0 else getOption("digits"), format=if(is.integer(object)) "d" else "f", useDcolumn=getOption("useDcolumn",TRUE), colspec=if(useDcolumn) paste("D{.}{",LaTeXdec,"}{",ddigits,"}",sep="") else "r", LaTeXdec=".", ddigits=digits, useBooktabs=getOption("useBooktabs",TRUE), toprule=if(useBooktabs) "\\toprule" else "\\hline\\hline", midrule=if(useBooktabs) "\\midrule" else "\\hline\n", cmidrule=if(useBooktabs) "\\cmidrule" else "\\cline", bottomrule=if(useBooktabs) "\\bottomrule" else "\\hline\\hline", extrarowsep = NULL, toLatex.escape.tex=getOption("toLatex.escape.tex",FALSE), fold.leaders=FALSE, ...) ## S3 method for class 'ftable_matrix' toLatex(object, show.titles=TRUE, digits=getOption("digits"), format="f", useDcolumn=getOption("useDcolumn",TRUE), colspec=if(useDcolumn) paste("D{.}{",LaTeXdec,"}{",ddigits,"}",sep="") else "r", LaTeXdec=".", ddigits=digits, useBooktabs=getOption("useBooktabs",TRUE), toprule=if(useBooktabs) "\\toprule" else "\\hline\\hline", midrule=if(useBooktabs) "\\midrule" else "\\hline", cmidrule=if(useBooktabs) "\\cmidrule" else "\\cline", bottomrule=if(useBooktabs) "\\bottomrule" else "\\hline\\hline", compact=FALSE, varontop,varinfront, groupsep="3pt", grouprule=midrule, toLatex.escape.tex=getOption("toLatex.escape.tex",FALSE), multi_digits=NULL, ...)
object |
an |
show.titles |
logical, should variable names (in case of the
|
show.vars , show.xvar , show.yvar
|
logical, should the names of the dimnames of |
digits |
number of significant digits. |
format |
character containing a format specifier, see |
useDcolumn |
logical, should the facilities of the |
colspec |
character, LaTeX table column format specifyer(s). |
numeric.colspec |
character, LaTeX table column format specifyer(s) for numeric vectors in the data frame. |
factor.colspec |
character, LaTeX table column format specifyer(s) for factors in the data frame. |
LaTeXdec |
character, the decimal point in the final LaTeX output. |
ddigits |
integer, digits after the decimal point. |
useBooktabs |
logical, should the facilities of the |
toprule |
character string, TeX code that determines the appearance of the top border of the LaTeX |
midrule |
character string, TeX code that determines how coefficients and summary statistics are
separated in the LaTeX |
cmidrule |
character string, TeX code that determines the appearance of rules under section headings. |
bottomrule |
character string, TeX code that determines the appearance of the bottom border of the LaTeX |
extrarowsep |
character string, extra code to be inserted between the column titles and the
table body produced by |
compact |
logical, if |
varontop |
logical, whether names of column variables should appear on top of factor levels |
varinfront |
logical, whether names of row variables should appear in front of factor levels |
groupsep |
character string, containing a TeX length; extra
vertical space inserted between sub-tables, unless |
grouprule |
character string, TeX code that determines how sub-table headings are embellished. |
row.names |
logical, whether row names should be included in exported LaTeX code. |
NAas |
character string, how missing values should be represented. |
toLatex.escape.tex |
logical, should symbols "$", "_", and "^" be escaped with backslashes? |
fold.leaders |
logical, if |
multi_digits |
NULL, a numeric vector, or a list. If it is a list it should have as many elements as the "ftable_matrix" contains columns, where each vector has as many columns as the respective "ftable". If it is a vector, it is put into a list with replicated elements according to the "ftable" components. The elements of these vectors can be used to specify a separate number of digits for each column of the respective "ftable". |
... |
further argument, currently ignored. |
toLatex(diag(5)) toLatex(ftable(UCBAdmissions)) toLatex(rbind( ftable(margin.table(UCBAdmissions,c(2,1))), ftable(margin.table(UCBAdmissions,c(3,1))) ))
toLatex(diag(5)) toLatex(ftable(UCBAdmissions)) toLatex(rbind( ftable(margin.table(UCBAdmissions,c(2,1))), ftable(margin.table(UCBAdmissions,c(3,1))) ))
Occasionally, labels of codes in a survey data sets (e.g. from the
2016 American National Election Study) include a
character representation of the codes being labelled. While there may
be technical reasons for this, it is often inconvenient (e.g. if one
wants to reorder the labelled codes). The function trim_labels
trims the code representations (if they are present.)
trim_labels(x,...) ## S4 method for signature 'item.vector' trim_labels(x,...) ## S4 method for signature 'data.set' trim_labels(x,...)
trim_labels(x,...) ## S4 method for signature 'item.vector' trim_labels(x,...) ## S4 method for signature 'data.set' trim_labels(x,...)
x |
An object – an "item" object or a "data.set" object |
... |
Further arguments, currently ignored |
The "data.set" method applies the "item.vector" method to all the labelled items in the data set.
The "item.vector" returns a copy of its argument with modified labels, where a label such as "1. First alternative" is changed into "First alternative".
x <- as.item(sample(1:3,10,replace=TRUE), labels=c("1. One"=1, "2. Two"=2, "2. Three"=3)) y <- as.item(sample(1:2,10,replace=TRUE), labels=c("1. First category"=1, "2. Second category"=2)) ds <- data.set(x,y) x <- trim_labels(x) codebook(x) ds <- trim_labels(ds) codebook(ds)
x <- as.item(sample(1:3,10,replace=TRUE), labels=c("1. One"=1, "2. Two"=2, "2. Three"=3)) y <- as.item(sample(1:2,10,replace=TRUE), labels=c("1. First category"=1, "2. Second category"=2)) ds <- data.set(x,y) x <- trim_labels(x) codebook(x) ds <- trim_labels(ds) codebook(ds)
The classes "named.list" and "item.list" are merely some 'helper classes' for the construction of the classes "data.set" and "importer".
Class "named.list" extends the basic class "list" by an additional
slot "names". Its initialize
method assures that the names
of the list are unique.
Class "item.list" extends the class "named.list", but does not
add any slots. From "named.list" it differs only by the
initialize
method, which calls that for "named.list"
and makes sure that all elements of the list belong to
class "item".
Classes "atomic" and "double" are merely used for method selection.
new("named.list",a=1,b=2) # This should generate an error, since the names # are not unique. try(new("named.list",a=1,a=2)) # Another error, one name is missing. try(new("named.list",a=1,2)) # Also an error, the resulting list would be unnamed. try(new("named.list",1,2)) new("item.list",a=1,b=2) # Also an error: "item.list"s are "named.lists", # and here the names would be non-unique. try(new("item.list",a=1,a=2))
new("named.list",a=1,b=2) # This should generate an error, since the names # are not unique. try(new("named.list",a=1,a=2)) # Another error, one name is missing. try(new("named.list",a=1,2)) # Also an error, the resulting list would be unnamed. try(new("named.list",1,2)) new("item.list",a=1,b=2) # Also an error: "item.list"s are "named.lists", # and here the names would be non-unique. try(new("item.list",a=1,a=2))
Value filters, that is objects that inherit from class "value.filter", are a mechanism to distinguish between valid codes of a survey item and codes that are considered to be missing, such as the codes for answers like "don't know" or "answer refused".
Value filters are optional slot values of "item" objects.
They determine which codes of "item" objects are
replaced by NA
when they are coerced into
a vector or a factor.
There are three (sub)classes of value filters:
"missing.values", which specify individual
missing values and/or a range of missing values;
"valid.values", which specify individual
valid values (that is, all other values of the
item are considered as missing);
"valid.range", which specify a range of
valid values (that is, all values outside the range
are considered as missing).
Value filters of class "missing.values" correspond
to missing-values declarations in SPSS files,
imported by spss.fixed.file
,
spss.portable.file
, or
spss.system.file
.
Value filters also can be updated using the +
and -
operators.
value.filter(x) missing.values(x) missing.values(x)<-value valid.values(x) valid.values(x)<-value valid.range(x) valid.range(x)<-value is.valid(x) nvalid(x) is.missing(x) include.missings(x,mark="*")
value.filter(x) missing.values(x) missing.values(x)<-value valid.values(x) valid.values(x)<-value valid.range(x) valid.range(x)<-value is.valid(x) nvalid(x) is.missing(x) include.missings(x,mark="*")
x , value
|
objects of the appropriate class. |
mark |
a character string, used to pasted
to value labels of |
value.filter(x)
, missing.values(x)
, valid.values(x)
, and valid.range(x)
,
return the value filter associated with x
, an
object of class "value.filter", that is, of class
"missing.values", "valid.values", or "valid.range", respectively.
is.missing(x)
returns a logical vector indicating for
each element of x
whether it is a missing value or not.
is.valid(x)
returns a logical vector indicating for
each element of x
whether it is a valid value or not.
nvalid(x)
returns the number of elements of x
that are valid.
For convenience, is.missing(x)
and is.valid(x)
also work
for atomic vectors and factors, where they are equivalent to
is.na(x)
and !is.na(x)
. For atomic vectors and factors,
nvalid(x)
returns the number of elements of x
for
which !is.na(x)
is TRUE.
include.missings(x,...)
returns a copy of x
that has all values declared as valid.
x <- rep(c(1:4,8,9),2,length=60) labels(x) <- c( a=1, b=2, c=3, d=4, dk=8, refused=9 ) missing.values(x) <- 9 missing.values(x) missing.values(x) <- missing.values(x) + 8 missing.values(x) missing.values(x) <- NULL missing.values(x) missing.values(x) <- list(range=c(8,Inf)) missing.values(x) valid.values(x) print(x) is.missing(x) is.valid(x) as.factor(x) as.factor(include.missings(x)) as.integer(x) as.integer(include.missings(x))
x <- rep(c(1:4,8,9),2,length=60) labels(x) <- c( a=1, b=2, c=3, d=4, dk=8, refused=9 ) missing.values(x) <- 9 missing.values(x) missing.values(x) <- missing.values(x) + 8 missing.values(x) missing.values(x) <- NULL missing.values(x) missing.values(x) <- list(range=c(8,Inf)) missing.values(x) valid.values(x) print(x) is.missing(x) is.valid(x) as.factor(x) as.factor(include.missings(x)) as.integer(x) as.integer(include.missings(x))
The function view
provides generic interface to the non-generic
function View
.
In contrast to the implementation of View
provided by either
basic R or RStudio, this function can be extended to
handle new kinds of objects by defining viewPrep
methods for
them. Further, view
can be adapted to other GUIs by specifying
the "vfunc"
option or the vfunc=
optional argument.
Internally, view
usues the generic function viewPrep
to prepare data so it can be passed on to the (non-generic) function
View
or (optionally) a different graphical user interface
function that can be used to display matrix- or data frame-like
objects.
The vfunc
argument determines how the result of viewPrep
is displayed. Its default is the function View
, but an
alternative is view_html
which creates and displays an HTML grid.
view(x, title=deparse(substitute(x)), vfunc=getOption("vfunc","View"), ...) # The internal generic, not intended to be used by the end-user. viewPrep(x,title,...) ## S3 method for class 'data.set' viewPrep(x,title,...) ## S3 method for class 'data.frame' viewPrep(x,title,...) ## S3 method for class 'descriptions' viewPrep(x,title,...) ## S3 method for class 'codeplan' viewPrep(x,title,compact=FALSE,...) ## S3 method for class 'importer' viewPrep(x,title,compact=TRUE,...)
view(x, title=deparse(substitute(x)), vfunc=getOption("vfunc","View"), ...) # The internal generic, not intended to be used by the end-user. viewPrep(x,title,...) ## S3 method for class 'data.set' viewPrep(x,title,...) ## S3 method for class 'data.frame' viewPrep(x,title,...) ## S3 method for class 'descriptions' viewPrep(x,title,...) ## S3 method for class 'codeplan' viewPrep(x,title,compact=FALSE,...) ## S3 method for class 'importer' viewPrep(x,title,compact=TRUE,...)
x |
an object, e.g. a data frame, data.set, or importer. |
title |
an optional character string; shown as the title of the display. |
vfunc |
a character string; a name of a GUI function to call
with the results of |
compact |
a logical value; should the codeplan be shown in a compact form - one line per variable - or in a more expanive form - one line per labelled value? |
... |
further arguments; |
## Not run: example(data.set) view(Data) view(description(Data)) view(codeplan(Data)) # Note that this file is *not* included in the package # and has to be obtained from GESIS in order to run the # following ZA7500sav <- spss.file("ZA7500_v2-0-0.sav") view(ZA7500sav) ## End(Not run)
## Not run: example(data.set) view(Data) view(description(Data)) view(codeplan(Data)) # Note that this file is *not* included in the package # and has to be obtained from GESIS in order to run the # following ZA7500sav <- spss.file("ZA7500_v2-0-0.sav") view(ZA7500sav) ## End(Not run)
An alternative to 'View' for use with 'view'.
view_html(x,title=deparse(substitute(x)),output,...)
view_html(x,title=deparse(substitute(x)),output,...)
x |
the result of |
title |
an optional character string; shown as the title of the display. |
output |
a function or the name of a function. It determines how where the HTML code is directed to. If the working environment is RStudio, the default value is
If If |
... |
other arguments; ignored. |
## Not run: example(data.set) view(Data,vfunc=view_html) ## End(Not run)
## Not run: example(data.set) view(Data,vfunc=view_html) ## End(Not run)
The function wild.codes
creates a table of frequencies of those codes
of an item that do not have labelled attached to them. This way, it helps to identify
coding errors.
wild.codes(x) ## S4 method for signature 'item' wild.codes(x)
wild.codes(x) ## S4 method for signature 'item' wild.codes(x)
x |
an object of class "item" |
A table of frequencies (i.e. an array of class "table")
The operators %$%
and %$$%
provide
abbrevitions for calls to with()
and within()
respectively.
The function Within()
is a variant of with()
were
the resulting data frame contains any newly created variables in the
order in which they are created (and not in the reverse order).
data %$% expr data %$$% expr Within(data,expr,...) ## S3 method for class 'data.frame' Within(data,expr,...)
data %$% expr data %$$% expr Within(data,expr,...) ## S3 method for class 'data.frame' Within(data,expr,...)
data |
|
expr |
a single or compound expression (i.e. several expressions
enclosed in curly braces), see |
... |
Further arguments, currently ignored |
with
and within
in package "base".
df <- data.frame(a = 1:7, b = 7:1) df df <- within(df,{ ab <- a + b a2b2 <- a^2 + b^2 }) df df <- data.frame(a = 1:7, b = 7:1) df <- Within(df,{ ab <- a + b a2b2 <- a^2 + b^2 }) df df <- data.frame(a = 1:7, b = 7:1) df ds <- as.data.set(df) ds df %$$% { ab <- a + b a2b2 <- a^2 + b^2 } df ds %$$% { ab <- a + b a2b2 <- a^2 + b^2 } ds df %$% c(a.ssq = sum(a^2), b.ssq = sum(b^2))
df <- data.frame(a = 1:7, b = 7:1) df df <- within(df,{ ab <- a + b a2b2 <- a^2 + b^2 }) df df <- data.frame(a = 1:7, b = 7:1) df <- Within(df,{ ab <- a + b a2b2 <- a^2 + b^2 }) df df <- data.frame(a = 1:7, b = 7:1) df ds <- as.data.set(df) ds df %$$% { ab <- a + b a2b2 <- a^2 + b^2 } df ds %$$% { ab <- a + b a2b2 <- a^2 + b^2 } ds df %$% c(a.ssq = sum(a^2), b.ssq = sum(b^2))
A simple object-orientation infrastructure to add alternative standard
errors, e.g. sandwich estimates or New-West standard errors to
fitted regression-type models, such as fitted by lm()
or glm()
.
withSE(object, vcov, ...) withVCov(object, vcov, ...) ## S3 method for class 'lm' withVCov(object, vcov, ...) ## S3 method for class 'withVCov' summary(object, ...) ## S3 method for class 'withVCov.lm' summary(object, ...)
withSE(object, vcov, ...) withVCov(object, vcov, ...) ## S3 method for class 'lm' withVCov(object, vcov, ...) ## S3 method for class 'withVCov' summary(object, ...) ## S3 method for class 'withVCov.lm' summary(object, ...)
object |
a fitted model object |
vcov |
a function that returns a variance matrix estimate, a
given matrix that is such an estimate, or a character string that
identifies a function that returns a variance matrix estimate
(e.g. |
... |
further arguments, passed to |
Using withVCov()
an alternative variance-covariance matrix is
attributed to a fitted model object. Such a matrix may be produced by
any of the variance estimators provided by the "sandwich" package or
any package that extends it.
withVCov()
has no consequences on how a fitted model itself is
printed or represented, but it does have consequences what standard
errors are reported, when the function summary()
or the function
mtable()
is applied.
withSE()
is a convenience front-end to withVCov()
. It can
be called in the same way as withVCov
, but also allows to specify
the type of variance estimate by a character string that identifies
the function that gives the covariance matrix (e.g. "OPG"
for
vcovOPG
).
withVCov
returns a slightly modified model object: It adds an
attribute named ".VCov" that contains the alternate covaraince matrix
and modifies the class attribute. If e.g. the original model object has class
"lm" then the model object modified by withVCov
has the class
attribute c("withVCov.lm", "withVCov", "lm")
.
## Generate poisson regression relationship x <- sin(1:100) y <- rpois(100, exp(1 + x)) ## compute usual covariance matrix of coefficient estimates fm <- glm(y ~ x, family = poisson) library(sandwich) fmo <- withVCov(fm,vcovOPG) vcov(fm) vcov(fmo) summary(fm) summary(fmo) mtable(Default=fm, OPG=withSE(fm,"OPG"), summary.stats=c("Deviance","N") ) vo <- vcovOPG(fm) mtable(Default=fm, OPG=withSE(fm,vo), summary.stats=c("Deviance","N") )
## Generate poisson regression relationship x <- sin(1:100) y <- rpois(100, exp(1 + x)) ## compute usual covariance matrix of coefficient estimates fm <- glm(y ~ x, family = poisson) library(sandwich) fmo <- withVCov(fm,vcovOPG) vcov(fm) vcov(fmo) summary(fm) summary(fmo) mtable(Default=fm, OPG=withSE(fm,"OPG"), summary.stats=c("Deviance","N") ) vo <- vcovOPG(fm) mtable(Default=fm, OPG=withSE(fm,vo), summary.stats=c("Deviance","N") )
This is a convenience function to facilitate the creation of data set documents in text files.
Write(x,...) ## S3 method for class 'codebook' Write(x,file=stdout(),...) ## S3 method for class 'descriptions' Write(x,file=stdout(),...)
Write(x,...) ## S3 method for class 'codebook' Write(x,file=stdout(),...) ## S3 method for class 'descriptions' Write(x,file=stdout(),...)
x |
a "codebook" or "descriptions" object. |
file |
a connection, see connections. |
... |
further arguments, ignored or passed on to particular methods. |
xapply
evaluates an expression given as second argument by substituting
in variables. The results are collected in a list or array in a
similar way as done by Sapply
or lapply
.
xapply(...,.sorted,simplify=TRUE,USE.NAMES=TRUE,.outer=FALSE)
xapply(...,.sorted,simplify=TRUE,USE.NAMES=TRUE,.outer=FALSE)
... |
tagged and untagged arguments. The tagged arguments define the 'variables' that are looped over, the first untagged argument defines the expression wich is evaluated. |
.sorted |
an optional logical value; relevant only
when a range of variable is specified using the column operator
" If this argument missing, its default value is TRUE, if |
simplify |
a logical value; should the result be simplifies in
|
USE.NAMES |
a logical value or a positive integer. If an integer, determines which variable is used to name the highest dimension of the result (its columns, in case is it a matrix). If TRUE, the first variable is used. |
.outer |
an optional logical value; if TRUE, each combination of the variables is used to evaluate the expression, if FALSE (the default) then the variables all need to have the same length and the corresponding values of the variables are used in the evaluation of the expression. |
x <- 1:3 y <- -(1:3) z <- c("Uri","Schwyz","Unterwalden") print(x) print(y) print(z) foreach(var=c(x,y,z), # assigns names names(var) <- letters[1:3] # to the elements of x, y, and z ) print(x) print(y) print(z) ds <- data.set( a = c(1,2,3,2,3,8,9), b = c(2,8,3,2,1,8,9), c = c(1,3,2,1,2,8,8) ) print(ds) ds <- within(ds,{ description(a) <- "First item in questionnaire" description(b) <- "Second item in questionnaire" description(c) <- "Third item in questionnaire" wording(a) <- "What number do you like first?" wording(b) <- "What number do you like second?" wording(c) <- "What number do you like third?" foreach(x=a:c,{ # Lazy data documentation: labels(x) <- c( # a,b,c get value labels in one statement one = 1, two = 2, three = 3, "don't know" = 8, "refused to answer" = 9) missing.values(x) <- c(8,9) }) }) codebook(ds) # The colon-operator respects the order of the variables # in the data set, if .sorted=FALSE with(ds[c(3,1,2)], xapply(x=a:c, description(x) )) # Since .sorted=TRUE, the colon operator creates a range # of alphabetically sorted variables. with(ds[c(3,1,2)], xapply(x=a:c, description(x), .sorted=TRUE )) # The variables in reverse order with(ds, xapply(x=c:a, description(x) )) # The colon operator can be combined with the # concatenation function with(ds, xapply(x=c(a:b,c,c,b:a), description(x) )) # Variables can also be selected by regular expressions. with(ds, xapply(x=rx("[a-b]"), description(x) )) # Demonstrating the effects of the 'USE.NAMES' argument. with(ds, xapply(x=a:c,mean(x))) with(ds, xapply(x=a:c,mean(x), USE.NAMES=FALSE)) t(with(ds, xapply(i=1:3, x=a:c, c(Index=i, Mean=mean(x)), USE.NAMES=2))) # Result with 'simplify=FALSE' with(ds, xapply(x=a:c,mean(x), simplify=FALSE)) # It is also possible to loop over functions: xapply(fun=c(exp,log), fun(1)) # Two demonstrations for '.outer=TRUE' with(ds, xapply(x=a:c, y=a:c, cov(x,y), .outer=TRUE)) with(ds, xapply(x=a:c, y=a:c, fun=c(cov,cor), fun(x,y), .outer=TRUE))
x <- 1:3 y <- -(1:3) z <- c("Uri","Schwyz","Unterwalden") print(x) print(y) print(z) foreach(var=c(x,y,z), # assigns names names(var) <- letters[1:3] # to the elements of x, y, and z ) print(x) print(y) print(z) ds <- data.set( a = c(1,2,3,2,3,8,9), b = c(2,8,3,2,1,8,9), c = c(1,3,2,1,2,8,8) ) print(ds) ds <- within(ds,{ description(a) <- "First item in questionnaire" description(b) <- "Second item in questionnaire" description(c) <- "Third item in questionnaire" wording(a) <- "What number do you like first?" wording(b) <- "What number do you like second?" wording(c) <- "What number do you like third?" foreach(x=a:c,{ # Lazy data documentation: labels(x) <- c( # a,b,c get value labels in one statement one = 1, two = 2, three = 3, "don't know" = 8, "refused to answer" = 9) missing.values(x) <- c(8,9) }) }) codebook(ds) # The colon-operator respects the order of the variables # in the data set, if .sorted=FALSE with(ds[c(3,1,2)], xapply(x=a:c, description(x) )) # Since .sorted=TRUE, the colon operator creates a range # of alphabetically sorted variables. with(ds[c(3,1,2)], xapply(x=a:c, description(x), .sorted=TRUE )) # The variables in reverse order with(ds, xapply(x=c:a, description(x) )) # The colon operator can be combined with the # concatenation function with(ds, xapply(x=c(a:b,c,c,b:a), description(x) )) # Variables can also be selected by regular expressions. with(ds, xapply(x=rx("[a-b]"), description(x) )) # Demonstrating the effects of the 'USE.NAMES' argument. with(ds, xapply(x=a:c,mean(x))) with(ds, xapply(x=a:c,mean(x), USE.NAMES=FALSE)) t(with(ds, xapply(i=1:3, x=a:c, c(Index=i, Mean=mean(x)), USE.NAMES=2))) # Result with 'simplify=FALSE' with(ds, xapply(x=a:c,mean(x), simplify=FALSE)) # It is also possible to loop over functions: xapply(fun=c(exp,log), fun(1)) # Two demonstrations for '.outer=TRUE' with(ds, xapply(x=a:c, y=a:c, cov(x,y), .outer=TRUE)) with(ds, xapply(x=a:c, y=a:c, fun=c(cov,cor), fun(x,y), .outer=TRUE))