Package 'maxstat'

Title: Maximally Selected Rank Statistics
Description: Maximally selected rank statistics with several p-value approximations.
Authors: Torsten Hothorn
Maintainer: Torsten Hothorn <[email protected]>
License: GPL (>= 2)
Version: 0.7-25
Built: 2024-11-27 06:31:14 UTC
Source: CRAN

Help Index


Correlation Matrix

Description

Correlation matrix of maximally selected rank statistics.

Usage

corrmsrs(X, minprop=0.1, maxprop=0.9)

Arguments

X

the vector, matrix or data.frame of prognostic factors under test.

minprop

at least minprop*100% of the observations in the first group.

maxprop

not more than minprop*100% of the observations in the first group.

Details

The correlations between all two-sample rank statistics induced by all possible cutpoints in X are computed.

Value

The correlation matrix with dimension depending on ties in X is returned.

References

Hothorn, T. and Lausen, B. (2003). On the Exact Distribution of Maximally Selected Rank Statistics. Computational Statistics & Data Analysis, 43, 121–137.

Lausen, B., Hothorn, T., Bretz, F. and Schmacher, M. (2004). Assessment of Optimally Selected Prognostic Factors. Biometrical Journal, 46(3), 364–374.

Examples

set.seed(29)

# matrix of hypothetical prognostic factors

X <- matrix(rnorm(30), ncol=3) 

# this function

a <- corrmsrs(X, minprop=0, maxprop=0.999)

# coded by just typing the definition of the correlation

testcorr <- function(X) {
  wh <- function(cut, x)
    which(x <= cut)
  index <- function(x) {
    ux <- unique(x)
    ux <- ux[ux < max(ux)]
    lapply(ux, wh, x = x)
  }
  a <- unlist(test <- apply(X, 2, index), recursive=FALSE)
  cnull <- rep(0, nrow(X))
  mycorr <- diag(length(a))
  for (i in 1:(length(a)-1)) {
    for (j in (i+1):length(a)) {
      cone <- cnull
      cone[a[[i]]] <- 1
      ctwo <- cnull
      ctwo[a[[j]]] <- 1
      sone <- sqrt(sum((cone - mean(cone))^2))
      stwo <- sqrt(sum((ctwo - mean(ctwo))^2))
      tcorr <- sum((cone - mean(cone))*(ctwo - mean(ctwo)))
      tcorr <- tcorr/(sone * stwo)
      mycorr[i,j] <- tcorr
    }
  }
  mycorr
}

tc <- testcorr(X)
tc <- tc + t(tc)
diag(tc) <- 1
stopifnot(all.equal(tc, a))

Diffuse large B-cell lymphoma

Description

A data frame with gene expression data from DLBCL (diffuse large B-cell lymphoma) patients.

Usage

data("DLBCL")

Format

DLCLid

DLBCL identifier

GEG

Gene Expression Group

time

survival time in month

cens

censoring: 0 cencored, 1 dead

IPI

International Prognostic Index

MGE

Mean Gene Expression

Source

Except of MGE, the data is published at http://llmpp.nih.gov/lymphoma/data.shtml. MGE is the mean of the gene expression.

References

Ash A. Alizadeh et. al (2000), Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403, 504–509

Examples

library("survival")

set.seed(29)

# compute the cutpoint and plot the empirical process 

mod <- maxstat.test(Surv(time, cens) ~ MGE, data=DLBCL, smethod="LogRank")

print(mod)

## Not run: 
  # postscript("statDLBCL.ps", horizontal=F, width=8, height=8)
  pdf("statDLBCL.pdf", width=8, height=8)

## End(Not run)
par(mai=c(1.0196235, 1.0196235, 0.8196973, 0.4198450))
plot(mod, cex.lab=1.6, cex.axis=1.6, xlab="Mean gene expression",lwd=2)
## Not run: 
  dev.off()

## End(Not run)

# significance of the cutpoint
# limiting distribution

maxstat.test(Surv(time, cens) ~ MGE, data=DLBCL,
             smethod="LogRank", pmethod="Lau92", iscores=TRUE)

# improved Bonferroni inequality, plot with significance bound

maxstat.test(Surv(time, cens) ~ MGE, data=DLBCL,
             smethod="LogRank", pmethod="Lau94", iscores=TRUE)

mod <- maxstat.test(Surv(time, cens) ~ MGE, data=DLBCL, smethod="LogRank",
                    pmethod="Lau94", alpha=0.05)
plot(mod, xlab="Mean gene expression")

## Not run: 
#  postscript(file="RNewsStat.ps",horizontal=F, width=8, height=8)
   pdf("RNewsStat.pdf", width=8, height=8)


## End(Not run)
par(mai=c(1.0196235, 1.0196235, 0.8196973, 0.4198450))
plot(mod, xlab="Mean gene expression", cex.lab=1.6, cex.axis=1.6)
## Not run: 
  dev.off()

## End(Not run)

# small sample solution Hothorn & Lausen

maxstat.test(Surv(time, cens) ~ MGE, data=DLBCL,
             smethod="LogRank", pmethod="HL")

# normal approximation

maxstat.test(Surv(time, cens) ~ MGE, data=DLBCL,
             smethod="LogRank", pmethod="exactGauss", iscores=TRUE,
             abseps=0.01)

# conditional Monte-Carlo
maxstat.test(Surv(time, cens) ~ MGE, data=DLBCL,
             smethod="LogRank", pmethod="condMC", B = 9999) 

# survival analysis and plotting like in Alizadeh et al. (2000)

  splitGEG <- rep(1, nrow(DLBCL))
  DLBCL <- cbind(DLBCL, splitGEG)
  DLBCL$splitGEG[DLBCL$GEG == "Activated B-like"] <- 0

  plot(survfit(Surv(time, cens) ~ splitGEG, data=DLBCL),
       xlab="Survival time in month", ylab="Probability")

  text(90, 0.7, "GC B-like")
  text(60, 0.3, "Activated B-like")

  splitIPI <- rep(1, nrow(DLBCL))
  DLBCL <- cbind(DLBCL, splitIPI)
  DLBCL$splitIPI[DLBCL$IPI <= 2] <- 0

  plot(survfit(Surv(time, cens) ~ splitIPI, data=DLBCL),
       xlab="Survival time in month", ylab="Probability")

  text(90, 0.7, "Low clinical risk")
  text(60, 0.25, "High clinical risk")

  # survival analysis using the cutpoint 

  splitMGE <- rep(1, nrow(DLBCL))
  DLBCL <- cbind(DLBCL, splitMGE)
  DLBCL$splitMGE[DLBCL$MGE <= mod$estimate] <- 0

  ## Not run: 
   # postscript("survDLBCL.ps",horizontal=F, width=8, height=8)
    pdf("survDLBCL.pdf", width=8, height=8)

  
## End(Not run)
  par(mai=c(1.0196235, 1.0196235, 0.8196973, 0.4198450))

  plot(survfit(Surv(time, cens) ~ splitMGE, data=DLBCL),
       xlab = "Survival time in month",
       ylab="Probability", cex.lab=1.6, cex.axis=1.6, lwd=2)

  text(90, 0.9, expression("Mean gene expression" > 0.186), cex=1.6)   
  text(90, 0.45, expression("Mean gene expression" <= 0.186 ), cex=1.6)   

  ## Not run: 
    dev.off()
  
## End(Not run)

Left ventricular ejection fraction of patients with malignant ventricular tachyarrhythmias.

Description

A data frame with the left ventricular ejection fraction of patients with malignant ventricular tachyarrhythmias including recurrence-free month and censoring.

Usage

data("hohnloser")

Format

EF

left ventricular ejection in percent

month

recurrence-free month

cens

censoring: 0 cencored, 1 not censored

The data used here is published in Table 1 of Lausen and Schumacher (1992).

Source

The data was first published by Hohnloser et al. (1987), the data used here is published in Table 1 of Lausen and Schumacher (1992).

References

Hohnloser, S.H., Raeder, E.A., Podrid, P.J., Graboys, T.B. and Lown, B. (1987), Predictors of antiarrhythmic drug efficacy in patients with malignant ventricular tachyarrhythmias. American Heart Journal 114, 1–7

Lausen, B. and Schumacher, M. (1992), Maximally Selected Rank Statistics. Biometrics 48, 73–85

Examples

set.seed(29)

library("survival")

# limiting distribution

maxstat.test(Surv(month, cens) ~ EF, data=hohnloser, 
smethod="LogRank", pmethod="Lau92")

# with integer valued scores for comparison

maxstat.test(Surv(month, cens) ~ EF, data=hohnloser, 
smethod="LogRank", pmethod="Lau92", iscores=TRUE)

# improved Bonferroni inequality

maxstat.test(Surv(month, cens) ~ EF, data=hohnloser,
smethod="LogRank", pmethod="Lau94")

maxstat.test(Surv(month, cens) ~ EF, data=hohnloser,
smethod="LogRank", pmethod="Lau94", iscores=TRUE)


# small sample solution by Hothorn & Lausen

maxstat.test(Surv(month, cens) ~ EF, data=hohnloser,
smethod="LogRank", pmethod="HL")

# normal approximation

maxstat.test(Surv(month, cens) ~ EF, data=hohnloser,
smethod="LogRank", pmethod="exactGauss")

maxstat.test(Surv(month, cens) ~ EF, data=hohnloser,
smethod="LogRank", pmethod="exactGauss", iscores=TRUE)

# conditional Monte-Carlo
maxstat.test(Surv(month, cens) ~ EF, data=hohnloser,
smethod="LogRank", pmethod="condMC", B = 9999)

Maximally Selected Rank and Statistics

Description

Performs a test of independence of a response and one or more covariables using maximally selected rank statistics.

Usage

## S3 method for class 'data.frame'
maxstat.test(formula, data, subset, na.action, ...)
maxstat(y, x=NULL, weights = NULL, smethod=c("Wilcoxon", "Median",
            "NormalQuantil","LogRank", "Data"), pmethod=c("none", "Lau92",
            "Lau94", "exactGauss", "HL", "condMC", "min"), iscores=(pmethod=="HL"),
            minprop = 0.1, maxprop=0.9, alpha = NULL, keepxy=TRUE, ...)

Arguments

y

numeric vector of data values, dependent variable.

x

numeric vector of data values, independent variable.

weights

an optional numeric vector of non-negative weights, summing to the number of observations.

smethod

kind of statistic to be computed, i.e. defines the scores to be used for computing the statistic.

pmethod

kind of p-value approximation to be used.

iscores

logical: should the scores be mapped into integers 1:length(x)? This is TRUE by default for pmethod=="HL" and FALSE otherwise.

minprop

at least minprop*100% of the observations in the first group.

maxprop

not more than minprop*100% of the observations in the first group.

alpha

significance niveau, the appropriate quantile is computed if alpha is specified. Used for plotting within plot.maxtest.

keepxy

logical: return y and x as elements of the maxtest object.

formula

a formula describing the model to be tested of the form lhs ~ rhs where lhs is the response variable. For survival problems, i.e. using the log-rank statistic, the formula is of the form Surv(time, event) ~ rhs, see above.

data

an data frame containing the variables in the model formula. data is required.

subset

an optional vector specifying a subset of observations to be used.

na.action

a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

...

additional parameters to be passed to pmvnorm or B, an integer defining the number of Monte-Carlo replications.

Details

The assessment of the predictive power of a variable x for a dependent variable y can be determined by a maximally selected rank statistic.

smethod determines the kind of statistic to be used. Wilcoxon and Median denote maximally selected Wilcoxon and Median statistics. NormalQuantile and LogRank denote v.d. Waerden and log-rank scores.

pmethod specifies which kind of approximation of the p-value should be used. Lau92 is the limiting distribution by a Brownian bridge (see Lausen and Schumacher, 1992, and pLausen92), Lau94 the approximation based on an improved Bonferroni inequality (see Lausen, Sauerbrei and Schumacher, 1994, and pLausen94).

exactGauss returns the exact p-value for a maximally selected Gauss statistic, see Hothorn and Lausen (2003).

HL is a small sample approximation based on the Streitberg-R\"ohmel algorithm (see pperm) introduced by Hothorn and Lausen (2003). This requires integer valued scores. For v. d. Waerden and Log-rank scores we try to find integer valued scores having the same shape. This results in slightly different scores (and a different test), the procedure is described in Hothorn (2001) and Hothorn and Lausen (2003).

All the approximations are known to be conservative, so min gives the minimum p-value of all procedures.

condMC simulates the distribution via conditional Monte-Carlo.

For survival problems, i.e. using a maximally selected log-rank statistic, the interface is similar to survfit. The depended variable is a survival object Surv(time, event). The argument event may be a numeric vector of 0 (alive) and 1 (dead) or a vector of logicals with TRUE indicating death.

If more than one covariable is specified in the right hand side of formula (or if x is a matrix or data frame), the variable with smallest p-value is selected and the p-value for the global test problem of independence of y and every variable on the right hand side is returned (see Lausen et al., 2002).

Value

An object of class maxtest or mmaxtest (if more than one covariable was specified) containing the following components is returned:

statistic

the value of the test statistic.

p.value

the p-value for the test.

smethod

the type of test applied.

pmethod

the type of p-value approximation applied.

estimate

the estimated cutpoint (of x) which separates y best. For numeric data, the groups are defined by x less or equal to estimate and x greater estimate.

maxstats

a list of maxtest objects, one for each covariable.

whichmin

an integer specifying the element of maxstats with smallest p-value.

p.value

the p-value of the global test.

univp.values

the p-values for each of the variables under test.

cm

the correlation matrix the p-value is based on.

plot.maxtest and print.maxtest can be used for plotting and printing. If keepxy = TRUE, there are elements y and x giving the response and independent variable.

References

Hothorn, T. and Lausen, B. (2003). On the Exact Distribution of Maximally Selected Rank Statistics. Computational Statistics & Data Analysis, 43, 121–137.

Lausen, B. and Schumacher, M. (1992). Maximally Selected Rank Statistics. Biometrics, 48, 73–85

Lausen, B., Sauerbrei, W. and Schumacher, M. (1994). Classification and Regression Trees (CART) used for the exploration of prognostic factors measured on different scales. in: P. Dirschedl and R. Ostermann (Eds), Computational Statistics, Heidelberg, Physica-Verlag, 483–496

Hothorn, T. (2001). On Exact Rank Tests in R. R News, 1, 11–12

Lausen, B., Hothorn, T., Bretz, F. and Schmacher, M. (2004). Assessment of Optimally Selected Prognostic Factors. Biometrical Journal, 46(3), 364–374.

Examples

set.seed(29)

x <- sort(runif(20))
y <- c(rnorm(10), rnorm(10, 2))
mydata <- data.frame(cbind(x,y))

mod <- maxstat.test(y ~ x, data=mydata, smethod="Wilcoxon", pmethod="HL",
                    minprop=0.25, maxprop=0.75, alpha=0.05)
print(mod)
plot(mod)

# adjusted for more than one prognostic factor.
library("survival")
mstat <- maxstat.test(Surv(time, cens) ~ IPI + MGE, data=DLBCL, 
                      smethod="LogRank", pmethod="exactGauss", 
                      abseps=0.01)
plot(mstat)

### sphase
set.seed(29)
data("sphase", package = "TH.data")

maxstat.test(Surv(RFS, event) ~ SPF, data=sphase, smethod="LogRank",
             pmethod="Lau94")

maxstat.test(Surv(RFS, event) ~ SPF, data=sphase, smethod="LogRank",
             pmethod="Lau94", iscores=TRUE)

maxstat.test(Surv(RFS, event) ~ SPF, data=sphase, smethod="LogRank",
             pmethod="HL")

maxstat.test(Surv(RFS, event) ~ SPF, data=sphase, smethod="LogRank",
             pmethod="condMC", B = 9999)

plot(maxstat.test(Surv(RFS, event) ~ SPF, data=sphase, smethod="LogRank"))

Computing Maximally Selected Gauss Statistics

Description

Computes the exact probability that a maximally selected gauss statistic is greater or equal to b.

Usage

pexactgauss(b, x, minprop=0.1, maxprop=0.9, ...)
qexactgauss(p, x, minprop=0.1, maxprop=0.9, ...)

Arguments

b

quantile.

p

probability.

x

the prognostic factor(s) under test.

minprop

at least minprop*100% of the observations in the first group.

maxprop

not more than minprop*100% of the observations in the first group.

...

additional parameters to be passed to pmvnorm.

Details

This is the exact distribution of a maximally selected Gauss statistic and the asymptotic distribution for maximally selected rank statistics. Normal probabilities are derived from the procedures by Genz/Bretz (see pmvnorm for details).

Value

The probability that, under the hypothesis of independence, a maximally selected gauss statistic greater equal b is observed.

References

Genz, A. (1992). Numerical computation of multivariate normal probabilities. Journal of Computational and Graphical Statistics, 1, 141–150

Genz, A. (1993). Comparison of methods for the computation of multivariate normal probabilities. Computing Science and Statistics, 25, 400–405

Examples

set.seed(29)

x <- rnorm(20)

pexact <- pexactgauss(2.5, x, abseps=0.01)

Approximating Maximally Selected Statistics

Description

Approximates the probability that a maximally selected rank statistic is greater or equal to b.

Usage

pLausen92(b, minprop=0.1, maxprop=0.9)
qLausen92(p, minprop=0.1, maxprop=0.9)

Arguments

b

quantile.

p

probability.

minprop

at least minprop*100% of the observations in the first group.

maxprop

not more than minprop*100% of the observations in the first group.

Details

Large sample approximation by Miller and Siegmund (1982) based on a Brownian bridge, cf. Lausen and Schumacher (1992).

Value

The probability that, under the hypothesis of independence, a maximally selected statistic greater equal b is observed.

References

Miller, R. and Siegmund, D. (1982), Maximally Selected Chi Square Statistics. Biometrics, 38, 1011–1016

Lausen, B. and Schumacher, M. (1992), Maximally Selected Rank Statistics. Biometrics, 48, 73–85

Examples

# Compute quantiles. Should be equal to Table 2 in Lausen and Schumacher

load(file.path(system.file(package = "maxstat"), "results", "LausenTab2.rda"))

a <- rev(c(0.01, 0.025, 0.05, 0.1))
prop <- rbind(c(0.25, 0.75), c(0.4, 0.6), c(0.1, 0.9), c(0.4, 0.9))
Quant <- matrix(rep(0, length(a)*nrow(prop)), nrow=length(a)) 

for (i in 1:length(a)) {                                            
  for (j in 1:nrow(prop)) {                            
    Quant[i,j] <- qLausen92(a[i], minprop=prop[j,1], maxprop=prop[j,2]) 
  }
}

Quant <- round(Quant, 3)
rownames(Quant) <- a
colnames(Quant) <- c("A2575", "A46", "A19", "A49")
Quant <- as.data.frame(Quant)
rownames(LausenTab2) <- a

Quant

LausenTab2

if(!all.equal(LausenTab2, Quant)) stop("error checking pLausen92")

Approximating Maximally Selected Statistics

Description

Approximates the probability that a maximally selected rank statistic is greater or equal to b.

Usage

pLausen94(b, N, minprop=0.1, maxprop=0.9, m=NULL)
qLausen94(p, N, minprop=0.1, maxprop=0.9, m=NULL)

Arguments

b

quantile.

p

probability.

N

number of observations.

minprop

at least minprop*100% of the observations in the first group.

maxprop

not more than minprop*100% of the observations in the first group.

m

a integer vector containing the sample sizes in the first groups for each cutpoint considered. If is.null(m) a continuous predictor is assumed.

Details

Approximation based on an improved Bonferroni inequality.

Value

The probability that, under the hypothesis of independence, a maximally selected statistic greater equal b is observed.

References

Worsley, K.J. (1982), An Improved Bonferroni Inequality and Applications. Biometrika, 69, 297–302

Lausen, B. (1990), Maximal Selektierte Rangstatistiken. Dissertation. Universit\"at Dortmund

Lausen, B., Sauerbrei, W. & Schumacher, M. (1994). Classification and Regression Trees (CART) used for the exploration of prognostic factors measured on different scales. in: P. Dirschedl & R. Ostermann (Eds), Computational Statistics, Heidelberg, Physica-Verlag, 483–496

Examples

p <- pLausen94(2.5, 20, 0.25, 0.75)

# Lausen 94, page 489

if (round(p, 3) != 0.073) stop("error checking pLausen94")

# the same

p2 <- pLausen94(2.5, 200, 0.25, 0.75, m=seq(from=50, to=150, by=10))

stopifnot(all.equal(round(p,3), round(p2,3)))

Print and Plot Standardized Statistics

Description

Printing and ploting method of objects of class maxtest

Usage

## S3 method for class 'maxtest'
plot(x, xlab=NULL, ylab=NULL, ...)
## S3 method for class 'maxtest'
print(x, digits = getOption("digits"), ...)
## S3 method for class 'mmaxtest'
plot(x, xlab=NULL, ylab=NULL, nrow=2, ...)
## S3 method for class 'mmaxtest'
print(x, digits = getOption("digits"), ...)

Arguments

x

an object of class maxtest or mmaxtest.

xlab

label of x-axis.

ylab

label of y-axis.

nrow

number of rows for multiple plots at one page.

digits

number of significant digits to be printed.

...

additional arguments to plot or print.htest.

Details

The standardized statistics are plotted. If alpha was given in maxstat.test the appropriate significance bound is plotted as a red line. print.maxtest is just a wrapper to print.htest.

Examples

set.seed(29)

x <- sort(runif(20))
y <- rbinom(20, 1, 0.5)
mydata <- data.frame(c(x,y))

mod <- maxstat.test(y ~ x, data=mydata, smethod="Median", 
                    pmethod="HL", alpha=0.05)
print(mod)
plot(mod)

Approximating Maximally Selected Statistics

Description

Approximates the probability that a maximally selected rank statistic is greater or equal to b.

Usage

pmaxstat(b, scores, msample, quant=FALSE)
qmaxstat(p, scores, msample)

Arguments

b

quantile.

p

propability.

scores

integer valued scores assigned to the observations.

msample

all possible splitpoints.

quant

logical. Returns the results of SR instead of P-values. Only to be used in qmaxstat.

Details

Small sample approximation by Hothorn and Lausen (2003).

Value

An upper limit for the probability that, under the hypothesis of independence, a maximally selected statistic greater equal b is observed. qmaxstat needs optimization.

References

Hothorn, T. and Lausen, B. (2003). On the Exact Distribution of Maximally Selected Rank Statistics. Computational Statistics & Data Analysis, 43, 121–137.

Examples

pmaxstat(2.5, 1:20, 5:15)

Tree Pipit Data

Description

Counts of tree pipits at 86 raster points in oak forests.

Usage

data("treepipit")

Format

A data frame with 86 observations on the following 2 variables.

counts

number of tree pipits counted.

coverstorey

canopy overstorey in percent.

Details

The influence of canopy overstorey on the number of bird individuals is of special interest.

Source

Data collected and kindly provided by Joerg Mueller <[email protected]>.

References

Mueller J. and Hothorn T. (2004), Maximally Selected Two-sample Statistics as a New Tool for the Identification and Assessment of Habitat Factors with an Application to Breeding-bird Communities in Oak Forests, European Journal of Forest Research, 123(3), 219–228.

Examples

mod <- maxstat.test(counts ~ coverstorey, data = treepipit, 
                    smethod = "Data", pmethod = "HL", minprop = 0.2,
                    maxprop = 0.8)
print(mod)
plot(mod)