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Abstract

R package matchingMarkets implements structural estimators to correct for the sample
selection bias from observed outcomes in matching markets. This includes one-sided
matching of agents into groups as well as two-sided matching of students to schools. The
package also contains algorithms to find stable matchings in the three most common
matching problems: the stable roommates problem, the college admissions problem, and
the house allocation problem.
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1. Introduction
Social scientists are often interested in understanding the outcomes of interactions. Applica-
tions range from the success of entrepreneurial teams or management boards (Hoogendoorn,
Oosterbeek, and Van Praag 2013) to the performance of bank mergers or credit groups (Klein
2015). More generally, these questions are at the core of diversity debates on race and gender
composition (Herring 2009).
In the economics literature, the markets that describe these interactions are referred to
as matching markets. Matching is concerned with who transacts with whom, and how.
Economists further distinguish between one-sided and two-sided matching markets. The
former are concerned with, for example, who forms a workgroup with whom. Two-sided
matching markets consider problems such as who works at which job or which students go to
which school, and so on. The empirical analysis of matching markets is naturally subject to
sample selection problems. If agents match on characteristics unobserved to the analyst but
correlated with both the exogenous variable and the outcome of interest, regression estimates
will generally be biased.
In response, Klein (2015) and Sørensen (2007a) present sample selection models to correct
for this bias in one-sided and two-sided matching contexts, respectively. The identifying
exclusion restriction in these models is that the characteristics of all agents in a market affect
who matches with whom, but the outcome of a match is determined only by its own members.
This exogenous variation is similar to an instrumental variable.

∗I thank Christian Ahlin, Jiawei Chen, Augustine Kwanashie and Morten Sørensen for their guidance and
helpful discussions. All views and errors are mine.
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The aim of this paper is to describe the R1 package matchingMarkets (Klein 2018) that
contains Java code for matching algorithms and C++ code for the estimation of structural
models that correct for the sample selection bias of observed outcomes in both one-sided and
two-sided matching markets. Specifically, the matchingMarkets package contains

1. Bayes estimators. The estimators implemented in function stabit and stabit2 cor-
rect for the selection bias from endogenous matching. The current package version
provides solutions for two commonly observed matching processes: (i) the group for-
mation problem with fixed group sizes and (ii) the college admissions problem. These
processes determine which matches are observed – and which are not – and this is a
sample selection problem.

2. Post-estimation tools. Function mfx computes marginal effects from coefficients in bi-
nary outcome and selection equations and khb implements the Karlson-Holm-Breen test
for confounding due to sample selection (Karlson, Holm, and Breen 2012).

3. Design matrix generation. The estimators are based on characteristics of all feasible
– i.e. observed and counterfactual – matches in the market. Generating the charac-
teristics of all feasible matches from individual-level data is a combinatorial problem.
The package returns design matrices based on pre-specified transformations to generate
counterfactual matches.

4. Algorithms. The package also contains three matching algorithms that can be used
to simulated matching data. hri: A constraint model (Prosser 2014) for the stable
marriage and college admissions problem, a.k.a. hospital/residents problem (see Gale
and Shapley 1962). sri: A constraint model for the stable roommates problem (see
Gusfield and Irving 1989). ttc: The top-trading-cycles algorithm for the housing market
problem. These can be used to obtain stable matchings from simulated or real preference
data (see Shapley and Scarf 1974).

5. Data. In addition to the baac00 dataset from borrowing groups in Thailands largest
agricultural lending program, the package provides functions stabsim and stabsim2 to
simulate one’s own data from one-sided and two-sided matching markets.

Frequently Asked Questions

• Why can I not use the classic Heckman correction?
Estimators such as the Heckman (1979) correction (in package sampleSelection) or
double selection models are inappropriate for this class of selection problems. To see
this, note that a simple first stage discrete choice model assumes that an observed match
reveals match partners’ preferences over each other. In a matching market, however,
agents can only choose from the set of partners who would be willing to form a match
with them and we do not observe the players’ relevant choice sets.

• Do I need an instrumental variable to estimate the model?
Short answer: No. Long answer: The characteristics of other agents in the market
serve as the source of exogenous variation necessary to identify the model. The identi-
fying exclusion restriction is that characteristics of all agents in the market affect the

1The R project for statistical computing (R Core Team 2016) at http://www.r-project.org/.

http://en.wikipedia.org/wiki/Stable_marriage_problem
http://en.wikipedia.org/wiki/Stable_marriage_problem
http://en.wikipedia.org/wiki/Hospital_resident
http://en.wikipedia.org/wiki/Stable_roommates_problem
https://en.wikipedia.org/wiki/Top_trading_cycle
https://en.wikipedia.org/wiki/Top_trading_cycle
http://cran.r-project.org/web/packages/sampleSelection/index.html
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matching, i.e., who matches with whom, but it is only the characteristics of the match
partners that affect the outcome of a particular match once it is formed. No additional
instruments are required for identification (Sørensen 2007a).

• What are the main assumptions underlying the estimator?
The approach has certain limitations rooted in its restrictive economic assumptions.

1. The matching models are complete information models. That is, agents are as-
sumed to have a perfect knowledge of the qualities of other market participants.

2. The models are static equilibrium models. This implies that (i) the observed match-
ing must be an equilibrium, i.e., no two agents would prefer to leave their current
partners in order to form a new match (definition of pairwise stability), and (ii)
the equilibrium must be unique for the likelihood function of the model to be well
defined (Bresnahan and Reiss 1991).

3. Uniqueness results can be obtained in two ways. First, as is common in the in-
dustrial organization literature, by imposing suitable preference restrictions. A
necessary and sufficient condition for agents’ preferences to guarantee a unique
equilibrium is alignment (Pycia 2012). In a group formation model, pairwise pref-
erence alignment requires that any two agents who belong to the same groups must
prefer the same group over the other. A second means to guarantee uniqueness is
by assigning matches based on matching algorithms that produce a unique stable
matching, such as the well-studied Gale and Shapley (1962) deferred acceptance
algorithm.

4. Finally, the models assume bivariate normality of the errors in selection and out-
come equation. If that assumption fails, the estimator is generally inconsistent and
can provide misleading inference in small samples (Goldberger 1983).

The remainder of the paper is structured as follows. Section 2 outlines the multi-index sample
selection problem, develops the structural model and discusses the identification strategy.
Section 3 presents Monte-Carlo evidence of the robustness of the estimator in small samples.
Section 4 provides replication code and data for an application of the method in microfinance
group formation (see Klein 2015).

2. Multi-index sample selection
This section develops a structural empirical model to estimate the direct (or causal) effect of
the independent variables, net of sorting bias. Technically, the equilibrium groups constitute
a self-selected sample.2 Heckman (1979) proposes a two-stage correction that estimates selec-
tion and outcome equations simultaneously and explicitly models the dependence structure
of the error terms. The selection problem at hand, however, differs substantially from that
in Heckman.

2.1. Problem statement
The first-stage selection mechanism that determines which player groups are observed (and
which are not) is a one-sided matching game and not a simple discrete choice as in the

2Wooldridge (2002, Chapter 17) provides a comprehensive textbook treatment of sample selection models.
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Heckman model. A discrete choice model assumes that an observed match reveals group
partners’ preferences over each other. However, the observed matching is the outcome of
complex interactions and conflicts of interest between the players in the market.
To make this point clearer, consider a four-player example where any player strictly prefers
matching with partner A or B over C or D. Assume we observe the match of agents C and
D in a market of four players A, B, C and D. With a discrete choice model, we would infer
that C’s choice of partner D suggests that uC,D > uC,A. This restriction on the latent match
valuations can then be used to derive the likelihood. However, such a conclusion has potential
flaws in matching markets. In such markets, players B, C and D compete over a match with
player A. If player A prefers to match with B instead of C, then we observe the match CD
from the example although it may well hold that uC,A > uC,D. In particular, players can only
choose from the set of partners who would be willing to form a match with them. However,
we do not observe the players’ relevant choice sets. This makes direct inference based on a
discrete choice model impossible, even if it accounts for social interactions such as the models
in Brock and Durlauf (2007) and Ciliberto and Tamer (2009).
In response to this problem, Sørensen (2007b) generalises the single-index Heckman sample
selection model to multi-index sample selection models that allow for selection based on game
theoretical models by relaxing the index property. The index property requires that two
matches, such as AB and CD, that have the same probability of being observed also have the
same conditioning of unobserved characteristics. This requirement fails in matching markets.
Here, for safe types A and B the unobserved characteristics are truncated from below since
they would be unable to match with a safe type if their unobserved characteristics were low.
Following the same logic, for risky types C and D the unobserved characteristics are truncated
from above.
In matching markets, therefore, the index property is violated and a multi-index selection
model is called for. This model is a system of two equations. The first equation determines
when the outcome is observed, while the second equation determines the outcome.

2.2. Structural empirical model

The first part of the structural model is the selection equation. The selection process can be
written as the following system of match equations

VG = WGα + ηG. (1)

There are |Ω| equations, where Ω is the set of feasible groups in the market. V ∈ R|Ω| is a
vector of latents and W ∈ R|Ω|×k a matrix of k characteristics for all feasible groups. α ∈ Rk

is a parameter vector and η ∈ R|Ω| a vector of random errors. Whether a group, and therefore
its outcome YG, is observed in equilibrium is indicated by DG = 1 [VG ∈ Γµ]. This is an
indicator function with DG = 1 if YG is observed, and 0 otherwise. YG is observed iff a
group is part of the equilibrium matching µ in the market. That is, its group valuation is
in the set of valuations Γµ that satisfy the equilibrium condition.3 This set of valuations is
the link between the structural empirical model and the equilibrium characterisations derived
in Klein (2015) (for non-transferable utility) and Proposition A.1 (for transferable utility)
in Appendix A. With V ∈ R|Ω|, the vector of all valuations in the market, the equilibrium

3The classical Heckman (1979) model is a special case where DG = 1[VG ≥ 0] and the set of feasible
valuations is simply Γ = [0, +∞).
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condition can be written as a collection of inequalities that give upper and lower bounds on
the match valuations as follows

V ∈ Γµ ⇔
[
VG < VG ∀G /∈ µ

]
⇔
[
VG > VG ∀G ∈ µ

]
. (2)

Substitution of the match valuations in Eqn 1 into the equilibrium condition above, allows us
to state the condition on the error terms

µ is stable ⇔ η ∈ Γµ − Wα. (3)

The likelihood of the matching model is then

L (µ; α) = P (η ∈ Γµ − Wα) =
∫

1 [η ∈ Γµ − Wα] dF (η), (4)

where 1[·] is the indicator function and estimates for α could, in principle, be obtained by
maximising this function. When several independent matching markets are observed, the
likelihood is the product over these markets. To normalise parameter level, the constant term
is excluded from W.

The second part of the model is the outcome equation. The binary outcome is given as
YG = 1[Y ∗

G > 0], where the latent group outcome variable Y ∗
G is

Y ∗
G = XGβ + εG, (5)

with εG := δηG + ζG, where ζG is a random error. This specification allows for a linear
relationship between the error terms in the selection and outcome equation with covariance δ.
The design matrices X ∈ R|µ| and W ∈ R|Ω| do not necessarily contain distinct explanatory
variables.

2.3. Distribution of error terms
Figure 1 summarises the structural model. If there are unobservables, captured in the error
term, that determine both match valuation (the decision who matches with whom in the
market) and the outcome, then η and ε are correlated and we have an endogeneity problem.

Figure 1: The structural
empirical model.
- XG/∈µ characteristics of
non-equilibrium groups
- XG∈µ characteristics of
equilibrium groups
- DG∈µ equ. indicator
- YG∈µ equ. outcome
- η, ε correlated latents

XG/∈µ, ηG/∈µ DG∈µ

XG∈µ

ηG∈µ

YG∈µ

εG∈µ

The joint distribution of εG and ηG is assumed bivariate normal with mean zero, and constant
covariance δ. (

εG

ηG

)
∼ N

(
0,

[
σ2

ξ + δ2 δ

δ 1

])
(6)
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Here, the variance of the error term of the outcome equation σ2
ε is var(δη + ξ) = δ2 + σ2

ξ . To
normalise parameter scale, the variance of η and ζ is set to 1, which simplifies σ2

ε to 1 + δ2 in
the estimation. If the covariance δ were zero, the marginal distributions of εG and ηG would
be independent and the selection problem would vanish. That is, the observed outcomes
would be a random sample from the population of interest.

2.4. Identification

The structural model allows for correlation between ε and η, and imposes necessary equilib-
rium conditions on the valuations of both observed and unobserved groups. The interaction
in the market makes estimation computationally involved but overcomes the identification
problem.
Identification requires exogenous variation. In this model, it is the characteristics of the other
agents in the market that provide the exogenous variation. To illustrate, recall the four-player
example . The characteristics in the outcome equation of group AB are simply X = (XAB).
The characteristics in the selection equation are W = (XAB, XCD, XAC , XAD, XBC , XBD),
and the independent elements of W are then W ′ = (XCD, XAC , XAD, XBC , XBD). The
identifying assumption is thus that the characteristics of agents outside the match (those
comprised in W ′) are exogenous, i.e., uncorrelated with the error terms. Put differently,
the exclusion restriction is that D (which groups are observed in equilibrium) depends the
characteristics of all agents in the market, while the outcome of the equilibrium groups only
depends on the characteristics of the members of those groups.
In particular, other agents’ characteristics are not used as instruments in a traditional sense.
Rather than entering the selection equation directly, they pose restrictions on the match
valuations by determining the bounds in the estimation.

2.5. Estimation

In the estimation, I follow Sørensen (2007a), who uses Bayesian inference with a Gibbs sam-
pling algorithm that performs Markov Chain Monte Carlo (MCMC) simulations from trun-
cated normal distributions. The latent outcome and valuation variables, Y ∗ and V , are
treated as nuisance parameters and sampled from truncated Normal distributions that en-
force sufficient conditions for the draws to come from the equilibrium of the group formation
game. For the posterior distributions, see Klein (2015). For an illustration of the simulation
of the posteriors, see Appendix B.
The conjugate prior distributions of parameters α, β and δ are Normal and denoted by
N(ᾱ, Σα), N(β̄, Σβ) and N(δ̄, σ2

δ ). In the estimation, the prior distributions of α and β have
mean zero and variance-covariance matrix Σβ = ( 1

|µ|X
′X)−1 and Σα = ( 1

|Ω|W
′W )−1. This is

the widely studied and used g-prior (Zellner 1986). For δ, the prior distribution has mean zero
and variance 10. For this parameter, the prior variance is at least 40 times larger than the
posterior variance in all estimated models. This confirms that the prior is fairly uninformative.
Under the assumption of transferable utility, estimation is computationally complex due to the
valuation of the equilibrium bounds. Here, estimation does not simply involve a maximisation
of a given set of valuations as in Klein (2015). Instead, the bounds in Eqns 9 and 10 derived
in Appendix A require a maximisation over the set of all feasible matchings in the market –
rather than only the matches. This involves solving a partitioning linear program (see Quint
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1991).

3. Monte Carlo experiments
The first part of this section presents a simple simulation study of sorting bias. The second
part presents Monte Carlo evidence of the correction method proposed in Klein (2015) (see
Section 2) and implemented in R package matchingMarkets. It further provides Monte Carlo
studies on the robustness of the proposed estimator in small samples.

3.1. A simple example

I first provide a brief overview of the basic functionality of the matchingMarkets package and
introduce the model specification used in the Monte Carlo experiments.

Individual-level data

The stabsim function simulates individual-level, independent variables. The code below
generates data for m=200 markets with gpm=2 groups per market and group size ind=5.

R> ## Simulate individual-level, independent variables
R> library(matchingMarkets, quietly = TRUE)
R> idata <- stabsim(m=200, ind=5, seed=123, gpm=2)
R> head(idata)

m.id g.id wst R
1 1 1 -0.56047565 NA
2 1 1 -0.23017749 NA
3 1 1 1.55870831 NA
4 1 1 0.07050839 NA
5 1 1 0.12928774 NA
6 1 2 1.71506499 NA

The resulting data frame contains a market and group identifiers m.id and g.id and the
independent variable wst ∼ N(0, 1). The dependent variable R depends on the error terms
and is still undefined at this stage.

Group-level data

Next we apply the function stabit that serves three purposes.

• First, it specifies the list of variables to be included in selection and outcome equations
and generates group-level variables based on group members’ individual characteristics.
For example, the operation add="wst" produces the average of variable wst for all group
members.

• Second, if simulation="NTU", it draws standard normal, group-level unobservables eta
and xi to enter selection and outcome equation and selects equilibrium groups based
on the group formation game with non-transferable utility, assuming pairwise aligned
preferences as in Klein (2015). In the case of two groups per market, this selection
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rule results in one dominant group with the maximum group valuation and one group
comprised of the residual agents.

• Third, the argument method="model.frame" specifies that only the group-level model
matrices be generated. Other options are estimators using "NTU" for selection correction
using non-transferable utility matching as selection rule or "outcome" for estimation of
the outcome equation only.

R> ## Simulate group-level variables
R> mdata <- stabit(x=idata, simulation="NTU", method="model.frame",
+ selection = list(add="wst"),
+ outcome = list(add="wst"))

The resulting object mdata is a list containing data for selection and outcome equations in
SEL and OUT, respectively. SEL contains 252,000 rows, one for each of

( 5
10
)

= 252 feasible
groups in each of the 200 markets. A group’s valuation is given by V = +1*wst.add + eta.
The variable D indicates which groups are observed in equilibrium D=1 and which are not D=0.

R> head(mdata$OUT, 4)
m.id g.id intercept wst.add R xi epsilon

1 1 1 1 0.3698086 1.5670690 -0.8497043 1.5670690
2 1 2 1 -0.2205573 -2.4953827 -1.1373036 -2.4953827
3 2 1 1 0.7198747 1.3680982 -1.1198997 1.3680982
4 2 2 1 -0.3026307 0.3707344 -0.7822018 0.3707344

The outcome data in OUT contains 400 rows, one for each of 2 equilibrium groups per market.
The group outcome is given by R = 0*wst.add + epsilon with epsilon = eta + xi.

R> head(mdata$SEL, 4)
m.id g.id reg.id wst.add D V eta

1 1 1 2 0.3698086 1 2.786582 2.4167734
2 1 2 1 -0.2205573 1 -1.578636 -1.3580791
3 1 3 128 0.1935703 0 -0.150347 -0.3439172
4 1 4 129 0.2221432 0 1.820652 1.5985088

Bias from sorting

Now, estimating the outcome equation of this model with OLS yields upward biased estimates
of the slope coefficient β (see Figure 2a).

R> ## Naive OLS estimation
R> lm1 <- lm(R ~ wst.add, data=mdata$OUT)
R> summary(lm1)

Call:
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lm(formula = R ~ wst.add, data = mdata$OUT)

Residuals:
Min 1Q Median 3Q Max

-4.6304 -1.1023 -0.0448 1.2038 4.6228

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.32169 0.08377 15.777 < 2e-16 ***
wst.add 1.28172 0.16387 7.822 4.73e-14 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.673 on 398 degrees of freedom
Multiple R-squared: 0.1332, Adjusted R-squared: 0.1311
F-statistic: 61.18 on 1 and 398 DF, p-value: 4.731e-14

The source of this bias is the positive correlation between epsilon and the exogenous variable
wst.add (see Figure 2b).

Figure 2: Matching on unobservables

(a) Positive sorting bias of the independent
variable

0

1

2

3

4

−1 0 1
wst.add

R̂

(b) Correlation of independent variable with
eta

0

1

2

3

4

−1 0 1
wst.add

et
a

R> ## epsilon is correlated with independent variables
R> with(mdata$OUT, cor(epsilon, wst.add))
[1] 0.3650137

The intuition behind this bias is given a formal treatement in Klein (2015). We know that
epsilon = delta*eta. Thus, conditional on eta, the unobservables in the outcome equation
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are independent of the exogenous variables (because xi does not enter the selection equation).

R> ## xi is uncorrelated with independent variables
R> with(mdata$OUT, cor(xi, wst.add))
[1] 0.001335074

Correction of sorting bias

The selection problem is resolved when the residual from the selection equation, eta, is
controlled for in the outcome equation (see the horizontal, lower line in Figure 3).

R> ## 1st stage: obtain fitted value for eta
R> lm.sel <- lm(V ~ -1 + wst.add, data=mdata$SEL); lm.sel$coefficients
wst.add

1.006372
R> eta <- lm.sel$resid[mdata$SEL$D==1]
R> ## 2nd stage: control for eta
R> coefficients( lm(R ~ wst.add + eta, data=mdata$OUT) )
(Intercept) wst.add eta
0.09072970 0.09468869 0.94626877

The figure below plots the bias from sorting against the independent variable, for the naive
OLS and the selection-correction from the structural model.

Figure 3: Sorting bias corrected: Relative magnitudes of sorting bias and the direct effect.

0
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2

3

4

−1 0 1
wst.add

R̂

model

OLS

Structural

In most real-world applications, however, the match valuations V are unobserved. The so-
lution is to estimate the selection equation by imposing equilibrium bounds (as derived in
Proposition A.1) on the latent match valuations and this is the procedure I follow in the
Monte Carlo experiments below.
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R> ## 4. Run Gibbs sampler
R> fit1 <- stabit(x=idata, method="NTU", simulation="NTU", censored=1, niter=2000,
+ selection = list(add="wst"), outcome = list(add="wst"))

R> summary(fit1)

Coefficients for multi-index sample selection model.
Method: Klein (2015), one-sided matching market

Call:
stabit(x = idata, selection = list(add = "wst"), outcome = list(add = "wst"),

simulation = "NTU", method = "NTU", censored = 1, niter = 2000)

Selection equation:
Estimate StdErr t.value p.value

wst.add 1.15188 0.41565 2.7713 0.005846 **

Outcome equation:
Estimate StdErr t.value p.value

intercept 0.0733179 0.3871956 0.1894 0.84991
wst.add -0.0083934 0.4812529 -0.0174 0.98609
delta 0.9632351 0.2999799 3.2110 0.00143 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3.2. Simulation results

The Monte Carlo experiments are designed to test for the validity of the estimator. I con-
tinue to use the variable wst.add from the original model. The true parameters are defined
as seen in the first row of Table 1. The table is composed of three blocks, each represent-
ing a different market setting and sampling strategy. The first block gives the results of a
benchmark experiment that aims to see whether the structural model can reduce the bias of
standard OLS estimates. Experiment 1 tests the robustness of the estimator when applied
to a random sample of the groups’ members. Experiment 2 works with the full population
of group members but uses random samples from the counterfactual groups to reduce the
computational burden arising from the combinatorics of large groups. I discuss motivation,
set-up, implementation and results of each experiment in turn.
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Table 1: Monte Carlo results for 40 two-group markets (based on 1,000 draws). True values
are given in the first row.

Parameters α (Intercept) β δ σ2
ξ

True values 1 0 -1 0.5 1

Benchmark: All group members (5/5); all counterfactual groups (250/250)
5/5; 250/250 OLS – 0.304 -0.282 – 1.501

Structural 0.958 -0.112 -0.802 0.469 1.072

Experiment 1: 5 randomly sampled group members; all counterfactual groups
5/6; 250/250 OLS – 0.383 -0.242 – 1.676

Structural 0.748 -0.108 -0.642 0.570 0.973

Experiment 2: All group members; 250 randomly sampled counterfactual groups
6/6; 250/922 OLS – 0.365 -0.121 – 1.695

Structural 1.052 0.048 -0.707 0.567 0.978

Figure 4: Posterior distributions of parameters for benchmark simulations with 1,000 draws.
True values are given by vertical, dotted lines.
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Benchmark study

The following steps replicate the results of the benchmark experiment in Table 1. The R code
for replication is available in the documentation of function mce.
Implementation:

1. Following the nature of the data in the BAAC 2000 survey, I simulate individual-level,
independent variables for 40 two-group markets with groups of size five.
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R> idata <- stabsim(m=40, ind=5, seed=123, gpm=2)

2. Repeat the following steps for i=1 to 1000.

a) Draw group-level unobservables ξ and η that determine both (i) which groups are
observed in equilibrium and (ii) the equilibrium group outcomes.

R> mdata <- stabit(x=idata, selection=list(add="wst"), outcome=
+ list(add="wst"), simulation="NTU", method="model.frame", seed=i)

b) Obtain parameter estimates using (i) OLS and (ii) the structural model.

R> ols <- stabit(x=mdata, method="outcome", niter=400000)
R> fit <- stabit(x=mdata, method="NTU", niter=400000)

Interpretation: The results for the benchmark study in Table 1 confirm the upward bias in
the OLS estimates of the slope coefficient β. It is seen that the structural model successfully
reduces the bias resulting from endogenous matching into groups. Note that the modes of the
simulated posterior distributions in the first row of Figure 4 correspond to the true values in
the first row of Table 1.
The benchmark study works with the full population of borrowers. The two experiments
below investigate the robustness of the estimator for the practically more relevant case of
working with random samples from the population of interest.

Experiment 1: randomly sampled group members

While group sizes at Grameen Bank, for example, have evolved to five members, self-help
group and village lending schemes operate with up to 30 members. Surveys, such as the BAAC
survey (Townsend 2000), are often restricted to a random sample of the groups’ members.
Set-up: I continue to work with a sample of five borrowers per group but take original group
sizes to be six borrowers. This means that one group member is dropped at random.
Implementation:

1. Simulate group-level, independent variables for all
(2n

n

)
feasible groups of size n = 6 in

two-group markets.

2. Repeat the following steps 1,000 times.

a) Draw group-level unobservables ξ and η that determine both (i) which groups are
observed in equilibrium and (ii) the equilibrium group outcomes.

b) Randomly drop one member per equilibrium group.
c) Generate new group-level, independent variables from the reduced sample of group

members (leaving the equilibrium group indicator, D, and group outcomes, R,
unchanged).

d) Obtain parameter estimates using (i) OLS and (ii) the structural model.
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Interpretation: The results for Experiment 1 in Table 1 display clear evidence of attenuation
bias (see Wooldridge 2002, Chapter 4.4.2) in both the OLS and structural estimates. The ran-
dom sampling of group members induces measurement error in the group-level, independent
variables that biases the slope estimates towards zero.

Experiment 2: randomly sampled counterfactual groups
While data on the full population of group members solves the attenuation problem encoun-
tered in Experiment 1, it creates another problem for statistical analysis. The BAAC 1997
survey (Townsend 1997), for example, comprises data from two-group markets with up to
20 members resulting in

(40
20
)

≈ 137.85 billion feasible groups per market which renders the
analysis computationally intractable.
Set-up: As in Experiment 1, the original group size is taken to be six members. In two-group
markets, this results in

(12
6
)

− 2 = 922 counterfactual groups, from which 250 groups are
sampled at random for the analysis.
Implementation:

1. Simulate group-level, independent variables for all
(2n

n

)
feasible groups of size n = 6 in

two-group markets.

2. Repeat the following steps 1,000 times.

a) Draw group-level unobservables ξ and η that determine both (i) which groups are
observed in equilibrium and (ii) the equilibrium group outcomes.

b) Randomly draw 250 groups from the set of counterfactual groups.
c) Obtain paramter estimates using (i) OLS and (ii) the structural model.

Interpretation: The results for Experiment 2 in Table 1 suggest that working with a random
sample of counterfactual groups does not affect the mode of the posterior distribution of the
coefficients. However, the standard deviation of the posterior distribution of β increases from
σ̂β̂ = 0.75 to 0.79 (not reported in Table 1). A possible explanation is that the random sam-
pling relaxes the equilibrium bounds which results in increased uncertainty in the parameter
estimates.

4. Application in microfinance
This section contains R code to replicate the results of the structural model in Table 3 of
Klein (2015). To begin with, load the individual-level data contained in the matchingMarkets
package (Klein 2018) and standardise the variables. The 292 borrowers, are nested within 68
groups and 39 markets.

R> ## 1. Load individual-level data
R> library("matchingMarkets")
R> data(baac00)

In the next step, specify variables and variable transformations for selection and outcome
equation. The function stabit generates the group-level design matrix and runs the Gibbs
sampler with 800,000 iterations to obtain the results of the structural model.
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R> ## 2-a. Run Gibbs sampler
R> klein15a <- stabit(x=baac00, method="NTU",
+ selection = list(inv="pi",ieq="wst"),
+ outcome = list(add="pi",inv="pi",ieq="wst",
+ add=c("loan_size","loan_size2","lngroup_agei")),
+ offsetOut=1, binary=TRUE, gPrior=TRUE, marketFE=TRUE, niter=800000
+ )

Alternatively, the results can be loaded directly from the package.

R> ## 2-b. Load data and get marginal effects
R> data(klein15a)
R> summary(klein15a, mfx=TRUE)

Marginal effects for multi-index sample selection model.
Method: Klein (2015), one-sided matching market

Call:
stabit(x = baac00, selection = list(inv = "pi", ieq = "wst"),

outcome = list(add = "pi", inv = "pi", ieq = "wst", add = c("loan_size",
"loan_size2", "lngroup_agei")), method = "NTU", binary = TRUE,

offsetOut = 1, marketFE = TRUE, gPrior = TRUE, niter = 8e+05)

Selection equation:
Estimate StdErr t.value p.value

pi.inv -0.77847 0.92793 -0.8389 0.200771
wst.ieq 0.35601 0.12091 2.9445 0.001624 **
1 -1.50222 4.95863 -0.3029 0.380970
2 -1.30149 1.11601 -1.1662 0.121793
3 -1.59527 1.59147 -1.0024 0.158101
4 -1.36959 1.22883 -1.1145 0.132547
5 -0.31606 3.54283 -0.0892 0.464459
6 -2.96855 4.64408 -0.6392 0.261356
7 -0.35463 1.75609 -0.2019 0.419985
8 -2.48748 2.40423 -1.0346 0.150445
9 -2.09251 1.64972 -1.2684 0.102355
10 -2.79001 2.08429 -1.3386 0.090380 .
11 -2.40204 1.79948 -1.3349 0.090990 .
12 -0.60385 1.65920 -0.3639 0.357959
13 1.41919 1.11175 1.2765 0.100912
14 0.59920 1.50133 0.3991 0.344914

Outcome equation:
Estimate StdErr t.value p.value

pi.inv 1.571275 1.811454 0.8674 0.1950163
wst.ieq -0.586014 0.244073 -2.4010 0.0101374 *
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loan_size.add 0.970321 0.358950 2.7032 0.0047343 **
loan_size2.add -0.186674 0.078058 -2.3915 0.0103740 *
lngroup_agei.add -0.394577 0.109675 -3.5977 0.0003786 ***
0 0.479393 0.234757 2.0421 0.0233291 *
1 -0.040554 0.661055 -0.0613 0.4756688
2 -0.371607 0.627348 -0.5923 0.2781996
3 0.203108 0.499668 0.4065 0.3430962
4 -0.047750 0.553615 -0.0863 0.4658128
5 -0.073989 0.643599 -0.1150 0.4544777
6 0.265238 0.582763 0.4551 0.3255307
7 -0.317368 0.541243 -0.5864 0.2801874
8 -0.158900 0.614637 -0.2585 0.3985526
9 0.425090 0.548776 0.7746 0.2211832
10 -0.202136 0.558342 -0.3620 0.3594600
11 -0.056927 0.545283 -0.1044 0.4586439
12 0.420381 0.710406 0.5917 0.2783984
13 0.164946 0.699621 0.2358 0.4073091
delta 0.511696 0.128398 3.9852 0.0001142 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The results on the attenuation bias in Experiment 1, Section 3, suggests that the difference
in the parameter estimates of the Probit and the structural model underestimate the true
confounding effect of endogenous matching. Specifically, the selection problem arising from
endogenous group formation – while already strongly significant – is still likely to be under-
rated because attenuation results in an underestimation of the positive Probit coefficient and,
at the same time, an overestimation of the negative coefficient from the structural model.
The first half of all 800,000 draws are discarded as burn-in draws. The remaining 400,000
draws are used in approximating the posterior means and the posterior standard deviations
based on the distributions in Figure 5.
The function khb implements the statistical test for confounding in Probit models proposed in
Karlson et al. (2012). The function takes as arguments the data frame of independent variables
X=X, the dependent variable y=R, and the name of the confounding variable z="eta".

R> ## 3. Test for confounding from sample selection (KHB test)
R> with(klein15a$variables, head(khb(X=X, y=Y, z="eta"),5))

Karlson-Holm-Breen method
Null hypothesis: Change in coefficient is not attributable to confounding by z.

p.value
pi.inv 0.5581
wst.ieq 0.0480
loan_size.add 0.9034
loan_size2.add 0.0442
lngroup_agei.add 0.0412
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Figure 5: Posterior draws of key parameters in the microfinance application.
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The procedure tests for differences in probit and structural model coefficients. It confirms
that the probit estimates for variables wst.ieq, loan_size2.add and lngroup_agei are
significantly confounded as a result of endogenous matching.
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A. Equilibrium characterisation
Under transferable utility, agents can write binding contracts that specify how to share the
total pay-off generated by the collective of all players in the market. As a result, the coordi-
nated efforts of borrowers lead to a matching that maximises the total market pay-off. This
pay-off is then shared between the players according to the binding contracts.

A.1. Stability and uniqueness
The group formation game under transferable utility is a special case of the Kaneko and
Wooders (1982) partitioning game. A partitioning game consists of a finite set of N players
N = {1, ..., N} and a characteristic function V that assigns a value to each group of players,
G ⊂ N . In the partitioning game, only certain coalitions – so-called basic coalitions – can
create value. These coalitions are subsets of N . In the group formation game, the basic
coalitions are all groups of size n. The collection of these basic coalitions Ω is the set of
feasible matches, i.e. borrowing groups. It can be written as Ω = {G ⊂ N : |G| = n}.4

For the partitioning game, Quint (1991) shows that the equilibrium5 coincides with the set
of optimal solutions to the dual of a linear programming problem.

A.2. Equilibrium characterisation
Let M denote the set of feasible matchings (or group constellations µ) in the sense that each
agent is matched exactly once. This set comprises both the observed group constellation in
village t and all unobserved group constellations.6 The latter contain equally sized, alter-
native groups in the same village composed of borrowers from the observed groups. Using
this definition, the objective function of the PLP can be rewritten as below. An optimal
partitioning is a matching µ that maximises the total valuation in the market. This matching
is such that it solves the following maximisation problem.

max
µ∈M

∑
G∈µ

VG (7)

The equilibrium condition for a coalition-wise (or core) stable matching is given by the follow-
ing inequality, where M\µ̃ gives the set of feasible deviations from the equilibrium matching
µ̃. ∑

G′∈µ̃

VG′ > max
µ∈M\µ̃

∑
G∈µ

VG (8)

The condition can be restated in two simple inequalities that impose upper bounds for non-
equilibrium matchings and lower bounds for the equilibrium matchings. Proposition A.1
summarises the conditions for pairwise stability based on the bounds V ∗

G and V ∗
G derived

below.
4In the empirical context of this paper, the set of feasible groups is obtained by generating all k-for-k

borrower swaps across two groups in the same village. The total number of swaps in a village with two groups
of five borrowers is given by 5 × 5 = 25 1-for-1 swaps, 10 × 10 = 100 2-for-2 swaps, 10 × 10 = 100 3-for-3 swaps
and 5 × 5 = 25 4-for-4 swaps (= 250 in total).

5Specifically, the set of feasible allocations that cannot be improved upon. This is also referred to as the
‘core’ in the matching literature.

6In a context with two groups per market, the number of feasible matchings |M | is half the number of
feasible matches |Ω|.
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Proposition A.1 The matching µ is stable iff VG < V ∗
G ∀G /∈ µ. Equivalently, the matching

µ is stable iff VG > V ∗
G ∀G ∈ µ.

Proof A.1 A matching is stable if deviation is unattractive. Alternative matchings are there-
fore bound to have lower valuations than observed ones. This naturally leads to upper bounds
VG < V ∗

G for the valuation of matches G ∈ µ, not contained in the equilibrium matching µ̃.

VG <
∑

G′∈µ̃

VG′ − max
µ∈M\µ̃

∑
G′′∈µ\G

VG′′ =: V ∗
G (9)

The upper bounds V ∗
G are increasing in the valuation of the equilibrium matching µ̃ (first term

on RHS of the inequality in Eqn 9), and decreasing in the valuation of the optimal group
constellation of all remaining borrowers not contained in G (second term). It is possible to
invert the inequalities to obtain a lower bound VG > V ∗

G for the valuation of the equilibrium
match G ∈ µ̃.

VG > max
µ∈M\µ̃

∑
G′∈µ

VG′ −
∑

G′′∈µ̃\G

VG′′ =: V ∗
G (10)

The lower bound V ∗
G is increasing in the valuation of the most attractive non-equilibrium

matching (first term on RHS of the inequality in Eqn 10) and decreasing in the valuations of
the other equilibrium matches without G (second term).

These conditions are equivalent, but both are important for estimation as they impose different
bounds on the latent valuation variables. These inequalities are used in the econometric model
to truncate the valuations of feasible groupings.
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B. Simulation of posterior distribution
The Bayesian estimator uses the data augmentation approach (proposed by Albert and Chib
1993) that treats the latent outcome and valuation variables as nuissance parameters. The
following four steps illustrate the first iteration of the estimator for the first-stage matching
model.

B.1. Match valuations for unobserved groups

The algorithm starts by simulating the latent match valuations for unobserved groups condi-
tional on the data and parameters. In the first iteration illustrated here, the slope parameter
alpha (blue asterisk) and the match valuations of the equilibrium groups (red asterisks) are
initially set to zero and match valuations for unobserved groups (black circles) are drawn
from a normal distribution with mean zero. For the observed groups to be in equilibrium,
the match valuation of the unobserved groups must be lower than the maximum equilibrium
group valuation. The draws from the normal are therefore censored from above (gray shades).

B.2. Match valuations for first observed group

In the next step, the match valuation is drawn from a normal distribution with mean zero
(conditional mean given by the dashed line). The equilibrium condition holds because the
valuation of the second equilibrium group is larger than that of any non-equilibrium group
(indicated by the yellow shades). Thus the valuation can be drawn from an uncensored
normal.

B.3. Match valuations for second observed group

Same procedure as in step 2.

B.4. Alpha slope parameter

Fit a regression based on the given valuations and data (solid line) and draw alpha (dashed
blue line) from a normal distribution with mean and standard deviation of the estimated
slope parameter. Use the new alpha draw in the next iteration to simulate the latent match
valuations, etc etc.
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Table 2: Simulation of posterior distribution: Conditional Draws for match valuations and
model parameters

1. Match valuations for unobserved groups 2. Match valuation for 1st observed group
before. after. before. after.

3. Match valuation for 2nd observed group 4. Alpha slope parameter
before. after. before. after.
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