
Package: markets (via r-universe)
October 26, 2024

Title Estimation Methods for Markets in Equilibrium and Disequilibrium

Version 1.1.5

Date 2024-02-17

Description Provides estimation methods for markets in equilibrium and
disequilibrium. Supports the estimation of an equilibrium and
four disequilibrium models with both correlated and independent
shocks. Also provides post-estimation analysis tools, such as
aggregation, marginal effect, and shortage calculations. See
Karapanagiotis (2024) <doi:10.18637/jss.v108.i02> for an
overview of the functionality and examples. The estimation
methods are based on full information maximum likelihood
techniques given in Maddala and Nelson (1974)
<doi:10.2307/1914215>. They are implemented using the analytic
derivative expressions calculated in Karapanagiotis (2020)
<doi:10.2139/ssrn.3525622>. Standard errors can be estimated by
adjusting for heteroscedasticity or clustering. The equilibrium
estimation constitutes a case of a system of linear,
simultaneous equations. Instead, the disequilibrium models
replace the market-clearing condition with a non-linear,
short-side rule and allow for different specifications of price
dynamics.

Language en-US

URL https://github.com/pi-kappa-devel/markets/,

https://markets.pikappa.eu/

BugReports https://github.com/pi-kappa-devel/markets/issues

Depends R (>= 4.1.0)

Imports dplyr (>= 0.7.6), Formula, MASS (>= 7.3-50), methods, rlang
(>= 0.2.1), Rcpp, RcppGSL, RcppParallel, stats

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

1

https://doi.org/10.18637/jss.v108.i02
https://doi.org/10.2307/1914215
https://doi.org/10.2139/ssrn.3525622
https://github.com/pi-kappa-devel/markets/
https://markets.pikappa.eu/
https://github.com/pi-kappa-devel/markets/issues

2 Contents

Suggests ggplot2 (>= 3.0.0), knitr (>= 1.20), numDeriv (>=
2016.8.1.1), rmarkdown (>= 1.10), testthat (>= 2.0.0)

VignetteBuilder knitr

Collate 'data.R' 'equation_base.R' 'system_base.R' 'model_logger.R'
'market_model.R' 'disequilibrium_model.R' 'diseq_basic.R'
'diseq_deterministic_adjustment.R' 'diseq_directional.R'
'diseq_stochastic_adjustment.R' 'equation_basic.R'
'equation_deterministic_adjustment.R' 'equation_directional.R'
'equation_stochastic_adjustment.R' 'equilibrium_model.R'
'system_basic.R' 'gradient_basic.R'
'system_deterministic_adjustment.R'
'gradient_deterministic_adjustment.R' 'system_directional.R'
'gradient_directional.R' 'system_equilibrium.R'
'gradient_equilibrium.R' 'system_stochastic_adjustment.R'
'gradient_stochastic_adjustment.R' 'hessian_basic.R'
'hessian_directional.R' 'likelihood_basic.R'
'likelihood_deterministic_adjustment.R'
'likelihood_directional.R' 'likelihood_equilibrium.R'
'likelihood_stochastic_adjustment.R' 'market_fit.R' 'markets.R'
'model_simulation.R'

LinkingTo Rcpp, RcppGSL

NeedsCompilation yes

Author Pantelis Karapanagiotis [aut, cre]
(<https://orcid.org/0000-0001-9871-1908>)

Maintainer Pantelis Karapanagiotis <pikappa.devel@gmail.com>

Repository CRAN

Date/Publication 2024-02-17 10:50:07 UTC

Contents
coef . 3
estimate . 4
formula,market_model-method . 6
houses . 8
logLik.market_fit . 10
marginal_effects . 11
market_aggregation . 13
market_descriptives . 14
market_fit-class . 16
market_models . 17
market_quantities . 19
market_simulation . 20
model_description . 24
model_initialization . 25
model_likelihoods . 30

https://orcid.org/0000-0001-9871-1908

coef 3

ncoef . 33
nobs,market_model-method . 34
plot,market_fit-method . 35
shortage_analysis . 36
show,market_model-method . 38
single_call_estimation . 39
summary . 43
vcov,market_fit-method . 45

Index 46

coef Market fit coefficients

Description

Returns the coefficients of the fitted market model.

Usage

S4 method for signature 'market_fit'
coef(object)

S4 method for signature 'market_fit'
coefficients(object)

Arguments

object A fitted model object.

Value

A named vector of estimated model coefficients.

Methods (by class)

• coef(market_fit): Estimated coefficients.

• coefficients(market_fit): Estimated coefficients alias.

Examples

estimate a model using the houses dataset
fit <- diseq_deterministic_adjustment(

HS | RM | ID | TREND ~
RM + TREND + W + CSHS + L1RM + L2RM + MONTH |

RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
fair_houses(),
correlated_shocks = FALSE,
estimation_options = list(control = list(maxit = 1e+6))

4 estimate

)

access the estimated coefficients
coef(fit)
coefficients(fit)

estimate Model estimation

Description

All models are estimated using full information maximum likelihood. The equilibrium_model
can also be estimated using two-stage least squares. The maximum likelihood estimation is based
on optim. If no starting values are provided, the function uses linear regression estimates as ini-
tializing values. The default optimization method is BFGS. For other alternatives see optim. The
implementation of the two-stage least square estimation of the equilibrium_model is based on lm.

Usage

estimate(object, ...)

S4 method for signature 'market_model'
estimate(
object,
gradient = "calculated",
hessian = "calculated",
standard_errors = "homoscedastic",
...

)

S4 method for signature 'equilibrium_model'
estimate(object, method = "BFGS", optimizer = "optim", ...)

Arguments

object A model object.
... Additional parameter used in the model’s estimation. These are passed further

down to the optimization call. For the equilibrium_model model, the param-
eters are passed to lm, if the method is set to 2SLS, or to optim for any other
method. For the rest of the models, the parameters are passed to optim.

gradient One of two potential options: "numerical" and "calculated". By default,
all the models are estimated using the analytic expressions of their likelihoods’
gradients.

hessian One of three potential options: "skip", "numerical", and "calculated". The
default is to use the "calculated" Hessian for the models that expressions are
available and the "numerical" Hessian in other cases. Calculated Hessian ex-
pressions are available for the basic and directional models.

estimate 5

standard_errors

One of three potential options: "homoscedastic", "heteroscedastic", or a
vector with variables names for which standard error clusters are to be cre-
ated. The default value is "homoscedastic". If the option "heteroscedastic"
is passed, the variance-covariance matrix is calculated using heteroscedasticity
adjusted (Huber-White) standard errors. If a vector with variable names is sup-
plied, the variance-covariance matrix is calculated by grouping the score matrix
based on the passed variables.

method A string specifying the estimation method. When the passed value is among
"Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", and "Brent", the model
is estimated using full information maximum likelihood based on optim func-
tionality. When "2SLS" is supplied, the model is estimated using two-stage least
squares via lm. In this case, the function returns a list containing the first and
second stage estimates. The default value is "BFGS".

optimizer One of two options: "optim", "gsl". The default value is "optim". If the
option "gsl" is set, the equilibrium likelihood is maximized using GSL.

Details

The likelihood of the equilibrium model can be optimized either by using optim (the default op-
tion) or native GSL routines. The caller can override the default behavior by setting the optimizer
argument equal to "gsl", in which case GSL routines are used. This does not necessarily result
to faster execution times. This functionality is primarily intended for advanced usage. The optim
functionality is a fast, analysis-oriented alternative, which is more suitable for most use case.

When optimizer = "gsl" is used, the only available optimization method is BFGS. Addition-
ally, the caller needs to specify in the control list values for the optimization step (step), the
objective’s optimization tolerance (objective_tolerance), the gradient’s optimization tolerance
(gradient_tolerance, and the maximum allowed number of iterations (maxit). If the GSL library
is not available in the calling machine, the function returns a trivial result list with convergence
status set equal to -1. If the C++17 execution policies are available, the implementation of the
optimization is parallelized.

Value

A market fit object holding the estimation result.

Functions

• estimate(market_model): Full information maximum likelihood estimation.

• estimate(equilibrium_model): Equilibrium model estimation.

Examples

initialize the model using the houses dataset
model <- new(

"diseq_deterministic_adjustment", # model type
subject = ID, time = TREND, quantity = HS, price = RM,
demand = RM + TREND + W + CSHS + L1RM + L2RM + MONTH,
supply = RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,

https://www.gnu.org/software/gsl/doc/html/multimin.html
https://www.gnu.org/software/gsl/doc/html/multimin.html
https://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t

6 formula,market_model-method

fair_houses(), # data
correlated_shocks = FALSE # let shocks be independent

)

estimate the model object (BFGS is used by default)
fit <- estimate(model)

estimate the model by specifying the optimization details passed to the optimizer.
fit <- estimate(model, control = list(maxit = 1e+6))

summarize results
summary(fit)

simulate an equilibrium model
model <- simulate_model(

"equilibrium_model", list(
observed entities, observed time points
nobs = 500, tobs = 3,
demand coefficients
alpha_d = -1.9, beta_d0 = 24.9, beta_d = c(2.3, -1.2), eta_d = c(2.0, -1.5),
supply coefficients
alpha_s = .9, beta_s0 = 8.2, beta_s = c(3.3), eta_s = c(1.5, -2.2)

),
seed = 99

)

maximize the model's log-likelihood
fit <- estimate(

model,
optimizer = "gsl", control = list(
step = 1e-2, objective_tolerance = 1e-8,
gradient_tolerance = 1e-2, maxit = 1e+3

)
)

summary(fit)

formula,market_model-method

Market model formula

Description

Market model formula

Usage

S4 method for signature 'market_model'
formula(x)

formula,market_model-method 7

Arguments

x A market model object.

Details

Market model formulas adhere to the following specification:

quantity | price | subject | time ~ demand | supply

where

• quantity: The model’s traded (observed) quantity variable.

• price: The model’s price variable.

• quantity: The model’s subject (e.g. firm) identification variable.

• quantity: The model’s time identification variable.

• demand: The right hand side of the model’s demand equation.

• supply: The right hand side of the model’s supply equation.

The diseq_stochastic_adjustment additionally specify price dynamics by appending the right
hand side of the equation at the end of the formula, i.e.

quantity | price | subject | time ~ demand | supply | price_dynamics

The left hand side part of the model formula specifies the elements that are needed for initializing
the model. The market models of the package prepare the data based on these four variables using
their respective identification assumptions. See market model classes for more details.

The function provides access to the formula used in model initialization.

Value

The model’s formula

Examples

model <- simulate_model(
"diseq_stochastic_adjustment", list(
observed entities, observed time points
nobs = 500, tobs = 3,
demand coefficients
alpha_d = -0.1, beta_d0 = 9.8, beta_d = c(0.3, -0.2), eta_d = c(0.6, -0.1),
supply coefficients
alpha_s = 0.1, beta_s0 = 6.1, beta_s = c(0.9), eta_s = c(-0.5, 0.2),
price equation coefficients
gamma = 1.2, beta_p0 = 3.1, beta_p = c(0.8)

),
seed = 31

)

access the model's formula
formula(model)

8 houses

houses Credit market data for US housing starts

Description

Credit market data for US housing starts

Usage

data(houses)

fair_houses()

Format

A data frame with 138 rows and 7 columns

Details

The basic houses dataset (houses):
A dataset containing the monthly mortgage rates and other attributes of the US market for new,
non-farm houses from January 1958 to December 1969 (144 observations). The variables are as
follows:

• DATE The date of the record.
• HS Private non-farm housing starts in thousands of units (Not seasonally adjusted).
• RM FHA Mortgage rate series on new homes in units of 100 (beginning-of-month Data).
• DSLA Savings capital (deposits) of savings and loan associations in millions of dollars.
• DMSB Deposits of mutual savings banks in millions of dollars.
• DHLB Advances of the federal home loan bank to savings and loan associations in million of

dollars.
• W Number of working days in month.

Generate the variables of the Fair & Jaffee (1972) dataset. (fair_houses):
Loads the houses dataset and creates the additional variables used by Fair & Jaffee (1972)
doi:10.2307/1913181. These are

• ID A dummy entity identifier that is always equal to one since the houses data have only a
time series component.

• DSF Flow of deposits in savings and loan associations and mutual savings banks in million of
dollars. Equal to

DSLAt +DMSBt − (DSLAt−1 +DMSBt−1).

• DHF Flow of advances of the federal home loan bank to savings and loan associations in
million of dollars. Equal to

DHLBt −DHLBt−1.

https://doi.org/10.2307/1913181

houses 9

• MONTH The month of the date of the observation.
• L1RM FHA Mortgage rate series on new homes in units of 100, lagged by one date.
• L2RM FHA Mortgage rate series on new homes in units of 100, lagged by two dates.
• L1HS Private non-farm housing starts in thousands of units (Not seasonally adjusted), lagged

by one date.
• CSHS The cumulative sum of past housing starts. Used to proxy the stock of houses
• MA6DSF Moving average of order 6 of the flow of deposits in savings associations and loan

associations and mutual savings banks.
• MA3DHF Moving average of order 3 of the flow of advances of the federal home loan bank to

savings and loan associations.
• TREND A time trend variable.

Returns A modified version of the houses dataset.

Functions

• fair_houses(): Generate Fair & Jaffee (1972) dataset

Source

• HS Economic Reports of the President

• RM Fair (1971)

• DSLA Federal Reserve Bulletins

• DMSB Federal Reserve Bulletins

• DHLB Federal Reserve Bulletins

• W Manually calculated

References

• Fair, R. C. (1971). A short-run forecasting model of the United States economy. Heath Lex-
ington Books.

• Fair, R. C., & Jaffee, D. M. (1972). Methods of Estimation for Markets in Disequilibrium.
Econometrica, 40(3), 497. doi:10.2307/1913181

• Maddala, G. S., & Nelson, F. D. (1974). Maximum Likelihood Methods for Models of Mar-
kets in Disequilibrium. Econometrica, 42(6), 1013. doi:10.2307/1914215

• Hwang, H. (1980). A test of a disequilibrium model. Journal of Econometrics, 12(3), 319–333.
doi:10.1016/03044076(80)900597

Examples

data(houses)
head(houses)
head(fair_houses())

https://fraser.stlouisfed.org/title/economic-report-president-45?browse=1940s
https://fairmodel.econ.yale.edu/RAYFAIR/pdf/1971EI.PDF
https://fraser.stlouisfed.org/title/federal-reserve-bulletin-62?browse=1910s
https://fraser.stlouisfed.org/title/federal-reserve-bulletin-62?browse=1910s
https://fraser.stlouisfed.org/title/federal-reserve-bulletin-62?browse=1910s
https://www.timeanddate.com/date/workdays.html
https://doi.org/10.2307/1913181
https://doi.org/10.2307/1914215
https://doi.org/10.1016/0304-4076%2880%2990059-7

10 logLik.market_fit

logLik.market_fit Log likelihood of a fitted market model

Description

Specializes the logLik function for the market models of the package estimated with full informa-
tion minimum likelihood. It returns NULL for the equilibrium model estimated with two stage least
squares (method = "2SLS").

Usage

S3 method for class 'market_fit'
logLik(object, ...)

S4 method for signature 'market_fit'
logLik(object, ...)

Arguments

object A fitted model object.

... Additional arguments. Unused.

Value

A logLik object.

Examples

estimate a model using the houses dataset
fit <- diseq_deterministic_adjustment(

HS | RM | ID | TREND ~
RM + TREND + W + CSHS + L1RM + L2RM + MONTH |

RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
fair_houses(),
correlated_shocks = FALSE,
estimation_options = list(control = list(maxit = 1e+6))

)

get the log likelihood object
logLik(fit)

marginal_effects 11

marginal_effects Marginal effects

Description

Returns the estimated effect of a variable. The effect accounts for both sides of the market. If the
given variable belongs only to the demand side, the name of result is prefixed by "D_". If the given
variable belongs only to the supply side, the name of result is prefixed by "S_". If the variable can
be found both sides, the result name is prefixed by "B_".

Usage

shortage_marginal(fit, variable, model, parameters)

shortage_probability_marginal(
fit,
variable,
aggregate = "mean",
model,
parameters

)

S4 method for signature 'missing,ANY,market_model,ANY'
shortage_marginal(variable, model, parameters)

S4 method for signature 'missing,ANY,ANY,market_model,ANY'
shortage_probability_marginal(variable, aggregate, model, parameters)

S4 method for signature 'missing,ANY,market_model,ANY'
shortage_marginal(variable, model, parameters)

S4 method for signature 'market_fit,ANY,missing,missing'
shortage_marginal(fit, variable)

S4 method for signature 'market_fit,ANY,ANY,missing,missing'
shortage_probability_marginal(fit, variable, aggregate)

Arguments

fit A fitted market model.

variable Variable name for which the effect is calculated.

model A market model object.

parameters A vector of parameters.

aggregate Mode of aggregation. Valid options are "mean" (the default) and "at_the_mean".

12 marginal_effects

Value

The estimated effect of the passed variable.

Functions

• shortage_marginal(): Marginal effect on market system
Returns the estimated marginal effect of a variable on the market system. For a system variable
x with demand coefficient βd,x and supply coefficient βs,x, the marginal effect on the market
system is given by

Mx =
βd,x − βs,x√

σ2
d + σ2

s − 2ρdsσdσs

.

• shortage_probability_marginal(): Marginal effect on shortage probabilities
Returns the estimated marginal effect of a variable on the probability of observing a shortage
state. The mean marginal effect (aggregate = "mean") on the shortage probability is given
by

MxEϕ

(
D − S√

σ2
d + σ2

s − 2rhoσdσs

)
. and the marginal effect at the mean (aggregate = "at_the_mean") by

Mxϕ

(
E

D − S√
σ2
d + σ2

s − 2rhoσdσs

)

where Mx is the marginal effect on the system, D is the demanded quantity, S the supplied
quantity, and ϕ is the standard normal density.

Examples

estimate a model using the houses dataset
fit <- diseq_deterministic_adjustment(

HS | RM | ID | TREND ~
RM + TREND + W + CSHS + L1RM + L2RM + MONTH |

RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
fair_houses(),
correlated_shocks = FALSE,
estimation_options = list(control = list(maxit = 1e+5))

)

mean marginal effect of variable "RM" on the shortage probabilities
#' shortage_probability_marginal(fit, "RM")

marginal effect at the mean of variable "RM" on the shortage probabilities
shortage_probability_marginal(fit, "CSHS", aggregate = "at_the_mean")

marginal effect of variable "RM" on the system
shortage_marginal(fit, "RM")

market_aggregation 13

market_aggregation Market side aggregation

Description

Market side aggregation

Usage

aggregate_demand(fit, model, parameters)

S4 method for signature 'missing,market_model,ANY'
aggregate_demand(model, parameters)

aggregate_supply(fit, model, parameters)

S4 method for signature 'missing,market_model,ANY'
aggregate_supply(model, parameters)

S4 method for signature 'market_fit,missing,missing'
aggregate_demand(fit)

S4 method for signature 'market_fit,missing,missing'
aggregate_supply(fit)

Arguments

fit A fitted market model object.

model A model object.

parameters A vector of model’s parameters.

Details

Calculates the sample’s aggregate demand or supply using the estimated coefficients of a fitted
model. Alternatively, the function calculates aggregates using a model and a set of parameters
passed separately. If the model’s data have multiple distinct subjects at each date (e.g., panel data),
aggregation is calculated over subjects per unique date. If the model has time series data, namely a
single subject per time point, aggregation is calculated over all time points.

Value

The sum of the estimated demanded or supplied quantities evaluated at the given parameters.

Functions

• aggregate_demand(): Demand aggregation.

• aggregate_supply(): Supply aggregation.

14 market_descriptives

See Also

demanded_quantities, supplied_quantities

Examples

fit <- diseq_basic(
HS | RM | ID | TREND ~
RM + TREND + W + CSHS + L1RM + L2RM + MONTH |

RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
fair_houses(),
correlated_shocks = FALSE

)

get estimated aggregate demand
aggregate_demand(fit)

simulate the deterministic adjustment model
model <- simulate_model(

"diseq_deterministic_adjustment", list(
observed entities, observed time points
nobs = 500, tobs = 3,
demand coefficients
alpha_d = -0.6, beta_d0 = 9.8, beta_d = c(0.3, -0.2), eta_d = c(0.6, -0.1),
supply coefficients
alpha_s = 0.2, beta_s0 = 4.1, beta_s = c(0.9), eta_s = c(-0.5, 0.2),
price equation coefficients
gamma = 0.9

),
seed = 1356

)

estimate the model object
fit <- estimate(model)

get estimated aggregate demand
aggregate_demand(fit)

get estimated aggregate demand
aggregate_supply(fit)

market_descriptives Market force data descriptive statistics

Description

Market force data descriptive statistics

market_descriptives 15

Usage

demand_descriptives(object)

supply_descriptives(object)

S4 method for signature 'market_model'
demand_descriptives(object)

S4 method for signature 'market_model'
supply_descriptives(object)

Arguments

object A model object.

Details

Calculates and returns basic descriptive statistics for the model’s demand or supply side data. Factor
variables are excluded from the calculations. The function calculates and returns:

• nobs Number of observations.

• nmval Number of missing values.

• min Minimum observation.

• max Maximum observation.

• range Observations’ range.

• sum Sum of observations.

• median Median observation.

• mean Mean observation.

• mean_se Mean squared error.

• mean_ce Confidence interval bound.

• var Variance.

• sd Standard deviation.

• coef_var Coefficient of variation.

Value

A data frame containing descriptive statistics.

Functions

• demand_descriptives(): Demand descriptive statistics.

• supply_descriptives(): Supply descriptive statistics.

16 market_fit-class

Examples

initialize the basic model using the houses dataset
model <- new(

"diseq_basic", # model type
subject = ID, time = TREND, quantity = HS, price = RM,
demand = RM + TREND + W + CSHS + L1RM + L2RM + MONTH,
supply = RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
fair_houses(), # data
correlated_shocks = FALSE # allow shocks to be correlated

)

get descriptive statistics of demand side variables
demand_descriptives(model)

get descriptive statistics of supply side variables
supply_descriptives(model)

market_fit-class Market model fit

Description

This is the estimation output class for all market models of the package. It couples a market model
object with estimation results. It provides a common user interface for accessing estimation results,
irrespective of the underlying market model used. The estimation results are intended to be accessed
by passing market_fit objects to methods such as plot, summary, and logLik.

Details

The market_fit class composes the market_models class with the estimation results obtained
by optim, lm or GSL. All the public functionality of the underlying market model is also directly
accessible from the output class.

Furthermore, the class is responsible for harmonizing the heterogeneous outputs resulting from dif-
ferent estimation methods of market models. For example, a 2SLS estimation of the equilibrium_model
returns a list of linear regression models (the first stage, demand, and supply models), while the
maximum likelihood estimation of diseq_basic returns an optim list. In both cases, the market_fit
stores the estimation output in the member fit of type list and produces additional harmonized
list elements. Methods of the class examine the type of the fit and direct execution accordingly to
different branches to produce a unified experience for the caller.

Slots

model The underlying market model object.

fit A list holding estimation outputs.

See Also

market_models

market_models 17

Examples

estimate an equilibrium model using the houses dataset
fit <- equilibrium_model(

HS | RM | ID | TREND ~
RM + TREND + W + CSHS + L1RM + L2RM + MONTH |

RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
fair_houses(),
estimation_options = list(method = "2SLS")

)

access an method of the underlying model
aggregate_demand(fit)

summary of results
summary(fit)

market_models Market model classes

Description

Basic disequilibrium model with unknown sample separation (diseq_basic): The basic dis-
equilibrium model consists of three equations. Two of them are the demand and supply equations.
In addition, the model replaces the market clearing condition with the short side rule. The model
is estimated using full information maximum likelihood.

Dnt = X ′
d,ntβd + ud,nt,

Snt = X ′
s,ntβs + us,nt,

Qnt = min{Dnt, Snt}.

Disequilibrium model with deterministic price dynamics (diseq_deterministic_adjustment):
The disequilibrium model with deterministic price adjustment consists of four equations. The two
market equations, the short side rule and price evolution equation. The first two equations are
stochastic. The price equation is deterministic. The sample is separated based on the sign of the
price changes as in the diseq_directional model. The model is estimated using full information
maximum likelihood.

Dnt = X ′
d,ntβd + Pntαd + ud,nt,

Snt = X ′
s,ntβs + Pntαs + us,nt,

Qnt = min{Dnt, Snt},

∆Pnt =
1

γ
(Dnt − Snt) .

18 market_models

Directional disequilibrium model with sample separation (diseq_directional): The di-
rectional disequilibrium model consists of three equations and a separation rule. The market is
described by a linear demand, a linear supply equation and the short side rule. The separation rule
splits the sample into states of excess supply and excess demand. If a price change is positive at
the time point of the observation, then the observation is classified as being in an excess demand
state. Otherwise, it is assumed that it represents an excess supply state. The model is estimated
using full information maximum likelihood.

Dnt = X ′
d,ntβd + ud,nt,

Snt = X ′
s,ntβs + us,nt,

Qnt = min{Dnt, Snt},

∆Pnt ≥ 0 =⇒ Dnt ≥ Snt.

Disequilibrium model with stochastic price dynamics (diseq_stochastic_adjustment): The
disequilibrium model with stochastic price adjustment is described by a system of four equations.
Three of of them form a stochastic linear system of market equations equations coupled with a
stochastic price evolution equation. The fourth equation is the short side rule. In contrast to the
deterministic counterpart, the model does not impose any separation rule on the sample. It is
estimated using full information maximum likelihood.

Dnt = X ′
d,ntβd + Pntαd + ud,nt,

Snt = X ′
s,ntβs + Pntαs + us,nt,

Qnt = min{Dnt, Snt},

∆Pnt =
1

γ
(Dnt − Snt) +X ′

p,ntβp + up,nt.

Equilibrium model (equilibrium_model): The equilibrium model consists of thee equations.
The demand, the supply and the market clearing equations. The model can be estimated using
both full information maximum likelihood and two-stage least squares.

Dnt = X ′
d,ntβd + Pntαd + ud,nt,

Snt = X ′
s,ntβs + Pntαs + us,nt,

Qnt = Dnt = Snt.

A necessary identification condition is that there is at least one control that is exclusively part of
the demand and one control that is exclusively part of the supply equation. In the first stage of
the two-stage least square estimation, prices are regressed on remaining controls from both the
demand and supply equations. In the second stage, the demand and supply equation is estimated
using the fitted prices instead of the observed.

market_quantities 19

Slots

logger Logger object.

subject_columns Column name for the subject identifier.

time_column Column name for the time point identifier.

explanatory_columns Vector of explanatory column names for all model’s equations.

data_columns Vector of model’s data column names. This is the union of the quantity, price and
explanatory columns.

columns Vector of primary key and data column names for all model’s equations.

data Model data frame.

model_name Model name string.

market_type Market type string.

system Model’s system of equations.

See Also

model_initialization

market_quantities Estimated market quantities

Description

Estimated market quantities

Usage

demanded_quantities(fit, model, parameters)

S4 method for signature 'missing,market_model,ANY'
demanded_quantities(model, parameters)

supplied_quantities(fit, model, parameters)

S4 method for signature 'missing,market_model,ANY'
supplied_quantities(model, parameters)

S4 method for signature 'market_fit,missing,missing'
demanded_quantities(fit)

S4 method for signature 'market_fit,missing,missing'
supplied_quantities(fit)

20 market_simulation

Arguments

fit A fitted model object.
model A model object.
parameters A vector of model’s parameters.

Details

Calculates and returns the estimated demanded or supplied quantities for each observation at the
passed vector of parameters.

Value

A vector with the market quantities evaluated at the given parameter vector.

Functions

• demanded_quantities(): Estimated demanded quantities.
• supplied_quantities(): Estimated supplied quantities.

Examples

fit <- diseq_basic(
HS | RM | ID | TREND ~
RM + TREND + W + CSHS + L1RM + L2RM + MONTH |

RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
fair_houses(),
correlated_shocks = FALSE

)

get estimated demanded and supplied quantities
head(cbind(

demanded_quantities(fit),
supplied_quantities(fit)

))

market_simulation Market model simulation

Description

Market data and model simulation functionality based on the data generating process induced by
the market model specifications.

simulate_data: Returns a data frame with simulated data from a generating process that
matches the passed model string. By default, the simulated observations of the controls are drawn
from a normal distribution.

simulate_model: Simulates a data frame based on the generating process of the passed model
and uses it to initialize a model object. Data are simulated using the simulate_data function.

market_simulation 21

Usage

simulate_data(
model_type_string,
nobs = NA_integer_,
tobs = NA_integer_,
alpha_d = NA_real_,
beta_d0 = NA_real_,
beta_d = NA_real_,
eta_d = NA_real_,
alpha_s = NA_real_,
beta_s0 = NA_real_,
beta_s = NA_real_,
eta_s = NA_real_,
gamma = NA_real_,
beta_p0 = NA_real_,
beta_p = NA_real_,
sigma_d = 1,
sigma_s = 1,
sigma_p = 1,
rho_ds = 0,
rho_dp = 0,
rho_sp = 0,
seed = NA_integer_,
price_generator = function(n) stats::rnorm(n = n),
control_generator = function(n) stats::rnorm(n = n),
verbose = 0

)

S4 method for signature 'ANY'
simulate_data(
model_type_string,
nobs = NA_integer_,
tobs = NA_integer_,
alpha_d = NA_real_,
beta_d0 = NA_real_,
beta_d = NA_real_,
eta_d = NA_real_,
alpha_s = NA_real_,
beta_s0 = NA_real_,
beta_s = NA_real_,
eta_s = NA_real_,
gamma = NA_real_,
beta_p0 = NA_real_,
beta_p = NA_real_,
sigma_d = 1,
sigma_s = 1,
sigma_p = 1,
rho_ds = 0,

22 market_simulation

rho_dp = 0,
rho_sp = 0,
seed = NA_integer_,
price_generator = function(n) stats::rnorm(n = n),
control_generator = function(n) stats::rnorm(n = n),
verbose = 0

)

simulate_model(
model_type_string,
simulation_parameters,
seed = NA,
verbose = 0,
correlated_shocks = TRUE

)

S4 method for signature 'ANY'
simulate_model(
model_type_string,
simulation_parameters,
seed = NA,
verbose = 0,
correlated_shocks = TRUE

)

Arguments

model_type_string

Model type. It should be among equilibrium_model, diseq_basic, diseq_directional,
diseq_deterministic_adjustment, and diseq_stochastic_adjustment.

nobs Number of simulated entities.

tobs Number of simulated dates.

alpha_d Price coefficient of demand.

beta_d0 Constant coefficient of demand.

beta_d Coefficients of exclusive demand controls.

eta_d Demand coefficients of common controls.

alpha_s Price coefficient of supply.

beta_s0 Constant coefficient of supply.

beta_s Coefficients of exclusive supply controls.

eta_s Supply coefficients of common controls.

gamma Price equation’s stability factor.

beta_p0 Price equation’s constant coefficient.

beta_p Price equation’s control coefficients.

sigma_d Demand shock’s standard deviation.

market_simulation 23

sigma_s Supply shock’s standard deviation.

sigma_p Price equation shock’s standard deviation.

rho_ds Demand and supply shocks’ correlation coefficient.

rho_dp Demand and price shocks’ correlation coefficient.

rho_sp Supply and price shocks’ correlation coefficient.

seed Pseudo random number generator seed.
price_generator

Pseudo random number generator callback for prices. The default generator is
N(0, 1).

control_generator

Pseudo random number generator callback for non-price controls. The default
generator is N(0, 1).

verbose Verbosity level.
simulation_parameters

List of parameters used in model simulation. See the simulate_data function
for details.

correlated_shocks

Should the model be estimated using correlated shocks?

Value

simulate_data: The simulated data.

simulate_model: The simulated model

.

Functions

• simulate_data(): Simulate model data.

• simulate_model(): Simulate model.

Examples

model <- simulate_model(
"diseq_stochastic_adjustment", list(
observed entities, observed time points
nobs = 500, tobs = 3,
demand coefficients
alpha_d = -0.1, beta_d0 = 9.8, beta_d = c(0.3, -0.2), eta_d = c(0.6, -0.1),
supply coefficients
alpha_s = 0.1, beta_s0 = 6.1, beta_s = c(0.9), eta_s = c(-0.5, 0.2),
price equation coefficients
gamma = 1.2, beta_p0 = 3.1, beta_p = c(0.8)

),
seed = 31

)

24 model_description

model_description Short model and market descriptions

Description

name: A unique identifying string for the model.

describe: A short (one-liner) description of the market model.

market_type: A market type string (equilibrium or disequilibrium) for a given model.

Usage

name(object)

describe(object)

market_type(object)

S4 method for signature 'market_model'
name(object)

S4 method for signature 'market_model'
describe(object)

S4 method for signature 'market_model'
market_type(object)

S4 method for signature 'market_fit'
name(object)

S4 method for signature 'market_fit'
describe(object)

S4 method for signature 'market_fit'
market_type(object)

Arguments

object A model object.

Value

name: The model’s name.

describe: The model’s description.

market_type: The model’s market type.

model_initialization 25

Functions

• name(): Model name

• describe(): Model description

• market_type(): Market type

Examples

initialize the equilibrium using the houses dataset
model <- new(

"diseq_basic", # model type
subject = ID, time = TREND, quantity = HS, price = RM,
demand = RM + TREND + W + CSHS + L1RM + L2RM + MONTH,
supply = RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
fair_houses()

)

model name
name(model)
model description
describe(model)
market type
market_type(model)

model_initialization Model initialization

Description

Model initialization

Usage

S4 method for signature 'diseq_basic'
initialize(
.Object,
quantity,
price,
demand,
supply,
subject,
time,
data,
correlated_shocks = TRUE,
verbose = 0

)

S4 method for signature 'diseq_deterministic_adjustment'

26 model_initialization

initialize(
.Object,
quantity,
price,
demand,
supply,
subject,
time,
data,
correlated_shocks = TRUE,
verbose = 0

)

S4 method for signature 'diseq_directional'
initialize(
.Object,
quantity,
price,
demand,
supply,
subject,
time,
data,
correlated_shocks = TRUE,
verbose = 0

)

S4 method for signature 'diseq_stochastic_adjustment'
initialize(
.Object,
quantity,
price,
demand,
supply,
price_dynamics,
subject,
time,
data,
correlated_shocks = TRUE,
verbose = 0

)

S4 method for signature 'equilibrium_model'
initialize(
.Object,
quantity,
price,
demand,

model_initialization 27

supply,
subject,
time,
data,
correlated_shocks = TRUE,
verbose = 0

)

Arguments

.Object The object to be Constructed.

quantity The quantity variable of the system.

price The price variable of the system.

demand A formula representation of the right hand side of the demand equation.

supply A formula representation of the right hand side of the supply equation.

subject The subject identifier of the data set.

time The time identifier of the data set.

data The data set.
correlated_shocks

Should the model be estimated using correlated shocks?

verbose Verbosity level.

price_dynamics A formula representation of the price equation.

Details

The following two subsections describe the common initialization steps of all market model classes.

Variable construction: The constructor prepares the model’s variables using the passed spec-
ifications. The specification variables are expected to be of type language. The right hand
side specifications of the system are expected to follow the syntax of formula. The construc-
tion of the model’s data uses the variables extracted by these specification. The demand vari-
ables are extracted by a formula that uses the quantity on the left hand side and the demand
on the right hand side of the formula. The supply variables are constructed by the quantity
and the supply inputs. In the case of the diseq_stochastic_adjustment model, the price dy-
namics’ variables are extracted using the price dynamics input. The price dynamics for the
diseq_stochastic_adjustment should contain only terms other than that of excess demand.
The excess demand term of the price equation is automatically generated by the constructor.

Data preparation: 1. If the passed data set contains rows with NA values, they are dropped. If
the verbosity level allows warnings, a warning is emitted reporting how many rows were dropped.
2. After dropping the rows, factor levels may be invalidated. If needed, the constructor readjusts
the factor variables by removing the unobserved levels. Factor indicators and interaction terms
are automatically created.
3. The primary key column is constructed by pasting the values of the columns of the subject and
time variables.

28 model_initialization

4. In the cases of the diseq_directional, diseq_deterministic_adjustment, and the diseq_stochastic_adjustment
models, a column with lagged prices is constructed. Since lagged prices are unavailable for the
observations of the first time point, these observations are dropped. If the verbosity level allows
the emission of information messages, the constructor prints the number of dropped observations.
5. In the cases of the diseq_directional and the diseq_stochastic_adjustment models, a
column with price differences is created.

Value

The initialized model.

Functions

• initialize(diseq_basic): Basic disequilibrium model base constructor

• initialize(diseq_deterministic_adjustment): Disequilibrium model with determinis-
tic price adjustment constructor

• initialize(diseq_directional): Directional disequilibrium model base constructor

• initialize(diseq_stochastic_adjustment): Disequilibrium model with stochastic price
adjustment constructor

• initialize(equilibrium_model): Equilibrium model constructor

Examples

simulated_data <- simulate_data(
"diseq_basic", 500, 3, # model type, observed entities, observed time points
-0.9, 8.9, c(0.3, -0.2), c(-0.03, -0.01), # demand coefficients
0.9, 6.2, c(0.03), c(-0.05, 0.02) # supply coefficients

)

initialize the model
model <- new(

"diseq_basic", # model type
subject = id, time = date, quantity = Q, price = P,
demand = P + Xd1 + Xd2 + X1 + X2, supply = P + Xs1 + X1 + X2,
simulated_data, # data
correlated_shocks = FALSE # use independent shocks

)

show(model)
simulated_data <- simulate_data(

model type, observed entities and time points
"diseq_deterministic_adjustment", 500, 3,
demand coefficients
-0.9, 8.9, c(0.03, -0.02), c(-0.03, -0.01),
supply coefficients
0.9, 4.2, c(0.03), c(0.05, 0.02),
price adjustment coefficient
1.4

)

model_initialization 29

initialize the model
model <- new(

"diseq_deterministic_adjustment", # model type
subject = id, time = date, quantity = Q, price = P,
demand = P + Xd1 + Xd2 + X1 + X2, supply = P + Xs1 + X1 + X2,
simulated_data, # data
correlated_shocks = TRUE # allow shocks to be correlated

)

show(model)

simulated_data <- simulate_data(
"diseq_directional", 500, 3, # model type, observed entities, observed time points
-0.2, 4.3, c(0.03, 0.02), c(0.03, 0.01), # demand coefficients
0.0, 4.0, c(0.03), c(0.05, 0.02) # supply coefficients

)

in the directional model prices cannot be included in both demand and supply
model <- new(

"diseq_directional", # model type
subject = id, time = date, quantity = Q, price = P,
demand = P + Xd1 + Xd2 + X1 + X2, supply = Xs1 + X1 + X2,
simulated_data, # data
correlated_shocks = TRUE # allow shocks to be correlated

)

show(model)

simulated_data <- simulate_data(
model type, observed entities and time points
"diseq_stochastic_adjustment", 500, 3,
demand coefficients
-0.1, 9.8, c(0.3, -0.2), c(0.6, 0.1),
supply coefficients
0.1, 7.1, c(0.9), c(-0.5, 0.2),
price adjustment coefficient
1.4, 3.1, c(0.8)

)

initialize the model
model <- new(

"diseq_stochastic_adjustment", # model type
subject = id, time = date, quantity = Q, price = P,
demand = P + Xd1 + Xd2 + X1 + X2, supply = P + Xs1 + X1 + X2,
price_dynamics = Xp1,
simulated_data, # data
correlated_shocks = TRUE # allow shocks to be correlated

)

show(model)
simulated_data <- simulate_data(

"equilibrium_model", 500, 3, # model type, observed entities and time points
-0.9, 14.9, c(0.3, -0.2), c(-0.03, -0.01), # demand coefficients

30 model_likelihoods

0.9, 3.2, c(0.3), c(0.5, 0.02) # supply coefficients
)

initialize the model
model <- new(

"equilibrium_model", # model type
subject = id, time = date, quantity = Q, price = P,
demand = P + Xd1 + Xd2 + X1 + X2, supply = P + Xs1 + X1 + X2,
simulated_data, # data
correlated_shocks = TRUE # allow shocks to be correlated

)

show(model)

model_likelihoods Model likelihoods and derivatives

Description

Methods that calculate the likelihoods, scores, gradients, and Hessians of market models. The
likelihood functions are based on Maddala and Nelson (1974) doi:10.2307/1914215. The likeli-
hoods, gradient, and Hessian expressions that the function uses are derived in Karapanagiotis (2020)
doi:10.2139/ssrn.3525622.

log_likelihood: Returns the log-likelihood. The function calculates the model’s log likelihood
by evaluating the log likelihood of each observation in the sample and summing the evaluation
results.

gradient: Returns the gradient of the log-likelihood evaluated at the passed parameters.

hessian: Returns the hessian of the log-likelihood evaluated at the passed parameters.

scores: It calculates the gradient of the likelihood at the given parameter point for each ob-
servation in the sample. It, therefore, returns an n x k matrix, where n denotes the number of
observations in the sample and k the number of estimated parameters. The ordering of the pa-
rameters is the same as the one that is used in the summary of the results. The method can be
called either using directly a fitted model object, or by separately providing a model object and a
parameter vector.

Usage

log_likelihood(object, parameters)

gradient(object, parameters)

hessian(object, parameters)

scores(object, parameters, fit)

https://doi.org/10.2307/1914215
https://doi.org/10.2139/ssrn.3525622

model_likelihoods 31

S4 method for signature 'diseq_basic'
log_likelihood(object, parameters)

S4 method for signature 'diseq_basic'
gradient(object, parameters)

S4 method for signature 'diseq_basic,ANY,ANY'
scores(object, parameters)

S4 method for signature 'diseq_deterministic_adjustment'
log_likelihood(object, parameters)

S4 method for signature 'diseq_deterministic_adjustment'
gradient(object, parameters)

S4 method for signature 'diseq_deterministic_adjustment,ANY,ANY'
scores(object, parameters)

S4 method for signature 'diseq_directional'
log_likelihood(object, parameters)

S4 method for signature 'diseq_directional'
gradient(object, parameters)

S4 method for signature 'diseq_directional,ANY,ANY'
scores(object, parameters)

S4 method for signature 'diseq_stochastic_adjustment'
log_likelihood(object, parameters)

S4 method for signature 'diseq_stochastic_adjustment'
gradient(object, parameters)

S4 method for signature 'diseq_stochastic_adjustment,ANY,ANY'
scores(object, parameters)

S4 method for signature 'equilibrium_model'
log_likelihood(object, parameters)

S4 method for signature 'equilibrium_model'
gradient(object, parameters)

S4 method for signature 'equilibrium_model,ANY,ANY'
scores(object, parameters)

S4 method for signature 'diseq_basic'
hessian(object, parameters)

32 model_likelihoods

S4 method for signature 'diseq_directional'
hessian(object, parameters)

S4 method for signature 'missing,missing,market_fit'
scores(fit)

Arguments

object A model object.

parameters A vector of parameters at which the function is to be evaluated.

fit A fitted model object.

Value

log_likelihood: The sum of the likelihoods evaluated for each observation.

gradient: The log likelihood’s gradient.

hessian: The log likelihood’s hessian.

scores: The score matrix.

Examples

model <- simulate_model(
"diseq_basic", list(

observed entities, observed time points
nobs = 500, tobs = 3,
demand coefficients
alpha_d = -0.9, beta_d0 = 8.9, beta_d = c(0.6), eta_d = c(-0.2),
supply coefficients
alpha_s = 0.9, beta_s0 = 7.9, beta_s = c(0.03, 1.2), eta_s = c(0.1)

),
seed = 7523

)

estimate the model object (BFGS is used by default)
fit <- estimate(model)

Calculate the score matrix
head(scores(model, coef(fit)))

ncoef 33

ncoef Number of coefficients

Description

Returns the number of model’s coefficients. This is the sum of demand, supply, price equation, and
the variance-covariance matrix coefficients.

Usage

ncoef(object)

S4 method for signature 'market_model'
ncoef(object)

S4 method for signature 'market_fit'
ncoef(object)

Arguments

object A model object.

Value

The number of model coefficients.

Examples

model <- new(
"diseq_basic", # model type
subject = ID, time = TREND, quantity = HS, price = RM,
demand = RM + TREND + W + CSHS + L1RM + L2RM + MONTH,
supply = RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
fair_houses()

)

get the number of model coefficients
ncoef(model)

34 nobs,market_model-method

nobs,market_model-method

Number of observations

Description

Returns the number of observations that are used by an initialized model. If there are missing
values, the number of used observations may differ from the numbers of observations of the data
set that was passed to the model’s initialization.

Usage

S4 method for signature 'market_model'
nobs(object)

S4 method for signature 'market_fit'
nobs(object)

Arguments

object A model object.

Value

The number of used observations.

Examples

model <- new(
"diseq_basic", # model type
subject = ID, time = TREND, quantity = HS, price = RM,
demand = RM + TREND + W + CSHS + L1RM + L2RM + MONTH,
supply = RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
fair_houses()

)

get the number observations
nobs(model)

plot,market_fit-method 35

plot,market_fit-method

Plots the fitted model

Description

Displays a graphical illustration of the passed fitted model object. The function creates a scatter
plot of quantity-price pairs for the records corresponding to the given subject and time identifiers.
Then, it plots the average fitted demand and supply quantities for the same data subset letting prices
vary between the minimum and maximum price points observed in the data subset.

Usage

S4 method for signature 'market_fit'
plot(x, subject, time, show_scatter = TRUE, ...)

Arguments

x A model object.

subject A vector of subject identifiers to be used in the visualization.

time A vector of time identifiers to be used in the visualization.

show_scatter Should the price-quantity scatter be plotted? By default TRUE.

... Additional parameters to be used for styling the figure. Specifically xlab, ylab,
and main are currently handled by the function.

Details

If the subject argument is missing, all subjects are used. If the time argument is missing, all
time points are used. The scatter plot of the quantity-price data can be suppressed by setting
show_scatter = FALSE.

Value

No return value, called for for side effects (visualization).

Examples

estimate a model using the houses dataset
fit <- diseq_deterministic_adjustment(

HS | RM | ID | TREND ~
RM + TREND + W + CSHS + L1RM + L2RM + MONTH |

RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
fair_houses(),
correlated_shocks = FALSE,
estimation_options = list(control = list(maxit = 1e+6))

)

36 shortage_analysis

show model's illustration plot
plot(fit)

shortage_analysis Analysis of shortages

Description

The following methods offer functionality for analyzing estimated shortages of the market models.
The methods can be called either using directly a fitted model object, or by separately providing a
model object and a parameter vector.

Usage

shortages(fit, model, parameters)

normalized_shortages(fit, model, parameters)

relative_shortages(fit, model, parameters)

shortage_probabilities(fit, model, parameters)

shortage_indicators(fit, model, parameters)

shortage_standard_deviation(fit, model, parameters)

S4 method for signature 'missing,market_model,ANY'
shortages(model, parameters)

S4 method for signature 'missing,market_model,ANY'
normalized_shortages(model, parameters)

S4 method for signature 'missing,market_model,ANY'
relative_shortages(model, parameters)

S4 method for signature 'missing,market_model,ANY'
shortage_probabilities(model, parameters)

S4 method for signature 'missing,market_model,ANY'
shortage_indicators(model, parameters)

S4 method for signature 'missing,market_model,ANY'
shortage_standard_deviation(model, parameters)

S4 method for signature 'missing,diseq_stochastic_adjustment,ANY'
shortage_standard_deviation(model, parameters)

shortage_analysis 37

S4 method for signature 'market_fit,missing,missing'
shortages(fit)

S4 method for signature 'market_fit,missing,missing'
normalized_shortages(fit)

S4 method for signature 'market_fit,missing,missing'
relative_shortages(fit)

S4 method for signature 'market_fit,missing,missing'
shortage_probabilities(fit)

S4 method for signature 'market_fit,missing,missing'
shortage_indicators(fit)

S4 method for signature 'market_fit,missing,missing'
shortage_standard_deviation(fit)

Arguments

fit A fitted model object.

model A market model object.

parameters A vector of parameters at which the shortages are evaluated.

Details

shortages: Returns the predicted shortages at a given point.

normalized_shortages: Returns the shortages normalized by the variance of the difference of
the shocks at a given point.

relative_shortages: Returns the shortages normalized by the supplied quantity at a given point.

shortage_probabilities: Returns the shortage probabilities, i.e. the probabilities of an observa-
tion coming from an excess demand state, at the given point.

shortage_indicators: Returns a vector of indicators (Boolean values) for each observation. An
element of the vector is TRUE for observations at which the estimated shortages are non-negative,
i.e. the market at in an excess demand state. The remaining elements are FALSE. The evaluation
of the shortages is performed using the passed parameter vector.

shortage_standard_deviation: Returns the standard deviation of excess demand.

Value

A vector with the (estimated) shortages.

38 show,market_model-method

Functions

• shortages(): Shortages.

• normalized_shortages(): Normalized shortages.

• relative_shortages(): Relative shortages.

• shortage_probabilities(): Shortage probabilities.

• shortage_indicators(): Shortage indicators.

• shortage_standard_deviation(): Shortage standard deviation.

Examples

estimate a model using the houses dataset
fit <- diseq_deterministic_adjustment(

HS | RM | ID | TREND ~
RM + TREND + W + CSHS + L1RM + L2RM + MONTH |

RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
fair_houses(),
correlated_shocks = FALSE,
estimation_options = list(control = list(maxit = 1e+5))

)

get estimated normalized shortages
head(normalized_shortages(fit))

get estimated relative shortages
head(relative_shortages(fit))

get the estimated shortage probabilities
head(shortage_probabilities(fit))

get the estimated shortage indicators
head(shortage_indicators(fit))

get the estimated shortages
head(shortages(fit))

get the estimated shortage standard deviation
shortage_standard_deviation(fit)

show,market_model-method

Prints a short description of the model

Description

Sends basic information about the model to standard output.

single_call_estimation 39

Usage

S4 method for signature 'market_model'
show(object)

S4 method for signature 'market_fit'
show(object)

Arguments

object A model object.

Value

No return value, called for side effects (print basic model information).

Examples

fit <- equilibrium_model(
HS | RM | ID | TREND ~

RM + TREND + W + CSHS + L1RM + L2RM + MONTH |
RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,

fair_houses(),
estimation_options = list(method = "2SLS")

)

print model information
show(fit@model)

print fit information
show(fit)

single_call_estimation

Single call estimation

Description

Single call estimation

Usage

diseq_basic(
specification,
data,
correlated_shocks = TRUE,
verbose = 0,
estimation_options = list()

40 single_call_estimation

)

S4 method for signature 'formula'
diseq_basic(
specification,
data,
correlated_shocks = TRUE,
verbose = 0,
estimation_options = list()

)

diseq_deterministic_adjustment(
specification,
data,
correlated_shocks = TRUE,
verbose = 0,
estimation_options = list()

)

S4 method for signature 'formula'
diseq_deterministic_adjustment(
specification,
data,
correlated_shocks = TRUE,
verbose = 0,
estimation_options = list()

)

diseq_directional(
specification,
data,
correlated_shocks = TRUE,
verbose = 0,
estimation_options = list()

)

S4 method for signature 'formula'
diseq_directional(
specification,
data,
correlated_shocks = TRUE,
verbose = 0,
estimation_options = list()

)

diseq_stochastic_adjustment(
specification,
data,

single_call_estimation 41

correlated_shocks = TRUE,
verbose = 0,
estimation_options = list()

)

S4 method for signature 'formula'
diseq_stochastic_adjustment(
specification,
data,
correlated_shocks = TRUE,
verbose = 0,
estimation_options = list()

)

equilibrium_model(
specification,
data,
correlated_shocks = TRUE,
verbose = 0,
estimation_options = list()

)

S4 method for signature 'formula'
equilibrium_model(
specification,
data,
correlated_shocks = TRUE,
verbose = 0,
estimation_options = list()

)

Arguments

specification The model’s formula.

data The data to be used with the model.
correlated_shocks

Should the model’s system entail correlated shocks? By default the argument is
set to TRUE.

verbose The verbosity with which operations on the model print messages. By default
the value is set to 0, which prints only errors.

estimation_options

A list with options to be used in the estimation call. See estimate for the
available options.

Details

The functions of this section combine model initialization and estimation into a single call. They
also provide a less verbose interface to the functionality of the package. The functions expect a for-

42 single_call_estimation

mula following the specification described in formula, a dataset, and optionally further initialization
and estimation options (see model initialization and model estimation respectively).

Estimation options are expected to be given in the argument estimation_options in a form of
a list. The list names should correspond to variables of the estimate function. As a result,
optimization options, which are customized using the control argument of estimate can be passed
as an element of estimation_options.

Each of these functions parses the given formula, initializes the model specified by the function’s
name, fits the model to the given data using the estimation options and returns fitted model.

Value

The fitted model.

Functions

• diseq_basic(): Basic disequilibrium model.

• diseq_deterministic_adjustment(): Disequilibrium model with deterministic price ad-
justments.

• diseq_directional(): Directional disequilibrium model.

• diseq_stochastic_adjustment(): Disequilibrium model with stochastic price adjustments.

• equilibrium_model(): Equilibrium model

Examples

An example of estimating the equilibrium model
eq <- equilibrium_model(

HS | RM | ID | TREND ~ RM + TREND + W + CSHS + L1RM + L2RM + MONTH |
RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,

fair_houses(), estimation_options = list(control = list(maxit = 5000))
)

An example of estimating the deterministic adjustment model
da <- diseq_deterministic_adjustment(

HS | RM | ID | TREND ~ RM + TREND + W + CSHS + L1RM + L2RM + MONTH |
RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,

fair_houses(),
verbose = 2,
estimation_options = list(control = list(maxit = 5000))

)

An example of estimating the directional model
dr <- diseq_directional(

HS | RM | ID | TREND ~ TREND + W + CSHS + L1RM + L2RM |
RM + TREND + W + MA6DSF + MA3DHF + MONTH,

fair_houses(), estimation_options = list(
method = "Nelder-Mead", control = list(maxit = 5000)

)
)

summary 43

An example of estimating the basic model
start <- coef(eq)
start <- start[names(start) != "RHO"]
bs <- diseq_basic(

HS | RM | ID | TREND ~ RM + TREND + W + CSHS + L1RM + L2RM + MONTH |
RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,

fair_houses(), verbose = 2, correlated_shocks = FALSE,
estimation_options = list(

start = start,
control = list(maxit = 5000)

)
)

An example of estimating the stochastic adjustment model
sa <- diseq_stochastic_adjustment(

HS | RM | ID | TREND ~ RM + TREND + W + CSHS + MONTH |
RM + TREND + W + L1RM + L2RM + MA6DSF + MA3DHF + MONTH |
TREND + L2RM + L3RM,

fair_houses() |> dplyr::mutate(L3RM = dplyr::lag(RM, 3)),
correlated_shocks = FALSE,
estimation_options = list(

control = list(maxit = 5000), standard_errors = c("W")
)

)

summary Model and fit summaries

Description

Methods that summarize models and their estimates.

market_model: Prints basic information about the passed model object. In addition to the output
of the show method, summary prints

• the number of observations,

• the number of observations in each equation for models with sample separation, and

• various categories of variables.

market_fit: Prints basic information about the passed model fit. In addition to the output of the
model’s summary method, the function prints basic estimation results. For a maximum likelihood
estimation, the function prints

• the used optimization method,

• the maximum number of allowed iterations,

• the relative convergence tolerance (see optim),

• the convergence status,

• the initializing parameter values,

44 summary

• the estimated coefficients, their standard errors, Z values, and P values, and

• −2 logL evaluated at the maximum.

For a linear estimation of the equilibrium system, the function prints

• the used method,

• the summary of the first stage regression,

• the summary of the demand (second stage) regression, and

• the summary of the supply (second stage) regression.

Usage

S4 method for signature 'market_model'
summary(object)

S4 method for signature 'market_fit'
summary(object)

Arguments

object An object to be summarized.

Value

No return value, called for for side effects (print summary).

Methods (by class)

• summary(market_model): Summarizes the model.

• summary(market_fit): Summarizes the model’s fit.

Examples

model <- simulate_model(
"diseq_stochastic_adjustment", list(
observed entities, observed time points
nobs = 500, tobs = 3,
demand coefficients
alpha_d = -0.1, beta_d0 = 9.8, beta_d = c(0.3, -0.2), eta_d = c(0.6, -0.1),
supply coefficients
alpha_s = 0.1, beta_s0 = 5.1, beta_s = c(0.9), eta_s = c(-0.5, 0.2),
price equation coefficients
gamma = 1.2, beta_p0 = 3.1, beta_p = c(0.8)

),
seed = 556

)

print model summary
summary(model)

vcov,market_fit-method 45

estimate
fit <- estimate(model)

print estimation summary
summary(fit)

vcov,market_fit-method

Variance-covariance matrix for a fitted market model

Description

Returns the variance-covariance matrix of the estimated coefficients for the fitted model. Specializes
the vcov function for fitted market models.

Usage

S4 method for signature 'market_fit'
vcov(object)

Arguments

object A fitted model object.

Value

A matrix of covariances for the estimated model coefficients.

Examples

estimate a model using the houses dataset
fit <- diseq_deterministic_adjustment(

HS | RM | ID | TREND ~
RM + TREND + W + CSHS + L1RM + L2RM + MONTH |

RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
fair_houses(),
correlated_shocks = FALSE,
estimation_options = list(control = list(maxit = 1e+6))

)

access the variance-covariance matrix
head(vcov(fit))

Index

∗ datasets
houses, 8

aggregate_demand (market_aggregation),
13

aggregate_demand,market_fit,missing,missing-method
(market_aggregation), 13

aggregate_demand,missing,market_model,ANY-method
(market_aggregation), 13

aggregate_supply (market_aggregation),
13

aggregate_supply,market_fit,missing,missing-method
(market_aggregation), 13

aggregate_supply,missing,market_model,ANY-method
(market_aggregation), 13

coef, 3
coef,market_fit-method (coef), 3
coefficients,market_fit-method (coef), 3

demand_descriptives
(market_descriptives), 14

demand_descriptives,market_model-method
(market_descriptives), 14

demanded_quantities, 14
demanded_quantities

(market_quantities), 19
demanded_quantities,market_fit,missing,missing-method

(market_quantities), 19
demanded_quantities,missing,market_model,ANY-method

(market_quantities), 19
describe (model_description), 24
describe,market_fit-method

(model_description), 24
describe,market_model-method

(model_description), 24
diseq_basic, 16
diseq_basic (single_call_estimation), 39
diseq_basic,formula-method

(single_call_estimation), 39

diseq_basic-class (market_models), 17
diseq_deterministic_adjustment, 28
diseq_deterministic_adjustment

(single_call_estimation), 39
diseq_deterministic_adjustment,formula-method

(single_call_estimation), 39
diseq_deterministic_adjustment-class

(market_models), 17
diseq_directional, 17, 28
diseq_directional

(single_call_estimation), 39
diseq_directional,formula-method

(single_call_estimation), 39
diseq_directional-class

(market_models), 17
diseq_stochastic_adjustment, 7, 27, 28
diseq_stochastic_adjustment

(single_call_estimation), 39
diseq_stochastic_adjustment,formula-method

(single_call_estimation), 39
diseq_stochastic_adjustment-class

(market_models), 17
disequilibrium_model-class

(market_models), 17

equilibrium_model, 4, 16
equilibrium_model

(single_call_estimation), 39
equilibrium_model,formula-method

(single_call_estimation), 39
equilibrium_model-class

(market_models), 17
estimate, 4, 41, 42
estimate,equilibrium_model-method

(estimate), 4
estimate,market_model-method

(estimate), 4

fair_houses (houses), 8
formula, 27, 42

46

INDEX 47

formula,market_model-method, 6

gradient (model_likelihoods), 30
gradient,diseq_basic-method

(model_likelihoods), 30
gradient,diseq_deterministic_adjustment-method

(model_likelihoods), 30
gradient,diseq_directional-method

(model_likelihoods), 30
gradient,diseq_stochastic_adjustment-method

(model_likelihoods), 30
gradient,equilibrium_model-method

(model_likelihoods), 30

hessian (model_likelihoods), 30
hessian,diseq_basic-method

(model_likelihoods), 30
hessian,diseq_directional-method

(model_likelihoods), 30
houses, 8, 8

initialize,diseq_basic-method
(model_initialization), 25

initialize,diseq_deterministic_adjustment-method
(model_initialization), 25

initialize,diseq_directional-method
(model_initialization), 25

initialize,diseq_stochastic_adjustment-method
(model_initialization), 25

initialize,equilibrium_model-method
(model_initialization), 25

list, 42
lm, 4, 5, 16
log_likelihood (model_likelihoods), 30
log_likelihood,diseq_basic-method

(model_likelihoods), 30
log_likelihood,diseq_deterministic_adjustment-method

(model_likelihoods), 30
log_likelihood,diseq_directional-method

(model_likelihoods), 30
log_likelihood,diseq_stochastic_adjustment-method

(model_likelihoods), 30
log_likelihood,equilibrium_model-method

(model_likelihoods), 30
logLik, 10, 16
logLik,market_fit-method

(logLik.market_fit), 10
logLik.market_fit, 10

marginal_effects, 11
market model classes, 7
market_aggregation, 13
market_descriptives, 14
market_fit-class, 16
market_model_formula

(formula,market_model-method),
6

market_models, 16, 17
market_quantities, 19
market_simulation, 20
market_type (model_description), 24
market_type,market_fit-method

(model_description), 24
market_type,market_model-method

(model_description), 24
model estimation, 42
model initialization, 42
model_description, 24
model_initialization, 19, 25
model_likelihoods, 30

name (model_description), 24
name,market_fit-method

(model_description), 24
name,market_model-method

(model_description), 24
ncoef, 33
ncoef,market_fit-method (ncoef), 33
ncoef,market_model-method (ncoef), 33
nobs,market_fit-method

(nobs,market_model-method), 34
nobs,market_model-method, 34
normalized_shortages

(shortage_analysis), 36
normalized_shortages,market_fit,missing,missing-method

(shortage_analysis), 36
normalized_shortages,missing,market_model,ANY-method

(shortage_analysis), 36

optim, 4, 5, 16, 43

plot, 16
plot,market_fit-method, 35

relative_shortages (shortage_analysis),
36

relative_shortages,market_fit,missing,missing-method
(shortage_analysis), 36

48 INDEX

relative_shortages,missing,market_model,ANY-method
(shortage_analysis), 36

scores (model_likelihoods), 30
scores,diseq_basic,ANY,ANY-method

(model_likelihoods), 30
scores,diseq_deterministic_adjustment,ANY,ANY-method

(model_likelihoods), 30
scores,diseq_directional,ANY,ANY-method

(model_likelihoods), 30
scores,diseq_stochastic_adjustment,ANY,ANY-method

(model_likelihoods), 30
scores,equilibrium_model,ANY,ANY-method

(model_likelihoods), 30
scores,missing,missing,market_fit-method

(model_likelihoods), 30
shortage_analysis, 36
shortage_indicators

(shortage_analysis), 36
shortage_indicators,market_fit,missing,missing-method

(shortage_analysis), 36
shortage_indicators,missing,market_model,ANY-method

(shortage_analysis), 36
shortage_marginal (marginal_effects), 11
shortage_marginal,market_fit,ANY,missing,missing-method

(marginal_effects), 11
shortage_marginal,missing,ANY,market_model,ANY-method

(marginal_effects), 11
shortage_probabilities

(shortage_analysis), 36
shortage_probabilities,market_fit,missing,missing-method

(shortage_analysis), 36
shortage_probabilities,missing,market_model,ANY-method

(shortage_analysis), 36
shortage_probability_marginal

(marginal_effects), 11
shortage_probability_marginal,market_fit,ANY,ANY,missing,missing-method

(marginal_effects), 11
shortage_probability_marginal,missing,ANY,ANY,market_model,ANY-method

(marginal_effects), 11
shortage_standard_deviation

(shortage_analysis), 36
shortage_standard_deviation,market_fit,missing,missing-method

(shortage_analysis), 36
shortage_standard_deviation,missing,diseq_stochastic_adjustment,ANY-method

(shortage_analysis), 36
shortage_standard_deviation,missing,market_model,ANY-method

(shortage_analysis), 36
shortages (shortage_analysis), 36

shortages,market_fit,missing,missing-method
(shortage_analysis), 36

shortages,missing,market_model,ANY-method
(shortage_analysis), 36

show, 43
show,market_fit-method

(show,market_model-method), 38
show,market_model-method, 38
simulate_data, 20, 23
simulate_data (market_simulation), 20
simulate_data,ANY-method

(market_simulation), 20
simulate_model (market_simulation), 20
simulate_model,ANY-method

(market_simulation), 20
single_call_estimation, 39
summary, 16, 43
summary,market_fit-method (summary), 43
summary,market_model-method (summary),

43
supplied_quantities, 14
supplied_quantities

(market_quantities), 19
supplied_quantities,market_fit,missing,missing-method

(market_quantities), 19
supplied_quantities,missing,market_model,ANY-method

(market_quantities), 19
supply_descriptives

(market_descriptives), 14
supply_descriptives,market_model-method

(market_descriptives), 14

vcov, 45
vcov,market_fit-method, 45

	coef
	estimate
	formula,market_model-method
	houses
	logLik.market_fit
	marginal_effects
	market_aggregation
	market_descriptives
	market_fit-class
	market_models
	market_quantities
	market_simulation
	model_description
	model_initialization
	model_likelihoods
	ncoef
	nobs,market_model-method
	plot,market_fit-method
	shortage_analysis
	show,market_model-method
	single_call_estimation
	summary
	vcov,market_fit-method
	Index

