
Maximum Entropy Bootstrap for Time Series:

Toy Example Exposition

Hrishikesh D. Vinod

Fordham University

September 15, 2024

Toy Example

The Maximum Entropy Bootstrap is illustrated with a small example. Let the
sequence xt = (4, 12, 36, 20, 8) be the series of data observed from the period
t = 1 to t = 5 as indicated in the �rst two columns in Table 1. We jointly
sort these two columns on the second column and place the result in the next
two columns (Table 2 columns 3 and 4), giving us the ordering index vector in
column 3.

Next, the four intermediate points in Column 5 are seen to be simple averages
of consecutive order statistics. We need two more (limiting) "intermediate"
points. These are obtained as described in Step 3 above. Using 10% trimming,
the limiting intermediate values are z0 = −11 and zT = 51. With these six zt
values we build our �ve half open intervals:

U(−11, 6]× U(6, 10]× U(10, 16]× U(16, 28]× U(28, 51]

The maximum entropy density of the ME bootstrap is de�ned as the combi-
nation of T uniform densities de�ned over (the support of) T half open intervals.

Time xt
Ordering

vector

Sorted

xt

Interme-

diate

points

Desired

means

Uniform

draws

Preli-

minary

values

Final

replicate

1 4 1 4 6 5 0.12 5.85 5.85

2 12 5 8 10 8 0.83 6.70 13.90

3 36 2 12 16 13 0.53 13.90 23.95

4 20 4 20 28 22 0.59 15.70 15.70

5 8 3 36 32 0.11 23.95 6.70

Table 1: Example of the ME bootstrap algorithm.

1

−10 0 10 20 30 40 50

0.01

0.02

0.03

0.04

0.05

x

de
ns

ity

Figure 1: Maximum entropy density for the xt = 4, 12, 36, 20, 8 example.

> xx <- c(4,12,36,20,8) #original time series up and down shape

> trimprop <- 0.10 #trimming proportion

> reachbnd <- FALSE #reaching the bound of the range forced or not?

> # uniform draws used as an example in Table 1 of the paper

>

> p <- c(0.12, 0.83, 0.53, 0.59, 0.11)

> n <- length(xx)

> x <- sort(xx)

> ordxx <- sort(xx, index.return=TRUE)

> print(c("ordxx=",ordxx)) #without the dollar ix appending

[[1]]

[1] "ordxx="

$x

[1] 4 8 12 20 36

$ix

[1] 1 5 2 4 3

> print(c("ordxx$ix=",ordxx$ix))

[1] "ordxx$ix=" "1" "5" "2" "4" "3"

2

Index Return = TRUE using sort command

The above use of the sort command with index.return=TRUE is worth learning.
It will be used later to map from numerical magnitudes (values) domain to the
time domain. The use of sort with option index.return=TRUE allows us to
avoid explicit use of sorting on two columns of data.

> x <- sort(xx)

> x #sorted magnitudes original xx data in values domain

[1] 4 8 12 20 36

> #embed good for getting a matrix with lagged values in the second column

> embed(1:4,2) #allows no worry about missing values with lags

[,1] [,2]

[1,] 2 1

[2,] 3 2

[3,] 4 3

> embed(x, 2) #apply embed to our sorted xx

[,1] [,2]

[1,] 8 4

[2,] 12 8

[3,] 20 12

[4,] 36 20

> z <- rowMeans(embed(x, 2))

> z #these are intermediate values

[1] 6 10 16 28

> dv <- abs(diff(xx))

> dv #vector of absolute differences

[1] 8 24 16 12

> dvtrim <- mean(dv, trim=trimprop)

> dvtrim #trimmed mean of dv

3

[1] 15

> xmin <- x[1]-dvtrim

> xmax <- x[n]+dvtrim

> xmin #ultimate minimum for resampled data gives z_0

[1] -11

> xmax #ultimate maximum for resampled data gives z_T

[1] 51

embed command

R function embed Embeds the time series x into a low-dimensional Euclidean
space. We are using dimension=2 here. It gives lagged values in second column
of a matrix without worrying about missing values.

dv denotes the absolute di�erence between consecutive sorted values.
z denotes intermediate values needed for de�ning half-open intervals It =

(z(t−1), zt].
Unfortunately, the xmin (z0 = −11) and xmax (zT = 51) do not appear in

the published Table.

Mass and Mean Preserving Constraints satisfy er-
godic theorem

A fraction 1/T of the mass of the probability distribution must lie in each
interval. meboot requires each half open interval It to have an equal chance
being included in the resample.

Σxt = Σx(t) = Σmt, where mt denote the mean of f(x) within the interval
It. mean preserving constraint.

f(x) = 1/(z1 − z0), x ∈ I(1), m1 = 0.75x(1) + 0.25x(2), (1a)

f(x) = 1/(zk − zk−1), x ∈ (zk − zk−1], (1b)

with mean mk = 0.25x(k−1) + 0.50x(k) + 0.25x(k+1) (1c)

for k = 2, . . . , T − 1, (1d)

f(x) = 1/(zT − zT−1), x ∈ I(T), mT = 0.25x(T−1) + 0.75x(T). (1e)

The weights for the two observations at the left end interval are (0.75, 0.25)
Note that the weights are (0.25, 0.50, and 0.25) for all intermediate intervals

We have T = 5 here leading to three intervals needing these weights.
The weights for the two observations at the right end interval are (0.25, 0.75)

4

Properties of uniform density

If the range of continuous uniform random variable are a to b the density of
uniform is f(1/(b-a))

Mean of uniform is (a+b)/2
We have used maximum entropy principle to say that the densities between

the intermediate points z0 to zT are all uniform.
The desired means for our toy example with order stats=(4,8,12,20,36) are
(6+10)/2=8, (10+16)/2=13, (16+28)/2=22 for intermediate intervals
For the left extreme we use 0.75 ∗ x(1) + 0.25 ∗ x(2)=0.75*4+0.25*8=5
For the right extreme interval desired mean is 0.25 ∗ x(T−1) + 0.75 ∗ x(T)

0.25*20+0.75*36=32
see last table column entitled desintxb with entries (5,8,13,22,32)

embed helps achieve desired means mt of the T in-
tervals

It is worth learning how three dimensional embed function of R works with this
toy example where we are considering mean of 3 consecutive values, except for
the two intervals at the two ends of the series.

> embed(1:5,3) #embeding 1:5 gives 3 by 3 matrix

[,1] [,2] [,3]

[1,] 3 2 1

[2,] 4 3 2

[3,] 5 4 3

> #Note j-th column has lag=j-1 values. Col.2 has lag 1

> #Note embed retains only non-missing lag values

> x

[1] 4 8 12 20 36

> t(embed(x,3))# transpose embed matrix

[,1] [,2] [,3]

[1,] 12 20 36

[2,] 8 12 20

[3,] 4 8 12

> t(embed(x, 3))*c(0.25,0.5,0.25) #multiply by weights

5

[,1] [,2] [,3]

[1,] 3 5 9

[2,] 4 6 10

[3,] 1 2 3

> t(t(embed(x, 3))*c(0.25,0.5,0.25)) #transpose twice to get back

[,1] [,2] [,3]

[1,] 3 4 1

[2,] 5 6 2

[3,] 9 10 3

Next we compute the row sum of above and call it a vector aux. This applies
to intermediate intervals not the extreme intervals a the bottom end and at the
top end, where one needs to average only two intermediate values with weights
0.75 and 0.25.

> aux <- rowSums(t(t(embed(x, 3))*c(0.25,0.5,0.25)))

> aux #these are only 3

[1] 8 13 22

> #append the means of two extreme intervals at the two ends

> desintxb <- c(0.75*x[1]+0.25*x[2], aux, 0.25*x[n-1]+0.75*x[n])

> desintxb# des=desired, int=interval, xb=xbar=means

[1] 5 8 13 22 32

> desintxb #desired means 5 8 13 22 32, Now 5 as desired

[1] 5 8 13 22 32

> print("mean(xx),mean(desintxb),mean(x)") #all=16

[1] "mean(xx),mean(desintxb),mean(x)"

> print(c(mean(xx),mean(desintxb), mean(x)))

[1] 16 16 16

The above shows that the mean preserving constraint is satis�ed, since
the mean of data and mean of desired means equal the same number 16. This
is no accident, but achieved by designed weights which force the desired means
of each interval to be based on the xt data. This helps ensure that the ergodic
theorem is satis�ed by our resamples.

6

Drawing random quantile qt ∈ [z0, zT] from empiri-
cal cumulative ME density∈ [0, 1]

Given empirical cdf of ME density consisting of uniform patches, we just draw
999 realizations of iid uniform in the values domain. For example, a random
draw of uniform between 0 to 1 illustrated in the toy example is:

p=c(0.12, 0.83, 0.53, 0.59, 0.11)
I wish I had included an additional column for sorted uniform draws pp=(0.11,

0.12, 0.53, 0.59, 0.83) in the published paper for clearer exposition. A complete
table is included toward the end of this document.

> q=rep(0,n) #place holder for q

> pp=sort(p) #sorted random draws

> print(c("sorted random draws", pp))

[1] "sorted random draws" "0.11" "0.12"

[4] "0.53" "0.59" "0.83"

In traditional iid bootstrap each xt has 1/T (if we have T observations)
chance of being included in the resample. Of course, some xt might repeat and
some may not be present in some individual realizations of the random draws
from the uniform density. Imposing similar requirement in meboot algorithm is
called satisfying mass preserving constraint in the paper.

If the uniform random variable is de�ned over the range [a,b], then the its
mean is (a+b)/2. The �rst interval is (−11, 6] with width 17 and mean −5/2.
Since we have T=5 observations in the toy example, each interval should have
1/5 =0.2 probability of being included in the resample.

The sorted random draws are (0.11, 0.12, 0.53, 0.59, 0.83). the numbers
having the pp values less than 0.2 (=1/n or 1/T) are two numbers: 0.11 and
0.12. First we use the approx function to interpolate in I1 interval to get the
corresponding two interpolated value qq=−1.65,−0.8. These do not satisfy the
mean preserving constraint. They need to be adjusted by adding the adjustment
7.5 (calculated above) to yield 5.85 and 6.7 as the two quantiles of the ME
density associated with the �rst two sorted random draws 0.11 and 0.12.

> z[1] #first intermediate value

[1] 6

> xmin #smallest

[1] -11

7

> 0.5*(z[1]+xmin) #average for the first interval

[1] -2.5

> desintxb[1] #des=desired, int=interval, xb=xbar=mean

[1] 5

> desintxb[1]-0.5*(z[1]+xmin)#adjustment for first interval

[1] 7.5

Thus the �rst interval adjustment 7.5 must be added so that the mean equals
the desired value so that eventually we satisfy mean preserving constraint.

Now we turn to random draw(s) which happen to be less than or equal to
(1/T=1/5), which will come from the �rst half open interval I1 = (z0, z1].

R commands approx (linear interpolate) and which

> ref1 <- which(pp <= (1/n)) #how many are less than or equal to 1/5 if n=T=5

> ref1

[1] 1 2

> # approx. returns list of points which linearly interpolate given data points,

> #first interval ref1

>

> if(length(ref1)>0){

+ qq <- approx(c(0,1/n), c(xmin,z[1]), pp[ref1])$y

+ qq #interpolated values

+ adj= desintxb[1]-0.5*(z[1]+xmin)

+ print(c("qq=",qq,"adj=",adj))

+ q[ref1] <- qq

+ if(!reachbnd) q[ref1] <- qq + desintxb[1]-0.5*(z[1]+xmin)

+ }

[1] "qq=" "-1.65" "-0.800000000000001"

[4] "adj=" "7.5"

> print(c("qq=",qq))

[1] "qq=" "-1.65" "-0.800000000000001"

> print(c("q",q))

[1] "q" "5.85" "6.7" "0" "0" "0"

8

Second, Third and Fourth intervals

In our example sorted random draws are pp =(0.11 0.12 0.53 0.59 0.83) and
the relevant range limits are (0, 0.2, 0.4, 0.6, 0.8, 1.0). Clearly the �rst two pp

values are in the �rst interval 0 to 0.2 discussed above.
The second interval is I2 = (6, 10] with width 4 and mean 8 for sorted pp in

(1/T, 2/T]. None of our pp=(0.11 0.12 0.53 0.59 0.83) is between 0.2 and 0.4.
Two pp values 0.53 and 0.59 are both in the range 0.4 to 0.6 from which

there is no random draw. The next second range of probabilities is 0.2 to 0.4
and no draw in the range 06 to 0.8.

The third interval is I3 = (10, 16] with width 6 and mean 13 for sorted pp

in (2/T, 3/T]. After interpolation and adjustment, corresponding two quantile
values are 13.9 and 15.7.

The fourth interval is (16, 28] with width 12 and mean 22 for sorted pp in
(3/T, 4/T]. No random draw here.

> for(i1 in 1:(n-2)){

+ ref2 <- which(pp > (i1/n))

+ print(c("ref2",ref2,"pp[ref2]", pp[ref2]))

+ ref3 <- which(pp <= ((i1+1)/n))

+ print(c("ref3",ref3))

+ ref23 <- intersect(ref2, ref3)

+ print(c("ref23",ref23,"sorted draw pp[ref23]=",pp[ref23]))

+

+ if(length(ref23)>0){

+ qq <- approx(c(i1/n,(i1+1)/n), c(z[i1], z[i1+1]), pp[ref23])$y

+ print(c("interpolated value qq=",qq))

+ adj= desintxb[-1][i1]-0.5*(z[i1]+z[i1+1])

+ print(c("qq=",qq,"adj=",adj))

+ q[ref23] <- qq + desintxb[-1][i1]-0.5*(z[i1]+z[i1+1])

+ print(c("q",q))

+ }

+ }

[1] "ref2" "3" "4" "5" "pp[ref2]" "0.53" "0.59"

[8] "0.83"

[1] "ref3" "1" "2"

[1] "ref23" "sorted draw pp[ref23]="

[1] "ref2" "3" "4" "5" "pp[ref2]" "0.53" "0.59"

[8] "0.83"

[1] "ref3" "1" "2" "3" "4"

[1] "ref23" "3" "4"

[4] "sorted draw pp[ref23]=" "0.53" "0.59"

[1] "interpolated value qq=" "13.9" "15.7"

[1] "qq=" "13.9" "15.7" "adj=" "0"

[1] "q" "5.85" "6.7" "13.9" "15.7" "0"

9

[1] "ref2" "5" "pp[ref2]" "0.83"

[1] "ref3" "1" "2" "3" "4"

[1] "ref23" "sorted draw pp[ref23]="

We �nd that the adjustment to interpolated value above is zero.

Interval called ref4 if pp exactly equals 4/5 (n-1)/n
is empty.

> ref4 <- which(pp == ((n-1)/n))

> print(c("ref4", ref4))

[1] "ref4"

> if(length(ref4)>0)

+ q[ref4] <- z[n-1]

> q

[1] 5.85 6.70 13.90 15.70 0.00

Last interval, �fth here, is called ref5

Note that the last interval interpolated value qq is 31.45 and we adjust it by
adj=-7.5 to yield 23.95. Recall that the adjustment is designed to ensure the
ergodic theorem is numerically satis�ed by the meboot algorithm.

> ref5 <- which(pp > ((n-1)/n))

> if(length(ref5)>0){

+ print(c("ref5",ref5,"pp[ref5]=",pp[ref5]))

+ qq <- approx(c((n-1)/n,1), c(z[n-1],xmax), pp[ref5])$y

+ print(c("interpolated value qq in last interval",qq))

+ q[ref5] <- qq # this implicitly shifts xmax for algorithm

+ adj=desintxb[n]-0.5*(z[n-1]+xmax)

+ print(c("qq=",qq,"adj=",adj))

+

+ if(!reachbnd) q[ref5] <- qq + desintxb[n]-0.5*(z[n-1]+xmax)

+ }

[1] "ref5" "5" "pp[ref5]=" "0.83"

[1] "interpolated value qq in last interval"

[2] "31.45"

[1] "qq=" "31.45" "adj=" "-7.5"

10

Now wrap up the entire calculation of meboot for
toy example

Following code maps the q vector from values domain to the time domain by
using the sort function with the option index.return=TRUE noted above.

We set q[ordxx$ix] as sorted q denoted by qseq in the values domain.

> prel=q #preliminary quantile values

> qseq <- sort(q)

> print(c("sorted q",qseq))

[1] "sorted q" "5.85" "6.7" "13.9" "15.7" "23.95"

> q[ordxx$ix] <- qseq

> print(c("after mapping to time domain",q))

[1] "after mapping to time domain" "5.85"

[3] "13.9" "23.95"

[5] "15.7" "6.7"

> print(q)

[1] 5.85 13.90 23.95 15.70 6.70

Now we produce the table.

> Tim=1:5

> xt=xx #notation xt for original data

> xordstat=x #order stats

> ord1=ordxx$ix #output of sort

> intermed=c(z,xmax) #these are zt

> prel

[1] 5.85 6.70 13.90 15.70 23.95

> qseq #sorted quantiles

[1] 5.85 6.70 13.90 15.70 23.95

> final=q #final quantiles of ME density

> cb=cbind(Tim,xt,xordstat,ord1,intermed,desintxb, p,pp,prel,final)

11

> require(xtable)

> options(xtable.comment = FALSE)

> print(xtable(cb))

Tim xt xordstat ord1 intermed desintxb p pp prel �nal
1 1.00 4.00 4.00 1.00 6.00 5.00 0.12 0.11 5.85 5.85
2 2.00 12.00 8.00 5.00 10.00 8.00 0.83 0.12 6.70 13.90
3 3.00 36.00 12.00 2.00 16.00 13.00 0.53 0.53 13.90 23.95
4 4.00 20.00 20.00 4.00 28.00 22.00 0.59 0.59 15.70 15.70
5 5.00 8.00 36.00 3.00 51.00 32.00 0.11 0.83 23.95 6.70

I thank Fred Viole, director of the consulting �rm OVVO Financial Systems
specializing in analysis of stock market data for vastly improving an earlier draft
version of this vignette.

12

