Package 'matrixdist'

Title: Statistics for Matrix Distributions
Description: Tools for phase-type distributions including the following variants: continuous, discrete, multivariate, in-homogeneous, right-censored, and regression. Methods for functional evaluation, simulation and estimation using the expectation-maximization (EM) algorithm are provided for all models. The methods of this package are based on the following references. Asmussen, S., Nerman, O., & Olsson, M. (1996). Fitting phase-type distributions via the EM algorithm, Olsson, M. (1996). Estimation of phase-type distributions from censored data, Albrecher, H., & Bladt, M. (2019) <doi:10.1017/jpr.2019.60>, Albrecher, H., Bladt, M., & Yslas, J. (2022) <doi:10.1111/sjos.12505>, Albrecher, H., Bladt, M., Bladt, M., & Yslas, J. (2022) <doi:10.1016/j.insmatheco.2022.08.001>, Bladt, M., & Yslas, J. (2022) <doi:10.1080/03461238.2022.2097019>, Bladt, M. (2022) <doi:10.1017/asb.2021.40>, Bladt, M. (2023) <doi:10.1080/10920277.2023.2167833>, Albrecher, H., Bladt, M., & Mueller, A. (2023) <doi:10.1515/demo-2022-0153>, Bladt, M. & Yslas, J. (2023) <doi:10.1016/j.insmatheco.2023.02.008>.
Authors: Martin Bladt [aut, cre], Jorge Yslas [aut], Alaric Müller [ctb]
Maintainer: Martin Bladt <[email protected]>
License: GPL-3
Version: 1.1.9
Built: 2024-11-25 06:54:15 UTC
Source: CRAN

Help Index


Statistics for Matrix Distributions

Description

This package implements tools which are useful for the statistical analysis of discrete, continuous, multivariate, right-censored or regression variants of phase-type distributions. These distributions are absorption times of Markov jump processes, and thus the maximization of their likelihood for statistical estimation is best dealt with using the EM algorithm.

Author(s)

Martin Bladt and Jorge Yslas.

Maintainer: Martin Bladt <[email protected]>

References

Asmussen, S., Nerman, O., & Olsson, M. (1996). Fitting phase-type distributions via the EM algorithm. Scandinavian Journal of Statistics, 23(4),419-441.

Olsson, M. (1996). Estimation of phase-type distributions from censored data. Scandinavian journal of statistics, 24(4), 443-460.

Albrecher, H., & Bladt, M. (2019). Inhomogeneous phase-type distributions and heavy tails. Journal of Applied Probability, 56(4), 1044-1064.

Albrecher, H., Bladt, M., & Yslas, J. (2022). Fitting inhomogeneous Phase-Type distributions to data: The univariate and the multivariate case. Scandinavian Journal of Statistics, 49(1), 44-77

Albrecher, H., Bladt, M., Bladt, M., & Yslas, J. (2020). Mortality modeling and regression with matrix distributions. Insurance: Mathematics and Economics, 107, 68-87.

Bladt, M., & Yslas, J. (2022). Phase-type mixture-of-experts regression for loss severities. ScandinavianActuarialJournal, 1-27.

Bladt, M. (2022). Phase-type distributions for claim severity regression modeling. ASTIN Bulletin: The journal of the IAA, 52(2), 417-448.

Bladt, M. (2023). A tractable class of Multivariate Phase-type distributions for loss modeling. North American Actuarial Journal, to appear.

Albrecher, H., Bladt, M., & Mueller, A. (2023). Joint lifetime modelling with matrix distributions. Dependence Modeling, 11(1), 1-22.

Bladt, M. & Yslas, J. (2023). Robust claim frequency modeling through phase-type mixture-of-experts regression.Insurance: Mathematics and Economics, 111, 1-22.


Sum method for discrete phase-type distributions

Description

Sum method for discrete phase-type distributions

Usage

## S4 method for signature 'dph,dph'
e1 + e2

Arguments

e1

An object of class dph.

e2

An object of class dph.

Value

An object of class dph.

Examples

dph1 <- dph(structure = "general", dimension = 3)
dph2 <- dph(structure = "general", dimension = 5)
dph_sum <- dph1 + dph2
dph_sum

Sum method for phase-type distributions

Description

Sum method for phase-type distributions

Usage

## S4 method for signature 'ph,ph'
e1 + e2

Arguments

e1

An object of class ph.

e2

An object of class ph.

Value

An object of class ph.

Examples

ph1 <- ph(structure = "general", dimension = 3)
ph2 <- ph(structure = "gcoxian", dimension = 5)
ph_sum <- ph1 + ph2
ph_sum

Runge-Kutta for the calculation of the a vector in a EM step

Description

Runge-Kutta for the calculation of the a vector in a EM step

Usage

a_rungekutta(avector, dt, h, S)

Arguments

avector

The a vector.

dt

Increment.

h

Step-length.

S

Sub-intensity matrix.


Constructor function for bivariate discrete phase-type distributions

Description

Constructor function for bivariate discrete phase-type distributions

Usage

bivdph(alpha = NULL, S11 = NULL, S12 = NULL, S22 = NULL, dimensions = c(3, 3))

Arguments

alpha

A probability vector.

S11

A sub-transition matrix.

S12

A matrix.

S22

A sub-transition matrix.

dimensions

The dimensions of the bivariate discrete phase-type (if no parameters are provided).

Value

An object of class bivdph.

Examples

bivdph(dimensions = c(3, 3))
S11 <- matrix(c(0.1, .5, .5, 0.1), 2, 2)
S12 <- matrix(c(.2, .3, .2, .1), 2, 2)
S22 <- matrix(c(0.2, 0, 0.1, 0.1), 2, 2)
bivdph(alpha = c(.5, .5), S11, S12, S22)

Bivariate discrete phase-type joint density of the feed forward type

Description

Bivariate discrete phase-type joint density of the feed forward type

Usage

bivdph_density(x, alpha, S11, S12, S22)

Arguments

x

Matrix of values.

alpha

Vector of initial probabilities.

S11

Sub-transition matrix.

S12

Matrix.

S22

Sub-transition matrix.

Value

Joint density at x.


Bivariate discrete phase-type joint tail of the feed forward type

Description

Bivariate discrete phase-type joint tail of the feed forward type

Usage

bivdph_tail(x, alpha, S11, S12, S22)

Arguments

x

Matrix of values.

alpha

Vector of initial probabilities.

S11

Sub-transition matrix.

S12

Matrix.

S22

Sub-transition matrix.

Value

Joint tail at x.


Bivariate discrete phase-type distributions

Description

Class of objects for bivariate discrete phase-type distributions.

Value

Class object.

Slots

name

Name of the discrete phase-type distribution.

pars

A list comprising of the parameters.

fit

A list containing estimation information.


Constructor function for bivariate inhomogeneous phase-type distributions

Description

Constructor function for bivariate inhomogeneous phase-type distributions

Usage

biviph(
  bivph = NULL,
  gfun = NULL,
  gfun_pars = NULL,
  alpha = NULL,
  S11 = NULL,
  S12 = NULL,
  S22 = NULL,
  dimensions = c(3, 3)
)

Arguments

bivph

An object of class bivph.

gfun

Vector of inhomogeneity transforms.

gfun_pars

List of parameters for the inhomogeneity functions.

alpha

A probability vector.

S11

A sub-intensity matrix.

S12

A matrix.

S22

A sub-intensity matrix.

dimensions

The dimensions of the bivariate phase-type (if no parameters are provided).

Value

An object of class biviph.

Examples

under_bivph <- bivph(dimensions = c(3, 3))
biviph(under_bivph, gfun = c("weibull", "pareto"), gfun_pars = list(c(2), c(3)))

Bivariate inhomogeneous phase-type distributions

Description

Class of objects for bivariate inhomogeneous phase-type distributions.

Value

Class object.

Slots

name

Name of the phase type distribution.

gfun

A list comprising of the parameters.


Constructor function for bivariate phase-type distributions

Description

Constructor function for bivariate phase-type distributions

Usage

bivph(alpha = NULL, S11 = NULL, S12 = NULL, S22 = NULL, dimensions = c(3, 3))

Arguments

alpha

A probability vector.

S11

A sub-intensity matrix.

S12

A matrix.

S22

A sub-intensity matrix.

dimensions

The dimensions of the bivariate phase-type (if no parameters are provided).

Value

An object of class bivph.

Examples

bivph(dimensions = c(3, 3))
S11 <- matrix(c(-1, .5, .5, -1), 2, 2)
S12 <- matrix(c(.2, .4, .3, .1), 2, 2)
S22 <- matrix(c(-2, 0, 1, -1), 2, 2)
bivph(alpha = c(.5, .5), S11, S12, S22)

Bivariate phase-type joint density of the feed forward type

Description

Bivariate phase-type joint density of the feed forward type

Usage

bivph_density(x, alpha, S11, S12, S22)

Arguments

x

Matrix of values.

alpha

Vector of initial probabilities.

S11

Sub-intensity matrix.

S12

Matrix.

S22

Sub-intensity matrix.

Value

Joint density at x.


Bivariate phase-type joint Laplace

Description

Bivariate phase-type joint Laplace

Usage

bivph_laplace(r, alpha, S11, S12, S22)

Arguments

r

Matrix of values.

alpha

Vector of initial probabilities.

S11

Sub-intensity matrix.

S12

Matrix.

S22

Sub-intensity matrix.

Value

Joint laplace at r.


Bivariate phase-type joint tail of the feed forward type

Description

Bivariate phase-type joint tail of the feed forward type

Usage

bivph_tail(x, alpha, S11, S12, S22)

Arguments

x

Matrix of values.

alpha

Vector of initial probabilities.

S11

Sub-intensity matrix.

S12

Matrix.

S22

Sub-intensity matrix.

Value

Joint tail at x.


Bivariate phase-type distributions

Description

Class of objects for bivariate phase-type distributions.

Value

Class object.

Slots

name

Name of the phase-type distribution.

pars

A list comprising of the parameters.

fit

A list containing estimation information.


New generic for the distribution of matrix distributions

Description

Methods are available for objects of class ph.

Usage

cdf(x, ...)

Arguments

x

An object of the model class.

...

Further parameters to be passed on.

Value

CDF from the matrix distribution.


Distribution method for discrete phase-type distributions

Description

Distribution method for discrete phase-type distributions

Usage

## S4 method for signature 'dph'
cdf(x, q, lower.tail = TRUE)

Arguments

x

An object of class dph.

q

A vector of locations.

lower.tail

Logical parameter specifying whether lower tail (CDF) or upper tail is computed.

Value

A vector containing the CDF evaluations at the given locations.

Examples

obj <- dph(structure = "general")
cdf(obj, c(1, 2, 3))

Distribution method for inhomogeneous phase-type distributions

Description

Distribution method for inhomogeneous phase-type distributions

Usage

## S4 method for signature 'iph'
cdf(x, q, lower.tail = TRUE)

Arguments

x

An object of class iph.

q

A vector of locations.

lower.tail

Logical parameter specifying whether lower tail (CDF) or upper tail is computed.

Value

A vector containing the CDF evaluations at the given locations.

Examples

obj <- iph(ph(structure = "general"), gfun = "weibull", gfun_pars = 2)
cdf(obj, c(1, 2, 3))

Distribution method for multivariate inhomogeneous phase-type distributions

Description

Distribution method for multivariate inhomogeneous phase-type distributions

Usage

## S4 method for signature 'miph'
cdf(x, y, lower.tail = TRUE)

Arguments

x

An object of class miph.

y

A matrix of observations.

lower.tail

Logical parameter specifying whether lower tail (CDF) or upper tail is computed.

Value

A list containing the locations and corresponding CDF evaluations.

Examples

under_mph <- mph(structure = c("general", "general"))
obj <- miph(under_mph, gfun = c("weibull", "pareto"), gfun_pars = list(c(2), c(3)))
cdf(obj, c(1, 2))

Distribution method for multivariate phase-type distributions

Description

Distribution method for multivariate phase-type distributions

Usage

## S4 method for signature 'mph'
cdf(x, y, lower.tail = TRUE)

Arguments

x

An object of class mph.

y

A matrix of observations.

lower.tail

Logical parameter specifying whether lower tail (CDF) or upper tail is computed.

Value

A list containing the locations and corresponding CDF evaluations.

Examples

obj <- mph(structure = c("general", "general"))
cdf(obj, matrix(c(0.5, 1), ncol = 2))

Distribution method for phase-type distributions

Description

Distribution method for phase-type distributions

Usage

## S4 method for signature 'ph'
cdf(x, q, lower.tail = TRUE)

Arguments

x

An object of class ph.

q

A vector of locations.

lower.tail

Logical parameter specifying whether lower tail (CDF) or upper tail is computed.

Value

A vector containing the CDF evaluations at the given locations.

Examples

obj <- ph(structure = "general")
cdf(obj, c(1, 2, 3))

Clone a matrix

Description

Clone a matrix

Usage

clone_matrix(m)

Arguments

m

A matrix.

Value

A clone of the matrix.


Clone a vector

Description

Clone a vector

Usage

clone_vector(v)

Arguments

v

A vector.

Value

A clone of the vector.


Coef method for bivdph class

Description

Coef method for bivdph class

Usage

## S4 method for signature 'bivdph'
coef(object)

Arguments

object

An object of class bivdph.

Value

Parameters of bivariate discrete phase-type model.

Examples

obj <- bivdph(dimensions = c(3, 3))
coef(obj)

Coef method for biviph class

Description

Coef method for biviph class

Usage

## S4 method for signature 'biviph'
coef(object)

Arguments

object

An object of class biviph.

Value

Parameters of bivariate inhomogeneous phase-type model.

Examples

under_bivph <- bivph(dimensions = c(3, 3))
obj <- biviph(under_bivph, gfun = c("weibull", "pareto"), gfun_pars = list(c(2), c(3)))
coef(obj)

Coef method for bivph class

Description

Coef method for bivph class

Usage

## S4 method for signature 'bivph'
coef(object)

Arguments

object

An object of class bivph.

Value

Parameters of bivariate phase-type model.

Examples

obj <- bivph(dimensions = c(3, 3))
coef(obj)

Coef method for dph Class

Description

Coef method for dph Class

Usage

## S4 method for signature 'dph'
coef(object)

Arguments

object

An object of class dph.

Value

Parameters of dph model.

Examples

obj <- dph(structure = "general", dim = 3)
coef(obj)

Coef method for iph class

Description

Coef method for iph class

Usage

## S4 method for signature 'iph'
coef(object)

Arguments

object

An object of class iph.

Value

Parameters of iph model.

Examples

obj <- iph(ph(structure = "general", dimension = 2), gfun = "lognormal", gfun_pars = 2)
coef(obj)

Coef method for mdph class

Description

Coef method for mdph class

Usage

## S4 method for signature 'mdph'
coef(object)

Arguments

object

An object of class mdph.

Value

Parameters of multivariate discrete phase-type model.

Examples

obj <- mdph(structure = c("general", "general"))
coef(obj)

Coef method for ph class

Description

Coef method for ph class

Usage

## S4 method for signature 'ph'
coef(object)

Arguments

object

An object of class ph.

Value

Parameters of ph model.

Examples

obj <- ph(structure = "general")
coef(obj)

Coef method for sph Class

Description

Coef method for sph Class

Usage

## S4 method for signature 'sph'
coef(object)

Arguments

object

An object of class sph.

Value

Parameters of sph model.


Cor method for bivdph class

Description

Cor method for bivdph class

Usage

## S4 method for signature 'bivdph'
cor(x)

Arguments

x

An object of class bivdph.

Value

The correlation matrix of the bivariate discrete phase-type distribution.

Examples

obj <- bivdph(dimensions = c(3, 3))
cor(obj)

Cor method for bivph class

Description

Cor method for bivph class

Usage

## S4 method for signature 'bivph'
cor(x)

Arguments

x

An object of class bivph.

Value

The correlation matrix of the bivariate phase-type distribution.

Examples

obj <- bivph(dimensions = c(3, 3))
cor(obj)

Cor method for multivariate discrete phase-type distributions

Description

Cor method for multivariate discrete phase-type distributions

Usage

## S4 method for signature 'mdph'
cor(x)

Arguments

x

An object of class mdph.

Value

The correlation matrix of the multivariate discrete phase-type distribution.

Examples

obj <- mdph(structure = c("general", "general"))
cor(obj)

Cor method for multivariate phase-type distributions

Description

Cor method for multivariate phase-type distributions

Usage

## S4 method for signature 'mph'
cor(x)

Arguments

x

An object of class mph.

Value

The correlation matrix of the multivariate phase-type distribution.

Examples

obj <- mph(structure = c("general", "general"))
cor(obj)

Cor method for MPHstar class

Description

Cor method for MPHstar class

Usage

## S4 method for signature 'MPHstar'
cor(x)

Arguments

x

An object of class MPHstar.

Value

The correlation matrix of the MPHstar distribution.

Examples

obj <- MPHstar(structure = "general")
cor(obj)

Cumulate matrix

Description

Creates a new matrix with entries the cumulated rows of A.

Usage

cumulate_matrix(A)

Arguments

A

A matrix.

Value

The cumulated matrix.


Cumulate vector

Description

Creates a new vector with entries the cumulated entries of A.

Usage

cumulate_vector(A)

Arguments

A

A vector.

Value

The cumulated vector.


Default size of the steps in the RK

Description

Computes the default step length for a matrix S to be employed in the RK method.

Usage

default_step_length(S)

Arguments

S

Sub-intensity matrix.

Value

The step length for S.


New generic for the density of matrix distributions

Description

Methods are available for objects of class ph.

Usage

dens(x, ...)

Arguments

x

An object of the model class.

...

Further parameters to be passed on.

Value

Density from the matrix distribution.


Density method for bivariate discrete phase-type distributions

Description

Density method for bivariate discrete phase-type distributions

Usage

## S4 method for signature 'bivdph'
dens(x, y)

Arguments

x

An object of class bivdph.

y

A matrix of locations.

Value

A vector containing the joint density evaluations at the given locations.

Examples

obj <- bivdph(dimensions = c(3, 3))
dens(obj, matrix(c(1, 2), ncol = 2))

Density method for bivariate inhomogeneous phase-type distributions

Description

Density method for bivariate inhomogeneous phase-type distributions

Usage

## S4 method for signature 'biviph'
dens(x, y)

Arguments

x

An object of class biviph.

y

A matrix of locations.

Value

A vector containing the joint density evaluations at the given locations.

Examples

under_bivph <- bivph(dimensions = c(3, 3))
obj <- biviph(under_bivph, gfun = c("weibull", "pareto"), gfun_pars = list(c(2), c(3)))
dens(obj, matrix(c(0.5, 1), ncol = 2))

Density method for bivariate phase-type distributions

Description

Density method for bivariate phase-type distributions

Usage

## S4 method for signature 'bivph'
dens(x, y)

Arguments

x

An object of class bivph.

y

A matrix of locations.

Value

A vector containing the joint density evaluations at the given locations.

Examples

obj <- bivph(dimensions = c(3, 3))
dens(obj, matrix(c(0.5, 1), ncol = 2))

Density method for discrete phase-type distributions

Description

Density method for discrete phase-type distributions

Usage

## S4 method for signature 'dph'
dens(x, y)

Arguments

x

An object of class dph.

y

A vector of locations.

Value

A vector containing the density evaluations at the given locations.

Examples

obj <- dph(structure = "general")
dens(obj, c(1, 2, 3))

Density method for inhomogeneous phase-type distributions

Description

Density method for inhomogeneous phase-type distributions

Usage

## S4 method for signature 'iph'
dens(x, y)

Arguments

x

An object of class iph.

y

A vector of locations.

Value

A vector containing the density evaluations at the given locations.

Examples

obj <- iph(ph(structure = "general"), gfun = "weibull", gfun_pars = 2)
dens(obj, c(1, 2, 3))

Density method for multivariate discrete phase-type distributions

Description

Density method for multivariate discrete phase-type distributions

Usage

## S4 method for signature 'mdph'
dens(x, y)

Arguments

x

An object of class mdph.

y

A matrix of locations.

Value

A vector containing the joint density evaluations at the given locations.

Examples

obj <- mdph(structure = c("general", "general"))
dens(obj, matrix(c(1, 1), ncol = 2))

Density method for multivariate inhomogeneous phase-type distributions

Description

Density method for multivariate inhomogeneous phase-type distributions

Usage

## S4 method for signature 'miph'
dens(x, y, delta = NULL)

Arguments

x

An object of class miph.

y

A matrix of observations.

delta

Matrix with right-censoring indicators (1 uncensored, 0 right censored).

Value

A list containing the locations and corresponding density evaluations.

Examples

under_mph <- mph(structure = c("general", "general"))
obj <- miph(under_mph, gfun = c("weibull", "pareto"), gfun_pars = list(c(2), c(3)))
dens(obj, c(1, 2))

Density method for multivariate phase-type distributions

Description

Density method for multivariate phase-type distributions

Usage

## S4 method for signature 'mph'
dens(x, y, delta = NULL)

Arguments

x

An object of class mph.

y

A matrix of observations.

delta

Matrix with right-censoring indicators (1 uncensored, 0 right censored).

Value

A list containing the locations and corresponding density evaluations.

Examples

obj <- mph(structure = c("general", "general"))
dens(obj, matrix(c(0.5, 1), ncol = 2))

Density method for phase-type distributions

Description

Density method for phase-type distributions

Usage

## S4 method for signature 'ph'
dens(x, y)

Arguments

x

An object of class ph.

y

A vector of locations.

Value

A vector containing the density evaluations at the given locations.

Examples

obj <- ph(structure = "general")
dens(obj, c(1, 2, 3))

Constructor function for discrete phase-type distributions

Description

Constructor function for discrete phase-type distributions

Usage

dph(alpha = NULL, S = NULL, structure = NULL, dimension = 3)

Arguments

alpha

A probability vector.

S

A sub-transition matrix.

structure

A valid dph structure: "general", "coxian", "hyperexponential", "gcoxian", or "gerlang".

dimension

The dimension of the dph structure (if structure is provided).

Value

An object of class dph.

Examples

dph(structure = "general", dim = 5)
dph(alpha = c(0.5, 0.5), S = matrix(c(0.1, 0.5, 0.5, 0.2), 2, 2))

Pgf of a discrete phase-type distribution

Description

Computes the pgf at z of a discrete phase-type distribution with parameters alpha and S.

Usage

dph_pgf(z, alpha, S)

Arguments

z

Vector of real values.

alpha

Vector of initial probabilities.

S

Sub-transition matrix.

Value

Laplace transform at r.


Discrete phase-type distributions

Description

Class of objects for discrete phase-type distributions.

Value

Class object.

Slots

name

Name of the discrete phase-type distribution.

pars

A list comprising of the parameters.

fit

A list containing estimation information.


Discrete phase-type cdf

Description

Computes the cdf (tail) of a discrete phase-type distribution with parameters alpha and S at x.

Usage

dphcdf(x, alpha, S, lower_tail = TRUE)

Arguments

x

Non-negative value.

alpha

Initial probabilities.

S

Sub-intensity matrix.

lower_tail

Cdf or tail.

Value

The cdf (tail) at x.


Discrete phase-type density

Description

Computes the density of discrete phase-type distribution with parameters alpha and S at x.

Usage

dphdensity(x, alpha, S)

Arguments

x

Non-negative value.

alpha

Initial probabilities.

S

Sub-transition matrix.

Value

The density at x.


EM step for the mPH class with right-censoring, for different marginal sub-intensity matrices

Description

EM step for the mPH class with right-censoring, for different marginal sub-intensity matrices

Usage

EM_step_mPH_rc(alpha, S_list, y, delta, h)

Arguments

alpha

Common initial distribution vector.

S_list

List of marginal sub-intensity matrices.

y

Matrix of marginal observations.

delta

Matrix with right-censoring indications (1 uncensored, 0 right-censored).

h

Tolerance of uniformization.


Embedded Markov chain of a sub-intensity matrix

Description

Returns the transition probabilities of the embedded Markov chain determined the sub-intensity matrix.

Usage

embedded_mc(S)

Arguments

S

A sub-intensity matrix.

Value

The embedded Markov chain.


EM for discrete bivariate phase-type

Description

EM for discrete bivariate phase-type

Usage

EMstep_bivdph(alpha, S11, S12, S22, obs, weight)

Arguments

alpha

Initial probabilities.

S11

Sub-transition matrix.

S12

Matrix.

S22

Sub-transition matrix.

obs

The observations.

weight

The weights for the observations.


EM for discrete bivariate phase-type MoE

Description

EM for discrete bivariate phase-type MoE

Usage

EMstep_bivdph_MoE(alpha, S11, S12, S22, obs, weight)

Arguments

alpha

Initial probabilities.

S11

Sub-transition matrix.

S12

Matrix.

S22

Sub-transition matrix.

obs

The observations.

weight

The weights for the observations.


EM for bivariate phase-type distributions using Pade for matrix exponential

Description

EM for bivariate phase-type distributions using Pade for matrix exponential

Usage

EMstep_bivph(alpha, S11, S12, S22, obs, weight)

Arguments

alpha

Initial probabilities.

S11

Sub-intensity.

S12

A matrix.

S22

Sub-intensity.

obs

The observations.

weight

The weights for the observations.

Value

Fitted alpha, S11, S12 and S22 after one iteration.


EM for discrete phase-type

Description

EM for discrete phase-type

Usage

EMstep_dph(alpha, S, obs, weight)

Arguments

alpha

Initial probabilities.

S

Sub-transition matrix.

obs

The observations.

weight

The weights for the observations.


EM for discrete phase-type MoE

Description

EM for discrete phase-type MoE

Usage

EMstep_dph_MoE(alpha, S, obs, weight)

Arguments

alpha

Initial probabilities.

S

Sub-transition matrix.

obs

The observations.

weight

The weights for the observations.


EM for multivariate discrete phase-type

Description

EM for multivariate discrete phase-type

Usage

EMstep_mdph(alpha, S_list, obs, weight)

Arguments

alpha

Initial probabilities.

S_list

List of marginal sub-transition matrices.

obs

The observations.

weight

The weights for the observations.


EM for multivariate discrete phase-type MoE

Description

EM for multivariate discrete phase-type MoE

Usage

EMstep_mdph_MoE(alpha, S_list, obs, weight)

Arguments

alpha

Initial probabilities.

S_list

List of marginal sub-transition matrices.

obs

The observations.

weight

The weights for the observations.


EM for PH-MoE

Description

No recycling of information

Usage

EMstep_MoE_PADE(alpha, S, obs, weight, rcens, rcweight)

Arguments

alpha

Initial probabilities.

S

Sub-intensity matrix.

obs

The observations.

weight

The weights for the observations.

rcens

Censored observations.

rcweight

The weights for the censored observations.


EM for phase-type distributions using Pade approximation for matrix exponential

Description

EM for phase-type distributions using Pade approximation for matrix exponential

Usage

EMstep_PADE(h, alpha, S, obs, weight, rcens, rcweight)

Arguments

h

Nuisance parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

obs

The observations.

weight

The weights for the observations.

rcens

Censored observations.

rcweight

The weights for the censored observations.


EM step for phase-type using Runge-Kutta

Description

Computes one step of the EM algorithm by using a Runge-Kutta method of fourth order.

Usage

EMstep_RK(h, alpha, S, obs, weight, rcens, rcweight)

Arguments

h

Step-length.

alpha

Initial probabilities.

S

Sub-intensity matrix.

obs

The observations.

weight

The weights for the observations.

rcens

Censored observations.

rcweight

The weights for the censored observations.


EM for phase-type using uniformization for matrix exponential

Description

EM for phase-type using uniformization for matrix exponential

Usage

EMstep_UNI(h, alpha, S, obs, weight, rcens, rcweight)

Arguments

h

Positive parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

obs

The observations.

weight

The weights for the observations.

rcens

Censored observations.

rcweight

The weights for the censored observations.


New generic for evaluating survival matrix distributions

Description

Methods are available for objects of class sph.

Usage

evaluate(x, subject, ...)

Arguments

x

An object of the model class.

subject

A vector of data.

...

Further parameters to be passed on.


Evaluation method for sph Class

Description

Evaluation method for sph Class

Usage

## S4 method for signature 'sph'
evaluate(x, subject)

Arguments

x

An object of class sph.

subject

Covariates of a single subject.

Value

A ph model.


expm terms of phase-type likelihood using uniformization

Description

expm terms of phase-type likelihood using uniformization

Usage

expm_terms(h, S, obs)

Arguments

h

Positive parameter.

S

Sub-intensity matrix.

obs

The observations.


Matrix exponential

Description

Armadillo matrix exponential implementation.

Usage

expmat(A)

Arguments

A

A matrix.

Value

exp(A).


Find n such that P(N > n) = h with N Poisson distributed

Description

Find n such that P(N > n) = h with N Poisson distributed

Usage

find_n(h, lambda)

Arguments

h

Probability.

lambda

Mean of Poisson random variable.

Value

Integer satisfying condition.


Find weight of observations

Description

Find weight of observations

Usage

find_weight(x)

Arguments

x

A vector of observations from which we want to know their weights.

Value

A matrix with unique observations as first column and associated weights for second column.


New generic for obtaining the Fisher information of survival matrix distributions

Description

Methods are available for objects of class sph.

Usage

Fisher(x, ...)

Arguments

x

An object of the model class.

...

Further parameters to be passed on.


Fisher information method for sph class

Description

Fisher information method for sph class

Usage

## S4 method for signature 'sph'
Fisher(x, y, X, w = numeric(0))

Arguments

x

An object of class sph.

y

Independent variate.

X

Matrix of covariates.

w

Weights.

Value

A matrix.


New generic for estimating matrix distributions

Description

Methods are available for objects of class ph.

Usage

fit(x, y, ...)

Arguments

x

An object of the model class.

y

A vector of data.

...

Further parameters to be passed on.

Value

An object of the fitted model class.


Fit method for bivdph Class

Description

Fit method for bivdph Class

Usage

## S4 method for signature 'bivdph'
fit(x, y, weight = numeric(0), stepsEM = 1000, every = 10)

Arguments

x

An object of class bivdph.

y

A matrix with the data.

weight

Vector of weights.

stepsEM

Number of EM steps to be performed.

every

Number of iterations between likelihood display updates.

Value

An object of class bivdph.

Examples

obj <- bivdph(dimensions = c(3, 3))
data <- sim(obj, n = 100)
fit(obj, data, stepsEM = 100, every = 50)

Fit method for bivph Class

Description

Fit method for bivph Class

Usage

## S4 method for signature 'bivph'
fit(
  x,
  y,
  weight = numeric(0),
  stepsEM = 1000,
  maxit = 100,
  reltol = 1e-08,
  every = 10
)

Arguments

x

An object of class bivph.

y

A matrix with the data.

weight

Vector of weights.

stepsEM

Number of EM steps to be performed.

maxit

Maximum number of iterations when optimizing g functions.

reltol

Relative tolerance when optimizing g functions.

every

Number of iterations between likelihood display updates.

Value

An object of class bivph.

Examples

obj <- bivph(dimensions = c(3, 3))
data <- sim(obj, n = 100)
fit(obj, data, stepsEM = 100, every = 50)

Fit method for dph class

Description

Fit method for dph class

Usage

## S4 method for signature 'dph'
fit(x, y, weight = numeric(0), stepsEM = 1000, every = 100)

Arguments

x

An object of class dph.

y

Vector or data.

weight

Vector of weights.

stepsEM

Number of EM steps to be performed.

every

Number of iterations between likelihood display updates.

Value

An object of class dph.

Examples

obj <- dph(structure = "general", dimension = 2)
data <- sim(obj, n = 100)
fit(obj, data, stepsEM = 100, every = 20)

Fit method for mdph Class

Description

Fit method for mdph Class

Usage

## S4 method for signature 'mdph'
fit(x, y, weight = numeric(0), stepsEM = 1000, every = 10)

Arguments

x

An object of class mdph.

y

A matrix with the data.

weight

Vector of weights.

stepsEM

Number of EM steps to be performed.

every

Number of iterations between likelihood display updates.

Value

An object of class mdph.

Examples

obj <- mdph(structure = c("general", "general"))
data <- sim(obj, n = 100)
fit(obj, data, stepsEM = 100, every = 50)

Fit method for mph Class

Description

Fit method for mph Class

Usage

## S4 method for signature 'mph'
fit(
  x,
  y,
  delta = numeric(0),
  stepsEM = 1000,
  equal_marginals = FALSE,
  r = 1,
  maxit = 100,
  reltol = 1e-08
)

Arguments

x

An object of class mph.

y

Matrix of data.

delta

Matrix with right-censoring indicators (1 uncensored, 0 right censored).

stepsEM

Number of EM steps to be performed.

equal_marginals

Logical. If TRUE, all marginals are fitted to be equal.

r

Sub-sampling parameter, defaults to 1.

maxit

Maximum number of iterations when optimizing g function.

reltol

Relative tolerance when optimizing g function.

Examples

obj <- mph(structure = c("general", "coxian"))
data <- sim(obj, 100)
fit(x = obj, y = data, stepsEM = 20)

Fit method for mph class

Description

Fit method for mph class

Usage

## S4 method for signature 'MPHstar'
fit(
  x,
  y,
  weight = numeric(0),
  stepsEM = 1000,
  uni_epsilon = 1e-04,
  zero_tol = 1e-04,
  every = 100,
  plot = F,
  r = 1,
  replace = F
)

Arguments

x

An object of class MPHstar.

y

A matrix of marginal data.

weight

A matrix of marginal weights.

stepsEM

The number of EM steps to be performed, defaults to 1000.

uni_epsilon

The epsilon parameter for the uniformization method, defaults to 1e-4.

zero_tol

The smallest value that a reward can take (to avoid numerical instability), defaults to 1e-4.

every

The number of iterations between likelihood display updates. The originating distribution is used, given that there is no explicit density.

plot

Boolean that determines if the plot of the loglikelihood evolution is plotted, defaults to False.

r

The sub-sampling proportion for stochastic EM, defaults to 1.

replace

Boolean that determines if sub-sampling is done with replacement or not, defaults to False.

Value

An object of class MPHstar.

Examples

set.seed(123)
obj <- MPHstar(structure = "general")
data <- sim(obj, 100)
fit(obj, data, stepsEM = 20)

Fit method for ph class

Description

Fit method for ph class

Usage

## S4 method for signature 'ph'
fit(
  x,
  y,
  weight = numeric(0),
  rcen = numeric(0),
  rcenweight = numeric(0),
  stepsEM = 1000,
  methods = c("RK", "RK"),
  rkstep = NA,
  uni_epsilon = NA,
  maxit = 100,
  reltol = 1e-08,
  every = 100,
  r = 1
)

Arguments

x

An object of class ph.

y

Vector or data.

weight

Vector of weights.

rcen

Vector of right-censored observations.

rcenweight

Vector of weights for right-censored observations.

stepsEM

Number of EM steps to be performed.

methods

Methods to use for matrix exponential calculation: RM, UNI or PADE.

rkstep

Runge-Kutta step size (optional).

uni_epsilon

Epsilon parameter for uniformization method.

maxit

Maximum number of iterations when optimizing g function.

reltol

Relative tolerance when optimizing g function.

every

Number of iterations between likelihood display updates.

r

Sub-sampling proportion for stochastic EM, defaults to 1.

Value

An object of class ph.

Examples

obj <- iph(ph(structure = "general", dimension = 2), gfun = "weibull", gfun_pars = 2)
data <- sim(obj, n = 100)
fit(obj, data, stepsEM = 100, every = 20)

New generic for the hazard rate of matrix distributions

Description

Methods are available for objects of class ph.

Usage

haz(x, ...)

Arguments

x

An object of the model class.

...

Further parameters to be passed on.

Value

Hazard rate from the matrix distribution.


Hazard rate method for phase-type distributions

Description

Hazard rate method for phase-type distributions

Usage

## S4 method for signature 'ph'
haz(x, y)

Arguments

x

An object of class ph.

y

A vector of locations.

Value

A vector containing the hazard rate evaluations at the given locations.

Examples

obj <- ph(structure = "general")
haz(obj, c(1, 2, 3))

L inf norm of a matrix

Description

Computes the L inf norm of a matrix A, which is defined as: L_inf(A) = max(1 <= i <= M) sum(1 <= j <= N) abs(A(i,j)).

Usage

inf_norm(A)

Arguments

A

A matrix.

Value

The L inf norm.


Initial state of Markov jump process

Description

Given the accumulated values of the initial probabilities alpha and a uniform value u, it returns the initial state of a Markov jump process. This corresponds to the states satisfying cum_alpha_(k-1) < u < cum_alpha_(k).

Usage

initial_state(cum_alpha, u)

Arguments

cum_alpha

A cummulated vector of initial probabilities.

u

Random value in (0,1).

Value

Initial state of the Markov jump process.


Constructor function for inhomogeneous phase-type distributions

Description

Constructor function for inhomogeneous phase-type distributions

Usage

iph(
  ph = NULL,
  gfun = NULL,
  gfun_pars = NULL,
  alpha = NULL,
  S = NULL,
  structure = NULL,
  dimension = 3,
  scale = 1
)

Arguments

ph

An object of class ph.

gfun

Inhomogeneity transform.

gfun_pars

The parameters of the inhomogeneity function.

alpha

A probability vector.

S

A sub-intensity matrix.

structure

A valid ph structure.

dimension

The dimension of the ph structure (if provided).

scale

Scale.

Value

An object of class iph.

Examples

iph(ph(structure = "coxian", dimension = 4), gfun = "pareto", gfun_pars = 3)

Inhomogeneous phase-type distributions

Description

Class of objects for inhomogeneous phase-type distributions.

Value

Class object.

Slots

name

Name of the phase-type distribution.

gfun

A list comprising of the parameters.

scale

Scale.


New generic for Laplace transform of matrix distributions

Description

Methods are available for objects of class ph.

Usage

laplace(x, ...)

Arguments

x

An object of the model class.

...

Further parameters to be passed on.

Value

Laplace transform of the matrix distribution.


Laplace method for bivph class

Description

Laplace method for bivph class

Usage

## S4 method for signature 'bivph'
laplace(x, r)

Arguments

x

An object of class mph.

r

A matrix of real values.

Value

A vector containing the corresponding Laplace transform evaluations.

Examples

obj <- bivph(dimensions = c(3, 3))
laplace(obj, matrix(c(0.5, 1), ncol = 2))

Laplace method for multivariate phase-type distributions

Description

Laplace method for multivariate phase-type distributions

Usage

## S4 method for signature 'mph'
laplace(x, r)

Arguments

x

An object of class mph.

r

A matrix of real values.

Value

A vector containing the corresponding Laplace transform evaluations.

Examples

set.seed(123)
obj <- mph(structure = c("general", "general"))
laplace(obj, matrix(c(0.5, 1), ncol = 2))

Laplace method for phase-type distributions

Description

Laplace method for phase-type distributions

Usage

## S4 method for signature 'ph'
laplace(x, r)

Arguments

x

An object of class ph.

r

A vector of real values.

Value

The Laplace transform of the ph (or underlying ph) object at the given locations.

Examples

set.seed(123)
obj <- ph(structure = "general", dimension = 3)
laplace(obj, 3)

New generic for linear combinations of multivariate matrix distributions

Description

Methods are available for objects of multivariate classes.

Usage

linCom(x, ...)

Arguments

x

An object of the model class.

...

Further parameters to be passed on.

Value

Marginal of the matrix distribution.


Linear combination method for bivariate phase-type distributions

Description

Linear combination method for bivariate phase-type distributions

Usage

## S4 method for signature 'bivph'
linCom(x, w = c(1, 1))

Arguments

x

An object of class bivph.

w

A vector with non-negative entries.

Value

An object of class ph.

Examples

obj <- bivph(dimensions = c(3, 3))
linCom(obj, c(1, 0))

Linear combination method for MPHstar class

Description

Linear combination method for MPHstar class

Usage

## S4 method for signature 'MPHstar'
linCom(x, w)

Arguments

x

An object of class MPHstar.

w

A vector with non-negative entries.

Value

An object of class ph.

Examples

obj <- MPHstar(structure = "general")
linCom(obj, c(1, 0))

Computes PH parameters of a linear combination of vector from MPHstar

Description

Computes PH parameters of a linear combination of vector from MPHstar

Usage

linear_combination(w, alpha, S, R)

Arguments

w

Vector with weights.

alpha

Initial distribution vector.

S

Sub-intensity matrix.

R

Reward matrix.

Value

A list of PH parameters.


Loglikelihood method for ph class

Description

Loglikelihood method for ph class

Usage

## S4 method for signature 'ph'
logLik(object)

Arguments

object

An object of class ph.

Value

An object of class logLik.

Examples

obj <- iph(ph(structure = "general", dimension = 2), gfun = "weibull", gfun_pars = 2)
data <- sim(obj, n = 100)
fitted_ph <- fit(obj, data, stepsEM = 10)
logLik(fitted_ph)

Loglikelihood for bivariate discrete phase-type

Description

Loglikelihood for bivariate discrete phase-type

Usage

logLikelihoodbivDPH(alpha, S11, S12, S22, obs, weight)

Arguments

alpha

Initial probabilities.

S11

Sub-transition matrix.

S12

Matrix.

S22

Sub-transition matrix.

obs

The observations.

weight

The weights of the observations.


Loglikelihood for bivariate discrete phase-type MoE

Description

Loglikelihood for bivariate discrete phase-type MoE

Usage

logLikelihoodbivDPH_MoE(alpha, S11, S12, S22, obs, weight)

Arguments

alpha

Initial probabilities.

S11

Sub-transition matrix.

S12

Matrix.

S22

Sub-transition matrix.

obs

The observations.

weight

The weights of the observations.


Loglikelihood for Bivariate PH

Description

Loglikelihood for Bivariate PH

Usage

logLikelihoodbivPH(alpha, S11, S12, S22, obs, weight)

Arguments

alpha

Vector of initial probabilities.

S11

Sub-intensity matrix.

S12

Matrix.

S22

Sub-intensity matrix.

obs

The observations.

weight

The weights of the observations.


Loglikelihood for discrete phase-type

Description

Loglikelihood for discrete phase-type

Usage

logLikelihoodDPH(alpha, S, obs, weight)

Arguments

alpha

Initial probabilities.

S

Sub-transition matrix.

obs

The observations.

weight

The weights of the observations.


Loglikelihood for discrete phase-type MoE

Description

Loglikelihood for discrete phase-type MoE

Usage

logLikelihoodDPH_MoE(alpha, S, obs, weight)

Arguments

alpha

Initial probabilities.

S

Sub-transition matrix.

obs

The observations.

weight

The weights of the observations.


Loglikelihood for multivariate discrete phase-type

Description

Loglikelihood for multivariate discrete phase-type

Usage

logLikelihoodmDPH(alpha, S_list, obs, weight)

Arguments

alpha

Initial probabilities.

S_list

List of marginal sub-transition matrices.

obs

The observations.

weight

The weights of the observations.


Loglikelihood for multivariate discrete phase-type MoE

Description

Loglikelihood for multivariate discrete phase-type MoE

Usage

logLikelihoodmDPH_MoE(alpha, S_list, obs, weight)

Arguments

alpha

Initial probabilities.

S_list

List of marginal sub-transition matrices.

obs

The observations.

weight

The weights of the observations.


Loglikelihood of matrix-GEV using Pade

Description

Loglikelihood for a sample

Usage

logLikelihoodMgev_PADE(h, alpha, S, beta, obs, weight, rcens, rcweight)

Arguments

h

Nuisance parameter.

alpha

Initial probabilities.

S

sub-intensity matrix.

beta

Inhomogeneity parameter.

obs

The observations.

weight

The weights of the observations.

rcens

Censored observations.

rcweight

The weights of the censored observations.


Loglikelihood of matrix-GEV using Runge-Kutta

Description

Loglikelihood for a sample.

Usage

logLikelihoodMgev_RK(h, alpha, S, beta, obs, weight, rcens, rcweight)

Arguments

h

Step-length.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Parameter of transformation

obs

The observations.

weight

Weights of the observations.

rcens

Censored observations.

rcweight

Weights of the censored observations.


Loglikelihood of matrix-GEV using uniformization

Description

Loglikelihood for a sample.

Usage

logLikelihoodMgev_UNI(h, alpha, S, beta, obs, weight, rcens, rcweight)

Arguments

h

Positive parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Parameter of transformation.

obs

The observations.

weight

Weights of the observations.

rcens

censored observations.

rcweight

Weights of the censored observations.


Loglikelihood of matrix-Gompertz using Pade

Description

Loglikelihood for a sample.

Usage

logLikelihoodMgompertz_PADE(h, alpha, S, beta, obs, weight, rcens, rcweight)

Arguments

h

Nuisance parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Inhomogeneity parameter.

obs

The observations.

weight

The weights of the observations.

rcens

Censored observations.

rcweight

The weights of the censored observations.


Loglikelihood of PI with matrix-Gompertz using Pade

Description

Loglikelihood for a sample.

Usage

logLikelihoodMgompertz_PADEs(
  h,
  alpha,
  S,
  beta,
  obs,
  weight,
  rcens,
  rcweight,
  scale1,
  scale2
)

Arguments

h

Nuisance parameter.

alpha

Initial probabilities.

S

Sub-intensity.

beta

Inhomogeneity parameter.

obs

The observations.

weight

Weights of the observations.

rcens

Censored observations.

rcweight

Weights of the censored observations.

scale1

Scale for observations.

scale2

Scale for censored observations.


Loglikelihood of matrix-Gompertz using Runge-Kutta

Description

Loglikelihood for a sample.

Usage

logLikelihoodMgompertz_RK(h, alpha, S, beta, obs, weight, rcens, rcweight)

Arguments

h

Step-length.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Parameter of transformation.

obs

The observations.

weight

Weights of the observations.

rcens

Censored observations.

rcweight

Weights of the censored observations.


Loglikelihood of PI with matrix-Gompertz using Runge-Kutta

Description

Loglikelihood for a sample.

Usage

logLikelihoodMgompertz_RKs(
  h,
  alpha,
  S,
  beta,
  obs,
  weight,
  rcens,
  rcweight,
  scale1,
  scale2
)

Arguments

h

Step-length.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Parameter of transformation.

obs

The observations.

weight

Weights of the observations.

rcens

Censored observations.

rcweight

Weights of the censored observations.

scale1

Scale for observations.

scale2

Scale for censored observations.


Loglikelihood of matrix-Gompertz using uniformization

Description

Loglikelihood for a sample.

Usage

logLikelihoodMgompertz_UNI(h, alpha, S, beta, obs, weight, rcens, rcweight)

Arguments

h

Positive parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Parameter of transformation.

obs

The observations.

weight

Weights of the observations.

rcens

censored observations.

rcweight

Weights of the censored observations.


Loglikelihood of PI with matrix-Gompertz using Uniformization

Description

Loglikelihood for a sample.

Usage

logLikelihoodMgompertz_UNIs(
  h,
  alpha,
  S,
  beta,
  obs,
  weight,
  rcens,
  rcweight,
  scale1,
  scale2
)

Arguments

h

Positive parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Parameter of transformation.

obs

The observations.

weight

Weights of the observations.

rcens

Censored observations.

rcweight

Weights of the censored observations.

scale1

Scale for observations.

scale2

Scale for censored observations.


Loglikelihood of matrix-loglogistic using Pade

Description

Loglikelihood for a sample.

Usage

logLikelihoodMloglogistic_PADE(h, alpha, S, beta, obs, weight, rcens, rcweight)

Arguments

h

Nuisance parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Inhomogeneity parameter.

obs

The observations.

weight

The weights of the observations.

rcens

Censored observations.

rcweight

The weights of the censored observations.


Loglikelihood of PI with matrix-loglogistic using Pade

Description

Loglikelihood for a sample.

Usage

logLikelihoodMloglogistic_PADEs(
  h,
  alpha,
  S,
  beta,
  obs,
  weight,
  rcens,
  rcweight,
  scale1,
  scale2
)

Arguments

h

Nuisance parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Inhomogeneity parameter.

obs

The observations.

weight

Weights of the observations.

rcens

Censored observations.

rcweight

Weights of the censored observations.

scale1

Scale for observations.

scale2

Scale for censored observations.


Loglikelihood of matrix-loglogistic using Runge-Kutta

Description

Loglikelihood for a sample.

Usage

logLikelihoodMloglogistic_RK(h, alpha, S, beta, obs, weight, rcens, rcweight)

Arguments

h

Step-length.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Parameters of transformation.

obs

The observations.

weight

Weights of the observations.

rcens

Censored observations.

rcweight

Weights of the censored observations.


Loglikelihood of PI with matrix-loglogistic using Runge-Kutta

Description

Loglikelihood for a sample.

Usage

logLikelihoodMloglogistic_RKs(
  h,
  alpha,
  S,
  beta,
  obs,
  weight,
  rcens,
  rcweight,
  scale1,
  scale2
)

Arguments

h

Step-length.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Parameters of transformation.

obs

The observations.

weight

Weights of the observations.

rcens

Censored observations.

rcweight

Weights of the censored observations.

scale1

Scale for observations.

scale2

Scale for censored observations.


Loglikelihood of matrix-loglogistic using uniformization

Description

Loglikelihood for a sample.

Usage

logLikelihoodMloglogistic_UNI(h, alpha, S, beta, obs, weight, rcens, rcweight)

Arguments

h

Positive parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Parameter of transformation.

obs

The observations.

weight

Weights of the observations.

rcens

censored observations.

rcweight

Weights of the censored observations.


Loglikelihood of PI with matrix-loglogistic using uniformization

Description

Loglikelihood for a sample.

Usage

logLikelihoodMloglogistic_UNIs(
  h,
  alpha,
  S,
  beta,
  obs,
  weight,
  rcens,
  rcweight,
  scale1,
  scale2
)

Arguments

h

Positive parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Parameter of transformation.

obs

The observations.

weight

Weights of the observations.

rcens

Censored observations.

rcweight

Weights of the censored observations.

scale1

Scale for observations.

scale2

Scale for censored observations.


Loglikelihood of matrix-lognormal using Pade

Description

Loglikelihood for a sample.

Usage

logLikelihoodMlognormal_PADE(h, alpha, S, beta, obs, weight, rcens, rcweight)

Arguments

h

Nuisance parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Inhomogeneity parameter.

obs

The observations.

weight

The weights of the observations.

rcens

Censored observations.

rcweight

The weights of the censored observations.


Loglikelihood of PI with matrix-lognormal using Pade

Description

Loglikelihood for a sample.

Usage

logLikelihoodMlognormal_PADEs(
  h,
  alpha,
  S,
  beta,
  obs,
  weight,
  rcens,
  rcweight,
  scale1,
  scale2
)

Arguments

h

Nuisance parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Inhomogeneity parameter.

obs

The observations.

weight

Weights of the observations.

rcens

Censored observations.

rcweight

Weights of the censored observations.

scale1

Scale for observations.

scale2

Scale for censored observations.


Loglikelihood of matrix-lognormal using Runge-Kutta

Description

Loglikelihood for a sample.

Usage

logLikelihoodMlognormal_RK(h, alpha, S, beta, obs, weight, rcens, rcweight)

Arguments

h

Step-length.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Parameter of transformation.

obs

The observations.

weight

Weights of the observations.

rcens

Censored observations.

rcweight

Weights of the censored observations.


Loglikelihood of PI matrix-lognormal using Runge-Kutta

Description

Loglikelihood for a sample.

Usage

logLikelihoodMlognormal_RKs(
  h,
  alpha,
  S,
  beta,
  obs,
  weight,
  rcens,
  rcweight,
  scale1,
  scale2
)

Arguments

h

Step-length.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Parameter of transformation.

obs

The observations.

weight

Weights of the observations.

rcens

Censored observations.

rcweight

Weights of the censored observations.

scale1

Scale for observations.

scale2

Scale for censored observations.


Loglikelihood of matrix-lognormal using uniformization

Description

Loglikelihood for a sample.

Usage

logLikelihoodMlognormal_UNI(h, alpha, S, beta, obs, weight, rcens, rcweight)

Arguments

h

Positive parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Parameter of transformation.

obs

The observations.

weight

Weights of the observations.

rcens

censored observations.

rcweight

Weights of the censored observations.


Loglikelihood of PI with matrix-lognormal using uniformization

Description

Loglikelihood for a sample.

Usage

logLikelihoodMlognormal_UNIs(
  h,
  alpha,
  S,
  beta,
  obs,
  weight,
  rcens,
  rcweight,
  scale1,
  scale2
)

Arguments

h

Positive parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Parameter of transformation.

obs

The observations.

weight

Weights of the observations.

rcens

Censored observations.

rcweight

Weights of the censored observations.

scale1

Scale for observations.

scale2

Scale for censored observations.


Loglikelihood of matrix-Pareto using Pade

Description

Loglikelihood for a sample.

Usage

logLikelihoodMpareto_PADE(h, alpha, S, beta, obs, weight, rcens, rcweight)

Arguments

h

Nuisance parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Inhomogeneity parameter.

obs

The observations.

weight

The weights of the observations.

rcens

Censored observations.

rcweight

The weights of the censored observations.


Loglikelihood of PI with matrix-Pareto using Pade

Description

Loglikelihood for a sample.

Usage

logLikelihoodMpareto_PADEs(
  h,
  alpha,
  S,
  beta,
  obs,
  weight,
  rcens,
  rcweight,
  scale1,
  scale2
)

Arguments

h

Nuisance parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Inhomogeneity parameter.

obs

The observations.

weight

Weights of the observations.

rcens

Censored observations.

rcweight

Weights of the censored observations.

scale1

Scale for observations.

scale2

Scale for censored observations.


Loglikelihood of matrix-Pareto using Runge-Kutta

Description

Loglikelihood for a sample.

Usage

logLikelihoodMpareto_RK(h, alpha, S, beta, obs, weight, rcens, rcweight)

Arguments

h

Step-length.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Parameter of transformation.

obs

The observations.

weight

Weights of the observations.

rcens

Censored observations.

rcweight

Weights of the censored observations.


Loglikelihood of PI with matrix-Pareto using Runge-Kutta

Description

Loglikelihood for a sample.

Usage

logLikelihoodMpareto_RKs(
  h,
  alpha,
  S,
  beta,
  obs,
  weight,
  rcens,
  rcweight,
  scale1,
  scale2
)

Arguments

h

Step-length.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Parameter of transformation.

obs

The observations.

weight

Weights of the observations.

rcens

Censored observations.

rcweight

Weights of the censored observations.

scale1

Scale for observations.

scale2

Scale for censored observations.


Loglikelihood of matrix-Pareto using uniformization

Description

Loglikelihood for a sample.

Usage

logLikelihoodMpareto_UNI(h, alpha, S, beta, obs, weight, rcens, rcweight)

Arguments

h

Positive parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Parameter of transformation.

obs

The observations.

weight

Weights of the observations.

rcens

censored observations.

rcweight

Weights of the censored observations.


Loglikelihood of PI with matrix-Pareto using uniformization

Description

Loglikelihood for a sample.

Usage

logLikelihoodMpareto_UNIs(
  h,
  alpha,
  S,
  beta,
  obs,
  weight,
  rcens,
  rcweight,
  scale1,
  scale2
)

Arguments

h

Positive parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Parameter of transformation.

obs

The observations.

weight

Weights of the observations.

rcens

Censored observations.

rcweight

Weights of the censored observations.

scale1

Scale for observations.

scale2

Scale for censored observations.


Loglikelihood of matrix-Weibull using Pade

Description

Loglikelihood for a sample.

Usage

logLikelihoodMweibull_PADE(h, alpha, S, beta, obs, weight, rcens, rcweight)

Arguments

h

Nuisance parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Inhomogeneity parameter.

obs

The observations.

weight

The weights of the observations.

rcens

Censored observations.

rcweight

The weights of the censored observations.


Loglikelihood of PI with matrix-Weibull using Pade

Description

Loglikelihood for a sample.

Usage

logLikelihoodMweibull_PADEs(
  h,
  alpha,
  S,
  beta,
  obs,
  weight,
  rcens,
  rcweight,
  scale1,
  scale2
)

Arguments

h

Nuisance parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Inhomogeneity parameter.

obs

The observations.

weight

The weights of the observations.

rcens

Censored observations.

rcweight

The weights of the censored observations.

scale1

Scale for observations.

scale2

Scale for censored observations.


Loglikelihood of matrix-Weibull using Runge-Kutta

Description

Loglikelihood for a sample.

Usage

logLikelihoodMweibull_RK(h, alpha, S, beta, obs, weight, rcens, rcweight)

Arguments

h

Step-length.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Parameter of transformation.

obs

The observations.

weight

Weights of the observations.

rcens

Censored observations.

rcweight

Weights of the censored observations.


Loglikelihood of PI with matrix-Weibull using Runge-Kutta

Description

Loglikelihood for a sample.

Usage

logLikelihoodMweibull_RKs(
  h,
  alpha,
  S,
  beta,
  obs,
  weight,
  rcens,
  rcweight,
  scale1,
  scale2
)

Arguments

h

Step-length.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Parameter of transformation.

obs

The observations.

weight

Weights of the observations.

rcens

Censored observations.

rcweight

Weights of the censored observations.

scale1

Scale for observations.

scale2

Scale for censored observations.


Loglikelihood of matrix-Weibull using uniformization

Description

Loglikelihood for a sample.

Usage

logLikelihoodMweibull_UNI(h, alpha, S, beta, obs, weight, rcens, rcweight)

Arguments

h

Positive parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Parameter of transformation.

obs

The observations.

weight

Weights of the observations.

rcens

censored observations.

rcweight

Weights of the censored observations.


Loglikelihood of PI with matrix-Weibull using uniformization

Description

Loglikelihood for a sample.

Usage

logLikelihoodMweibull_UNIs(
  h,
  alpha,
  S,
  beta,
  obs,
  weight,
  rcens,
  rcweight,
  scale1,
  scale2
)

Arguments

h

Positive parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Parameter of transformation.

obs

The observations.

weight

Weights of the observations.

rcens

Censored observations.

rcweight

Weights of the censored observations.

scale1

Scale for observations.

scale2

Scale for censored observations.


Loglikelihood for PH-MoE

Description

Loglikelihood for PH-MoE

Usage

logLikelihoodPH_MoE(alpha1, alpha2, S, obs, weight, rcens, rcweight)

Arguments

alpha1

Initial probabilities for non-censored data.

alpha2

Initial probabilities for censored data.

S

Sub-intensity matrix.

obs

The observations.

weight

The weights of the observations.

rcens

Censored observations.

rcweight

The weights of the censored observations.


Loglikelihood of phase-type using Pade approximation

Description

Loglikelihood for a sample.

Usage

logLikelihoodPH_PADE(h, alpha, S, obs, weight, rcens, rcweight)

Arguments

h

Nuisance parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

obs

The observations.

weight

The weights of the observations.

rcens

Censored observations.

rcweight

The weights of the censored observations.


Loglikelihood of PI with phase-type using Pade

Description

Loglikelihood for a sample.

Usage

logLikelihoodPH_PADEs(
  h,
  alpha,
  S,
  obs,
  weight,
  rcens,
  rcweight,
  scale1,
  scale2
)

Arguments

h

Nuisance parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

obs

The observations.

weight

The weights of the observations.

rcens

Censored observations.

rcweight

The weights of the censored observations.

scale1

Scale for observations.

scale2

Scale for censored observations.


Loglikelihood of phase-type using Runge-Kutta

Description

Loglikelihood for a sample.

Usage

logLikelihoodPH_RK(h, alpha, S, obs, weight, rcens, rcweight)

Arguments

h

Step-length.

alpha

Initial probabilities.

S

Sub-intensity matrix.

obs

The observations.

weight

Weights of the observations.

rcens

Censored observations.

rcweight

Weights of the censored observations.


Loglikelihood of PI with phase-type using Runge-Kutta

Description

Loglikelihood for a sample.

Usage

logLikelihoodPH_RKs(h, alpha, S, obs, weight, rcens, rcweight, scale1, scale2)

Arguments

h

Step-length.

alpha

Initial probabilities.

S

Sub-intensity matrix.

obs

The observations.

weight

Weights of the observations.

rcens

Censored observations.

rcweight

Weights of the censored observations.

scale1

Scale for observations.

scale2

Scale for censored observations.


Loglikelihood of phase-type using uniformization

Description

Loglikelihood for a sample.

Usage

logLikelihoodPH_UNI(h, alpha, S, obs, weight, rcens, rcweight)

Arguments

h

Positive parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

obs

The observations.

weight

Weights of the observations.

rcens

Censored observations.

rcweight

Weights of the censored observations.


Loglikelihood of PI with phase-type using uniformization

Description

Loglikelihood for a sample.

Usage

logLikelihoodPH_UNIs(h, alpha, S, obs, weight, rcens, rcweight, scale1, scale2)

Arguments

h

Positive parameter.

alpha

Initial probabilities.

S

Sub-intensity matrix.

obs

The observations.

weight

Weights of the observations.

rcens

Censored observations.

rcweight

Weights of the censored observations.

scale1

Scale for observations.

scale2

Scale for censored observations.


New generic for likelihood ratio test between two matrix distribution models

Description

Methods are available for objects of class ph.

Usage

LRT(x, y, ...)

Arguments

x, y

Objects of the model class.

...

Further parameters to be passed on.

Value

A likelihood ratio test result.


LRT method for ph class

Description

LRT method for ph class

Usage

## S4 method for signature 'ph,ph'
LRT(x, y)

Arguments

x, y

Objects of class ph.

Value

LRT between the models.


Computes exp(Sx) via series representation

Description

Computes exp(Sx) via series representation

Usage

m_exp_sum(x, n, pow_vector, a)

Arguments

x

A number.

n

An integer.

pow_vector

A vector.

a

A number.


New generic for the marginals of multivariate matrix distributions

Description

Methods are available for objects of multivariate classes.

Usage

marginal(x, ...)

Arguments

x

An object of the model class.

...

Further parameters to be passed on.

Value

Marginal of the matrix distribution.


Marginal conditional expectations

Description

Marginal conditional expectations

Usage

marginal_expectation(rew, pos, N, alpha, S, obs, weight)

Arguments

rew

Column of the reward matrix corresponding to its marginal.

pos

Vector that indicates which state is associated to a positive reward.

N

Uniformization parameter.

alpha

Marginal initial distribution vector.

S

Marginal sub-intensity matrix.

obs

Marginal observations.

weight

Marginal weights.

Value

A vector with the expected time spent in each state by the marginal, conditional on the observations.


Marginal method for bivdph class

Description

Marginal method for bivdph class

Usage

## S4 method for signature 'bivdph'
marginal(x, mar = 1)

Arguments

x

An object of class bivdph.

mar

Indicator of which marginal.

Value

An object of the of class dph.

Examples

obj <- bivdph(dimensions = c(3, 3))
marginal(obj, 1)

Marginal method for biviph class

Description

Marginal method for biviph class

Usage

## S4 method for signature 'biviph'
marginal(x, mar = 1)

Arguments

x

An object of class biviph.

mar

Indicator of which marginal.

Value

An object of the of class iph.

Examples

under_bivph <- bivph(dimensions = c(3, 3))
obj <- biviph(under_bivph, gfun = c("weibull", "pareto"), gfun_pars = list(c(2), c(3)))
marginal(obj, 1)

Marginal method for bivph class

Description

Marginal method for bivph class

Usage

## S4 method for signature 'bivph'
marginal(x, mar = 1)

Arguments

x

An object of class bivph.

mar

Indicator of which marginal.

Value

An object of the of class ph.

Examples

obj <- bivph(dimensions = c(3, 3))
marginal(obj, 1)

Marginal method for mdph class

Description

Marginal method for mdph class

Usage

## S4 method for signature 'mdph'
marginal(x, mar = 1)

Arguments

x

An object of class mdph.

mar

Indicator of which marginal.

Value

An object of the of class dph.

Examples

obj <- mdph(structure = c("general", "general"))
marginal(obj, 1)

Marginal method for multivariate inhomogeneous phase-type distributions

Description

Marginal method for multivariate inhomogeneous phase-type distributions

Usage

## S4 method for signature 'miph'
marginal(x, mar = 1)

Arguments

x

An object of class miph.

mar

Indicator of which marginal.

Value

An object of the of class iph.

Examples

under_mph <- mph(structure = c("general", "general"))
obj <- miph(under_mph, gfun = c("weibull", "pareto"), gfun_pars = list(c(2), c(3)))
marginal(obj, 1)

Marginal method for multivariate phase-type distributions

Description

Marginal method for multivariate phase-type distributions

Usage

## S4 method for signature 'mph'
marginal(x, mar = 1)

Arguments

x

An object of class mph.

mar

Indicator of which marginal.

Value

An object of the of class ph.

Examples

obj <- mph(structure = c("general", "general"))
marginal(obj, 1)

Marginal method for MPHstar class

Description

Marginal method for MPHstar class

Usage

## S4 method for signature 'MPHstar'
marginal(x, mar = 1)

Arguments

x

An object of class MPHstar.

mar

Indicator of which marginal.

Value

An object of the of class ph.

Examples

obj <- MPHstar(structure = "general")
marginal(obj, 1)

Matrix exponential

Description

MATLAB's built-in algorithm for matrix exponential - Pade approximation.

Usage

matrix_exponential(A)

Arguments

A

A matrix.

Value

exp(A).


Inverse of a matrix

Description

Inverse of a matrix

Usage

matrix_inverse(A)

Arguments

A

A matrix.

Value

Inverse of A.


Computes A^n

Description

Computes A^n

Usage

matrix_power(n, A)

Arguments

n

An integer.

A

A matrix.

Value

A^n.


Product of two matrices

Description

Product of two matrices

Usage

matrix_product(A1, A2)

Arguments

A1

A matrix.

A2

A matrix.

Value

Computes A1 * A2.


Creates the matrix (A1, B1 ; 0, A2)

Description

Creates the matrix (A1, B1 ; 0, A2)

Usage

matrix_vanloan(A1, A2, B1)

Arguments

A1

Matrix.

A2

Matrix.

B1

Matrix.

Value

Computes (A1, B1 ; 0, A2).


Maximum diagonal element of a matrix

Description

Maximum diagonal element of a matrix

Usage

max_diagonal(A)

Arguments

A

Matrix.

Value

The maximum value in the diagonal.


New generic for maximum of two matrix distributions

Description

Methods are available for objects of class ph.

Usage

maximum(x1, x2, ...)

Arguments

x1

An object of the model class.

x2

An object of the model class.

...

Further parameters to be passed on.

Value

An object of the model class.


Maximum method for discrete phase-type distributions

Description

Maximum method for discrete phase-type distributions

Usage

## S4 method for signature 'dph,dph'
maximum(x1, x2)

Arguments

x1

An object of class dph.

x2

An object of class dph.

Value

An object of class dph.

Examples

dph1 <- dph(structure = "general", dimension = 3)
dph2 <- dph(structure = "general", dimension = 5)
dph_max <- maximum(dph1, dph2)
dph_max

Maximum method for inhomogeneous phase-type distributions

Description

Maximum method for inhomogeneous phase-type distributions

Usage

## S4 method for signature 'iph,iph'
maximum(x1, x2)

Arguments

x1

An object of class iph.

x2

An object of class iph.

Value

An object of class iph.

Examples

iph1 <- iph(ph(structure = "general", dimension = 3), gfun = "weibull", gfun_pars = 2)
iph2 <- iph(ph(structure = "gcoxian", dimension = 5), gfun = "weibull", gfun_pars = 2)
iph_min <- maximum(iph1, iph2)
iph_min

Maximum method for phase-type distributions

Description

Maximum method for phase-type distributions

Usage

## S4 method for signature 'ph,ph'
maximum(x1, x2)

Arguments

x1

An object of class ph.

x2

An object of class ph.

Value

An object of class ph.

Examples

ph1 <- ph(structure = "general", dimension = 3)
ph2 <- ph(structure = "gcoxian", dimension = 5)
ph_max <- maximum(ph1, ph2)
ph_max

Constructor function for multivariate discrete phase-type distributions

Description

Constructor function for multivariate discrete phase-type distributions

Usage

mdph(alpha = NULL, S = NULL, structure = NULL, dimension = 3, variables = NULL)

Arguments

alpha

A probability vector.

S

A list of sub-transition matrices.

structure

A vector of valid ph structures.

dimension

The dimension of the dph structure (if provided).

variables

The dimension of the multivariate discrete phase-type.

Value

An object of class mdph.

Examples

mdph(structure = c("general", "general"), dimension = 5)

Multivariate discrete phase-type distributions

Description

Class of objects for multivariate discrete phase-type distributions.

Value

Class object.

Slots

name

Name of the discrete phase-type distribution.

pars

A list comprising of the parameters.

fit

A list containing estimation information.


Multivariate discrete phase-type density

Description

Computes the density of multivariate discrete phase-type distribution with parameters alpha and S at x.

Usage

mdphdensity(x, alpha, S_list)

Arguments

x

Matrix of positive integer values.

alpha

Initial probabilities.

S_list

List of marginal sub-transition matrices.

Value

The density at x.


Mean method for bivdph class

Description

Mean method for bivdph class

Usage

## S4 method for signature 'bivdph'
mean(x)

Arguments

x

An object of class bivdph.

Value

The mean of the bivariate discrete phase-type distribution.

Examples

obj <- bivdph(dimensions = c(3, 3))
mean(obj)

Mean Method for bivph class

Description

Mean Method for bivph class

Usage

## S4 method for signature 'bivph'
mean(x)

Arguments

x

An object of class bivph.

Value

The mean of the bivariate phase-type distribution.

Examples

obj <- bivph(dimensions = c(3, 3))
mean(obj)

Mean method for discrete phase-type distributions

Description

Mean method for discrete phase-type distributions

Usage

## S4 method for signature 'dph'
mean(x)

Arguments

x

An object of class dph.

Value

The raw first moment of the dph object.

Examples

set.seed(123)
obj <- dph(structure = "general", dimension = 3)
mean(obj)

Mean method for multivariate discrete phase-type distributions

Description

Mean method for multivariate discrete phase-type distributions

Usage

## S4 method for signature 'mdph'
mean(x)

Arguments

x

An object of class mdph.

Value

The mean of the multivariate discrete phase-type distribution.

Examples

obj <- mdph(structure = c("general", "general"))
mean(obj)

Mean method for multivariate phase-type distributions

Description

Mean method for multivariate phase-type distributions

Usage

## S4 method for signature 'mph'
mean(x)

Arguments

x

An object of class mph.

Value

The mean of the multivariate phase-type distribution.

Examples

obj <- mph(structure = c("general", "general"))
mean(obj)

Mean method for MPHstar class

Description

Mean method for MPHstar class

Usage

## S4 method for signature 'MPHstar'
mean(x)

Arguments

x

An object of class MPHstar.

Value

The mean of MPHstar distribution.

Examples

obj <- MPHstar(structure = "general")
mean(obj)

Mean method for phase-type distributions

Description

Mean method for phase-type distributions

Usage

## S4 method for signature 'ph'
mean(x)

Arguments

x

An object of class ph.

Value

The raw first moment of the ph (or underlying ph) object.

Examples

set.seed(123)
obj <- ph(structure = "general", dimension = 3)
mean(obj)

Merges the matrices S11, S12 and S22 into a sub-intensity matrix

Description

Merges the matrices S11, S12 and S22 into a sub-intensity matrix

Usage

merge_matrices(S11, S12, S22)

Arguments

S11

A sub-intensity matrix.

S12

A matrix.

S22

A sub-intensity matrix.

Value

A sub-intensity matrix.


Matrix-GEV cdf

Description

Computes the cdf (tail) of a matrix-GEV distribution with parameters alpha, S and beta at x.

Usage

mgevcdf(x, alpha, S, beta, lower_tail = TRUE)

Arguments

x

Non-negative value.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Transformation parameters.

lower_tail

Cdf or tail.

Value

The cdf (tail) at x.


Matrix-GEV density

Description

Computes the density of a matrix-GEV distribution with parameters alpha, S and beta at x. Does not allow for atoms in zero.

Usage

mgevden(x, alpha, S, beta)

Arguments

x

Non-negative value.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Transformation parameters.

Value

The density at x.


New generic for mgf of matrix distributions

Description

Methods are available for objects of class ph.

Usage

mgf(x, ...)

Arguments

x

An object of the model class.

...

Further parameters to be passed on.

Value

Mgf of the matrix distribution.


Mgf method for bivph class

Description

Mgf method for bivph class

Usage

## S4 method for signature 'bivph'
mgf(x, r)

Arguments

x

An object of class mph.

r

A matrix of real values.

Value

A vector containing the corresponding mgf evaluations.

Examples

set.seed(123)
obj <- bivph(dimensions = c(3, 3))
mgf(obj, matrix(c(0.5, 0.1), ncol = 2))

Mgf method for multivariate phase-type distributions

Description

Mgf method for multivariate phase-type distributions

Usage

## S4 method for signature 'mph'
mgf(x, r)

Arguments

x

An object of class mph.

r

A matrix of real values.

Value

A vector containing the corresponding mgf evaluations.

Examples

set.seed(124)
obj <- mph(structure = c("general", "general"))
mgf(obj, matrix(c(0.5, 0.3), ncol = 2))

Mgf method for phase-type distributions

Description

Mgf method for phase-type distributions

Usage

## S4 method for signature 'ph'
mgf(x, r)

Arguments

x

An object of class ph.

r

A vector of real values.

Value

The mgf of the ph (or underlying ph) object at the given locations.

Examples

set.seed(123)
obj <- ph(structure = "general", dimension = 3)
mgf(obj, 0.4)

Matrix-Gompertz cdf

Description

Computes the cdf (tail) of a matrix-Gompertz distribution with parameters alpha, S and beta at x.

Usage

mgompertzcdf(x, alpha, S, beta, lower_tail = TRUE)

Arguments

x

Non-negative value.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Shape parameter.

lower_tail

Cdf or tail.

Value

The cdf (tail) at x.


Matrix-Gompertz density

Description

Computes the density of a matrix-Gompertz distribution with parameters alpha, S and beta at x.

Usage

mgompertzden(x, alpha, S, beta)

Arguments

x

Non-negative value.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Shape parameter.

Value

The density at x.


New generic for minimum of two matrix distributions

Description

Methods are available for objects of class ph.

Usage

minimum(x1, x2, ...)

Arguments

x1

An object of the model class.

x2

An object of the model class.

...

Further parameters to be passed on.

Value

An object of the model class.


Minimum method for discrete phase-type distributions

Description

Minimum method for discrete phase-type distributions

Usage

## S4 method for signature 'dph,dph'
minimum(x1, x2)

Arguments

x1

An object of class dph.

x2

An object of class dph.

Value

An object of class dph.

Examples

dph1 <- dph(structure = "general", dimension = 3)
dph2 <- dph(structure = "general", dimension = 5)
dph_min <- minimum(dph1, dph2)
dph_min

Minimum method for inhomogeneous phase-type distributions

Description

Minimum method for inhomogeneous phase-type distributions

Usage

## S4 method for signature 'iph,iph'
minimum(x1, x2)

Arguments

x1

An object of class iph.

x2

An object of class iph.

Value

An object of class iph.

Examples

iph1 <- iph(ph(structure = "general", dimension = 3), gfun = "weibull", gfun_pars = 2)
iph2 <- iph(ph(structure = "gcoxian", dimension = 5), gfun = "weibull", gfun_pars = 2)
iph_min <- minimum(iph1, iph2)
iph_min

Minimum method for phase-type distributions

Description

Minimum method for phase-type distributions

Usage

## S4 method for signature 'ph,ph'
minimum(x1, x2)

Arguments

x1

An object of class ph.

x2

An object of class ph.

Value

An object of class ph.

Examples

ph1 <- ph(structure = "general", dimension = 3)
ph2 <- ph(structure = "gcoxian", dimension = 5)
ph_min <- minimum(ph1, ph2)
ph_min

Constructor function for multivariate inhomogeneous phase-type distributions

Description

Constructor function for multivariate inhomogeneous phase-type distributions

Usage

miph(
  mph = NULL,
  gfun = NULL,
  gfun_pars = NULL,
  alpha = NULL,
  S = NULL,
  structure = NULL,
  dimension = 3,
  variables = NULL,
  scale = 1
)

Arguments

mph

An object of class mph.

gfun

Vector of inhomogeneity transforms.

gfun_pars

List of parameters for the inhomogeneity functions.

alpha

A probability vector.

S

A list of sub-intensity matrices.

structure

A vector of valid ph structures.

dimension

The dimension of the ph structure (if provided).

variables

Number of marginals.

scale

Scale.

Value

An object of class iph.

Examples

under_mph <- mph(structure = c("gcoxian", "general"), dimension = 4)
miph(under_mph, gfun = c("weibull", "pareto"), gfun_pars = list(c(2), c(3)))

Multivariate inhomogeneous phase-type distributions

Description

Class of objects for multivariate inhomogeneous phase-type distributions.

Value

Class object.

Slots

name

Name of the phase type distribution.

gfun

A list comprising of the parameters.

scale

Scale.


New generic for mixture of two matrix distributions

Description

Methods are available for objects of classes ph and dph.

Usage

mixture(x1, x2, ...)

Arguments

x1

An object of the model class.

x2

An object of the model class.

...

Further parameters to be passed on.

Value

An object of the model class.


Mixture method for phase-type distributions

Description

Mixture method for phase-type distributions

Usage

## S4 method for signature 'dph,dph'
mixture(x1, x2, prob)

Arguments

x1

An object of class dph.

x2

An object of class dph.

prob

Probability for first object.

Value

An object of class dph.

Examples

dph1 <- dph(structure = "general", dimension = 3)
dph2 <- dph(structure = "general", dimension = 5)
dph_mix <- mixture(dph1, dph2, 0.5)
dph_mix

Mixture method for phase-type distributions

Description

Mixture method for phase-type distributions

Usage

## S4 method for signature 'ph,ph'
mixture(x1, x2, prob)

Arguments

x1

An object of class ph.

x2

An object of class ph.

prob

Probability for first object.

Value

An object of class ph.

Examples

ph1 <- ph(structure = "general", dimension = 3)
ph2 <- ph(structure = "gcoxian", dimension = 5)
ph_mix <- mixture(ph1, ph2, 0.5)
ph_mix

Matrix-loglogistic cdf

Description

Computes the cdf (tail) of a matrix-loglogistic distribution with parameters alpha, S and beta at x.

Usage

mloglogisticcdf(x, alpha, S, beta, lower_tail = TRUE)

Arguments

x

Non-negative value.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Transformation parameters.

lower_tail

Cdf or tail.

Value

The cdf (tail) at x.


Matrix-loglogistic density

Description

Computes the density of a matrix-loglogistic distribution with parameters alpha, S and beta at x.

Usage

mloglogisticden(x, alpha, S, beta)

Arguments

x

Non-negative value.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Transformation parameters.

Value

The density at x.


Matrix-lognormal cdf

Description

Computes the cdf (tail) of a matrix-lognormal distribution with parameters alpha, S and beta at x.

Usage

mlognormalcdf(x, alpha, S, beta, lower_tail = TRUE)

Arguments

x

Non-negative value.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Shape parameter.

lower_tail

Cdf or tail.

Value

The cdf (tail) at x.


Matrix-lognormal density

Description

Computes the density of a matrix-lognormal distribution with parameters alpha, S and beta at x.

Usage

mlognormalden(x, alpha, S, beta)

Arguments

x

Non-negative value.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Shape parameter.

Value

The density at x.


New generic for mixture-of-experts regression with matrix distributions

Description

Methods are available for objects of class ph

Usage

MoE(x, y, ...)

Arguments

x

An object of the model class.

y

A vector of data.

...

Further parameters to be passed on.

Value

An object of the fitted model class.


MoE method for bivdph Class

Description

MoE method for bivdph Class

Usage

## S4 method for signature 'bivdph'
MoE(
  x,
  formula,
  y,
  data,
  alpha_vecs = NULL,
  weight = numeric(0),
  stepsEM = 1000,
  every = 10,
  rand_init = TRUE
)

Arguments

x

An object of class bivdph.

formula

A regression formula.

y

A matrix of observations.

data

A data frame of covariates.

alpha_vecs

Matrix of initial probabilities.

weight

Vector of weights.

stepsEM

Number of EM steps to be performed.

every

Number of iterations between likelihood display updates.

rand_init

Random initiation in the R-step.

Value

An object of class sph.

Examples

x <- bivdph(dimensions = c(3, 3))
n <- 100
responses <- cbind(rpois(n, 3) + 1, rbinom(n, 5, 0.5))
covariates <- data.frame(age = sample(18:65, n, replace = TRUE) / 100, income = runif(n, 0, 0.99))
f <- responses ~ age + income
MoE(x = x, formula = f, y = responses, data = covariates, stepsEM = 20)

MoE method for dph Class

Description

MoE method for dph Class

Usage

## S4 method for signature 'dph'
MoE(
  x,
  formula,
  data,
  alpha_vecs = NULL,
  weight = numeric(0),
  stepsEM = 1000,
  every = 10,
  rand_init = TRUE,
  maxWts = 1000
)

Arguments

x

An object of class dph.

formula

A regression formula.

data

A data frame.

alpha_vecs

Matrix of initial probabilities.

weight

Vector of weights.

stepsEM

Number of EM steps to be performed.

every

Number of iterations between likelihood display updates.

rand_init

Random initiation in the R-step.

maxWts

Maximal number of weights in the nnet function.

Value

An object of class sph.

Examples

x <- dph(structure = "general")
n <- 100
responses <- rpois(n, 3) + 1
covariate <- data.frame(age = sample(18:65, n, replace = TRUE) / 100, income = runif(n, 0, 0.99))
f <- responses ~ age + income # regression formula
MoE(x = x, formula = f, y = responses, data = covariate, stepsEM = 20)

MoE method for mdph Class

Description

MoE method for mdph Class

Usage

## S4 method for signature 'mdph'
MoE(
  x,
  formula,
  y,
  data,
  alpha_vecs = NULL,
  weight = numeric(0),
  stepsEM = 1000,
  every = 10,
  rand_init = TRUE,
  maxWts = 1000
)

Arguments

x

An object of class mdph.

formula

A regression formula.

y

A matrix of observations.

data

A data frame of covariates.

alpha_vecs

Matrix of initial probabilities.

weight

Vector of weights.

stepsEM

Number of EM steps to be performed.

every

Number of iterations between likelihood display updates.

rand_init

Random initiation in the R-step.

maxWts

Maximal number of weights in the nnet function.

Value

An object of class sph.

Examples

x <- mdph(structure = c("general", "general"))
n <- 100
responses <- cbind(rpois(n, 3) + 1, rbinom(n, 5, 0.5))
covariates <- data.frame(age = sample(18:65, n, replace = TRUE) / 100, income = runif(n, 0, 0.99))
f <- responses ~ age + income
MoE(x = x, formula = f, y = responses, data = covariates, stepsEM = 20)

Fit method for mph/miph class, using mixture-of-experts regression

Description

Fit method for mph/miph class, using mixture-of-experts regression

Usage

## S4 method for signature 'mph'
MoE(
  x,
  formula,
  y,
  data,
  alpha_mat = NULL,
  delta = numeric(0),
  stepsEM = 1000,
  r = 1,
  maxit = 100,
  reltol = 1e-08,
  rand_init = T
)

Arguments

x

An object of class mph.

formula

a regression formula.

y

A matrix of observations.

data

A data frame of covariates (they need to be scaled for the regression).

alpha_mat

Matrix with initial distribution vectors for each row of observations.

delta

Matrix with right-censoring indicators (1 uncensored, 0 right censored).

stepsEM

Number of EM steps to be performed.

r

Sub-sampling parameter, defaults to 1 (not supported for this method).

maxit

Maximum number of iterations when optimizing the g function (inhomogeneous likelihood).

reltol

Relative tolerance when optimizing g function.

rand_init

Random initiation in the R-step of the EM algorithm.

Examples

under_mph <- mph(structure = c("general", "general"), dimension = 3) 
x <-  miph(under_mph, gfun = c("weibull", "weibull"), gfun_pars = list(c(2), c(3)))
n <- 100
responses <- cbind(rexp(n), rweibull(n, 2, 3))
covariates <- data.frame(age = sample(18:65, n, replace = TRUE) / 100, income = runif(n, 0, 0.99))
f <- responses ~ age + income
MoE(x = x, formula = f, y = responses, data = covariates, stepsEM = 20)

MoE method for ph Class

Description

MoE method for ph Class

Usage

## S4 method for signature 'ph'
MoE(
  x,
  formula,
  data,
  inhom = NULL,
  alpha_vecs = NULL,
  weight = numeric(0),
  delta = numeric(0),
  stepsEM = 1000,
  optim_method = "BFGS",
  maxit = 50,
  reltol = 1e-08,
  every = 10,
  rand_init = TRUE
)

Arguments

x

An object of class ph.

formula

A regression formula.

data

A data frame.

inhom

A list with the inhomogeneity functions.

alpha_vecs

Matrix of initial probabilities.s

weight

Vector of weights.

delta

Right-censoring indicator.

stepsEM

Number of EM steps to be performed.

optim_method

Method to use in gradient optimization.

maxit

Maximum number of iterations when optimizing g function.

reltol

Relative tolerance when optimizing g function.

every

Number of iterations between likelihood display updates.

rand_init

Random initiation in the R-step.

Value

An object of class sph.

Examples

x <- iph(ph(structure = "general"), gfun = "weibull")
n <- 100
responses <- rweibull(n, 2, 3)
covariate <- data.frame(age = sample(18:65, n, replace = TRUE) / 100, income = runif(n, 0, 0.99))
f <- responses ~ age + income # regression formula
MoE(x = x, formula = f, y = responses, data = covariate, stepsEM = 20)

New generic for moments of matrix distributions

Description

Methods are available for objects of class ph.

Usage

moment(x, ...)

Arguments

x

An object of the model class.

...

Further parameters to be passed on.

Value

Moment of the matrix distribution.


Moment method for bivdph class

Description

Moment method for bivdph class

Usage

## S4 method for signature 'bivdph'
moment(x, k = c(1, 1))

Arguments

x

An object of class bivdph.

k

A vector with the location.

Value

An real value.

Examples

obj <- bivdph(dimensions = c(3, 3))
moment(obj, c(1, 1))

Moment method for bivph class

Description

Moment method for bivph class

Usage

## S4 method for signature 'bivph'
moment(x, k = c(1, 1))

Arguments

x

An object of class bivph.

k

A vector with the location.

Value

An real value.

Examples

obj <- bivph(dimensions = c(3, 3))
moment(obj, c(1, 1))

Moment method for discrete phase-type distributions

Description

Moment method for discrete phase-type distributions

Usage

## S4 method for signature 'dph'
moment(x, k = 1)

Arguments

x

An object of class dph.

k

A positive integer (moment order).

Value

The factional moment of the dph object.

Examples

set.seed(123)
obj <- dph(structure = "general", dimension = 3)
moment(obj, 2)

Moment method for multivariate discrete phase-type distributions

Description

Moment method for multivariate discrete phase-type distributions

Usage

## S4 method for signature 'mdph'
moment(x, k)

Arguments

x

An object of class mdph.

k

A vector of positive integer values.

Value

The corresponding joint factorial moment evaluation.

Examples

obj <- mdph(structure = c("general", "general"))
moment(obj, c(2, 1))

Moment method for multivariate phase-type distributions

Description

Moment method for multivariate phase-type distributions

Usage

## S4 method for signature 'mph'
moment(x, k)

Arguments

x

An object of class mph.

k

A vector of non-negative integer values.

Value

The corresponding joint moment evaluation.

Examples

obj <- mph(structure = c("general", "general"))
moment(obj, c(2, 1))

Moment method for phase-type distributions

Description

Moment method for phase-type distributions

Usage

## S4 method for signature 'ph'
moment(x, k = 1)

Arguments

x

An object of class ph.

k

A positive integer (moment order).

Value

The raw moment of the ph (or underlying ph) object.

Examples

set.seed(123)
obj <- ph(structure = "general", dimension = 3)
moment(obj, 2)

Matrix-Pareto cdf

Description

Computes the cdf (tail) of a matrix-Pareto distribution with parameters alpha, S and beta at x.

Usage

mparetocdf(x, alpha, S, beta, lower_tail = TRUE)

Arguments

x

Non-negative value.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Scale parameter.

lower_tail

Cdf or tail.

Value

The cdf (tail) at x.


Matrix-Pareto density

Description

Computes the density of a matrix-Pareto distribution with parameters alpha, S and beta at x.

Usage

mparetoden(x, alpha, S, beta)

Arguments

x

Non-negative value.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Scale parameter.

Value

The density at x.


Constructor function for multivariate phase-type distributions

Description

Constructor function for multivariate phase-type distributions

Usage

mph(alpha = NULL, S = NULL, structure = NULL, dimension = 3, variables = NULL)

Arguments

alpha

A probability vector.

S

A list of sub-intensity matrices.

structure

A vector of valid ph structures.

dimension

The dimension of the ph structure (if provided).

variables

The dimension of the multivariate phase-type.

Value

An object of class mph.

Examples

mph(structure = c("gcoxian", "general"), dimension = 5)

Multivariate phase-type distributions

Description

Class of objects for multivariate phase-type distributions.

Value

Class object.

Slots

name

Name of the phase type distribution.

pars

A list comprising of the parameters.

fit

A list containing estimation information.


Constructor function for multivariate phase-type distributions (MPH* class)

Description

Constructor function for multivariate phase-type distributions (MPH* class)

Usage

MPHstar(
  alpha = NULL,
  S = NULL,
  structure = NULL,
  dimension = 3,
  R = NULL,
  variables = 2
)

Arguments

alpha

A probability vector.

S

A sub-intensity matrix.

structure

A valid ph structure.

dimension

The dimension of the ph structure (if provided).

R

A compatible (non-negative) reward matrix.

variables

The number of desired marginals.

Value

An object of class MPHstar.

Examples

MPHstar(structure = "general", dimension = 4, variables = 3)

Prepare data for the MPHstar_EMstep_UNI

Description

Prepare data for the MPHstar_EMstep_UNI

Usage

MPHstar_data_aggregation(y, w = numeric(0))

Arguments

y

A matrix with marginal observations, each column corresponds to a marginal.

w

A matrix of weights, each column corresponds to a marginal.

Value

For summed and marginal observations we have a list with matrices of unique observations and their associated weights, separated by uncensored and right-censored data.


EM step using Uniformization for MPHstar class

Description

EM step using Uniformization for MPHstar class

Usage

MPHstar_EMstep_UNI(h, Rtol, alpha, S, R, mph_obs)

Arguments

h

positive parameter for precision of uniformization method.

Rtol

The smallest value that a reward can take.

alpha

Vector of initial probabilities of the originating distribution.

S

The sub-intensity matrix of the originating distribution.

R

The reward matrix.

mph_obs

The list of summed, marginal observations with associated weights.


Multivariate phase-type distributions obtained by transformation via rewards

Description

Class of objects for multivariate phase type distributions.

Slots

name

Name of the phase type distribution.

pars

A list comprising of the parameters.


Matrix-Weibull cdf

Description

Computes the cdf (tail) of a matrix-Weibull distribution with parameters alpha, S and beta at x.

Usage

mweibullcdf(x, alpha, S, beta, lower_tail = TRUE)

Arguments

x

Non-negative value.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Shape parameter.

lower_tail

Cdf or tail.

Value

The cdf (tail) at x.


Matrix-Weibull density

Description

Computes the density of a matrix-Weibull distribution with parameters alpha, S and beta at x.

Usage

mweibullden(x, alpha, S, beta)

Arguments

x

Non-negative value.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Shape parameter.

Value

The density at x.


Find how many states have positive reward

Description

Find how many states have positive reward

Usage

n_pos(R)

Arguments

R

reward vector

Value

The number of states with positive rewards


New state in a Markov jump process

Description

Given a transition matrix Q, a uniform value u, and a previous state k, it returns the new state of a Markov jump process.

Usage

new_state(prev_state, cum_embedded_mc, u)

Arguments

prev_state

Previous state of the Markov jump process.

cum_embedded_mc

Transition matrix.

u

Random value in (0,1).

Value

Next state of the Markov jump process.


New generic for N-fold convolution of two matrix distributions

Description

Methods are available for objects of classes ph and dph.

Usage

Nfold(x1, x2, ...)

Arguments

x1

An object of the class dph.

x2

An object of the model class.

...

Further parameters to be passed on.

Value

An object of the model class.


Nfold method for phase-type distributions

Description

Nfold method for phase-type distributions

Usage

## S4 method for signature 'dph'
Nfold(x1, x2)

Arguments

x1

An object of class ph.

x2

An object of class dph.

Value

An object of class ph.

Examples

dph1 <- dph(structure = "general", dimension = 3)
dph2 <- dph(structure = "general", dimension = 2)
ph0 <- ph(structure = "general", dimension = 2)
Nfold(dph1, ph0)
Nfold(dph1, dph2)

New generic for pgf of matrix distributions

Description

Methods are available for objects of class dph.

Usage

pgf(x, ...)

Arguments

x

An object of the model class.

...

Further parameters to be passed on.

Value

Pgf of the matrix distribution.


Pgf method for bivariate discrete phase-type distributions

Description

Pgf method for bivariate discrete phase-type distributions

Usage

## S4 method for signature 'bivdph'
pgf(x, z)

Arguments

x

An object of class bivdph.

z

A vector of real values.

Value

The joint pdf of the dph object at the given location.

Examples

obj <- bivdph(dimensions = c(3, 3))
pgf(obj, c(0.5, 0.2))

Pgf Method for discrete phase-type distributions

Description

Pgf Method for discrete phase-type distributions

Usage

## S4 method for signature 'dph'
pgf(x, z)

Arguments

x

An object of class dph.

z

A vector of real values.

Value

The probability generating of the dph object at the given locations.

Examples

set.seed(123)
obj <- dph(structure = "general", dimension = 3)
pgf(obj, 0.5)

Pgf method for multivariate discrete phase-type distributions

Description

Pgf method for multivariate discrete phase-type distributions

Usage

## S4 method for signature 'mdph'
pgf(x, z)

Arguments

x

An object of class mdph.

z

A matrix of real values.

Value

A vector containing the corresponding pgf evaluations.

Examples

obj <- mdph(structure = c("general", "general"))
pgf(obj, matrix(c(0.5, 1), ncol = 2))

Constructor function for phase-type distributions

Description

Constructor function for phase-type distributions

Usage

ph(alpha = NULL, S = NULL, structure = NULL, dimension = 3)

Arguments

alpha

A probability vector.

S

A sub-intensity matrix.

structure

A valid ph structure: "general", "coxian", "hyperexponential", "gcoxian", or "gerlang".

dimension

The dimension of the ph structure (if structure is provided).

Value

An object of class ph.

Examples

ph(structure = "gcoxian", dimension = 5)
ph(alpha = c(.5, .5), S = matrix(c(-1, .5, .5, -1), 2, 2))

Laplace transform of a phase-type distribution

Description

Computes the Laplace transform at r of a phase-type distribution with parameters alpha and S.

Usage

ph_laplace(r, alpha, S)

Arguments

r

Vector of real values.

alpha

Vector of initial probabilities.

S

Sub-intensity matrix.

Value

Laplace transform at r.


Phase-type distributions

Description

Class of objects for phase-type distributions.

Value

Class object.

Slots

name

Name of the phase-type distribution.

pars

A list comprising of the parameters.

fit

A list containing estimation information.


Phase-type cdf

Description

Computes the cdf (tail) of a phase-type distribution with parameters alpha and S at x.

Usage

phcdf(x, alpha, S, lower_tail = TRUE)

Arguments

x

Non-negative value.

alpha

Initial probabilities.

S

Sub-intensity matrix.

lower_tail

Cdf or tail.

Value

The cdf (tail) at x.


Phase-type density

Description

Computes the density of a phase-type distribution with parameters alpha and S at x.

Usage

phdensity(x, alpha, S)

Arguments

x

Non-negative value.

alpha

Initial probabilities.

S

Sub-intensity matrix.

Value

The density at x.


Find which states have positive reward

Description

Find which states have positive reward

Usage

plus_states(R)

Arguments

R

reward vector

Value

A vector with the states (number) that are associated with positive rewards


Computes A^(2^n)

Description

Computes A^(2^n)

Usage

pow2_matrix(n, A)

Arguments

n

An integer.

A

A matrix.

Value

A^(2^n).


New generic for the quantile of matrix distributions

Description

Methods are available for objects of class ph.

Usage

quan(x, ...)

Arguments

x

An object of the model class.

...

Further parameters to be passed on.

Value

Quantile from the matrix distribution.


Quantile method for phase-type distributions

Description

Quantile method for phase-type distributions

Usage

## S4 method for signature 'ph'
quan(x, p)

Arguments

x

An object of class ph.

p

A vector of probabilities.

Value

A vector containing the quantile evaluations at the given locations.

Examples

obj <- ph(structure = "general")
quan(obj, c(0.5, 0.9, 0.99))

Random reward matrix

Description

Generates a random reward matrix for a multivariate phase-type distribution with p states and d marginals.

Usage

random_reward(p, d)

Arguments

p

Number of transient states in the sub-intensity matrix.

d

Number of marginals.

Value

A random reward matrix.


Random structure of a phase-type

Description

Generates random parameters alpha and S of a phase-type distribution of dimension p with chosen structure.

Usage

random_structure(p, structure = "general", scale_factor = 1)

Arguments

p

Dimension of the phase-type.

structure

Type of structure: "general", "hyperexponential", "gerlang", "coxian" or "gcoxian".

scale_factor

A factor that multiplies the sub-intensity matrix.

Value

Random parameters alpha and S of a phase-type.


Random structure of a bivariate phase-type

Description

Generates random parameters alpha, S11, S12, and S22 of a bivariate phase-type distribution of dimension p = p1 + p2.

Usage

random_structure_bivph(p1, p2, scale_factor = 1)

Arguments

p1

Dimension of the first block.

p2

Dimension of the second block.

scale_factor

A factor that multiplies the sub-intensity matrix.

Value

Random parameters alpha, S11, S12, and S22 of a bivariate phase-type.


Simulate discrete phase-type

Description

Generates a sample of size n from a discrete phase-type distribution with parameters alpha and S.

Usage

rdphasetype(n, alpha, S)

Arguments

n

Sample size.

alpha

Vector of initial probabilities.

S

Sub-transition matrix.

Value

Simulated sample.


New generic for regression with matrix distributions

Description

Methods are available for objects of class ph.

Usage

reg(x, y, ...)

Arguments

x

An object of the model class.

y

A vector of data.

...

Further parameters to be passed on.

Value

An object of the fitted model class.


Regression method for ph Class

Description

Regression method for ph Class

Usage

## S4 method for signature 'ph'
reg(
  x,
  y,
  weight = numeric(0),
  rcen = numeric(0),
  rcenweight = numeric(0),
  X = numeric(0),
  B0 = numeric(0),
  stepsEM = 1000,
  methods = c("RK", "UNI"),
  rkstep = NA,
  uni_epsilon = NA,
  optim_method = "BFGS",
  maxit = 50,
  reltol = 1e-08,
  every = 10
)

Arguments

x

An object of class ph.

y

Vector or data.

weight

Vector of weights.

rcen

Vector of right-censored observations.

rcenweight

Vector of weights for right-censored observations.

X

Model matrix (no intercept needed).

B0

Initial regression coefficients (optional).

stepsEM

Number of EM steps to be performed.

methods

Methods to use for matrix exponential calculation: RM, UNI, or PADE.

rkstep

Runge-Kutta step size (optional).

uni_epsilon

Epsilon parameter for uniformization method.

optim_method

Method to use in gradient optimization.

maxit

Maximum number of iterations when optimizing g function.

reltol

Relative tolerance when optimizing g function.

every

Number of iterations between likelihood display updates.

Value

An object of class sph.

Examples

set.seed(1)
obj <- iph(ph(structure = "general", dimension = 2), gfun = "weibull", gfun_pars = 2)
data <- sim(obj, n = 100)
X <- runif(100)
reg(x = obj, y = data, X = X, stepsEM = 10)

Applies the inverse of the GEV transformation but giving back the resulting vector in reverse order

Description

Used for EM step in RK.

Usage

revers_data_trans(obs, weights, beta)

Arguments

obs

The observations.

weights

Weights of the observations.

beta

Parameters of the GEV.


Transform a reward matrix with very small rewards to avoid numerical problems

Description

Transform a reward matrix with very small rewards to avoid numerical problems

Usage

rew_sanity_check(R, tol)

Arguments

R

Reward matrix

tol

Lower bound considered for a reward

Value

A reward matrix that does not cause issues with uniformization


Random inhomogeneous phase-type

Description

Generates a sample of size n from an inhomogeneous phase-type distribution with parameters alpha, S and beta.

Usage

riph(n, dist_type, alpha, S, beta)

Arguments

n

Sample size.

dist_type

Type of IPH.

alpha

Initial probabilities.

S

Sub-intensity matrix.

beta

Parameter of the transformation.

Value

The simulated sample.


Random matrix GEV

Description

Generates a sample of size n from an inhomogeneous phase-type distribution with parameters alpha, S and beta.

Usage

rmatrixgev(n, alpha, S, mu, sigma, xi = 0)

Arguments

n

Sample size.

alpha

Initial probabilities.

S

Sub-intensity matrix.

mu

Location parameter.

sigma

Scale parameter.

xi

Shape parameter: Default 0 which corresponds to the Gumbel case.

Value

The simulated sample.


Simulate MDPH*

Description

Generates a sample of size n from a MDPH* distribution with parameters alpha, S, and R.

Usage

rMDPHstar(n, alpha, S, R)

Arguments

n

Sample size.

alpha

Vector of initial probabilities.

S

Sub-transition matrix.

R

Reward matrix.

Value

Simulated sample.


Simulate a MIPH* random vector

Description

Generates a sample of size n from a MIPH* distribution with parameters alpha, S and R.

Usage

rMIPHstar(n, alpha, S, R, gfun, gfun_par)

Arguments

n

Sample size.

alpha

Initial probabilities.

S

Sub-intensity matrix.

R

Reward matrix.

gfun

Vector with transformations names.

gfun_par

List with transformations parameters.

Value

The simulated sample.


Simulate a MPH* random vector

Description

Generates a sample of size n from a MPH* distribution with parameters alpha, S and R.

Usage

rMPHstar(n, alpha, S, R)

Arguments

n

Sample size.

alpha

Initial probabilities.

S

Sub-intensity matrix.

R

Reward matrix.

Value

The simulated sample.


Simulate phase-type

Description

Generates a sample of size n from a phase-type distribution with parameters alpha and S.

Usage

rphasetype(n, alpha, S)

Arguments

n

Sample size.

alpha

Vector of initial probabilities.

S

Sub-intensity matrix.

Value

Simulated sample.


Runge-Kutta for the calculation of the a and b vectors and the c matrix in a EM step

Description

Performs the Runge-Kutta method of fourth order.

Usage

runge_kutta(avector, bvector, cmatrix, dt, h, S, s)

Arguments

avector

The a vector.

bvector

The b vector.

cmatrix

The c matrix.

dt

The increment.

h

Step-length.

S

Sub-intensity matrix.

s

Exit rates.


Show method for bivariate discrete phase-type distributions

Description

Show method for bivariate discrete phase-type distributions

Usage

## S4 method for signature 'bivdph'
show(object)

Arguments

object

An object of class bivdph.


Show method for bivariate inhomogeneous phase-type distributions

Description

Show method for bivariate inhomogeneous phase-type distributions

Usage

## S4 method for signature 'biviph'
show(object)

Arguments

object

An object of class biviph.


Show method for bivariate phase-type distributions

Description

Show method for bivariate phase-type distributions

Usage

## S4 method for signature 'bivph'
show(object)

Arguments

object

An object of class bivph.


Show method for discrete phase-type distributions

Description

Show method for discrete phase-type distributions

Usage

## S4 method for signature 'dph'
show(object)

Arguments

object

An object of class dph.


Show method for inhomogeneous phase-type distributions

Description

Show method for inhomogeneous phase-type distributions

Usage

## S4 method for signature 'iph'
show(object)

Arguments

object

An object of class iph.


Show method for multivariate discrete phase-type distributions

Description

Show method for multivariate discrete phase-type distributions

Usage

## S4 method for signature 'mdph'
show(object)

Arguments

object

An object of class mdph.


Show method for multivariate inhomogeneous phase-type distributions

Description

Show method for multivariate inhomogeneous phase-type distributions

Usage

## S4 method for signature 'miph'
show(object)

Arguments

object

An object of class miph.


Show method for multivariate phase-type distributions

Description

Show method for multivariate phase-type distributions

Usage

## S4 method for signature 'mph'
show(object)

Arguments

object

An object of class mph.


Show method for multivariate phase-type distributions

Description

Show method for multivariate phase-type distributions

Usage

## S4 method for signature 'MPHstar'
show(object)

Arguments

object

An object of class MPHstar.


Show method for phase-type distributions

Description

Show method for phase-type distributions

Usage

## S4 method for signature 'ph'
show(object)

Arguments

object

An object of class ph.


Show method for survival phase-type objects

Description

Show method for survival phase-type objects

Usage

## S4 method for signature 'sph'
show(object)

Arguments

object

An object of class sph.


New generic for simulating matrix distributions

Description

Methods are available for objects of class ph.

Usage

sim(x, ...)

Arguments

x

An object of the model class.

...

Further parameters to be passed on.

Value

A realization from the matrix distribution.


Simulation method for bivariate discrete phase-type distributions

Description

Simulation method for bivariate discrete phase-type distributions

Usage

## S4 method for signature 'bivdph'
sim(x, n = 1000)

Arguments

x

An object of class bivdph.

n

An integer of length of realization.

Value

A realization of independent and identically distributed bivariate discrete phase-type vector.

Examples

obj <- bivdph(dimensions = c(3, 3))
sim(obj, n = 100)

Simulation method for bivariate inhomogeneous phase-type distributions

Description

Simulation method for bivariate inhomogeneous phase-type distributions

Usage

## S4 method for signature 'biviph'
sim(x, n = 1000)

Arguments

x

An object of class biviph.

n

An integer of length of realization.

Value

A realization of independent and identically distributed bivariate inhomogeneous phase-type vector.

Examples

under_bivph <- bivph(dimensions = c(3, 3))
obj <- biviph(under_bivph, gfun = c("weibull", "pareto"), gfun_pars = list(c(2), c(3)))
sim(obj, n = 100)

Simulation method for bivariate phase-type distributions

Description

Simulation method for bivariate phase-type distributions

Usage

## S4 method for signature 'bivph'
sim(x, n = 1000)

Arguments

x

An object of class bivph.

n

An integer of length of realization.

Value

A realization of independent and identically distributed bivariate phase-type vector.

Examples

obj <- bivph(dimensions = c(3, 3))
sim(obj, n = 100)

Simulation method for phase-type distributions

Description

Simulation method for phase-type distributions

Usage

## S4 method for signature 'dph'
sim(x, n = 1000)

Arguments

x

An object of class dph.

n

An integer of length of realization.

Value

A realization of independent and identically distributed discrete phase-type variables.

Examples

obj <- dph(structure = "general")
sim(obj, n = 100)

Simulation method for inhomogeneous phase-type distributions

Description

Simulation method for inhomogeneous phase-type distributions

Usage

## S4 method for signature 'iph'
sim(x, n = 1000)

Arguments

x

An object of class iph.

n

An integer of length of realization.

Value

A realization of independent and identically distributed inhomogeneous phase-type variables.

Examples

obj <- iph(ph(structure = "general"), gfun = "lognormal", gfun_pars = 2)
sim(obj, n = 100)

Simulation method for multivariate discrete phase-type distributions

Description

Simulation method for multivariate discrete phase-type distributions

Usage

## S4 method for signature 'mdph'
sim(x, n = 1000, equal_marginals = 0)

Arguments

x

An object of class mdph.

n

Length of realization.

equal_marginals

Non-negative integer. If positive, it specifies the number of marginals to simulate from, all from the first matrix.

Value

A realization of a multivariate discrete phase-type distribution.

Examples

obj <- mdph(structure = c("general", "general"))
sim(obj, 100)

Simulation method for inhomogeneous multivariate phase-type distributions

Description

Simulation method for inhomogeneous multivariate phase-type distributions

Usage

## S4 method for signature 'miph'
sim(x, n = 1000)

Arguments

x

An object of class miph.

n

An integer of length of realization.

Value

A realization of independent and identically distributed inhomogeneous multivariate phase-type variables. If x is a MoE miph an array of dimension c(n,d,m) is returned, with d the number of marginals and m the number of initial distribution vectors.

Examples

under_mph <- mph(structure = c("general", "general"))
obj <- miph(under_mph, gfun = c("weibull", "pareto"), gfun_pars = list(c(2), c(3)))
sim(obj, 100)

Simulation method for multivariate phase-type distributions

Description

Simulation method for multivariate phase-type distributions

Usage

## S4 method for signature 'mph'
sim(x, n = 1000, equal_marginals = 0)

Arguments

x

An object of class mph.

n

Length of realization.

equal_marginals

Non-negative integer. If positive, it specifies the number of marginals to simulate from, all from the first matrix.

Value

A realization of a multivariate phase-type distribution.

Examples

obj <- mph(structure = c("general", "general"))
sim(obj, 100)

Simulation method for multivariate phase-type distributions

Description

Simulation method for multivariate phase-type distributions

Usage

## S4 method for signature 'MPHstar'
sim(x, n = 1000)

Arguments

x

An object of class MPHstar.

n

Desired sample size for each marginal.

Value

A matrix of sample data for each marginal.

Examples

obj <- MPHstar(structure = "general")
sim(obj, 100)

Simulation method for phase-type distributions

Description

Simulation method for phase-type distributions

Usage

## S4 method for signature 'ph'
sim(x, n = 1000)

Arguments

x

An object of class ph.

n

An integer of length of realization.

Value

A realization of independent and identically distributed phase-type variables.

Examples

obj <- ph(structure = "general")
sim(obj, n = 100)

Constructor function for survival phase-type objects

Description

Constructor function for survival phase-type objects

Usage

sph(x = NULL, coefs = list(B = numeric(0), C = numeric(0)), type = "reg")

Arguments

x

An object of class ph.

coefs

Coefficients of the survival regression object.

type

Type of survival object.

Value

An object of class sph.


Survival analysis for phase-type distributions

Description

Class of objects for inhomogeneous phase-type distributions

Value

Class object

Slots

coefs

Coefficients of the survival regression object.

type

Type of survival object.


Computes the initial distribution and sub-intensity of the sum of two discrete phase-type distributed random variables

Description

Computes the initial distribution and sub-intensity of the sum of two discrete phase-type distributed random variables

Usage

sum_dph(alpha1, S1, alpha2, S2)

Arguments

alpha1

Initial distribution.

S1

Sub-transition matrix.

alpha2

Initial distribution.

S2

Sub-transition matrix.


Computes the initial distribution and sub-intensity of the sum of two phase-type distributed random variables.

Description

Computes the initial distribution and sub-intensity of the sum of two phase-type distributed random variables.

Usage

sum_ph(alpha1, S1, alpha2, S2)

Arguments

alpha1

Initial distribution.

S1

Sub-intensity matrix.

alpha2

Initial distribution.

S2

Sub-intensity matrix.


New generic for transformation via rewards of a matrix distribution

Description

Methods are available for objects of class ph

Usage

TVR(x, ...)

Arguments

x

An object of the model class.

...

Further parameters to be passed on.

Value

An object of the model class.


Performs TVR for discrete phase-type distributions

Description

Performs TVR for discrete phase-type distributions

Usage

tvr_dph(alpha, S, R)

Arguments

alpha

Initial distribution vector.

S

Sub-intensity matrix.

R

Reward vector.

Value

A list of PH parameters.


Performs TVR for phase-type distributions

Description

Performs TVR for phase-type distributions

Usage

tvr_ph(alpha, S, R)

Arguments

alpha

Initial distribution vector.

S

Sub-intensity matrix.

R

Reward vector.

Value

A list of phase-type parameters.


TVR Method for dph Class

Description

TVR Method for dph Class

Usage

## S4 method for signature 'dph'
TVR(x, rew)

Arguments

x

An object of class dph.

rew

A vector of rewards.

Value

An object of the of class dph.

Examples

obj <- dph(structure = "general")
TVR(obj, c(1, 0, 1))

TVR method for ph class

Description

TVR method for ph class

Usage

## S4 method for signature 'ph'
TVR(x, rew)

Arguments

x

An object of class ph.

rew

A vector of rewards.

Value

An object of the of class ph.

Examples

obj <- ph(structure = "general")
TVR(obj, c(1, 2, 3))

Var method for bivdph class

Description

Var method for bivdph class

Usage

## S4 method for signature 'bivdph'
var(x)

Arguments

x

An object of class bivdph.

Value

The covariance matrix of the bivariate discrete phase-type distribution.

Examples

obj <- bivdph(dimensions = c(3, 3))
var(obj)

Var method for bivph class

Description

Var method for bivph class

Usage

## S4 method for signature 'bivph'
var(x)

Arguments

x

An object of class bivph.

Value

The covariance matrix of the bivariate phase-type distribution.

Examples

obj <- bivph(dimensions = c(3, 3))
var(obj)

Var method for discrete phase-type distributions

Description

Var method for discrete phase-type distributions

Usage

## S4 method for signature 'dph'
var(x)

Arguments

x

An object of class dph.

Value

The variance of the dph object.

Examples

set.seed(123)
obj <- dph(structure = "general", dimension = 3)
var(obj)

Var method for multivariate discrete phase-type distributions

Description

Var method for multivariate discrete phase-type distributions

Usage

## S4 method for signature 'mdph'
var(x)

Arguments

x

An object of class mdph.

Value

The covariance matrix of the multivariate discrete phase-type distribution.

Examples

obj <- mdph(structure = c("general", "general"))
var(obj)

Var method for multivariate phase-type distributions

Description

Var method for multivariate phase-type distributions

Usage

## S4 method for signature 'mph'
var(x)

Arguments

x

An object of class mph.

Value

The covariance matrix of the multivariate phase-type distribution.

Examples

obj <- mph(structure = c("general", "general"))
var(obj)

Var method for MPHstar class

Description

Var method for MPHstar class

Usage

## S4 method for signature 'MPHstar'
var(x)

Arguments

x

An object of class MPHstar.

Value

The covariance matrix of the MPHstar distribution.

Examples

obj <- MPHstar(structure = "general")
var(obj)

Var method for phase-type distributions

Description

Var method for phase-type distributions

Usage

## S4 method for signature 'ph'
var(x)

Arguments

x

An object of class ph.

Value

The variance of the ph (or underlying ph) object.

Examples

set.seed(123)
obj <- ph(structure = "general", dimension = 3)
var(obj)

Computes the elements S^n / n! until the a given size

Description

Computes the elements S^n / n! until the a given size

Usage

vector_of_matrices(vect, S, a, vect_size)

Arguments

vect

A vector.

S

Sub-intensity matrix.

a

A number.

vect_size

Size of vector.


Computes the elements S^n / n! until given value of n

Description

Computes the elements S^n / n! until given value of n

Usage

vector_of_matrices_2(vect, S, vect_size)

Arguments

vect

A vector.

S

Sub-intensity matrix.

vect_size

Size of vector.


Computes elements A^n until the given size

Description

Computes elements A^n until the given size

Usage

vector_of_powers(A, vect_size)

Arguments

A

A matrix.

vect_size

Size of vector.