
Package: mappeR (via r-universe)
October 17, 2024

Type Package

Title Construct and Visualize TDA Mapper Graphs

Description Topological data analysis (TDA) is a method of data
analysis that uses techniques from topology to analyze
high-dimensional data. Here we implement Mapper, an algorithm
from this area developed by Singh, Mémoli and Carlsson (2007)
which generalizes the concept of a Reeb graph
<https://en.wikipedia.org/wiki/Reeb_graph>. The output graph is
able to be visualized in R using 'igraph' or using a free
network analysis software called 'Cytoscape', available for
download from at <https://cytoscape.org/>.

License MIT + file LICENSE

URL https://github.com/Uiowa-Applied-Topology/mappeR

BugReports https://github.com/Uiowa-Applied-Topology/mappeR/issues

Version 1.1.0

Encoding UTF-8

Imports fastcluster, grDevices, igraph, stats, utils

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

RoxygenNote 7.3.2

NeedsCompilation no

Author George Clare Kennedy [aut, cre]

Maintainer George Clare Kennedy <george-clarekennedy@uiowa.edu>

Repository CRAN

Date/Publication 2024-10-16 05:30:02 UTC

Contents
check_in_interval . 2
compute_tightness . 3

1

https://en.wikipedia.org/wiki/Reeb_graph
https://cytoscape.org/
https://github.com/Uiowa-Applied-Topology/mappeR
https://github.com/Uiowa-Applied-Topology/mappeR/issues

2 check_in_interval

convert_to_clusters . 4
create_1D_mapper_object . 4
create_balls . 5
create_ball_mapper_object . 6
create_bins . 7
create_clusterball_mapper_object . 7
create_mapper_object . 8
create_single_bin . 9
create_width_balanced_cover . 10
cut_dendrogram . 11
eccentricity_filter . 11
get_bin_vector . 12
get_clustered_data . 12
get_clusters . 13
get_cluster_sizes . 13
get_cluster_tightness_vector . 14
get_edgelist_from_overlaps . 14
get_edge_weights . 15
get_overlaps . 15
get_single_linkage_clusters . 16
get_tallest_branch . 16
is_in_ball . 17
mapper_object_to_igraph . 17
next_triangular . 18
process_dendrograms . 18
run_cluster_machine . 19
run_mapper . 19
run_slink . 20
subset_dists . 20

Index 21

check_in_interval Get a tester function for an interval.

Description

Get a tester function for an interval.

Usage

check_in_interval(endpoints)

Arguments

endpoints A vector of interval endpoints, namely a left and a right. Must be in order.

compute_tightness 3

Value

A function that eats a data point and outputs TRUE if the datapoint is in the interval and FALSE if
not.

compute_tightness Compute dispersion of a single cluster

Description

Compute dispersion of a single cluster

Usage

compute_tightness(dists, cluster)

Arguments

dists A distance matrix for points in the cluster.

cluster A list containing named vectors, whose names are data point names and whose
values are cluster labels

Value

A real number in (0,∞) representing a measure of dispersion of a cluster. This method finds the
medoid of the input data set, the point with the smallest sum of distances to all other points, and
returns that sum divided by the largest distance from the medoid to another point. Formally, we say
the tightness τ of a cluster C is given by

τ(C) =
1

max
xi∈C,i̸=j

dist(xi, xj)

∑
i

dist(xi, xj)

where

xj = arg min
xj∈C

∑
xi∈C,i ̸=j

dist(xi, xj)

A smaller value indicates a tighter cluster based on this metric.

4 create_1D_mapper_object

convert_to_clusters The easiest clustering method

Description

The easiest clustering method

Usage

convert_to_clusters(bins)

Arguments

bins A list of bins, each containing names of data from some data frame.

Value

A named vector whose names are data point names and whose values are cluster labels

create_1D_mapper_object

Run 1D mapper

Description

Run mapper using a one-dimensional filter, a cover of intervals, and a clustering algorithm.

Usage

create_1D_mapper_object(
data,
dists,
filtered_data,
cover,
clustering_method = "single"

)

Arguments

data A data frame.

dists A distance matrix for the data frame.

filtered_data The result of a function applied to the data frame; there should be one row per
observation in the original data frame.

cover A 2D array of interval left and right endpoints.
clustering_method

Your favorite clustering algorithm.

create_balls 5

Value

A list of two data frames, one with node data containing bin membership, data points per cluster,
and cluster dispersion, and one with edge data containing sources, targets, and weights representing
overlap strength.

Examples

data = data.frame(x = sapply(1:100, function(x) cos(x)), y = sapply(1:100, function(x) sin(x)))
projx = data$x

num_bins = 10
percent_overlap = 25

cover = create_width_balanced_cover(min(projx), max(projx), num_bins, percent_overlap)

create_1D_mapper_object(data, dist(data), projx, cover, "single")

create_balls Make a cover of balls

Description

Make a cover of balls

Usage

create_balls(data, dists, eps)

Arguments

data A data frame.

dists A distance matrix for the data frame.

eps A positive real number.

Value

A list of vectors of data point names, one list element per ball. The output is such that every data
point is contained in a ball of radius ε, and no ball center is contained in more than one ball. The
centers are datapoints themselves.

Examples

num_points = 5000

P.data = data.frame(
x = sapply(1:num_points, function(x)
sin(x) * 10) + rnorm(num_points, 0, 0.1),

y = sapply(1:num_points, function(x)

6 create_ball_mapper_object

cos(x) ^ 2 * sin(x) * 10) + rnorm(num_points, 0, 0.1),
z = sapply(1:num_points, function(x)

10 * sin(x) ^ 2 * cos(x)) + rnorm(num_points, 0, 0.1)
)

P.dist = dist(P.data)
balls = create_balls(data = P.data, dists = P.dist, eps = .25)

create_ball_mapper_object

Run mapper using a trivial filter, a cover of balls, and no clustering
algorithm.

Description

Run mapper using an ε-net cover (greedily generated) and the 2D inclusion function as a filter.

Usage

create_ball_mapper_object(data, dists, eps)

Arguments

data A data frame.

dists A distance matrix for the data frame.

eps A positive real number for your desired ball radius.

Value

A list of two data frames, one with node data containing ball size, data points per ball, ball tightness,
and one with edge data containing sources, targets, and weights representing overlap strength.

Examples

data = data.frame(x = sapply(1:100, function(x) cos(x)), y = sapply(1:100, function(x) sin(x)))
eps = .5

create_ball_mapper_object(data, dist(data), eps)

create_bins 7

create_bins Create bins of data

Description

Create bins of data

Usage

create_bins(data, filtered_data, cover_element_tests)

Arguments

data A data frame.
filtered_data The result of a function applied to the data frame; there should be one row per

observation in the original data frame.
cover_element_tests

A list of membership test functions for a list of cover elements. Each member
of cover_element_tests should be able to identify (return TRUE or FALSE) if a
single input data point is a member of the cover element it represents.

Value

A list of bins, each containing a vector of the names of the data inside it.

create_clusterball_mapper_object

Run clusterball mapper

Description

Run ball mapper, but additionally cluster within the balls. Can use two different distance matrices
to accomplish this.

Usage

create_clusterball_mapper_object(data, dist1, dist2, eps, clustering_method)

Arguments

data A data frame.
dist1 A distance matrix for the data frame; this will be used to ball the data.
dist2 Another distance matrix for the data frame; this will be used to cluster the data

after balling.
eps A positive real number for your desired ball radius.
clustering_method

Your favorite clustering algorithm.

8 create_mapper_object

Value

A list of two dataframes, one with node data containing bin membership, datapoints per cluster,
and cluster dispersion, and one with edge data containing sources, targets, and weights representing
overlap strength.

Examples

data = data.frame(x = sapply(1:100, function(x) cos(x)), y = sapply(1:100, function(x) sin(x)))
data.dists = dist(data)
eps = 1

create_clusterball_mapper_object(data, data.dists, data.dists, eps, "single")

create_mapper_object Create a mapper object

Description

Run the mapper algorithm on a data frame.

Usage

create_mapper_object(
data,
dists,
filtered_data,
cover_element_tests,
method = "none"

)

Arguments

data A data frame.

dists A distance matrix for the data frame.

filtered_data The result of a function applied to the data frame; there should be one row per
observation in the original data frame.

cover_element_tests

A list of membership test functions for a list of cover elements. Each member
of cover_element_tests should be able to identify (return TRUE or FALSE) if a
single input data point is a member of the cover element it represents.

method The desired clustering method to use. e.g., "single"

Value

A list of two dataframes, one with node data containing bin membership, datapoints per cluster,
and cluster dispersion, and one with edge data containing sources, targets, and weights representing
overlap strength.

create_single_bin 9

Examples

data = data.frame(x = sapply(1:100, function(x) cos(x)), y = sapply(1:100, function(x) sin(x)))
projx = data$x

num_bins = 10
percent_overlap = 25
xcover = create_width_balanced_cover(min(projx), max(projx), num_bins, percent_overlap)

check_in_interval <- function(endpoints) {
return(function(x) (endpoints[1] - x <= 0) & (endpoints[2] - x >= 0))

}

each of the "cover" elements will really be a function that checks if a data point lives in it
xcovercheck = apply(xcover, 1, check_in_interval)

build the mapper object
xmapper = create_mapper_object(

data = data,
dists = dist(data),
filtered_data = projx,
cover_element_tests = xcovercheck,
method = "single"

)

create_single_bin Create a bin of data

Description

Create a bin of data

Usage

create_single_bin(data, filtered_data, cover_element_test)

Arguments

data A data frame.

filtered_data The result of a function applied to the data frame; there should be one row per
observation in the original data frame.

cover_element_test

A membership test function for a cover element. It should identify (return TRUE
or FALSE) if a single input data point, is a member of the cover element it repre-
sents.

Value

A vector of names of points from the data frame, representing a bin.

10 create_width_balanced_cover

create_width_balanced_cover

Generate an overlapping cover of an interval

Description

This is a function that generates a cover of an interval [a, b] with some number of (possibly) over-
lapping, evenly spaced, identical width subintervals.

Usage

create_width_balanced_cover(min_val, max_val, num_bins, percent_overlap)

Arguments

min_val The left endpoint a. A real number.

max_val The right endpoint b. A real number.

num_bins The number of cover intervals with which to cover the interval. A positive inte-
ger.

percent_overlap

How much overlap desired between the cover intervals (the percent of the inter-
section of each interval with its immediate neighbor relative to its length, e.g.,
[0, 2] and [1, 3] would have 50% overlap). A real number between 0 and 100,
inclusive.

Value

A 2D numeric array.

• left_ends - The left endpoints of the cover intervals.

• right_ends - The right endpoints of the cover intervals.

Examples

create_width_balanced_cover(min_val=0, max_val=100, num_bins=10, percent_overlap=15)
create_width_balanced_cover(-11.5, 10.33, 100, 2)

cut_dendrogram 11

cut_dendrogram Cut a dendrogram

Description

Cut a dendrogram

Usage

cut_dendrogram(dend, threshold)

Arguments

dend A single dendrogram.

threshold A mininum tallest branch value.

Value

A named vector whose names are data point names and whose values are cluster labels. The number
of clusters is determined to be 1 if the tallest branch of the dendrogram is less than the threshold,
or if the index of dispersion (standard deviation squared divided by mean) of the branch heights is
too low. Otherwise, we cut at the longest branch of the dendrogram to determine the number of
clusters.

eccentricity_filter Compute eccentricity of data points

Description

Compute eccentricity of data points

Usage

eccentricity_filter(dists)

Arguments

dists A distance matrix associated to a data frame.

Value

A vector of centrality measures, calcuated per data point as the sum of its distances to every other
data point, divided by the number of points.

12 get_clustered_data

Examples

num_points = 5000

P.data = data.frame(
x = sapply(1:num_points, function(x)
sin(x) * 10) + rnorm(num_points, 0, 0.1),

y = sapply(1:num_points, function(x)
cos(x) ^ 2 * sin(x) * 10) + rnorm(num_points, 0, 0.1),

z = sapply(1:num_points, function(x)
10 * sin(x) ^ 2 * cos(x)) + rnorm(num_points, 0, 0.1)

)

P.dist = dist(P.data)
eccentricity = eccentricity_filter(P.dist)

get_bin_vector Recover bins

Description

Recover bins

Usage

get_bin_vector(binclust_data)

Arguments

binclust_data A list of bins, each containing named vectors whose names are those of data
points and whose values are cluster ids.

Value

A vector of integers equal in length to the number of clusters, whose members identify which bin
that cluster belongs to.

get_clustered_data Get data within a cluster

Description

Get data within a cluster

Usage

get_clustered_data(binclust_data)

get_clusters 13

Arguments

binclust_data A list of bins, each containing named vectors whose names are those of data
points and whose values are cluster ids

Value

A list of strings, each a comma separated list of the toString values of the data point names.

get_clusters Initate the clustering process

Description

This function processes the binned data and global distance matrix to return freshly clustered data.

Usage

get_clusters(bins, dists, method)

Arguments

bins A list containing "bins" of vectors of names of data points.

dists A distance matrix containing pairwise distances between named data points.

method A clue!

Value

A list containing named vectors (one per bin), whose names are data point names and whose values
are cluster labels

get_cluster_sizes Compute cluster sizes

Description

Compute cluster sizes

Usage

get_cluster_sizes(binclust_data)

Arguments

binclust_data A list of bins, each containing named vectors whose names are those of data
points and whose values are cluster

14 get_edgelist_from_overlaps

Value

A vector of integers representing the lengths of the clusters in the input data.

get_cluster_tightness_vector

Compute dispersion measures of a list of clusters

Description

Compute dispersion measures of a list of clusters

Usage

get_cluster_tightness_vector(dists, binclust_data)

Arguments

dists A distance matrix for the data points inside the input clusters
binclust_data A list of bins, each containing named vectors whose names are those of data

points and whose values are cluster ids

Value

A vector of real numbers in (0,∞) representing a measure of dispersion of a cluster, calculated
according to compute_tightness()

get_edgelist_from_overlaps

Obtain edge list from cluster intersections

Description

Obtain edge list from cluster intersections

Usage

get_edgelist_from_overlaps(overlaps, num_vertices)

Arguments

overlaps A named list of edges, whose elements contain the names of clusters in the
overlap represented by that edge; output of get_overlaps().

num_vertices The number of vertices in the graph.

Value

A 2D array representing the edge list of a graph.

get_edge_weights 15

get_edge_weights Calculate edge weights

Description

Calculate edge weights

Usage

get_edge_weights(overlap_lengths, cluster_sizes, edges)

Arguments

overlap_lengths

A named vector of cluster overlap lengths, obtained by calling length() on the
output from [get_overlaps()].

cluster_sizes A vector of cluster sizes.

edges A 2D array of source and target nodes, representing an edge list. Should be
ordered consistently with the overlap_lengths parameter.

Value

A vector of real numbers representing cluster overlap strength. This is calculated per edge by
dividing the number of data points in the overlap by the number of points in the cluster on either
end, and taking the maximum value.

get_overlaps Get cluster overlaps

Description

Get cluster overlaps

Usage

get_overlaps(binclust_data)

Arguments

binclust_data A list of bins, each containing named vectors whose names are those of data
points and whose values are cluster ids.

Value

A named list of edges, whose elements contain the names of clusters in the overlap represented by
that edge.

16 get_tallest_branch

get_single_linkage_clusters

Perform single linkage clustering and process dendrograms

Description

Perform single linkage clustering and process dendrograms

Usage

get_single_linkage_clusters(dist_mats)

Arguments

dist_mats A list of distance matrices to be used for clustering.

Value

A list containing named vectors (one per dendrogram), whose names are data point names and
whose values are cluster labels

get_tallest_branch Find the tallest branch of a dendrogram

Description

Find the tallest branch of a dendrogram

Usage

get_tallest_branch(dend)

Arguments

dend A single dendrogram.

Value

The height of the tallest branch (longest time between merge heights) of the input dendrogram.

is_in_ball 17

is_in_ball Get a tester function for a ball.

Description

Get a tester function for a ball.

Usage

is_in_ball(ball)

Arguments

ball A list of data points.

Value

A function that eats a data point and returns TRUE or FALSE depending if the point is in the ball
or not.

mapper_object_to_igraph

make igraph

Description

make igraph

Usage

mapper_object_to_igraph(mapperobject)

Arguments

mapperobject mapper object generated by mappeR

Value

an igraph object

18 process_dendrograms

Examples

data = data.frame(x = sapply(1:100, function(x) cos(x)), y = sapply(1:100, function(x) sin(x)))

projy = data$y

cover = create_width_balanced_cover(min(projy), max(projy), 10, 25)

mapperobj = create_1D_mapper_object(data, dist(data), data$y, cover, "single")

mapper_object_to_igraph(mapperobj)

next_triangular Find which triangular number you’re on

Description

Find which triangular number you’re on

Usage

next_triangular(x)

Arguments

x A positive integer.

Value

The index of the next greatest or equal triangular number to x.

process_dendrograms Cut many dendrograms

Description

Cut many dendrograms

Usage

process_dendrograms(dends)

Arguments

dends A list of dendrograms to be cut.

run_cluster_machine 19

Value

A list of named vectors (one per dendrogram) whose names are data point names and whose val-
ues are cluster labels. This function determines a global minimum threshold based on the longest
branches in all the input dendrograms, and uses that as a heuristic to gauge if the best number of
clusters is 1, or the value obtained by cutting the longest branch.

run_cluster_machine Ship data off to the clustering goblins

Description

This function tells the computer to look away for a second, so the goblins come and cluster your
data while it’s not watching.

Usage

run_cluster_machine(dist_mats, method)

Arguments

dist_mats A list of distance matrices of each bin that is to be clustered.

method A string that suggests how the goblins will handle the data.

Value

A list containing named vectors (one per bin), whose names are data point names and whose values
are cluster labels (within each bin)

run_mapper Construct mapper graph from data

Description

Construct mapper graph from data

Usage

run_mapper(binclust_data, dists, binning = TRUE)

Arguments

binclust_data A list of bins, each containing named vectors whose names are those of data
points and whose values are cluster ids

dists A distance matrix for the data that has been binned and clustered.

binning Whether the output dataframe should sort vertices into "bins" or not. Should be
true if using clustering, leave false otherwise

20 subset_dists

Value

A list of two dataframes, one with node data containing bin membership, datapoints per cluster,
and cluster dispersion, and one with edge data containing sources, targets, and weights representing
overlap strength.

run_slink Perform single linkage clustering

Description

Perform single linkage clustering

Usage

run_slink(dist)

Arguments

dist A distance matrix.

Value

A dendrogram generated by fastcluster.

subset_dists Subset a distance matrix

Description

Subset a distance matrix

Usage

subset_dists(bin, dists)

Arguments

bin A list of names of data points.

dists A distance matrix for data points in the bin, possibly including extra points.

Value

A distance matrix for only the data points in the input bin.

Index

check_in_interval, 2
compute_tightness, 3
compute_tightness(), 14
convert_to_clusters, 4
create_1D_mapper_object, 4
create_ball_mapper_object, 6
create_balls, 5
create_bins, 7
create_clusterball_mapper_object, 7
create_mapper_object, 8
create_single_bin, 9
create_width_balanced_cover, 10
cut_dendrogram, 11

eccentricity_filter, 11

get_bin_vector, 12
get_cluster_sizes, 13
get_cluster_tightness_vector, 14
get_clustered_data, 12
get_clusters, 13
get_edge_weights, 15
get_edgelist_from_overlaps, 14
get_overlaps, 15
get_overlaps(), 14
get_single_linkage_clusters, 16
get_tallest_branch, 16

is_in_ball, 17

length(), 15

mapper_object_to_igraph, 17

next_triangular, 18

process_dendrograms, 18

run_cluster_machine, 19
run_mapper, 19
run_slink, 20

subset_dists, 20

21

	check_in_interval
	compute_tightness
	convert_to_clusters
	create_1D_mapper_object
	create_balls
	create_ball_mapper_object
	create_bins
	create_clusterball_mapper_object
	create_mapper_object
	create_single_bin
	create_width_balanced_cover
	cut_dendrogram
	eccentricity_filter
	get_bin_vector
	get_clustered_data
	get_clusters
	get_cluster_sizes
	get_cluster_tightness_vector
	get_edgelist_from_overlaps
	get_edge_weights
	get_overlaps
	get_single_linkage_clusters
	get_tallest_branch
	is_in_ball
	mapper_object_to_igraph
	next_triangular
	process_dendrograms
	run_cluster_machine
	run_mapper
	run_slink
	subset_dists
	Index

