
Package: memify (via r-universe)
October 24, 2024

Type Package

Title Constructing Functions That Keep State

Version 0.1.1

Author Bert Gunter

Maintainer Bert Gunter <bgunter.4567@gmail.com>

Description A simple way to construct and maintain functions that keep
state i.e. remember their argument lists. This can be useful
when one needs to repeatedly invoke the same function with only
a small number of argument changes at each invocation.

Depends R (>= 4.0)

Imports utils

License GPL-3

Encoding UTF-8

LazyData true

NeedsCompilation no

Repository CRAN

Date/Publication 2021-01-18 16:40:09 UTC

Contents

memify-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
memify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
memify support functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Index 7

1



2 memify-package

memify-package A Simple Framework to Construct and Maintain Functions That Keep
State

Description

This package provides a simple way to construct and maintain versions of R functions that keep their
state – i.e. "remember" their explicitly specifed arguments from previous calls. If not overridden,
the remembered values of these arguments are automatically reused as the defaults for subsequent
calls.

This may be convenient when a function with a large argument list – plotting functions are typi-
cal examples – needs to be repeatedly invoked with only a few changes in the arguments at each
invocation; or when interacting with a function to determine what parameter values give the most
informative results. While there are certainly other ways to do this, the simplicity of this approach
may make it a useful alternative.

Details

The package has only one key function: memify(). It takes one argument, f, a function or a function
name as a name/symbol or character string. The result, almost always assigned to a different name,
is a new version of f that will keep state. It has S3 class "memified" that extends the function’s
original class vector . The original version of f of course remains.

Some minor additional convenience functions, arglist(), arglist(x) <- value, and an update
method, update.memified(), are also provided. See the examples here and in their repective Help
pages for usage.

Note

The arglist of a memified function consists only of arguments that were explicitly specified in a
prior call. Hence, any formal default arguments that were not changed or specified will not be
included in the memified function’s arglist, which can be extracted via the arglist() function.

Author(s)

Bert Gunter

Maintainer: Bert Gunter <bgunter.4567@gmail.com>

Examples

mod <- function(x, b = 5) x %% b
mod.m <- memify(mod) ## or memify("mod")
mod.m(7) ## using default b = 5
mod.m(b = 3) ## using remembered x = 7
mod.m() ## the same as previous

arglist(mod.m) ## list of all memified arguments
update (mod.m, b = 9) ## silently updates arglist



memify 3

arglist(mod.m)

arglist(mod.m) <- list(x=11) ## replaces the arglist with a new list
arglist(mod.m)
## b is no longer memified, so mod's default = 5 is used:
mod.m()

## cleanup
rm(mod.m)

memify Enable Functions To Keep State

Description

Constructs new ‘memified’ versions of functions that keep state – remember the values of their
arguments – between calls.

Usage

memify(f, envir = parent.frame())

Arguments

f A function (a closure) to convert. If name is a character string then the function
with that name is found and used.

envir The environment in which the function is defined or found via get() when f is
a character string.

Details

One should (almost) never assign the memified function back to its original function name, as this
would replace the original function by its memified version, causing all manner of problems. You
have been warned!

Value

A function of class "memified", extending the class of f. It is the same as f, except it "remem-
bers" the values of all arguments from its previous calls and uses them as defaults if they are not
respecified in the current call. See the examples.

Note

primitive functions cannot be memified. They are not closures and some do not make use of
named arguments, as they match by position rather than name. However, see the examples below
for a workaround of this limitation.

Note also that unnamed . . . arguments in calls are not remembered. They can be included and
accessed as usual, but are forgotten when the function returns.



4 memify

Author(s)

Bert Gunter

See Also

arglist update.memified arglist<-

Examples

add2 <- function(a,b) a+b
add2.m <- memify(add2)
add2.m(2,3) ## a = 2, b= 3, as usual
add2.m(5) ## a =5; b = 3 from previous call
add2.m(b = 10) ## a = 5 from previous call
add2.m() ## both a and b from previous call
z <- 100
add2.m(1,z) ## if not missing, arguments are evaluated as usual
rm(z)

## Also as usual, unexpected arguments produce an error:
## Not run: add2.m(unused = 10)

## Memifying functions with unnamed ... arguments:
sum.m <- memify(function(a,b, ...) sum(a, b, ...))
sum.m(2, 3, 10, 5) ## a =2, b = 3, ... = c(10,5)
sum.m() ## unnamed arguments are forgotten and not reused!
sum.m( b = 7, 5) ## Is 5 the value for a or ... ?
sum.m() ## It's for a, following R's standard argument matching rules
arglist(sum.m) ## Is a better way to check argument lists

## memify may be useful in plot functions with many arguments:
plot.m <- memify(plot)
x <- 1:9; y <- runif(9)
plot.m(x,y, col = "blue")
## Change the default type argument and col to "red"
plot.m(col = "red", type = "b")
## make lwd = 2
plot.m(lwd = 2)

## memifying a primitive function:
## exponentiation via '^' is a primitive function that uses positional matching
`^`
## memify a wrapper to convert a primitive to a closure
exp.m <- memify(function(y = 1, x = 0) y^x)
exp.m() ## uses default values
exp.m(2,3) ## y = 2, x = 3
exp.m(x = 5) ## y = 2
exp.m() ## same as previous

## cleanup
rm(add2, add2.m, sum.m, plot.m, exp.m)



memify support functions 5

memify support functions

Extract, Update, and Replace Argument Lists of Memified Functions

Description

These functions support the use of memified functions.

Usage

arglist(f)

arglist(x) <- value

## S3 method for class 'memified'
update(object, ...)

Arguments

x, f, object A memified function.

value A named list of argument values to replace the existing argument list. An at-
tempt will be made to coerce a non-list to a list. If successful, the coerced arglist
will be used and a warning reporting the coercion will be issued. Otherwise an
error will be thrown.

... Tagged argument-value pairs to add to or replace existing arglist arguments.

Value

arglist() returns the existing argument list.

arglist <- value replaces the existing argument list with the (possibly coerced) new list.

update() (silently) adds additional named arguments to a function’s arglist and/or changes the
values of any that already exist. NULL is invisibly returned.

Warning

The update and replacement functions do not check that valid argument names are used. Invalid
arguments can of course cause errors when the memified functions are subsequently invoked.

Note

“arglists”, the remembered argument lists of memified functions, consist only of values that have
been explicitly specified in prior calls of the memified function, or via update or arglist <- value
functionality. Hence default arguments that have not been so changed or specified will not be in the
arglists. See formals or args for ways to extract/change such defaults.



6 memify support functions

Author(s)

Bert Gunter

See Also

memify

Examples

f.m <- memify(function(a = 0, b) sin(a+b))
f.m( b = pi/4) # uses default for a
arglist(f.m)
update(f.m, a= pi/4) ## new default for a
f.m(b = -pi/4)
arglist(f.m) <- list() ## resets arglist
f.m( b = pi/4) ## The original default of a = 0 is used

## cleanup
rm(f.m)



Index

∗ data
memify, 3
memify support functions, 5

∗ package
memify-package, 2

∗ utilities
memify, 3
memify support functions, 5

arglist, 4
arglist (memify support functions), 5
arglist<- (memify support functions), 5
args, 5

environment, 3

formals, 5

memify, 3, 6
memify support (memify support

functions), 5
memify support functions, 5
memify-package, 2

primitive, 3

update.memified, 4
update.memified (memify support

functions), 5

7


	memify-package
	memify
	memify support functions
	Index

