
Bayes Factors via Serial Tempering

Charles J. Geyer

September 15, 2024

1 Introduction

1.1 Bayes Factors

LetM be a �nite or countable set of models (here we only deal with �nite

M but Bayes factors make sense for countable M). For each model m ∈ M
we have the prior probability of the model pri(m). It does not matter if this

prior on models is unnormalized.

Each model m has a parameter space Θm and a prior

g(θ | m), θ ∈ Θm

The spaces Θm can and usually do have di�erent dimensions. That's the

point. These within model priors must be normalized proper priors. The

calculations to follow make no sense if these priors are unnormalized or im-

proper.

Each model m has a data distribution

f(y | θ,m)

and the observed data y may be either discrete or continuous (it makes no

di�erence to the Bayesian who treats y as �xed after it is observed and treats
only θ and m as random).

The unnormalized posterior for everything (for models and parameters

within models) is

f(y | θ,m)g(θ | m) pri(m)

To obtain the conditional distribution of y given m, we must integrate out

the nuisance parameter θ

q(y | m) =

∫
Θm

f(y | θ,m)g(θ | m) pri(m) dθ

= pri(m)

∫
Θm

f(y | θ,m)g(θ | m) dθ
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These are the unnormalized posterior probabilities of the models. The nor-

malized posterior probabilities are

post(m | y) = q(y | m)∑
m∈M q(y | m)

It is considered useful to de�ne

b(y | m) =

∫
Θm

f(y | θ,m)g(θ | m) dθ

so

q(y | m) = b(y | m) pri(m)

Then the ratio of posterior probabilities of models m1 and m2 is

post(m1 | y)
post(m2 | y)

=
q(y | m1)

q(y | m2)
=

b(y | m1)

b(y | m2)
· pri(m1)

pri(m2)

This ratio is called the posterior odds of the models (a ratio of probabilities

is called an odds) of these models.

The prior odds is
pri(m1)

pri(m2)

The term we have not yet named in

post(m1 | y)
post(m2 | y)

=
b(y | m1)

b(y | m2)
· pri(m1)

pri(m2)

is called the Bayes factor
b(y | m1)

b(y | m2)
(1)

the ratio of posterior odds to prior odds.

The prior odds tells how the prior compares the probability of the models.

The Bayes factor tells us how the data shifts that comparison going from prior

to posterior via Bayes rule. Bayes factors are the primary tool Bayesians use

for model comparison, the competitor for frequentist P -values in frequentist

hypothesis tests of model comparison.

Note that our clumsy multiple letter notation for priors and posteriors

pri(m) and post(m | y) does not matter because neither is involved in the

actual calculation of Bayes factors (1). Priors and posteriors are involved in

motivating Bayes factors but not in calculating them.
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1.2 Tempering

Simulated tempering (Marinari and Parisi, 1992; Geyer and Thompson,

1995) is a method of Markov chain Monte Carlo (MCMC) simulation of

many distributions at once. It was originally invented with the primary aim

of speeding up MCMC convergence, but was also recognized to be useful for

sampling multiple distributions (Geyer and Thompson, 1995). In the latter

role it is sometimes referred to as �umbrella sampling� which is a term coined

by Torrie and Valleau (1977) for sampling multiple distributions via MCMC.

We have a �nite set of unnormalized distributions we want to sample,

all related in some way. The R function temper in the CRAN package mcmc

requires all to have continuous distributions for random vectors of the same

dimension (all distributions have the same domain Rp). Let hi, i ∈ I de-

note the unnormalized densities of these distributions. Simulated tempering

(called �serial tempering� by the temper function to distinguish from a re-

lated scheme not used in this document called �parallel tempering� and in

either case abbreviated ST) runs a Markov chain whose state is a pair (i, x)
where i ∈ I and x ∈ Rp.

The unnormalized density of stationary distribution of the ST chain is

h(i, x) = hi(x)ci (2)

where the ci are arbitrary constants chosen by the user (more on this later).

The equilibrium distribution of the ST state (I,X) � both bits random

� is such that conditional distribution of X given I = i is the distribution
with unnormalized density hi. This is obvious from h(i, x) being the unnor-
malized conditional density � the same function thought of as a function of

both variables is the unnormalized joint density and thought of as a function

of just one of the variables is an unnormalized conditional density � and

h(i, x) thought of as a function of x for �xed i being proportional to hi. The
equilibrium unnormalized marginal distribution of I is∫

h(i, x) dx = ci

∫
hi(x) dx = cidi (3)

where

di =

∫
hi(x) dx

is the normalizing constant for hi, that is, hi/di is a normalized distribution.

It is clear from (3) being the unnormalized marginal distribution that in

order for the marginal distribution to be uniform we must choose the tuning

constants ci to be proportional to 1/di. It is not important that the marginal
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distribution be exactly uniform, but unless it is approximately uniform, the

sampler will not visit each distribution frequently. Thus we do need to have

the ci to be approximately proportional to 1/di. This is accomplished by

trial and error (one example is done in this document) and is easy for easy

problems and hard for hard problems (Geyer and Thompson, 1995, have

much to say about adjusting the ci). For the rest of this section we will

assume the tuning constants ci have been so adjusted: we do not have the ci
exactly proportional to 1/di but do have them approximately proportional

to 1/di.

1.3 Tempering and Bayes Factors

Bayes factors are very important in Bayesian inference and many methods

have been invented to calculate them. No method except the one described

here using ST is anywhere near as accurate and straightforward. Thus no

competitors will be discussed.

In using ST for Bayes factors we identify the index set I with the model

set M and use the integers 1, . . ., k for both. We would like to identify the

within model parameter vector θ with the vector x that is the continuous

part of the state of the ST Markov chain, but cannot because the dimension

of θ depends on m and this is not allowed. Thus we have to do something a

bit more complicated. We �pad� θ so that it always has the same dimension,

doing so in a way that does not interfere with the Bayes factor calculation.

Write θ = (θactual, θpad), the dimension of both parts depending on the model

m. Then we insist on the following conditions:

f(y | θ,m) = f(y | θactual,m)

so the data distribution does not depend on the �padding� and

g(θ | m) = gactual(θactual | m) · gpad(θpad | m)

so the two parts are a priori independent and both parts of the prior are

normalized proper priors. This assures that

b(y | m) =

∫
Θm

f(y | θ,m)g(θ | m) dθ

=

∫∫
f(y | θactual,m)gactual(θactual | m)gpad(θpad | m) dθactual dθpad

=

∫
Θm

f(y | θactual,m)gactual(θactual | m) dθactual

(4)
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so the calculation of the unnormalized Bayes factors is the same whether or

not we �pad� θ, and we may then take

hm(θ) = f(y | θ,m)g(θ | m)

= f(y | θactual,m)gactual(θactual | m)gpad(θpad | m)

to be the unnormalized densities for the component distributions of the ST

chain, in which case the unnormalized Bayes factors are proportional to the

normalizing constants di in Section 1.2.

1.4 Tempering and Normalizing Constants

Let d be the normalizing constant for the joint equilibrium distribution

of the ST chain (2). When we are running the ST chain we know neither d
nor the di but we do know the ci, which are constants we have chosen based

on the results of previous runs but are �xed known numbers for the current

run. Let (It, Xt), t = 1, 2, . . . be the sample path of the ST chain. Recall

that (somewhat annoyingly) we are using the notation (i, x) for the state

vector of a general ST chain and the notation (m, θ) for ST chains used to

calculate Bayes factors, identifying i = m and x = θ.
Let ind( · ) denote the function that maps logical values to numerical

values, false to zero and true to one. Normalizing constants are estimated

by averaging the time spent in each model

δ̂n(m) =
1

n

n∑
t=1

ind(It = m) (5)

For the purposes of approximating Bayes factors the Xt are ignored. The Xt

may be useful for other purposes, such as Bayesian model averaging (Hoeting,

Madigan, Raftery, and Volinsky, 1999), but this is not discussed here.

The Monte Carlo approximations (5) converge to their expected values

under the equilibrium distribution

E{ind(It = m)} =

∫
h(m,x)

d
dx =

cmdm
d

= δ(m) (6)

We want to estimate the unnormalized Bayes factors (4), which are in this

context proportional to the dm. The cm are known, d is unknown but does

not matter since we only need to estimate the dm = b(m | y) up to an overall

unknown constant of proportionality, which cancels out of Bayes factors (1).
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Note that our discussion here applies unchanged to the general problem of

estimating normalizing constants up to an unknown constant of proportion-

ality, which has applications other than Bayes factors, for example, missing

data maximum likelihood (Thompson and Guo, 1991; Geyer, 1994; Sung and

Geyer, 2007). The ST method approximates normalizing constants up to an

overall constant of proportionality with high accuracy regardless of how large

or small they are (whether they are 10100 or 10−100), and no other method

that does not use essentially the same idea can do this.

The key is what seems at �rst sight to be a weakness of ST, the need to

adjust the tuning constants ci by trial and error. In this context the weakness
is actually a strength: the adjusted ci contain most of the information about

the size of the normalizing constants di and the Monte Carlo averages (5)

add only the �nishing touch. Thus multiple runs of the ST chain with

di�erent choices of the ci used in each run are needed (the �trial and error�),

but the information from all are incorporated in the �nal run used for �nal

approximation of the normalizing constants (Bayes factors). It is perhaps

surprising that the Monte Carlo error approximation is trivial. In the context

of the last run of the ST chain the ci are known constants and contribute

no error. The Monte Carlo error of the averages (5) is straightforwardly

estimated by batch means or competing methods.

Geyer and Thompson (1995) note that the ci enter formally like a prior:

one can think of hi(x)ci as likelihood times prior. But one should not think

of the ci as representing prior information, informative, non-informative, or

in between. The ci are adjusted to make the ST distribution sample all the

models hi, and that is the only criterion for the adjustment. For this reason

Geyer and Thompson (1995) call the ci the pseudoprior. This is a special

case of a general principle of MCMC. When doing MCMC one should forget

the statistical motivation (in this case Bayes factors). One should set up a

Markov chain that does a good job of simulating the required equilibrium

distribution, whatever it is. Thinking about the statistical motivation of the

equilibrium does not help and can hurt (if one thinks of the pseudoprior as an

actual prior, one may be tempted to adjust it to represent prior information).

2 R Package MCMC

We use the R statistical computing environment (R Development Core

Team, 2010) in our analysis. It is free software and can be obtained from

http://cran.r-project.org. Precompiled binaries are available for Win-

dows, Macintosh, and popular Linux distributions. We use the contributed
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package mcmc (Geyer., 2009) If R has been installed, but this package has

not yet been installed, do

install.packages("mcmc")

from the R command line (or do the equivalent using the GUI menus if on

Apple Macintosh or Microsoft Windows). This may require root or admin-

istrator privileges.

Assuming the mcmc package has been installed, we load it

> library(mcmc)

The version of the package used to make this document is 0.9-8 (which is

available on CRAN). The version of R used to make this document is 4.4.1.

We also set the random number generator seed so that the results are

reproducible.

> set.seed(42)

To get di�erent results, change the setting or don't set the seed at all.

3 Logistic Regression Example

We use the same logistic regression example used in the mcmc package

vignette for the metrop function (�le demo.pdf. Simulated data for the

problem are in the data set logit. There are �ve variables in the data set,

the response y and four predictors, x1, x2, x3, and x4.

A frequentist analysis for the problem is done by the following R state-

ments

> data(logit)

> out <- glm(y ~ x1 + x2 + x3 + x4, data = logit,

+ family = binomial, x = TRUE)

> summary(out)

Call:

glm(formula = y ~ x1 + x2 + x3 + x4, family = binomial, data = logit,

x = TRUE)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.6328 0.3007 2.104 0.03536 *
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x1 0.7390 0.3616 2.043 0.04100 *

x2 1.1137 0.3627 3.071 0.00213 **

x3 0.4781 0.3538 1.351 0.17663

x4 0.6944 0.3989 1.741 0.08172 .

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 137.628 on 99 degrees of freedom

Residual deviance: 87.668 on 95 degrees of freedom

AIC: 97.668

Number of Fisher Scoring iterations: 6

But this example isn't about frequentist analysis, we want a Bayesian

analysis. For our Bayesian analysis we assume the same data model as the

frequentist, and we assume the prior distribution of the �ve parameters (the

regression coe�cients) makes them independent and identically normally

distributed with mean 0 and standard deviation 2.

Moreover, we wish to calculate Bayes factors for the 16 = 24 possible

submodels that include or exclude each of the predictors, x1, x2, x3, and x4.

3.1 Setup

We set up a matrix that indicates these models.

> varnam <- names(coefficients(out))

> varnam <- varnam[varnam != "(Intercept)"]

> nvar <- length(varnam)

> models <- NULL

> foo <- seq(0, 2^nvar - 1)

> for (i in 1:nvar) {

+ bar <- foo %/% 2^(i - 1)

+ bar <- bar %% 2

+ models <- cbind(bar, models, deparse.level = 0)

+ }

> colnames(models) <- varnam

> models

x1 x2 x3 x4

[1,] 0 0 0 0
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[2,] 0 0 0 1

[3,] 0 0 1 0

[4,] 0 0 1 1

[5,] 0 1 0 0

[6,] 0 1 0 1

[7,] 0 1 1 0

[8,] 0 1 1 1

[9,] 1 0 0 0

[10,] 1 0 0 1

[11,] 1 0 1 0

[12,] 1 0 1 1

[13,] 1 1 0 0

[14,] 1 1 0 1

[15,] 1 1 1 0

[16,] 1 1 1 1

In each row, 1 indicates the predictor is in the model and 0 indicates it is

out.

The function temper in the mcmc package that does tempering requires

a notion of neighbors among models. It attempts jumps only between neigh-

boring models. Here we choose models to be neighbors if they di�er only by

one predictor.

> neighbors <- matrix(FALSE, nrow(models), nrow(models))

> for (i in 1:nrow(neighbors)) {

+ for (j in 1:ncol(neighbors)) {

+ foo <- models[i, ]

+ bar <- models[j, ]

+ if (sum(foo != bar) == 1) neighbors[i, j] <- TRUE

+ }

+ }

Now we specify the equilibrium distribution of the ST chain. Its state

vector is (i, x) or (m, θ) in our alternative notations, where i is an integer

between 1 and nrow(models) = 16 and θ is the parameter vector �padded�

to always be the same length, so we take it to be the length of the pa-

rameter vector of the full model which is length(out$coefficients) or

ncol(models) + 1 which makes the length of the state of the ST chain

ncol(models) + 2. We take the within model priors for the �padded� com-

ponents of the parameter vector to be the same as those for the �actual�

components, normal with mean 0 and standard deviation 2 for all cases. As
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is seen in (4) the priors for the �padded� components (parameters not in

the model for the current state) do not matter because they drop out of the

Bayes factor calculation. The choice does not matter much for this toy ex-

ample. See the discussion section for more on this issue. It is important that

we use normalized log priors, the term dnorm(beta, 0, 2, log = TRUE)

in the function, unlike when we are simulating only one model as in the

mcmc package vignette where it would be o. k. to use unnormalized log pri-

ors - beta^2 / 8. The temper function wants the log unnormalized den-

sity of the equilibrium distribution. We include an additional argument

log.pseudo.prior, which is log(ci) in our mathematical development, be-

cause this changes from run to run as we adjust it by trial and error. Other

�arguments� are the model matrix of the full model modmat, the matrix

models relating integer indices (the �rst component of the state vector of

the ST chain) to which predictors are in or out of the model, and the data

vector y, but these are not passed as arguments to our function and instead

are found in the R global environment.

> modmat <- out$x

> y <- logit$y

> ludfun <- function(state, log.pseudo.prior) {

+ stopifnot(is.numeric(state))

+ stopifnot(length(state) == ncol(models) + 2)

+ icomp <- state[1]

+ stopifnot(icomp == as.integer(icomp))

+ stopifnot(1 <= icomp && icomp <= nrow(models))

+ stopifnot(is.numeric(log.pseudo.prior))

+ stopifnot(length(log.pseudo.prior) == nrow(models))

+ beta <- state[-1]

+ inies <- c(TRUE, as.logical(models[icomp, ]))

+ beta.logl <- beta

+ beta.logl[! inies] <- 0

+ eta <- as.numeric(modmat %*% beta.logl)

+ logp <- ifelse(eta < 0, eta - log1p(exp(eta)), - log1p(exp(- eta)))

+ logq <- ifelse(eta < 0, - log1p(exp(eta)), - eta - log1p(exp(- eta)))

+ logl <- sum(logp[y == 1]) + sum(logq[y == 0])

+ logl + sum(dnorm(beta, 0, 2, log = TRUE)) + log.pseudo.prior[icomp]

+ }
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3.2 Trial and Error

Now we are ready to try it out. We start in the full model at its MLE,

and we initialize log.pseudo.prior at all zeros, having no idea a priori

what it should be.

> state.initial <- c(nrow(models), out$coefficients)

> qux <- rep(0, nrow(models))

> out <- temper(ludfun, initial = state.initial, neighbors = neighbors,

+ nbatch = 1000, blen = 100, log.pseudo.prior = qux)

> names(out)

[1] "lud" "neighbors" "nbatch" "blen"

[5] "nspac" "scale" "outfun" "debug"

[9] "parallel" "initial.seed" "final.seed" "time"

[13] "batch" "acceptx" "accepti" "initial"

[17] "final" "ibatch"

> out$time

user system elapsed

5.063 0.029 5.093

So what happened?

> ibar <- colMeans(out$ibatch)

> ibar

[1] 0.00000 0.00000 0.00000 0.00000 0.00524 0.06489 0.00754

[8] 0.06021 0.00033 0.00202 0.00008 0.00054 0.28473 0.31487

[15] 0.12478 0.13477

The ST chain did not mix well, several models not being visited even once.

So we adjust the pseudo priors to get uniform distribution.

> qux <- qux + pmin(log(max(ibar) / ibar), 10)

> qux <- qux - min(qux)

> qux

[1] 10.0000000 10.0000000 10.0000000 10.0000000 4.0958384

[6] 1.5794663 3.7319377 1.6543214 6.8608225 5.0490623

[11] 8.2778885 6.3683460 0.1006185 0.0000000 0.9256077

[16] 0.8485902
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The new pseudoprior should be proportional to 1 / ibar if ibar is an accu-

rate estimate of (6), but this makes no sense when the estimates are bad, in

particular, when the are exactly zero. Thus we put an upper bound, chosen

arbitrarily (here 10) on the maximum increase of the log pseudoprior. The

statement

qux <- qux - min(qux)

is unnecessary. An overall arbitrary constant can be added to the log pseu-

doprior without changing the equilibrium distribution of the ST chain. We

do this only to make qux more comparable from run to run.

Now we repeat this until the log pseudoprior �converges� roughly. Be-

cause this loop takes longer than CRAN vingettes are supposed to take, we

save the results to a �le and load the results from this �le if it already exists.

> lout <- suppressWarnings(try(load("bfst1.rda"), silent = TRUE))

> if (inherits(lout, "try-error")) {

+ qux.save <- qux

+ time.save <- out$time

+ repeat{

+ out <- temper(out, log.pseudo.prior = qux)

+ ibar <- colMeans(out$ibatch)

+ qux <- qux + pmin(log(max(ibar) / ibar), 10)

+ qux <- qux - min(qux)

+ qux.save <- rbind(qux.save, qux, deparse.level = 0)

+ time.save <- rbind(time.save, out$time, deparse.level = 0)

+ if (max(ibar) / min(ibar) < 2) break

+ }

+ save(out, qux, qux.save, time.save, file = "bfst1.rda")

+ } else {

+ .Random.seed <- out$final.seed

+ }

> print(qux.save, digits = 3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]

[1,] 10.0 10.00 10.0 10.00 4.10 1.58 3.73 1.65 6.86 5.05 8.28

[2,] 17.7 10.00 14.4 9.71 4.05 1.54 3.35 1.83 6.02 4.41 6.61

[3,] 18.8 9.33 14.4 9.01 3.97 1.39 3.16 1.40 5.64 4.15 6.33

[4,] 18.9 9.73 14.7 9.48 4.28 1.49 3.23 1.55 6.19 4.62 6.88

[,12] [,13] [,14] [,15] [,16]

[1,] 6.37 0.101 0.00000 0.926 0.849
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[2,] 5.68 0.148 0.00000 0.737 0.787

[3,] 5.17 0.000 0.00324 0.441 0.614

[4,] 5.66 0.110 0.00000 0.915 0.833

> print(qux, digits = 3)

[1] 18.947 9.733 14.714 9.478 4.276 1.491 3.230 1.553

[9] 6.187 4.624 6.881 5.660 0.110 0.000 0.915 0.833

> apply(time.save, 2, sum)

user.self sys.self elapsed user.child sys.child

90.701 0.000 91.010 0.000 0.000

Now that the pseudoprior is adjusted well enough, we need to perhaps

make other adjustments to get acceptance rates near 20%.

> print(out$accepti, digits = 3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] NA 0.239 0.212 NA 0.221 NA NA NA 0.218

[2,] 0.294 NA NA 0.250 NA 0.193 NA NA NA

[3,] 0.236 NA NA 0.261 NA NA 0.199 NA NA

[4,] NA 0.278 0.329 NA NA NA NA 0.216 NA

[5,] 0.220 NA NA NA NA 0.287 0.348 NA NA

[6,] NA 0.155 NA NA 0.235 NA NA 0.294 NA

[7,] NA NA 0.158 NA 0.290 NA NA 0.250 NA

[8,] NA NA NA 0.147 NA 0.312 0.254 NA NA

[9,] 0.344 NA NA NA NA NA NA NA NA

[10,] NA 0.230 NA NA NA NA NA NA 0.242

[11,] NA NA 0.233 NA NA NA NA NA 0.213

[12,] NA NA NA 0.250 NA NA NA NA NA

[13,] NA NA NA NA 0.243 NA NA NA 0.171

[14,] NA NA NA NA NA 0.235 NA NA NA

[15,] NA NA NA NA NA NA 0.364 NA NA

[16,] NA NA NA NA NA NA NA 0.272 NA

[,10] [,11] [,12] [,13] [,14] [,15] [,16]

[1,] NA NA NA NA NA NA NA

[2,] 0.230 NA NA NA NA NA NA

[3,] NA 0.207 NA NA NA NA NA

[4,] NA NA 0.250 NA NA NA NA
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[5,] NA NA NA 0.319 NA NA NA

[6,] NA NA NA NA 0.237 NA NA

[7,] NA NA NA NA NA 0.229 NA

[8,] NA NA NA NA NA NA 0.251

[9,] 0.251 0.185 NA 0.254 NA NA NA

[10,] NA NA 0.277 NA 0.220 NA NA

[11,] NA NA 0.286 NA NA 0.217 NA

[12,] 0.296 0.279 NA NA NA NA 0.236

[13,] NA NA NA NA 0.333 0.269 NA

[14,] 0.139 NA NA 0.272 NA NA 0.266

[15,] NA 0.217 NA 0.362 NA NA 0.292

[16,] NA NA 0.178 NA 0.332 0.230 NA

> print(out$acceptx, digits = 3)

[1] 0.1963 0.0969 0.0786 0.0568 0.1057 0.0559 0.0504 0.0361

[9] 0.1056 0.0667 0.0585 0.0325 0.0618 0.0378 0.0339 0.0243

The acceptance rates for swaps seem o. k.

> min(as.vector(out$accepti), na.rm = TRUE)

[1] 0.1394892

and there is nothing simple we can do to adjust them (adjustment is possible,

see the discussion section for more on this issue). We adjust the acceptance

rates for within model moves by adjusting the scaling.

> out <- temper(out, scale = 0.5, log.pseudo.prior = qux)

> time.save <- rbind(time.save, out$time, deparse.level = 0)

> print(out$acceptx, digits = 3)

[1] 0.400 0.287 0.251 0.222 0.314 0.247 0.225 0.206 0.309 0.226

[11] 0.203 0.168 0.247 0.193 0.196 0.153

Looks o. k. now.

Inspection of autocorrelation functions for components of out$ibatch

(not shown) says batch length needs to be at least 4 times longer. We make

it 10 times longer for safety.

Because this run takes longer than CRAN vingettes are supposed to take,

we save the results to a �le and load the results from this �le if it already

exists.
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> lout <- suppressWarnings(try(load("bfst2.rda"), silent = TRUE))

> if (inherits(lout, "try-error")) {

+ out <- temper(out, blen = 10 * out$blen, log.pseudo.prior = qux)

+ save(out, file = "bfst2.rda")

+ } else {

+ .Random.seed <- out$final.seed

+ }

> time.save <- rbind(time.save, out$time, deparse.level = 0)

> foo <- apply(time.save, 2, sum)

> foo.min <- floor(foo[1] / 60)

> foo.sec <- foo[1] - 60 * foo.min

> c(foo.min, foo.sec)

user.self user.self

5.000 19.084

The total time for all runs of the temper function was 5 minutes and 19.1

seconds.

3.3 Bayes Factor Calculations

Now we calculate log 10 Bayes factors relative to the model with the

highest unnormalized Bayes factor.

> log.10.unnorm.bayes <- (qux - log(colMeans(out$ibatch))) / log(10)

> k <- seq(along = log.10.unnorm.bayes)[log.10.unnorm.bayes

+ == min(log.10.unnorm.bayes)]

> models[k, ]

x1 x2 x3 x4

1 1 0 1

> log.10.bayes <- log.10.unnorm.bayes - log.10.unnorm.bayes[k]

> log.10.bayes

[1] 8.17814103 4.17098637 6.33069128 4.05292216 1.80254545

[6] 0.67203156 1.40468558 0.70498671 2.58875400 1.93202268

[11] 2.82341431 2.37170521 0.08004553 0.00000000 0.37357715

[16] 0.35242443

These are base 10 logarithms of the Bayes factors against the k-th model

where k = 14. For example, the Bayes factor for the k-th model divided by

the Bayes factor for the �rst model is 108.178.
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Now we calculate Monte Carlo standard errors two di�erent ways. One

is the way the delta method is usually taught. To simplify notation, denote

the Bayes factors

bm = b(y | m)

and their Monte Carlo approximations b̂m. Then the log Bayes factors are

gi(b) = log10 bi − log10 bk

hence we need to apply the delta method with the function gi, which has

derivatives

∂gi(b)

∂bi
=

1

bi loge(10)

∂gi(b)

∂bk
= − 1

bk loge(10)

∂gi(b)

∂bj
= 0, j ̸= i and j ̸= k

> fred <- var(out$ibatch) / out$nbatch

> sally <- colMeans(out$ibatch)

> mcse.log.10.bayes <- (1 / log(10)) * sqrt(diag(fred) / sally^2 -

+ 2 * fred[ , k] / (sally * sally[k]) +

+ fred[k, k] / sally[k]^2)

> mcse.log.10.bayes

[1] 0.02297789 0.02297554 0.02427784 0.02466045 0.02124325

[6] 0.01925444 0.02381757 0.02289809 0.02190834 0.01983693

[11] 0.02293685 0.02213382 0.01753144 0.00000000 0.02146088

[16] 0.01857454

> foompter <- cbind(models, log.10.bayes, mcse.log.10.bayes)

> round(foompter, 5)

x1 x2 x3 x4 log.10.bayes mcse.log.10.bayes

[1,] 0 0 0 0 8.17814 0.02298

[2,] 0 0 0 1 4.17099 0.02298

[3,] 0 0 1 0 6.33069 0.02428

[4,] 0 0 1 1 4.05292 0.02466

[5,] 0 1 0 0 1.80255 0.02124

[6,] 0 1 0 1 0.67203 0.01925

[7,] 0 1 1 0 1.40469 0.02382
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[8,] 0 1 1 1 0.70499 0.02290

[9,] 1 0 0 0 2.58875 0.02191

[10,] 1 0 0 1 1.93202 0.01984

[11,] 1 0 1 0 2.82341 0.02294

[12,] 1 0 1 1 2.37171 0.02213

[13,] 1 1 0 0 0.08005 0.01753

[14,] 1 1 0 1 0.00000 0.00000

[15,] 1 1 1 0 0.37358 0.02146

[16,] 1 1 1 1 0.35242 0.01857

An alternative calculation of the MCSE replaces the actual function of

the raw Bayes factors with its best linear approximation

1

loge(10)

(
b̂i − bi
bi

− b̂k − bk
bk

)

and calculates the standard deviation of this quantity by batch means

> ibar <- colMeans(out$ibatch)

> herman <- sweep(out$ibatch, 2, ibar, "/")

> herman <- sweep(herman, 1, herman[ , k], "-")

> mcse.log.10.bayes.too <- (1 / log(10)) *

+ apply(herman, 2, sd) /sqrt(out$nbatch)

> all.equal(mcse.log.10.bayes, mcse.log.10.bayes.too)

[1] TRUE

4 Discussion

We hope readers are impressed with the power of this method. The key

to the method is pseudopriors adjusted by trial and error. The method could

have been invented by any Bayesian who realized that the priors on models,

pri(m) in our notation in Section 1.1, do not a�ect the Bayes factors and

hence are irrelevant to calculating Bayes factors. Thus the priors (or pseu-

dopriors in our terminology) should be chosen for reasons of computational

convenience, as we have done, rather than to incorporate prior information.

The rest of the details of the method are unimportant. The temper

function in R is convenient to use for this purpose, but there is no reason

to believe that it provides optimal sampling. Samplers carefully designed

for each particular application would undoubtedly do better. Our notion of
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�padding� so that the within model parameters have the same dimension for

all models follows Carlin and Chib (1995) but �reversible jump� samplers

(Green, 1995) would undoubtedly do better. Unfortunately, there seems to

be no way to code up a function like temper that uses �reversible jump�

and requires no theoretical work from users that if messed up destroys the

algorithm. The temper function is foolproof in the sense that if the log un-

normalized density function written by the user (like our ludfun) is correct,

then the ST Markov chain has the equilibrium distribution is supposed to

have. There is nothing the user can mess up except this user-written func-

tion. No analog of this for �reversible jump� chains is apparent (to your

humble author).

Two issues remain where the text above said �see the discussion section

for more on this issue.� The �rst was about within model priors for the

�padding� components of within model parameter vectors gpad(θpad | m) in
the notation in (4). Rather than choose these so that they do not depend

on the data (as we did), it would be better (if more trouble) to choose them

di�erently for each �padding� component, centering gpad(θpad | m) so the

distribution of a component of θpad is near to the marginal distribution of

the same component in neighboring models (according to the neighbors

argument of the temper function).

The other remaining issue is adjusting acceptance rates for jumps. There

is no way to adjust this other than by changing the number of models and

their de�nitions. But the models we have cannot be changed; if we are to

calculate Bayes factors for them, then we must sample them as they are.

But we can insert new models between old models. For example, if the

acceptance for swaps between model i and model j is too low, then we can

insert distribution k between them that has unnormalized density

hk(x) =
√
hi(x)hj(x).

This idea is inherited from simulated tempering; (Geyer and Thompson,

1995) have much discussion of how to insert additional distributions into a

tempering network. It is another key issue in using tempering to speed up

sampling. It is less obvious in the Bayes factor context, but still an available

technique if needed.
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