
Package: manymome (via r-universe)
December 9, 2024

Title Mediation, Moderation and Moderated-Mediation After Model
Fitting

Version 0.2.5

Description Computes indirect effects, conditional effects, and
conditional indirect effects in a structural equation model or
path model after model fitting, with no need to define any user
parameters or label any paths in the model syntax, using the
approach presented in Cheung and Cheung (2023)
<doi:10.3758/s13428-023-02224-z>. Can also form bootstrap
confidence intervals by doing bootstrapping only once and
reusing the bootstrap estimates in all subsequent computations.
Supports bootstrap confidence intervals for standardized
(partially or completely) indirect effects, conditional
effects, and conditional indirect effects as described in
Cheung (2009) <doi:10.3758/BRM.41.2.425> and Cheung, Cheung,
Lau, Hui, and Vong (2022) <doi:10.1037/hea0001188>. Model
fitting can be done by structural equation modeling using
lavaan() or regression using lm().

URL https://sfcheung.github.io/manymome/

BugReports https://github.com/sfcheung/manymome/issues

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.2

Suggests knitr, rmarkdown, semPlot, semptools, semTools, Amelia, mice,
testthat (>= 3.0.0)

Config/testthat/edition 3

Config/testthat/parallel true

Config/testthat/start-first cond_indirect_*

Imports lavaan, boot, parallel, pbapply, stats, ggplot2, igraph, MASS,
methods

Depends R (>= 3.5.0)

1

https://doi.org/10.3758/s13428-023-02224-z
https://doi.org/10.3758/BRM.41.2.425
https://doi.org/10.1037/hea0001188
https://sfcheung.github.io/manymome/
https://github.com/sfcheung/manymome/issues

2 Contents

LazyData true

VignetteBuilder knitr

NeedsCompilation no

Author Shu Fai Cheung [aut, cre]
(<https://orcid.org/0000-0002-9871-9448>), Sing-Hang Cheung
[aut] (<https://orcid.org/0000-0001-5182-0752>)

Maintainer Shu Fai Cheung <shufai.cheung@gmail.com>

Repository CRAN

Date/Publication 2024-12-08 16:10:02 UTC

Config/pak/sysreqs libglpk-dev libxml2-dev

Contents
all_indirect_paths . 4
check_path . 6
coef.cond_indirect_diff . 8
coef.cond_indirect_effects . 9
coef.delta_med . 10
coef.indirect . 11
coef.indirect_list . 12
coef.indirect_proportion . 14
coef.lm_from_lavaan . 15
cond_indirect . 16
cond_indirect_diff . 26
confint.cond_indirect_diff . 28
confint.cond_indirect_effects . 29
confint.delta_med . 31
confint.indirect . 32
confint.indirect_list . 34
data_med . 36
data_med_complicated . 36
data_med_complicated_mg . 37
data_med_mg . 38
data_med_mod_a . 39
data_med_mod_ab . 40
data_med_mod_ab1 . 41
data_med_mod_b . 42
data_med_mod_b_mod . 43
data_med_mod_parallel . 44
data_med_mod_parallel_cat . 45
data_med_mod_serial . 46
data_med_mod_serial_cat . 47
data_med_mod_serial_parallel . 48
data_med_mod_serial_parallel_cat . 49
data_mod . 50

https://orcid.org/0000-0002-9871-9448
https://orcid.org/0000-0001-5182-0752

Contents 3

data_mod2 . 50
data_mod_cat . 51
data_mome_demo . 52
data_mome_demo_missing . 53
data_parallel . 54
data_sem . 55
data_serial . 56
data_serial_parallel . 57
data_serial_parallel_latent . 58
delta_med . 59
do_boot . 62
do_mc . 64
factor2var . 66
fit2boot_out . 67
fit2mc_out . 70
get_one_cond_indirect_effect . 71
get_prod . 73
index_of_mome . 75
indirect_effects_from_list . 79
indirect_i . 80
indirect_proportion . 83
lm2boot_out . 85
lm2list . 87
lm_from_lavaan_list . 88
math_indirect . 89
merge_mod_levels . 92
modmed_x1m3w4y1 . 93
mod_levels . 93
plot.cond_indirect_effects . 97
plot_effect_vs_w . 101
predict.lm_from_lavaan . 105
predict.lm_from_lavaan_list . 107
predict.lm_list . 108
print.all_paths . 109
print.boot_out . 110
print.cond_indirect_diff . 111
print.cond_indirect_effects . 113
print.delta_med . 116
print.indirect . 118
print.indirect_list . 121
print.indirect_proportion . 123
print.lm_list . 124
print.mc_out . 125
pseudo_johnson_neyman . 126
simple_mediation_latent . 129
subsetting_cond_indirect_effects . 130
subsetting_wlevels . 131
summary.lm_list . 133

4 all_indirect_paths

terms.lm_from_lavaan . 134
total_indirect_effect . 135

Index 137

all_indirect_paths Enumerate All Indirect Effects in a Model

Description

Check all indirect paths in a model and return them as a list of arguments of x, y, and m, to be used
by indirect_effect().

Usage

all_indirect_paths(
fit = NULL,
exclude = NULL,
x = NULL,
y = NULL,
group = NULL

)

all_paths_to_df(all_paths)

Arguments

fit A fit object. It can be the output of lavaan::lavaan() or its wrapper such as
lavaan::sem(), or a list of the output of lm() or the output of lm2list(). If
it is a single model fitted by lm(), it will be automatically converted to a list by
lm2list().

exclude A character vector of variables to be excluded in the search, such as control
variables.

x A character vector of variables that will be included as the x variables. If sup-
plied, only paths that start from these variables will be included in the search. If
NULL, the default, then all variables that are one of the predictors in at least one
regression equation will be included in the search.

y A character vector of variables that will be included as the y variables. If sup-
plied, only paths that start from these variables will be included in the search. If
NULL, the default, then all variables that are the outcome variables in at least one
regression equation will be included in the search.

group Either the group number as appeared in the summary() or lavaan::parameterEstimates()
output of a lavaan::lavaan object, or the group label as used in the lavaan::lavaan
object. Used only when the number of groups is greater than one. Default is
NULL. If not specified by the model has more than one group, than paths that
appears in at least one group will be included in the output.

all_paths An all_paths-class object. For example, the output of all_indirect_paths().

all_indirect_paths 5

Details

It makes use of igraph::all_simple_paths() to identify paths in a model.

Multigroup Models:
Since Version 0.1.14.2, support for multigroup models has been added for models fitted by lavaan.
If a model has more than one group and group is not specified, than paths in all groups will be
returned. If group is specified, than only paths in the selected group will be returned.

Value

all_indirect_paths() returns a list of the class all_paths. Each argument is a list of three
character vectors, x, the name of the predictor that starts a path, y, the name of the outcome that
ends a path, and m, a character vector of one or more names of the mediators, from x to y. This class
has a print method.

all_paths_to_df() returns a data frame with three columns, x, y, and m, which can be used by
functions such as indirect_effect().

Functions

• all_indirect_paths(): Enumerate all indirect paths.

• all_paths_to_df(): Convert the output of all_indirect_paths() to a data frame with
three columns: x, y, and m.

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

See Also

indirect_effect(), lm2list(). many_indirect_effects()

Examples

library(lavaan)
data(data_serial_parallel)
mod <-
"
m11 ~ x + c1 + c2
m12 ~ m11 + x + c1 + c2
m2 ~ x + c1 + c2
y ~ m12 + m2 + m11 + x + c1 + c2
"
fit <- sem(mod, data_serial_parallel,

fixed.x = FALSE)
All indirect paths
out1 <- all_indirect_paths(fit)
out1
names(out1)

Exclude c1 and c2 in the search

https://orcid.org/0000-0002-9871-9448

6 check_path

out2 <- all_indirect_paths(fit, exclude = c("c1", "c2"))
out2
names(out2)

Exclude c1 and c2, and only consider paths start
from x and end at y
out3 <- all_indirect_paths(fit, exclude = c("c1", "c2"),

x = "x",
y = "y")

out3
names(out3)

Multigroup models

data(data_med_complicated_mg)
mod <-
"
m11 ~ x1 + x2 + c1 + c2
m12 ~ m11 + c1 + c2
m2 ~ x1 + x2 + c1 + c2
y1 ~ m11 + m12 + x1 + x2 + c1 + c2
y2 ~ m2 + x1 + x2 + c1 + c2
"
fit <- sem(mod, data_med_complicated_mg, group = "group")
summary(fit)

all_indirect_paths(fit,
x = "x1",
y = "y1")

all_indirect_paths(fit,
x = "x1",
y = "y1",
group = 1)

all_indirect_paths(fit,
x = "x1",
y = "y1",
group = "Group B")

check_path Check a Path Exists in a Model

Description

It checks whether a path, usually an indirect path, exists in a model.

Usage

check_path(x, y, m = NULL, fit = NULL, est = NULL)

check_path 7

Arguments

x Character. The name of predictor at the start of the path.

y Character. The name of the outcome variable at the end of the path.

m A vector of the variable names of the mediators. The path goes from the first
mediator successively to the last mediator. If NULL, the default, the path goes
from x to y.

fit The fit object. Currently only supports a lavaan::lavaan-class object or a list
of outputs of lm(). It can also be a lavaan.mi object returned by semTools::runMI()
or its wrapper, such as semTools::sem.mi(). If it is a single model fitted by
lm(), it will be automatically converted to a list by lm2list().

est The output of lavaan::parameterEstimates(). If NULL, the default, it will be
generated from fit. If supplied, fit will ge ignored.

Details

It checks whether the path defined by a predictor (x), an outcome (y), and optionally a sequence
of mediators (m), exists in a model. It can check models in a lavaan::lavaan-class object or a
list of outputs of lm(). It also support lavaan.mi objects returned by semTools::runMI() or its
wrapper, such as semTools::sem.mi().

For example, in the following model in lavaan syntax

m1 ~ x
m2 ~ m1
m3 ~ x
y ~ m2 + m3

This path is valid: x = "x", y = "y", m = c("m1", "m2")

This path is invalid: x = "x", y = "y", m = c("m2")

This path is also invalid: x = "x", y = "y", m = c("m1", "m2")

Value

A logical vector of length one. TRUE if the path is valid, FALSE if the path is invalid.

Examples

library(lavaan)
data(data_serial_parallel)
dat <- data_serial_parallel
mod <-
"
m11 ~ x + c1 + c2
m12 ~ m11 + x + c1 + c2
m2 ~ x + c1 + c2
y ~ m12 + m2 + m11 + x + c1 + c2
"
fit <- sem(mod, dat,

8 coef.cond_indirect_diff

meanstructure = TRUE, fixed.x = FALSE)

The following paths are valid
check_path(x = "x", y = "y", m = c("m11", "m12"), fit = fit)
check_path(x = "x", y = "y", m = "m2", fit = fit)
The following paths are invalid
check_path(x = "x", y = "y", m = c("m11", "m2"), fit = fit)
check_path(x = "x", y = "y", m = c("m12", "m11"), fit = fit)

coef.cond_indirect_diff

Print the Output of ’cond_indirect_diff()’

Description

Extract the change in conditional indirect effect.

Usage

S3 method for class 'cond_indirect_diff'
coef(object, ...)

Arguments

object The output of cond_indirect_diff().

... Optional arguments. Ignored.

Details

The coef method of the cond_indirect_diff-class object.

Value

Scalar: The change of conditional indirect effect in object.

See Also

cond_indirect_diff()

coef.cond_indirect_effects 9

coef.cond_indirect_effects

Estimates of Conditional Indirect Effects or Conditional Effects

Description

Return the estimates of the conditional indirect effects or conditional effects for all levels in the
output of cond_indirect_effects().

Usage

S3 method for class 'cond_indirect_effects'
coef(object, ...)

Arguments

object The output of cond_indirect_effects().

... Optional arguments. Ignored by the function.

Details

It extracts and returns the column ind or std in the output of cond_indirect_effects().

Value

A numeric vector: The estimates of the conditional effects or conditional indirect effects.

See Also

cond_indirect_effects()

Examples

library(lavaan)
dat <- modmed_x1m3w4y1
mod <-
"
m1 ~ x + w1 + x:w1
m2 ~ m1
y ~ m2 + x + w4 + m2:w4
"
fit <- sem(mod, dat,

meanstructure = TRUE, fixed.x = FALSE,
se = "none", baseline = FALSE)

est <- parameterEstimates(fit)

Conditional effects from x to m1 when w1 is equal to each of the levels
out1 <- cond_indirect_effects(x = "x", y = "m1",

wlevels = c("w1"), fit = fit)

10 coef.delta_med

out1
coef(out1)

Conditional indirect effects from x1 through m1 and m2 to y,
out2 <- cond_indirect_effects(x = "x", y = "y", m = c("m1", "m2"),

wlevels = c("w1", "w4"), fit = fit)
out2
coef(out2)

Standardized conditional indirect effects from x1 through m1 and m2 to y,
out2std <- cond_indirect_effects(x = "x", y = "y", m = c("m1", "m2"),

wlevels = c("w1", "w4"), fit = fit,
standardized_x = TRUE, standardized_y = TRUE)

out2std
coef(out2std)

coef.delta_med Delta_Med in a ’delta_med’-Class Object

Description

Return the estimate of Delta_Med in a ’delta_med’-class object.

Usage

S3 method for class 'delta_med'
coef(object, ...)

Arguments

object The output of delta_med().

... Optional arguments. Ignored.

Details

It just extracts and returns the element delta_med in the output of delta_med(), the estimate of
the Delta_Med proposed by Liu, Yuan, and Li (2023), an R2-like measure of indirect effect.

Value

A scalar: The estimate of Delta_Med.

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

https://orcid.org/0000-0002-9871-9448

coef.indirect 11

References

Liu, H., Yuan, K.-H., & Li, H. (2023). A systematic framework for defining R-squared measures in
mediation analysis. Psychological Methods. Advance online publication. https://doi.org/10.1037/met0000571

See Also

delta_med()

Examples

library(lavaan)
dat <- data_med
mod <-
"
m ~ x
y ~ m + x
"
fit <- sem(mod, dat)
dm <- delta_med(x = "x",

y = "y",
m = "m",
fit = fit)

dm
print(dm, full = TRUE)
coef(dm)

coef.indirect Extract the Indirect Effect or Conditional Indirect Effect

Description

Return the estimate of the indirect effect in the output of indirect_effect() or or the conditional
indirect in the output of cond_indirect().

Usage

S3 method for class 'indirect'
coef(object, ...)

Arguments

object The output of indirect_effect() or cond_indirect().

... Optional arguments. Ignored by the function.

12 coef.indirect_list

Details

It extracts and returns the element indirect. in an object.

If standardized effect is requested when calling indirect_effect() or cond_indirect(), the
effect returned is also standardized.

Value

A scalar: The estimate of the indirect effect or conditional indirect effect.

See Also

indirect_effect() and cond_indirect().

Examples

library(lavaan)
dat <- modmed_x1m3w4y1
mod <-
"
m1 ~ x + w1 + x:w1
m2 ~ x
y ~ m1 + m2 + x
"
fit <- sem(mod, dat,

meanstructure = TRUE, fixed.x = FALSE,
se = "none", baseline = FALSE)

est <- parameterEstimates(fit)

Examples for indirect_effect():

Inidrect effect from x through m2 to y
out1 <- indirect_effect(x = "x", y = "y", m = "m2", fit = fit)
out1
coef(out1)

Conditional Indirect effect from x1 through m1 to y,
when w1 is 1 SD above mean
hi_w1 <- mean(dat$w1) + sd(dat$w1)
out2 <- cond_indirect(x = "x", y = "y", m = "m1",

wvalues = c(w1 = hi_w1), fit = fit)
out2
coef(out2)

coef.indirect_list Extract the Indirect Effects from a ’indirect_list’ Object

Description

Return the estimates of the indirect effects in the output of many_indirect_effects().

coef.indirect_list 13

Usage

S3 method for class 'indirect_list'
coef(object, ...)

Arguments

object The output of many_indirect_effects().

... Optional arguments. Ignored by the function.

Details

It extracts the estimates in each ’indirect’-class object in the list.

If standardized effect is requested when calling many_indirect_effects(), the effects returned
are also standardized.

Value

A numeric vector of the indirect effects.

See Also

many_indirect_effects()

Examples

library(lavaan)
data(data_serial_parallel)
mod <-
"
m11 ~ x + c1 + c2
m12 ~ m11 + x + c1 + c2
m2 ~ x + c1 + c2
y ~ m12 + m2 + m11 + x + c1 + c2
"
fit <- sem(mod, data_serial_parallel,

fixed.x = FALSE)
All indirect paths from x to y
paths <- all_indirect_paths(fit,

x = "x",
y = "y")

paths
Indirect effect estimates
out <- many_indirect_effects(paths,

fit = fit)
out
coef(out)

14 coef.indirect_proportion

coef.indirect_proportion

Extract the Proportion of Effect Mediated

Description

Return the proportion of effect mediated in the output of indirect_proportion().

Usage

S3 method for class 'indirect_proportion'
coef(object, ...)

Arguments

object The output of indirect_proportion()

... Not used.

Details

It extracts and returns the element proportion in the input object.

Value

A scalar: The proportion of effect mediated.

See Also

indirect_proportion()

Examples

library(lavaan)
dat <- data_med
head(dat)
mod <-
"
m ~ x + c1 + c2
y ~ m + x + c1 + c2
"
fit <- sem(mod, dat, fixed.x = FALSE)
out <- indirect_proportion(x = "x",

y = "y",
m = "m",
fit = fit)

out
coef(out)

coef.lm_from_lavaan 15

coef.lm_from_lavaan Coefficients of an ’lm_from_lavaan’-Class Object

Description

Returns the path coefficients of the terms in an lm_from_lavaan-class object.

Usage

S3 method for class 'lm_from_lavaan'
coef(object, ...)

Arguments

object A ’lm_from_lavaan’-class object.

... Additional arguments. Ignored.

Details

An lm_from_lavaan-class object converts a regression model for a variable in a lavaan-class ob-
ject to a formula-class object. This function simply extracts the path coefficients estimates. Inter-
cept is always included, and set to zero if mean structure is not in the source lavaan-class object.

This is an advanced helper used by plot.cond_indirect_effects(). Exported for advanced
users and developers.

Value

A numeric vector of the path coefficients.

See Also

lm_from_lavaan_list()

Examples

library(lavaan)
data(data_med)
mod <-
"
m ~ a * x + c1 + c2
y ~ b * m + x + c1 + c2
"
fit <- sem(mod, data_med, fixed.x = FALSE)
fit_list <- lm_from_lavaan_list(fit)
coef(fit_list$m)
coef(fit_list$y)

16 cond_indirect

cond_indirect Conditional, Indirect, and Conditional Indirect Effects

Description

Compute the conditional effects, indirect effects, or conditional indirect effects in a structural model
fitted by lm(), lavaan::sem(), or semTools::sem.mi().

Usage

cond_indirect(
x,
y,
m = NULL,
fit = NULL,
est = NULL,
implied_stats = NULL,
wvalues = NULL,
standardized_x = FALSE,
standardized_y = FALSE,
boot_ci = FALSE,
level = 0.95,
boot_out = NULL,
R = 100,
seed = NULL,
parallel = TRUE,
ncores = max(parallel::detectCores(logical = FALSE) - 1, 1),
make_cluster_args = list(),
progress = TRUE,
save_boot_full = FALSE,
prods = NULL,
get_prods_only = FALSE,
save_boot_out = TRUE,
mc_ci = FALSE,
mc_out = NULL,
save_mc_full = FALSE,
save_mc_out = TRUE,
ci_out = NULL,
save_ci_full = FALSE,
save_ci_out = TRUE,
ci_type = NULL,
group = NULL,
boot_type = c("perc", "bc")

)

cond_indirect_effects(
wlevels,

cond_indirect 17

x,
y,
m = NULL,
fit = NULL,
w_type = "auto",
w_method = "sd",
sd_from_mean = NULL,
percentiles = NULL,
est = NULL,
implied_stats = NULL,
boot_ci = FALSE,
R = 100,
seed = NULL,
parallel = TRUE,
ncores = max(parallel::detectCores(logical = FALSE) - 1, 1),
make_cluster_args = list(),
progress = TRUE,
boot_out = NULL,
output_type = "data.frame",
mod_levels_list_args = list(),
mc_ci = FALSE,
mc_out = NULL,
ci_out = NULL,
ci_type = NULL,
boot_type = c("perc", "bc"),
groups = NULL,
...

)

indirect_effect(
x,
y,
m = NULL,
fit = NULL,
est = NULL,
implied_stats = NULL,
standardized_x = FALSE,
standardized_y = FALSE,
boot_ci = FALSE,
level = 0.95,
boot_out = NULL,
R = 100,
seed = NULL,
parallel = TRUE,
ncores = max(parallel::detectCores(logical = FALSE) - 1, 1),
make_cluster_args = list(),
progress = TRUE,
save_boot_full = FALSE,

18 cond_indirect

save_boot_out = TRUE,
mc_ci = FALSE,
mc_out = NULL,
save_mc_full = FALSE,
save_mc_out = TRUE,
ci_out = NULL,
save_ci_full = FALSE,
save_ci_out = TRUE,
ci_type = NULL,
boot_type = c("perc", "bc"),
group = NULL

)

cond_effects(
wlevels,
x,
y,
m = NULL,
fit = NULL,
w_type = "auto",
w_method = "sd",
sd_from_mean = NULL,
percentiles = NULL,
est = NULL,
implied_stats = NULL,
boot_ci = FALSE,
R = 100,
seed = NULL,
parallel = TRUE,
ncores = max(parallel::detectCores(logical = FALSE) - 1, 1),
make_cluster_args = list(),
progress = TRUE,
boot_out = NULL,
output_type = "data.frame",
mod_levels_list_args = list(),
mc_ci = FALSE,
mc_out = NULL,
ci_out = NULL,
ci_type = NULL,
boot_type = c("perc", "bc"),
groups = NULL,
...

)

many_indirect_effects(paths, ...)

Arguments

x Character. The name of the predictor at the start of the path.

cond_indirect 19

y Character. The name of the outcome variable at the end of the path. If the model
has only one outcome variable (e.g., moderation only and no mediator), then
this argument can be omitted.

m A vector of the variable names of the mediator(s). The path goes from the first
mediator successively to the last mediator. If NULL, the default, the path goes
from x to y.

fit The fit object. Can be a lavaan::lavaan object or a list of lm() outputs. It can
also be a lavaan.mi object returned by semTools::runMI() or its wrapper,
such as semTools::sem.mi(). If it is a single model fitted by lm(), it will be
automatically converted to a list by lm2list().

est The output of lavaan::parameterEstimates(). If NULL, the default, it will be
generated from fit. If supplied, fit will be ignored.

implied_stats Implied means, variances, and covariances of observed variables, of the form of
the output of lavaan::lavInspect() with what set to "implied". The stan-
dard deviations are extracted from this object for standardization. Default is
NULL, and implied statistics will be computed from fit if required.

wvalues A numeric vector of named elements. The names are the variable names of the
moderators, and the values are the values to which the moderators will be set to.
Default is NULL.

standardized_x Logical. Whether x will be standardized. Default is FALSE. For multigroup
models, model implied standard deviation for the selected group will be used.

standardized_y Logical. Whether y will be standardized. Default is FALSE. For multigroup
models, model implied standard deviation for the selected group will be used.

boot_ci Logical. Whether bootstrap confidence interval will be formed. Default is
FALSE.

level The level of confidence for the bootstrap confidence interval. Default is .95.

boot_out If boot_ci is TRUE, users can supply pregenerated bootstrap estimates. This can
be the output of do_boot(). For indirect_effect() and cond_indirect_effects(),
this can be the output of a previous call to cond_indirect_effects(), indirect_effect(),
or cond_indirect() with bootstrap confidence intervals requested. These stored
estimates will be reused such that there is no need to do bootstrapping again. If
not supplied, the function will try to generate them from fit.

R Integer. If boot_ci is TRUE, boot_out is NULL, and bootstrap standard errors not
requested if fit is a lavaan::lavaan object, this function will do bootstrapping
on fit. R is the number of bootstrap samples. Default is 100. For Monte Carlo
simulation, this is the number of replications.

seed If bootstrapping or Monte Carlo simulation is conducted, this is the seed for the
bootstrapping or simulation. Default is NULL and seed is not set.

parallel Logical. If bootstrapping is conducted, whether parallel processing will be used.
Default is TRUE. If fit is a list of lm() outputs, parallel processing will not be
used.

ncores Integer. The number of CPU cores to use when parallel is TRUE. Default is
the number of non-logical cores minus one (one minimum). Will raise an error
if greater than the number of cores detected by parallel::detectCores(). If
ncores is set, it will override make_cluster_args in do_boot().

20 cond_indirect

make_cluster_args

A named list of additional arguments to be passed to parallel::makeCluster().
For advanced users. See parallel::makeCluster() for details. Default is
list().

progress Logical. Display bootstrapping progress or not. Default is TRUE.

save_boot_full If TRUE, full bootstrapping results will be stored. Default is FALSE.

prods The product terms found. For internal use.

get_prods_only IF TRUE, will quit early and return the product terms found. The results can be
passed to the prod argument when calling this function. Default is FALSE. This
function is for internal use.

save_boot_out If boot_out is supplied, whether it will be saved in the output. Default is TRUE.

mc_ci Logical. Whether Monte Carlo confidence interval will be formed. Default is
FALSE.

mc_out If mc_ci is TRUE, users can supply pregenerated Monte Carlo estimates. This can
be the output of do_mc(). For indirect_effect() and cond_indirect_effects(),
this can be the output of a previous call to cond_indirect_effects(), indirect_effect(),
or cond_indirect() with Monte Carlo confidence intervals requested. These
stored estimates will be reused such that there is no need to do Monte Carlo
simulation again. If not supplied, the function will try to generate them from
fit.

save_mc_full If TRUE, full Monte Carlo results will be stored. Default is FALSE.

save_mc_out If mc_out is supplied, whether it will be saved in the output. Default is TRUE.

ci_out If ci_type is supplied, this is the corresponding argument. If ci_type is "boot",
this argument will be used as boot_out. If ci_type is "mc", this argument will
be used as mc_out.

save_ci_full If TRUE, full bootstrapping or Monte Carlo results will be stored. Default is
FALSE.

save_ci_out If either mc_out or boot_out is supplied, whether it will be saved in the output.
Default is TRUE.

ci_type The type of confidence intervals to be formed. Can be either "boot" (boot-
strapping) or "mc" (Monte Carlo). If not supplied or is NULL, will check other
arguments (e.g, boot_ci and mc_ci). If supplied, will override boot_ci and
mc_ci.

group Either the group number as appeared in the summary() or lavaan::parameterEstimates()
output of a lavaan::lavaan object, or the group label as used in the lavaan::lavaan
object. Used only when the number of groups is greater than one. Default is
NULL.

boot_type If bootstrap confidence interval is to be formed, the type of bootstrap confidence
interval. The supported types are "perc" (percentile bootstrap confidence in-
terval, the default and recommended type) and "bc" (bias-corrected, or BC,
bootstrap confidence interval).

wlevels The output of merge_mod_levels(), or the moderator(s) to be passed to mod_levels_list().
If all the moderators can be represented by one variable, that is, each moderator
is (a) a numeric variable, (b) a dichotomous categorical variable, or (c) a factor

cond_indirect 21

or string variable used in lm() in fit, then it is a vector of the names of the
moderators as appeared in the data frame. If at least one of the moderators is a
categorical variable represented by more than one variable, such as user-created
dummy variables used in lavaan::sem(), then it must be a list of the names
of the moderators, with such moderators represented by a vector of names. For
example: list("w1", c("gpgp2", "gpgp3"), the first moderator w1 and the
second moderator a three-categorical variable represented by gpgp2 and gpgp3.

w_type Character. Whether the moderator is a "numeric" variable or a "categorical"
variable. If "auto", the function will try to determine the type automatically.
See mod_levels_list() for further information.

w_method Character, either "sd" or "percentile". If "sd", the levels are defined by the
distance from the mean in terms of standard deviation. if "percentile", the
levels are defined in percentiles. See mod_levels_list() for further informa-
tion.

sd_from_mean A numeric vector. Specify the distance in standard deviation from the mean for
each level. Default is c(-1, 0, 1) when there is only one moderator, and c(-1,
1) when there are more than one moderator. Ignored if w_method is not equal
to "sd". See mod_levels_list() for further information.

percentiles A numeric vector. Specify the percentile (in proportion) for each level. Default
is c(.16, .50, .84) if there is one moderator, and c(.16, .84) when there are
more than one moderator. Ignored if w_method is not equal to "percentile".
See mod_levels_list() for further information.

output_type The type of output of cond_indirect_effects(). If "data.frame", the de-
fault, the output will be converted to a data frame. If any other values, the output
is a list of the outputs from cond_indirect().

mod_levels_list_args

Additional arguments to be passed to mod_levels_list() if it is called for
creating the levels of moderators. Default is list().

groups Either a vector of group numbers as appeared in the summary() or lavaan::parameterEstimates()
output of a lavaan::lavaan object, or a vector of group labels as used in the
lavaan::lavaan object. Used only when the number of groups is greater than
one. Default is NULL.

... For many_indirect_effects(), these are arguments to be passed to indirect_effect().

paths The output of all_indirect_paths()

Details

For a model with a mediation path moderated by one or more moderators, cond_indirect_effects()
can be used to compute the conditional indirect effect from one variable to another variable, at one
or more set of selected value(s) of the moderator(s).

If only the effect for one set of value(s) of the moderator(s) is needed, cond_indirect() can be
used.

If only the mediator(s) is/are specified (m) and no values of moderator(s) are specified, then the
indirect effect from one variable (x) to another variable (y) is computed. A convenient wrapper
indirect_effect() can be used to compute the indirect effect.

22 cond_indirect

If only the value(s) of moderator(s) is/are specified (wvalues or wlevels) and no mediators (m)
are specified when calling cond_indirect_effects() or cond_indirect(), then the conditional
direct effects from one variable to another are computed.

All three functions support using nonparametric bootstrapping (for lavaan or lm outputs) or Monte
Carlo simulation (for lavaan outputs only) to form confidence intervals. Bootstrapping or Monte
Carlo simulation only needs to be done once. These are the possible ways to form bootstrapping:

1. Do bootstrapping or Monte Carlo simulation in the first call to one of these functions, by set-
ting boot_ci or mc_ci to TRUE and R to the number of bootstrap samples or replications, level
to the level of confidence (default .95 or 95%), and seed to reproduce the results (parallel
and ncores are optional for bootstrapping). This will take some time to run for bootstrapping.
The output will have all bootstrap or Monte Carlo estimates stored. This output, whether
it is from indirect_effect(), cond_indirect_effects(), or cond_indirect(), can be
reused by any of these three functions by setting boot_out (for bootstrapping) or mc_out (for
Monte Carlo simulation) to this output. They will form the confidence intervals using the
stored bootstrap or Monte Carlo estimates.

2. Do bootstrapping using do_boot() or Monte Carlo simulation us8ing do_mc(). The output
can be used in the boot_out (for bootstrapping) or mc_out (for Monte Carlo simulation)
argument of indirect_effect(), cond_indirect_effects() and cond_indirect().

3. For bootstrapping, if lavaan::sem() is used to fit a model and se = "boot" is used, do_boot()
can extract them to generate a boot_out-class object that again can be used in the boot_out
argument.

If boot_out or mc_out is set, arguments such as R, seed, and parallel will be ignored.

Multigroup Models:
Since Version 0.1.14.2, support for multigroup models has been added for models fitted by lavaan.
Both bootstrapping and Monte Carlo confidence intervals are supported. When used on a multi-
group model:

• For cond_indirect() and indirect_effect(), users need to specify the group argument
(by number or label). When using cond_indirect_effects(), if group is not set, all groups
wil be used and the indirect effect in each group will be computed, kind of treating group as
a moderator.

• For many_indirect_effects(), the paths can be generated from a multigroup models.

• Currently, cond_indirect_effects() does not support a multigroup model with modera-
tors on the path selected. The function cond_indirect() does not have this limitation but
users need to manually specify the desired value of the moderator(s).

many_indirect_effects():
If bootstrapping or Monte Carlo confidence intervals are requested, it is advised to use do_boot()
first to simulate the estimates. Nevertheless, In Version 0.1.14.9 and later versions, if boot_ci
or mc_ci is TRUE when calling many_indirect_effects() but boot_out or mc_out is not set,
bootstrapping or simulation will be done only once, and then the bootstrapping or simulated es-
timates will be used for all paths. This prevents accidentally repeating the process once for each
direct path.

cond_indirect 23

Value

indirect_effect() and cond_indirect() return an indirect-class object.

cond_indirect_effects() returns a cond_indirect_effects-class object.

These two classes of objects have their own print methods for printing the results (see print.indirect()
and print.cond_indirect_effects()). They also have a coef method for extracting the esti-
mates (coef.indirect() and coef.cond_indirect_effects()) and a confint method for ex-
tracting the confidence intervals (confint.indirect() and confint.cond_indirect_effects()).
Addition and subtraction can also be conducted on indirect-class object to estimate and test a
function of effects (see math_indirect)

Functions

• cond_indirect(): Compute conditional, indirect, or conditional indirect effects for one set
of levels.

• cond_indirect_effects(): Compute the conditional effects or conditional indirect effects
for several sets of levels of the moderator(s).

• indirect_effect(): Compute the indirect effect. A wrapper of cond_indirect(). Can be
used when there is no moderator.

• cond_effects(): Just an alias to cond_indirect_effects(), a better name when a path has
no moderator.

• many_indirect_effects(): Compute the indirect effects along more than one paths. It call
indirect_effect() once for each of the path.

See Also

mod_levels() and merge_mod_levels() for generating levels of moderators. do_boot for doing
bootstrapping before calling these functions.

Examples

library(lavaan)
dat <- modmed_x1m3w4y1
mod <-
"
m1 ~ a1 * x + d1 * w1 + e1 * x:w1
m2 ~ a2 * x
y ~ b1 * m1 + b2 * m2 + cp * x
"
fit <- sem(mod, dat, meanstructure = TRUE, fixed.x = FALSE, se = "none", baseline = FALSE)
est <- parameterEstimates(fit)
hi_w1 <- mean(dat$w1) + sd(dat$w1)

Examples for cond_indirect():

Conditional effect from x to m1 when w1 is 1 SD above mean
cond_indirect(x = "x", y = "m1",

wvalues = c(w1 = hi_w1), fit = fit)

24 cond_indirect

Direct effect from x to y (direct because no 'm' variables)
indirect_effect(x = "x", y = "y", fit = fit)

Conditional Indirect effect from x1 through m1 to y, when w1 is 1 SD above mean
cond_indirect(x = "x", y = "y", m = "m1",

wvalues = c(w1 = hi_w1), fit = fit)

Examples for cond_indirect_effects():

Create levels of w1, the moderators
w1levels <- mod_levels("w1", fit = fit)
w1levels

Conditional effects from x to m1 when w1 is equal to each of the levels
cond_indirect_effects(x = "x", y = "m1",

wlevels = w1levels, fit = fit)

Conditional Indirect effect from x1 through m1 to y,
when w1 is equal to each of the levels
cond_indirect_effects(x = "x", y = "y", m = "m1",

wlevels = w1levels, fit = fit)

Multigroup models for cond_indirect_effects()

dat <- data_med_mg
mod <-
"
m ~ x + c1 + c2
y ~ m + x + c1 + c2
"
fit <- sem(mod, dat, meanstructure = TRUE, fixed.x = FALSE, se = "none", baseline = FALSE,

group = "group")

If a model has more than one group,
it will be used as a 'moderator'.
cond_indirect_effects(x = "x", y = "y", m = "m",

fit = fit)

Multigroup model for indirect_effect()

dat <- data_med_mg
mod <-
"
m ~ x + c1 + c2
y ~ m + x + c1 + c2
"
fit <- sem(mod, dat, meanstructure = TRUE, fixed.x = FALSE, se = "none", baseline = FALSE,

group = "group")

If a model has more than one group,

cond_indirect 25

the argument 'group' must be set.
ind1 <- indirect_effect(x = "x",

y = "y",
m = "m",
fit = fit,
group = "Group A")

ind1
ind2 <- indirect_effect(x = "x",

y = "y",
m = "m",
fit = fit,
group = 2)

ind2

Examples for many_indirect_effects():

library(lavaan)
data(data_serial_parallel)
mod <-
"
m11 ~ x + c1 + c2
m12 ~ m11 + x + c1 + c2
m2 ~ x + c1 + c2
y ~ m12 + m2 + m11 + x + c1 + c2
"
fit <- sem(mod, data_serial_parallel,

fixed.x = FALSE)
All indirect paths from x to y
paths <- all_indirect_paths(fit,

x = "x",
y = "y")

paths
Indirect effect estimates
out <- many_indirect_effects(paths,

fit = fit)
out

Multigroup models for many_indirect_effects()

data(data_med_complicated_mg)
mod <-
"
m11 ~ x1 + x2 + c1 + c2
m12 ~ m11 + c1 + c2
m2 ~ x1 + x2 + c1 + c2
y1 ~ m11 + m12 + x1 + x2 + c1 + c2
y2 ~ m2 + x1 + x2 + c1 + c2
"
fit <- sem(mod, data_med_complicated_mg, group = "group")
summary(fit)

paths <- all_indirect_paths(fit,

26 cond_indirect_diff

x = "x1",
y = "y1")

paths
Indirect effect estimates for all paths in all groups
out <- many_indirect_effects(paths,

fit = fit)
out

cond_indirect_diff Differences In Conditional Indirect Effects

Description

Compute the difference in conditional indirect effects between two sets of levels of the moderators.

Usage

cond_indirect_diff(output, from = NULL, to = NULL, level = 0.95)

Arguments

output A cond_indirect_effects-class object: The output of cond_indirect_effects().

from A row number of output.

to A row number of output. The change in indirect effects is computed by the
change in the level(s) of the moderator(s) from Row from to Row to.

level The level of confidence for the confidence interval. Default is .95.

Details

Ths function takes the output of cond_indirect_effects() and computes the difference in con-
ditional indirect effects between any two rows, that is, between levels of the moderator, or two sets
of levels of the moderators when the path has more than one moderator.

The difference is meaningful when the difference between the two levels or sets of levels are mean-
ingful. For example, if the two levels are the mean of the moderator and one standard deviation
above mean of the moderator, then this difference is the change in indirect effect when the modera-
tor increases by one standard deviation.

If the two levels are 0 and 1, then this difference is the index of moderated mediation as proposed by
Hayes (2015). (This index can also be computed directly by index_of_mome(), designed specifi-
cally for this purpose.)

The function can also compute the change in the standardized indirect effect between two levels of
a moderator or two sets of levels of the moderators.

This function is intended to be a general purpose function that allows users to compute the difference
between any two levels or sets of levels that are meaningful in a context.

cond_indirect_diff 27

This function itself does not set the levels of comparison. The levels to be compared need to be
set when calling cond_indirect_effects(). This function extracts required information from the
output of cond_indirect_effects().

If bootstrap or Monte Carlo estimates are available in the input or bootstrap or Monte Carlo confi-
dence intervals are requested in calling cond_indirect_effects(), cond_indirect_diff() will
also form the bootstrap confidence interval for the difference in conditional indirect effects using
the stored estimates.

If bootstrap confidence interval is to be formed and both effects used the same type of interval, then
that type will be used. Otherwise, percentile confidence interval will be formed.

Value

A cond_indirect_diff-class object. This class has a print method (print.cond_indirect_diff()),
a coef method (coef.cond_indirect_diff()), and a confint method (confint.cond_indirect_diff()).

Functions

• cond_indirect_diff(): Compute the difference in in conditional indirect effect between
two rows in the output of cond_indirect_effects().

References

Hayes, A. F. (2015). An index and test of linear moderated mediation. Multivariate Behavioral
Research, 50(1), 1-22. doi:10.1080/00273171.2014.962683

See Also

index_of_mome() for computing the index of moderated mediation, index_of_momome() for com-
puting the index of moderated moderated mediation, cond_indirect_effects(), mod_levels(),
and merge_mod_levels() for preparing the levels to be compared.

Examples

library(lavaan)
dat <- modmed_x1m3w4y1
dat$xw1 <- dat$x * dat$w1
mod <-
"
m1 ~ a * x + f * w1 + d * xw1
y ~ b * m1 + cp * x
"
fit <- sem(mod, dat,

meanstructure = TRUE, fixed.x = FALSE,
se = "none", baseline = FALSE)

est <- parameterEstimates(fit)

Create levels of w1, the moderators
w1levels <- mod_levels("w1", fit = fit)
w1levels

https://doi.org/10.1080/00273171.2014.962683

28 confint.cond_indirect_diff

Conditional effects from x to y when w1 is equal to each of the levels
boot_out <- fit2boot_out_do_boot(fit, R = 40, seed = 4314, progress = FALSE)
out <- cond_indirect_effects(x = "x", y = "y", m = "m1",

wlevels = w1levels, fit = fit,
boot_ci = TRUE, boot_out = boot_out)

out
out_ind <- cond_indirect_diff(out, from = 2, to = 1)
out_ind
coef(out_ind)
confint(out_ind)

confint.cond_indirect_diff

Confidence Interval of the Output of ’cond_indirect_diff()’

Description

Extract the confidence interval the output of cond_indirect_diff().

Usage

S3 method for class 'cond_indirect_diff'
confint(object, parm, level = 0.95, ...)

Arguments

object The output of cond_indirect_diff().

parm Ignored.

level The level of confidence for the confidence interval. Default is .95. Must match
the level of the stored confidence interval.

... Optional arguments. Ignored.

Details

The confint method of the cond_indirect_diff-class object.

The type of confidence intervals depends on the call used to create the object. This function merely
extracts the stored confidence intervals.

Value

A one-row-two-column data frame of the confidence limits. If confidence interval is not available,
the limits are NAs.

confint.cond_indirect_effects 29

confint.cond_indirect_effects

Confidence Intervals of Indirect Effects or Conditional Indirect Effects

Description

Return the confidence intervals of the conditional indirect effects or conditional effects in the output
of cond_indirect_effects().

Usage

S3 method for class 'cond_indirect_effects'
confint(object, parm, level = 0.95, ...)

Arguments

object The output of cond_indirect_effects().

parm Ignored. Always returns the confidence intervals of the effects for all levels
stored.

level The level of confidence, default is .95, returning the 95% confidence interval.
Ignored for now and will use the level of the stored intervals.

... Additional arguments. Ignored by the function.

Details

It extracts and returns the columns for confidence intervals, if available.

The type of confidence intervals depends on the call used to compute the effects. If confidence
intervals have already been formed (e.g., by bootstrapping or Monte Carlo), then this function
merely retrieves the confidence intervals stored.

If the following conditions are met, the stored standard errors, if available, will be used test an effect
and form it confidence interval:

• Confidence intervals have not been formed (e.g., by bootstrapping or Monte Carlo).

• The path has no mediators.

• The model has only one group.

• The path is moderated by one or more moderator.

• Both the x-variable and the y-variable are not standardized.

If the model is fitted by OLS regression (e.g., using stats::lm()), then the variance-covariance
matrix of the coefficient estimates will be used, and confidence intervals are computed from the t
statistic.

If the model is fitted by structural equation modeling using lavaan, then the variance-covariance
computed by lavaan will be used, and confidence intervals are computed from the z statistic.

30 confint.cond_indirect_effects

Caution:
If the model is fitted by structural equation modeling and has moderators, the standard errors,
p-values, and confidence interval computed from the variance-covariance matrices for conditional
effects can only be trusted if all covariances involving the product terms are free. If any of them
are fixed, for example, fixed to zero, it is possible that the model is not invariant to linear transfor-
mation of the variables.

Value

A data frame with two columns, one for each confidence limit of the confidence intervals. The
number of rows is equal to the number of rows of object.

See Also

cond_indirect_effects()

Examples

library(lavaan)
dat <- modmed_x1m3w4y1
mod <-
"
m1 ~ x + w1 + x:w1
m2 ~ m1
y ~ m2 + x + w4 + m2:w4
"
fit <- sem(mod, dat, meanstructure = TRUE, fixed.x = FALSE, se = "none", baseline = FALSE)
est <- parameterEstimates(fit)

Examples for cond_indirect():

Create levels of w1 and w4
w1levels <- mod_levels("w1", fit = fit)
w1levels
w4levels <- mod_levels("w4", fit = fit)
w4levels
w1w4levels <- merge_mod_levels(w1levels, w4levels)

Conditional effects from x to m1 when w1 is equal to each of the levels
R should be at least 2000 or 5000 in real research.
out1 <- suppressWarnings(cond_indirect_effects(x = "x", y = "m1",

wlevels = w1levels, fit = fit,
boot_ci = TRUE, R = 20, seed = 54151,
parallel = FALSE,
progress = FALSE))

confint(out1)

confint.delta_med 31

confint.delta_med Confidence Interval for Delta_Med in a ’delta_med’-Class Object

Description

Return the confidence interval of the Delta_Med in the output of delta_med().

Usage

S3 method for class 'delta_med'
confint(object, parm, level = NULL, boot_type, ...)

Arguments

object The output of delta_med().

parm Not used because only one parameter, the Delta_Med, is allowed.

level The level of confidence, default is NULL and the level used when the object was
created will be used.

boot_type If bootstrap confidence interval is to be formed, the type of bootstrap confidence
interval. The supported types are "perc" (percentile bootstrap confidence in-
terval, the recommended method) and "bc" (bias-corrected, or BC, bootstrap
confidence interval). If not supplied, the stored boot_type will be used.

... Optional arguments. Ignored.

Details

It returns the nonparametric bootstrap percentile confidence interval of Delta_Med, proposed byLiu,
Yuan, and Li (2023). The object must be the output of delta_med(), with bootstrap confidence
interval requested when calling delta_med(). However, the level of confidence can be different
from that used when call delta_med().

Value

A one-row matrix of the confidence interval. All values are NA if bootstrap confidence interval was
not requested when calling delta_med().

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

See Also

delta_med()

https://orcid.org/0000-0002-9871-9448

32 confint.indirect

Examples

library(lavaan)
dat <- data_med
mod <-
"
m ~ x
y ~ m + x
"
fit <- sem(mod, dat)

Call do_boot() to generate
bootstrap estimates
Use 2000 or even 5000 for R in real studies
Set parallel to TRUE in real studies for faster bootstrapping
boot_out <- do_boot(fit,

R = 45,
seed = 879,
parallel = FALSE,
progress = FALSE)

Remove 'progress = FALSE' in practice
dm_boot <- delta_med(x = "x",

y = "y",
m = "m",
fit = fit,
boot_out = boot_out,
progress = FALSE)

dm_boot
confint(dm_boot)

confint.indirect Confidence Interval of Indirect Effect or Conditional Indirect Effect

Description

Return the confidence interval of the indirect effect or conditional indirect effect stored in the output
of indirect_effect() or cond_indirect().

Usage

S3 method for class 'indirect'
confint(object, parm, level = 0.95, boot_type, ...)

Arguments

object The output of indirect_effect() or cond_indirect().

parm Ignored because the stored object always has only one parameter.

level The level of confidence, default is .95, returning the 95% confidence interval.

confint.indirect 33

boot_type If bootstrap confidence interval is to be formed, the type of bootstrap confidence
interval. The supported types are "perc" (percentile bootstrap confidence in-
terval, the recommended method) and "bc" (bias-corrected, or BC, bootstrap
confidence interval). If not supplied, the stored boot_type will be used.

... Additional arguments. Ignored by the function.

Details

It extracts and returns the stored confidence interval if available.

The type of confidence interval depends on the call used to compute the effect. This function
merely retrieves the stored estimates, which could be generated by nonparametric bootstrapping,
Monte Carlo simulation, or other methods to be supported in the future, and uses them to form the
percentile confidence interval.

If the following conditions are met, the stored standard errors, if available, will be used test an effect
and form it confidence interval:

• Confidence intervals have not been formed (e.g., by bootstrapping or Monte Carlo).

• The path has no mediators.

• The model has only one group.

• The path is moderated by one or more moderator.

• Both the x-variable and the y-variable are not standardized.

If the model is fitted by OLS regression (e.g., using stats::lm()), then the variance-covariance
matrix of the coefficient estimates will be used, and confidence intervals are computed from the t
statistic.

If the model is fitted by structural equation modeling using lavaan, then the variance-covariance
computed by lavaan will be used, and confidence intervals are computed from the z statistic.

Caution:
If the model is fitted by structural equation modeling and has moderators, the standard errors,
p-values, and confidence interval computed from the variance-covariance matrices for conditional
effects can only be trusted if all covariances involving the product terms are free. If any of them
are fixed, for example, fixed to zero, it is possible that the model is not invariant to linear transfor-
mation of the variables.

Value

A numeric vector of two elements, the limits of the confidence interval.

See Also

indirect_effect() and cond_indirect()

34 confint.indirect_list

Examples

dat <- modmed_x1m3w4y1

Indirect Effect

library(lavaan)
mod1 <-
"
m1 ~ x
m2 ~ m1
y ~ m2 + x
"
fit <- sem(mod1, dat,

meanstructure = TRUE, fixed.x = FALSE,
se = "none", baseline = FALSE)

R should be at least 2000 or 5000 in real research.
out1 <- indirect_effect(x = "x", y = "y",

m = c("m1", "m2"),
fit = fit,
boot_ci = TRUE, R = 45, seed = 54151,
parallel = FALSE,
progress = FALSE)

out1
confint(out1)

confint.indirect_list Confidence Intervals of Indirect Effects in an ’indirect_list’ Object

Description

Return the confidence intervals of the indirect effects stored in the output of many_indirect_effects().

Usage

S3 method for class 'indirect_list'
confint(object, parm = NULL, level = 0.95, ...)

Arguments

object The output of many_indirect_effects().

parm Ignored for now.

level The level of confidence, default is .95, returning the 95% confidence interval.

... Additional arguments. Ignored by the function.

confint.indirect_list 35

Details

It extracts and returns the stored confidence interval if available.

The type of confidence intervals depends on the call used to compute the effects. This function
merely retrieves the stored estimates, which could be generated by nonparametric bootstrapping,
Monte Carlo simulation, or other methods to be supported in the future, and uses them to form the
percentile confidence interval.

Value

A two-column data frame. The columns are the limits of the confidence intervals.

See Also

many_indirect_effects()

Examples

library(lavaan)
data(data_serial_parallel)
mod <-
"
m11 ~ x + c1 + c2
m12 ~ m11 + x + c1 + c2
m2 ~ x + c1 + c2
y ~ m12 + m2 + m11 + x + c1 + c2
"
fit <- sem(mod, data_serial_parallel,

fixed.x = FALSE)
All indirect paths from x to y
paths <- all_indirect_paths(fit,

x = "x",
y = "y")

paths
Indirect effect estimates
R should be 2000 or even 5000 in real research
parallel should be used in real research.
fit_boot <- do_boot(fit, R = 45, seed = 8974,

parallel = FALSE,
progress = FALSE)

out <- many_indirect_effects(paths,
fit = fit,
boot_ci = TRUE,
boot_out = fit_boot)

out
confint(out)

36 data_med_complicated

data_med Sample Dataset: Simple Mediation

Description

A simple mediation model.

Usage

data_med

Format

A data frame with 100 rows and 5 variables:

x Predictor. Numeric.

m Mediator. Numeric.

y Outcome variable. Numeric.

c1 Control variable. Numeric.

c2 Control variable. Numeric.

Examples

library(lavaan)
data(data_med)
mod <-
"
m ~ a * x + c1 + c2
y ~ b * m + x + c1 + c2
ab := a * b
"
fit <- sem(mod, data_med, fixed.x = FALSE)
parameterEstimates(fit)

data_med_complicated Sample Dataset: A Complicated Mediation Model

Description

A mediation model with two predictors, two pathways,

Usage

data_med_complicated

data_med_complicated_mg 37

Format

A data frame with 300 rows and 5 variables:

x1 Predictor 1. Numeric.

x2 Predictor 2. Numeric.

m11 Mediator 1 in Path 1. Numeric.

m12 Mediator 2 in Path 1. Numeric.

m2 Mediator in Path 2. Numeric.

y1 Outcome variable 1. Numeric.

y2 Outcome variable 2. Numeric.

c1 Control variable. Numeric.

c2 Control variable. Numeric.

Examples

data(data_med_complicated)
dat <- data_med_complicated
summary(lm_m11 <- lm(m11 ~ x1 + x1 + x2 + c1 + c2, dat))
summary(lm_m12 <- lm(m12 ~ m11 + x1 + x2 + c1 + c2, dat))
summary(lm_m2 <- lm(m2 ~ x1 + x2 + c1 + c2, dat))
summary(lm_y1 <- lm(y1 ~ m11 + m12 + m2 + x1 + x2 + c1 + c2, dat))
summary(lm_y2 <- lm(y2 ~ m11 + m12 + m2 + x1 + x2 + c1 + c2, dat))

data_med_complicated_mg

Sample Dataset: A Complicated Mediation Model With Two Groups

Description

A mediation model with two predictors, two pathways, and two groups.

Usage

data_med_complicated_mg

Format

A data frame with 300 rows and 5 variables:

x1 Predictor 1. Numeric.

x2 Predictor 2. Numeric.

m11 Mediator 1 in Path 1. Numeric.

m12 Mediator 2 in Path 1. Numeric.

m2 Mediator in Path 2. Numeric.

38 data_med_mg

y1 Outcome variable 1. Numeric.

y2 Outcome variable 2. Numeric.

c1 Control variable. Numeric.

c2 Control variable. Numeric.

group Group variable. Character. ’Group A’ or ’Group B’

Examples

library(lavaan)
data(data_med_complicated_mg)
dat <- data_med_complicated_mg
mod <-
"
m11 ~ x1 + x2 + c1 + c2
m12 ~ m11 + c1 + c2
m2 ~ x1 + x2 + c1 + c2
y1 ~ m11 + m12 + x1 + x2 + c1 + c2
y2 ~ m2 + x1 + x2 + c1 + c2
"
fit <- sem(mod, dat, group = "group")
summary(fit)

data_med_mg Sample Dataset: Simple Mediation With Two Groups

Description

A simple mediation model with two groups.

Usage

data_med_mg

Format

A data frame with 100 rows and 5 variables:

x Predictor. Numeric.

m Mediator. Numeric.

y Outcome variable. Numeric.

c1 Control variable. Numeric.

c2 Control variable. Numeric.

group Group variable. Character. "Group A" or "Group B"

data_med_mod_a 39

Examples

library(lavaan)
data(data_med_mg)
mod <-
"
m ~ c(a1, a2) * x + c1 + c2
y ~ c(b1, b2) * m + x + c1 + c2
a1b1 := a1 * b1
a2b2 := a2 * b2
abdiff := a2b2 - a1b1
"
fit <- sem(mod, data_med_mg, fixed.x = FALSE,

group = "group")
parameterEstimates(fit)

data_med_mod_a Sample Dataset: Simple Mediation with a-Path Moderated

Description

A simple mediation model with a-path moderated.

Usage

data_med_mod_a

Format

A data frame with 100 rows and 6 variables:

x Predictor. Numeric.

w Moderator. Numeric.

m Mediator. Numeric.

y Outcome variable. Numeric.

c1 Control variable. Numeric.

c2 Control variable. Numeric.

Examples

library(lavaan)
data(data_med_mod_a)
data_med_mod_a$xw <-
data_med_mod_a$x *
data_med_mod_a$w

mod <-
"
m ~ a * x + w + d * xw + c1 + c2

40 data_med_mod_ab

y ~ b * m + x + w + c1 + c2
w ~~ v_w * w
w ~ m_w * 1
ab := a * b
ab_lo := (a + d * (m_w - sqrt(v_w))) * b
ab_hi := (a + d * (m_w + sqrt(v_w))) * b
"
fit <- sem(mod, data_med_mod_a,

meanstructure = TRUE, fixed.x = FALSE)
parameterEstimates(fit)[c(1, 3, 6, 11, 12, 31:33),]

data_med_mod_ab Sample Dataset: Simple Mediation with Both Paths Moderated (Two
Moderators)

Description

A simple mediation model with a-path and b-path each moderated by a moderator.

Usage

data_med_mod_ab

Format

A data frame with 100 rows and 7 variables:

x Predictor. Numeric.

w1 Moderator 1. Numeric.

w2 Moderator 2. Numeric.

m Mediator. Numeric.

y Outcome variable. Numeric.

c1 Control variable. Numeric.

c2 Control variable. Numeric.

Examples

library(lavaan)
data(data_med_mod_ab)
data_med_mod_ab$xw1 <-
data_med_mod_ab$x *
data_med_mod_ab$w1

data_med_mod_ab$mw2 <-
data_med_mod_ab$m *
data_med_mod_ab$w2

mod <-
"
m ~ a * x + w1 + d1 * xw1 + c1 + c2

data_med_mod_ab1 41

y ~ b * m + x + w1 + w2 + d2 * mw2 + c1 + c2
w1 ~~ v_w1 * w1
w1 ~ m_w1 * 1
w2 ~~ v_w2 * w2
w2 ~ m_w2 * 1
ab := a * b
ab_lolo := (a + d1 * (m_w1 - sqrt(v_w1))) * (b + d2 * (m_w2 - sqrt(v_w2)))
ab_lohi := (a + d1 * (m_w1 - sqrt(v_w1))) * (b + d2 * (m_w2 + sqrt(v_w2)))
ab_hilo := (a + d1 * (m_w1 + sqrt(v_w1))) * (b + d2 * (m_w2 - sqrt(v_w2)))
ab_hihi := (a + d1 * (m_w1 + sqrt(v_w1))) * (b + d2 * (m_w2 + sqrt(v_w2)))
"
fit <- sem(mod, data_med_mod_ab,

meanstructure = TRUE, fixed.x = FALSE)
parameterEstimates(fit)[c(1, 3, 6, 10, 41:45),]

data_med_mod_ab1 Sample Dataset: Simple Mediation with Both Paths Moderated By a
Moderator

Description

A simple mediation model with a-path and b-path moderated by one moderator.

Usage

data_med_mod_ab1

Format

A data frame with 100 rows and 6 variables:

x Predictor. Numeric.

w Moderator. Numeric.

m Mediator. Numeric.

y Outcome variable. Numeric.

c1 Control variable. Numeric.

c2 Control variable. Numeric.

Examples

library(lavaan)
data(data_med_mod_ab1)
data_med_mod_ab1$xw <-
data_med_mod_ab1$x *
data_med_mod_ab1$w

data_med_mod_ab1$mw <-
data_med_mod_ab1$m *
data_med_mod_ab1$w

42 data_med_mod_b

mod <-
"
m ~ a * x + w + da * xw + c1 + c2
y ~ b * m + x + w + db * mw + c1 + c2
w ~~ v_w * w
w ~ m_w * 1
ab := a * b
ab_lo := (a + da * (m_w - sqrt(v_w))) * (b + db * (m_w - sqrt(v_w)))
ab_hi := (a + da * (m_w + sqrt(v_w))) * (b + db * (m_w + sqrt(v_w)))
"
fit <- sem(mod, data_med_mod_ab1,

meanstructure = TRUE, fixed.x = FALSE)
parameterEstimates(fit)[c(1, 3, 6, 9, 38:40),]

data_med_mod_b Sample Dataset: Simple Mediation with b-Path Moderated

Description

A simple mediation model with b-path moderated.

Usage

data_med_mod_b

Format

A data frame with 100 rows and 6 variables:

x Predictor. Numeric.

w Moderator. Numeric.

m Mediator. Numeric.

y Outcome variable. Numeric.

c1 Control variable. Numeric.

c2 Control variable. Numeric.

Examples

library(lavaan)
data(data_med_mod_b)
data_med_mod_b$mw <-
data_med_mod_b$m *
data_med_mod_b$w

mod <-
"
m ~ a * x + w + c1 + c2
y ~ b * m + x + d * mw + c1 + c2
w ~~ v_w * w

data_med_mod_b_mod 43

w ~ m_w * 1
ab := a * b
ab_lo := a * (b + d * (m_w - sqrt(v_w)))
ab_hi := a * (b + d * (m_w + sqrt(v_w)))
"
fit <- sem(mod, data_med_mod_b,

meanstructure = TRUE, fixed.x = FALSE)
parameterEstimates(fit)[c(1, 5, 7, 10, 11, 30:32),]

data_med_mod_b_mod Sample Dataset: A Simple Mediation Model with b-Path Moderated-
Moderation

Description

A simple mediation model with moderated-mediation on the b-path.

Usage

data_med_mod_b_mod

Format

A data frame with 100 rows and 5 variables:

x Predictor. Numeric.

w1 Moderator on b-path. Numeric.

w2 Moderator on the moderating effect of w1. Numeric.

m Mediator. Numeric.

y Outcome variable. Numeric.

c1 Control variable. Numeric.

c2 Control variable. Numeric.

Examples

data(data_med_mod_b_mod)
dat <- data_med_mod_b_mod
summary(lm_m <- lm(m ~ x + c1 + c2, dat))
summary(lm_y <- lm(y ~ m*w1*w2 + x + c1 + c2, dat))

44 data_med_mod_parallel

data_med_mod_parallel Sample Dataset: Parallel Mediation with Two Moderators

Description

A parallel mediation model with a1-path and b2-path moderated.

Usage

data_med_mod_parallel

Format

A data frame with 100 rows and 8 variables:

x Predictor. Numeric.

w1 Moderator 1. Numeric.

w2 Moderator 2. Numeric.

m1 Mediator 1. Numeric.

m2 Mediator 2. Numeric.

y Outcome variable. Numeric.

c1 Control variable. Numeric.

c2 Control variable. Numeric.

Examples

library(lavaan)
data(data_med_mod_parallel)
data_med_mod_parallel$xw1 <-
data_med_mod_parallel$x *
data_med_mod_parallel$w1

data_med_mod_parallel$m2w2 <-
data_med_mod_parallel$m2 *
data_med_mod_parallel$w2

mod <-
"
m1 ~ a1 * x + w1 + da1 * xw1 + c1 + c2
m2 ~ a2 * x + w1 + c1 + c2
y ~ b1 * m1 + b2 * m2 + x + w1 + w2 + db2 * m2w2 + c1 + c2
w1 ~~ v_w1 * w1
w1 ~ m_w1 * 1
w2 ~~ v_w2 * w2
w2 ~ m_w2 * 1
a1b1 := a1 * b1
a2b2 := a2 * b2
a1b1_w1lo := (a1 + da1 * (m_w1 - sqrt(v_w1))) * b1
a1b1_w1hi := (a1 + da1 * (m_w1 + sqrt(v_w1))) * b2

data_med_mod_parallel_cat 45

a2b2_w2lo := a2 * (b2 + db2 * (m_w2 - sqrt(v_w2)))
a2b2_w2hi := a2 * (b2 + db2 * (m_w2 + sqrt(v_w2)))
"
fit <- sem(mod, data_med_mod_parallel,

meanstructure = TRUE, fixed.x = FALSE)
parameterEstimates(fit)[c(1, 3, 6, 10, 11, 15, 48:53),]

data_med_mod_parallel_cat

Sample Dataset: Parallel Moderated Mediation with Two Categorical
Moderators

Description

A parallel mediation model with two categorical moderators.

Usage

data_med_mod_parallel_cat

Format

A data frame with 300 rows and 8 variables:

x Predictor. Numeric.

w1 Moderator. String. Values: "group1", "group2", "group3"

w2 Moderator. String. Values: "team1", "team2"

m1 Mediator 1. Numeric.

m2 Mediator 2. Numeric.

y Outcome variable. Numeric.

c1 Control variable. Numeric.

c2 Control variable. Numeric.

Examples

data(data_med_mod_parallel_cat)
dat <- data_med_mod_parallel_cat
summary(lm_m1 <- lm(m1 ~ x*w1 + c1 + c2, dat))
summary(lm_m2 <- lm(m2 ~ x*w1 + c1 + c2, dat))
summary(lm_y <- lm(y ~ m1*w2 + m2*w2 + m1 + x + w1 + c1 + c2, dat))

46 data_med_mod_serial

data_med_mod_serial Sample Dataset: Serial Mediation with Two Moderators

Description

A simple mediation model with a-path and b2-path moderated.

Usage

data_med_mod_serial

Format

A data frame with 100 rows and 8 variables:

x Predictor. Numeric.

w1 Moderator 1. Numeric.

w2 Moderator 2. Numeric.

m1 Mediator 1. Numeric.

m2 Mediator 2. Numeric.

y Outcome variable. Numeric.

c1 Control variable. Numeric.

c2 Control variable. Numeric.

Examples

library(lavaan)
data(data_med_mod_serial)
data_med_mod_serial$xw1 <-
data_med_mod_serial$x *
data_med_mod_serial$w1

data_med_mod_serial$m2w2 <-
data_med_mod_serial$m2 *
data_med_mod_serial$w2

mod <-
"
m1 ~ a * x + w1 + da1 * xw1 + c1 + c2
m2 ~ b1 * m1 + x + w1 + c1 + c2
y ~ b2 * m2 + m1 + x + w1 + w2 + db2 * m2w2 + c1 + c2
w1 ~~ v_w1 * w1
w1 ~ m_w1 * 1
w2 ~~ v_w2 * w2
w2 ~ m_w2 * 1
ab1b2 := a * b1 * b2
ab1b2_lolo := (a + da1 * (m_w1 - sqrt(v_w1))) * b1 * (b2 + db2 * (m_w2 - sqrt(v_w2)))
ab1b2_lohi := (a + da1 * (m_w1 - sqrt(v_w1))) * b1 * (b2 + db2 * (m_w2 + sqrt(v_w2)))
ab1b2_hilo := (a + da1 * (m_w1 + sqrt(v_w1))) * b1 * (b2 + db2 * (m_w2 - sqrt(v_w2)))

data_med_mod_serial_cat 47

ab1b2_hihi := (a + da1 * (m_w1 + sqrt(v_w1))) * b1 * (b2 + db2 * (m_w2 + sqrt(v_w2)))
"
fit <- sem(mod, data_med_mod_serial,

meanstructure = TRUE, fixed.x = FALSE)
parameterEstimates(fit)[c(1, 3, 6, 11, 16, 49:53),]

data_med_mod_serial_cat

Sample Dataset: Serial Moderated Mediation with Two Categorical
Moderators

Description

A serial mediation model with two categorical moderators.

Usage

data_med_mod_serial_cat

Format

A data frame with 300 rows and 8 variables:

x Predictor. Numeric.

w1 Moderator. String. Values: "group1", "group2", "group3"

w2 Moderator. String. Values: "team1", "team2"

m1 Mediator 1. Numeric.

m2 Mediator 2. Numeric.

y Outcome variable. Numeric.

c1 Control variable. Numeric.

c2 Control variable. Numeric.

Examples

data(data_med_mod_serial_cat)
dat <- data_med_mod_serial_cat
summary(lm_m1 <- lm(m1 ~ x*w1 + c1 + c2, dat))
summary(lm_m2 <- lm(m2 ~ m1 + x + w1 + c1 + c2, dat))
summary(lm_y <- lm(y ~ m2*w2 + m1 + x + w1 + c1 + c2, dat))

48 data_med_mod_serial_parallel

data_med_mod_serial_parallel

Sample Dataset: Serial-Parallel Mediation with Two Moderators

Description

A serial-parallel mediation model with some paths moderated.

Usage

data_med_mod_serial_parallel

Format

A data frame with 100 rows and 9 variables:

x Predictor. Numeric.

w1 Moderator 1. Numeric.

w2 Moderator 2. Numeric.

m11 Mediator 1 in Path 1. Numeric.

m12 Mediator 2 in Path 2. Numeric.

m2 Mediator 2. Numeric.

y Outcome variable. Numeric.

c1 Control variable. Numeric.

c2 Control variable. Numeric.

Examples

library(lavaan)
data(data_med_mod_serial_parallel)
data_med_mod_serial_parallel$xw1 <-
data_med_mod_serial_parallel$x *
data_med_mod_serial_parallel$w1
data_med_mod_serial_parallel$m2w2 <-
data_med_mod_serial_parallel$m2 *
data_med_mod_serial_parallel$w2
mod <-
"
m11 ~ a1 * x + w1 + da11 * xw1 + c1 + c2
m12 ~ b11 * m11 + x + w1 + c1 + c2
m2 ~ a2 * x + c1 + c2
y ~ b12 * m12 + b2 * m2 + m11 + x + w1 + w2 + db2 * m2w2 + c1 + c2
w1 ~~ v_w1 * w1
w1 ~ m_w1 * 1
w2 ~~ v_w2 * w2
w2 ~ m_w2 * 1

data_med_mod_serial_parallel_cat 49

a1b11b22 := a1 * b11 * b12
a2b2 := a2 * b2
ab := a1b11b22 + a2b2
a1b11b12_w1lo := (a1 + da11 * (m_w1 - sqrt(v_w1))) * b11 * b12
a1b11b12_w1hi := (a1 + da11 * (m_w1 + sqrt(v_w1))) * b11 * b12
a2b2_w2lo := a2 * (b2 + db2 * (m_w2 - sqrt(v_w2)))
a2b2_w2hi := a2 * (b2 + db2 * (m_w2 + sqrt(v_w2)))
"
fit <- sem(mod, data_med_mod_serial_parallel,

meanstructure = TRUE, fixed.x = FALSE)
parameterEstimates(fit)[parameterEstimates(fit)$label != "",]

data_med_mod_serial_parallel_cat

Sample Dataset: Serial-Parallel Moderated Mediation with Two Cat-
egorical Moderators

Description

A serial-parallel mediation model with two categorical moderators.

Usage

data_med_mod_serial_parallel_cat

Format

A data frame with 300 rows and 8 variables:

x Predictor. Numeric.

w1 Moderator. String. Values: "group1", "group2", "group3"

w2 Moderator. String. Values: "team1", "team2"

m11 Mediator 1 in Path 1. Numeric.

m12 Mediator 2 in Path 1. Numeric.

m2 Mediator in Path 2. Numeric.

y Outcome variable. Numeric.

c1 Control variable. Numeric.

c2 Control variable. Numeric.

Examples

data(data_med_mod_serial_parallel_cat)
dat <- data_med_mod_serial_parallel_cat
summary(lm_m11 <- lm(m11 ~ x*w1 + c1 + c2, dat))
summary(lm_m12 <- lm(m12 ~ m11 + x + w1 + c1 + c2, dat))
summary(lm_m2 <- lm(m2 ~ x + w1 + c1 + c2, dat))
summary(lm_y <- lm(y ~ m12 + m2*w2 + m12 + x + c1 + c2, dat))

50 data_mod2

data_mod Sample Dataset: One Moderator

Description

A one-moderator model.

Usage

data_mod

Format

A data frame with 100 rows and 5 variables:

x Predictor. Numeric.

w Moderator. Numeric.

y Outcome variable. Numeric.

c1 Control variable. Numeric.

c2 Control variable. Numeric.

Examples

library(lavaan)
data(data_mod)
data_mod$xw <- data_mod$x * data_mod$w
mod <-
"
y ~ a * x + w + d * xw + c1 + c2
w ~~ v_w * w
w ~ m_w * 1
a_lo := a + d * (m_w - sqrt(v_w))
a_hi := a + d * (m_w + sqrt(v_w))
"
fit <- sem(mod, data_mod, fixed.x = FALSE)
parameterEstimates(fit)[c(1, 3, 6, 7, 24, 25),]

data_mod2 Sample Dataset: Two Moderators

Description

A two-moderator model.

Usage

data_mod2

data_mod_cat 51

Format

A data frame with 100 rows and 6 variables:

x Predictor. Numeric.

w1 Moderator 1. Numeric.

w2 Moderator 2. Numeric.

y Outcome variable. Numeric.

c1 Control variable. Numeric.

c2 Control variable. Numeric.

Examples

library(lavaan)
data(data_mod2)
data_mod2$xw1 <- data_mod2$x * data_mod2$w1
data_mod2$xw2 <- data_mod2$x * data_mod2$w2
mod <-
"
y ~ a * x + w1 + w2 + d1 * xw1 + d2 * xw2 + c1 + c2
w1 ~~ v_w1 * w1
w1 ~ m_w1 * 1
w2 ~~ v_w2 * w2
w2 ~ m_w2 * 1
a_lolo := a + d1 * (m_w1 - sqrt(v_w1)) + d2 * (m_w2 - sqrt(v_w2))
a_lohi := a + d1 * (m_w1 - sqrt(v_w1)) + d2 * (m_w2 + sqrt(v_w2))
a_hilo := a + d1 * (m_w1 + sqrt(v_w1)) + d2 * (m_w2 - sqrt(v_w2))
a_hihi := a + d1 * (m_w1 + sqrt(v_w1)) + d2 * (m_w2 + sqrt(v_w2))
"
fit <- sem(mod, data_mod2, fixed.x = FALSE)
parameterEstimates(fit)[c(1, 4, 5, 8:11, 34:37),]

data_mod_cat Sample Dataset: Moderation with One Categorical Moderator

Description

A moderation model with a categorical moderator.

Usage

data_mod_cat

52 data_mome_demo

Format

A data frame with 300 rows and 5 variables:

x Predictor. Numeric.

w Moderator. String. Values: "group1", "group2", "group3"

y Outcome variable. Numeric.

c1 Control variable. Numeric.

c2 Control variable. Numeric.

Examples

data(data_mod_cat)
dat <- data_mod_cat
summary(lm_y <- lm(y ~ x*w + c1 + c2, dat))

data_mome_demo Sample Dataset: A Complicated Moderated-Mediation Model

Description

Generated from a complicated moderated-mediation model for demonstration.

Usage

data_mome_demo

Format

A data frame with 200 rows and 11 variables:

x1 Predictor 1. Numeric.

x2 Predictor 2. Numeric.

m1 Mediator 1. Numeric.

m2 Mediator 2. Numeric.

m3 Mediator 3. Numeric.

y1 Outcome Variable 1. Numeric.

y2 Outcome Variable 2. Numeric.

w1 Moderator 1. Numeric.

w2 Moderator 21. Numeric.

c1 Control Variable 1. Numeric.

c2 Control Variable 2. Numeric.

data_mome_demo_missing 53

Details

The model:

w1x1 <- x1 * w1
w2m2 <- w2 * m2
m1 ~ x1 + w1 + w1x1 + x2 + c1 + c2
m2 ~ m1 + c1 + c2
m3 ~ x2 + x1 + c1 + c2
y1 ~ m2 + w2 + w2m2 + x1 + x2 + m3 + c1 + c2
y2 ~ m3 + x2 + x1 + m2 + c1 + c2
Covariances excluded for brevity

data_mome_demo_missing

Sample Dataset: A Complicated Moderated-Mediation Model With
Missing Data

Description

Generated from a complicated moderated-mediation model for demonstration, with missing data

Usage

data_mome_demo_missing

Format

A data frame with 200 rows and 11 variables:

x1 Predictor 1. Numeric.

x2 Predictor 2. Numeric.

m1 Mediator 1. Numeric.

m2 Mediator 2. Numeric.

m3 Mediator 3. Numeric.

y1 Outcome Variable 1. Numeric.

y2 Outcome Variable 2. Numeric.

w1 Moderator 1. Numeric.

w2 Moderator 21. Numeric.

c1 Control Variable 1. Numeric.

c2 Control Variable 2. Numeric.

54 data_parallel

Details

A copy of data_mome_demo with some randomly selected cells changed to NA. The number of
cases with no missing data is 169.

The model:

w1x1 <- x1 * w1
w2m2 <- w2 * m2
m1 ~ x1 + w1 + w1x1 + x2 + c1 + c2
m2 ~ m1 + c1 + c2
m3 ~ x2 + x1 + c1 + c2
y1 ~ m2 + w2 + w2m2 + x1 + x2 + m3 + c1 + c2
y2 ~ m3 + x2 + x1 + m2 + c1 + c2
Covariances excluded for brevity

data_parallel Sample Dataset: Parallel Mediation

Description

A parallel mediation model.

Usage

data_parallel

Format

A data frame with 100 rows and 6 variables:

x Predictor. Numeric.

m1 Mediator 1. Numeric.

m2 Mediator 2. Numeric.

y Outcome variable. Numeric.

c1 Control variable. Numeric.

c2 Control variable. Numeric.

Examples

library(lavaan)
data(data_parallel)
mod <-
"
m1 ~ a1 * x + c1 + c2
m2 ~ a2 * x + c1 + c2
y ~ b2 * m2 + b1 * m1 + x + c1 + c2
indirect1 := a1 * b1

data_sem 55

indirect2 := a2 * b2
indirect := a1 * b1 + a2 * b2
"
fit <- sem(mod, data_parallel,

meanstructure = TRUE, fixed.x = FALSE)
parameterEstimates(fit)[c(1, 4, 7, 8, 27:29),]

data_sem Sample Dataset: A Latent Variable Mediation Model With 4 Factors

Description

This data set is for testing functions in a four-factor structural model.

Usage

data_sem

Format

A data frame with 200 rows and 14 variables:

x01 Indicator. Numeric.

x02 Indicator. Numeric.

x03 Indicator. Numeric.

x04 Indicator. Numeric.

x05 Indicator. Numeric.

x06 Indicator. Numeric.

x07 Indicator. Numeric.

x08 Indicator. Numeric.

x09 Indicator. Numeric.

x10 Indicator. Numeric.

x11 Indicator. Numeric.

x12 Indicator. Numeric.

x13 Indicator. Numeric.

x14 Indicator. Numeric.

56 data_serial

Examples

data(data_sem)
dat <- data_med_mod_b_mod
mod <-

'f1 =~ x01 + x02 + x03
f2 =~ x04 + x05 + x06 + x07
f3 =~ x08 + x09 + x10
f4 =~ x11 + x12 + x13 + x14
f3 ~ a1*f1 + a2*f2
f4 ~ b1*f1 + b3*f3
a1b3 := a1 * b3
a2b3 := a2 * b3
'

fit <- lavaan::sem(model = mod, data = data_sem)
summary(fit)

data_serial Sample Dataset: Serial Mediation

Description

A serial mediation model.

Usage

data_serial

Format

A data frame with 100 rows and 6 variables:

x Predictor. Numeric.

m1 Mediator 1. Numeric.

m2 Mediator 2. Numeric.

y Outcome variable. Numeric.

c1 Control variable. Numeric.

c2 Control variable. Numeric.

Examples

library(lavaan)
data(data_serial)
mod <-
"
m1 ~ a * x + c1 + c2
m2 ~ b1 * m1 + x + c1 + c2

data_serial_parallel 57

y ~ b2 * m2 + m1 + x + c1 + c2
indirect := a * b1 * b2
"
fit <- sem(mod, data_serial,

meanstructure = TRUE, fixed.x = FALSE)
parameterEstimates(fit)[c(1, 4, 8, 28),]

data_serial_parallel Sample Dataset: Serial-Parallel Mediation

Description

A mediation model with both serial and parallel components.

Usage

data_serial_parallel

Format

A data frame with 100 rows and 7 variables:

x Predictor. Numeric.

m11 Mediator 1 in Path 1. Numeric.

m12 Mediator 2 in Path 1. Numeric.

m2 Mediator in Path 2. Numeric.

y Outcome variable. Numeric.

c1 Control variable. Numeric.

c2 Control variable. Numeric.

Examples

library(lavaan)
data(data_serial_parallel)
mod <-
"
m11 ~ a11 * x + c1 + c2
m12 ~ b11 * m11 + x + c1 + c2
m2 ~ a2 * x + c1 + c2
y ~ b12 * m12 + b2 * m2 + m11 + x + c1 + c2
indirect1 := a11 * b11 * b12
indirect2 := a2 * b2
indirect := a11 * b11 * b12 + a2 * b2
"
fit <- sem(mod, data_serial_parallel,

meanstructure = TRUE, fixed.x = FALSE)
parameterEstimates(fit)[c(1, 4, 8, 11, 12, 34:36),]

58 data_serial_parallel_latent

data_serial_parallel_latent

Sample Dataset: A Latent Mediation Model With Three Mediators

Description

Generated from a 3-mediator mediation model among eight latent factors, fx1, fx2, fm11, fm12,
fy1, and fy2, each has three indicators.

Usage

data_serial_parallel_latent

Format

A data frame with 500 rows and 21 variables:

x1 Indicator of fx1. Numeric.

x2 Indicator of fx1. Numeric.

x3 Indicator of fx1. Numeric.

x4 Indicator of fx2. Numeric.

x5 Indicator of fx2. Numeric.

x6 Indicator of fx2. Numeric.

m11a Indicator of fm11. Numeric.

m11b Indicator of fm11. Numeric.

m11c Indicator of fm11. Numeric.

m12a Indicator of fm12. Numeric.

m12b Indicator of fm12. Numeric.

m12c Indicator of fm12. Numeric.

m2a Indicator of fm2. Numeric.

m2b Indicator of fm2. Numeric.

m2c Indicator of fm2. Numeric.

y1 Indicator of fy1. Numeric.

y2 Indicator of fy1. Numeric.

y3 Indicator of fy1. Numeric.

y4 Indicator of fy2. Numeric.

y5 Indicator of fy2. Numeric.

y6 Indicator of fy2. Numeric.

delta_med 59

Details

The model:

fx1 =~ x1 + x2 + x3
fx2 =~ x4 + x5 + x6
fm11 =~ m11a + m11b + m11c
fm12 =~ m12a + m12b + m12c
fm2 =~ m2a + m2b + m2c
fy1 =~ y1 + y2 + y3
fy2 =~ y3 + y4 + y5
fm11 ~ a1 * fx1
fm12 ~ b11 * fm11 + a2m * fx2
fm2 ~ a2 * fx2
fy1 ~ b12 * fm12 + b11y1 * fm11 + cp1 * fx1
fy2 ~ b2 * fm2 + cp2 * fx2
a1b11b12 := a1 * b11 * b12
a1b11y1 := a1 * b11y1
a2b2 := a2 * b2
a2mb12 := a2m * b12

delta_med Delta_Med by Liu, Yuan, and Li (2023)

Description

It computes the Delta_Med proposed by Liu, Yuan, and Li (2023), an R2-like measure of indirect
effect.

Usage

delta_med(
x,
y,
m,
fit,
paths_to_remove = NULL,
boot_out = NULL,
level = 0.95,
progress = TRUE,
skip_check_single_x = FALSE,
skip_check_m_between_x_y = FALSE,
skip_check_x_to_y = FALSE,
skip_check_latent_variables = FALSE,
boot_type = c("perc", "bc")

)

60 delta_med

Arguments

x The name of the x variable. Must be supplied as a quoted string.

y The name of the y variable. Must be supplied as a quoted string.

m A vector of the variable names of the mediator(s). If more than one mediators,
they do not have to be on the same path from x to y. Cannot be NULL for this
function.

fit The fit object. Must be a lavaan::lavaan object.
paths_to_remove

A character vector of paths users want to manually remove, specified in lavaan
model syntax. For example, c("m2~x", "m3~m2") removes the path from x to
m2 and the path from m2 to m3. The default is NULL, and the paths to remove
will be determined using the method by Liu et al. (2023). If supplied, then only
paths specified explicitly will be removed.

boot_out The output of do_boot(). If supplied, the stored bootstrap estimates will be
used to form the nonparametric percentile bootstrap confidence interval of Delta_Med.

level The level of confidence of the bootstrap confidence interval. Default is .95.

progress Logical. Display bootstrapping progress or not. Default is TRUE.
skip_check_single_x

Logical Check whether the model has one and only one x-variable. Default is
TRUE.

skip_check_m_between_x_y

Logical. Check whether all m variables are along a path from x to y. Default is
TRUE.

skip_check_x_to_y

Logical. Check whether there is a direct path from x to y. Default is TRUE.
skip_check_latent_variables

Logical. Check whether the model has any latent variables. Default is TRUE.

boot_type If bootstrap confidence interval is to be formed, the type of bootstrap confidence
interval. The supported types are "perc" (percentile bootstrap confidence in-
terval, the default and recommended type) and "bc" (bias-corrected, or BC,
bootstrap confidence interval).

Details

It computes Delta_Med, an R2-like effect size measure for the indirect effect from one variable (the
y-variable) to another variable (the x-variable) through one or more mediators (m, or m1, m2, etc.
when there are more than one mediator).

The Delta_Med of one or more mediators was computed as the difference between two R2s:

• R2
1, the R2 when y is predicted by x and all mediators.

• R2
2, the R2 when the mediator(s) of interest is/are removed from the models, while the error

term(s) of the mediator(s) is/are kept.

Delta_Med is given by R2
1 −R2

2.

Please refer to Liu et al. (2023) for the technical details.

The function can also form a nonparametric percentile bootstrap confidence of Delta_Med.

delta_med 61

Value

A delta_med class object. It is a list-like object with these major elements:

• delta_med: The Delta_Med.
• x: The name of the x-variable.
• y: The name of the y-variable.
• m: A character vector of the mediator(s) along a path. The path runs from the first element to

the last element.

This class has a print method, a coef method, and a confint method. See print.delta_med(),
coef.delta_med(), and confint.delta_med().

Implementation

The function identifies all the path(s) pointing to the mediator(s) of concern and fixes the path(s) to
zero, effectively removing the mediator(s). However, the model is not refitted, hence keeping the
estimates of all other parameters unchanged. It then uses lavaan::lav_model_set_parameters()
to update the parameters, lavaan::lav_model_implied() to update the implied statistics, and
then calls lavaan::lavInspect() to retrieve the implied variance of the predicted values of y for
computing the R2

2. Subtracting this R2
2 from R2

1 of y can then yield Delta_Med.

Model Requirements

For now, by default, it only computes Delta_Med for the types of models discussed in Liu et al.
(2023):

• Having one predictor (the x-variable).
• Having one or more mediators, the m-variables, with arbitrary way to mediate the effect of x

on the outcome variable (y-variable).
• Having one or more outcome variables. Although their models only have outcome variables,

the computation of the Delta_Med is not affected by the presence of other outcome variables.
• Having no control variables.
• The mediator(s), m, and the y-variable are continuous.
• x can be continuous or categorical. If categorical, it needs to be handle appropriately when

fitting the model.
• x has a direct path to y.
• All the mediators listed in the argument m is present in at least one path from x to y.

• None of the paths from x to y are moderated.

It can be used for other kinds of models but support for them is disabled by default. To use this
function for cases not discussed in Liu et al. (2023), please disable relevant requirements stated
above using the relevant skip_check_* arguments. An error will be raised if the models failed any
of the checks not skipped by users.

References

Liu, H., Yuan, K.-H., & Li, H. (2023). A systematic framework for defining R-squared measures in
mediation analysis. Psychological Methods. Advance online publication. https://doi.org/10.1037/met0000571

62 do_boot

See Also

print.delta_med(), coef.delta_med(), and confint.delta_med().

Examples

library(lavaan)
dat <- data_med
mod <-
"
m ~ x
y ~ m + x
"
fit <- sem(mod, dat)
dm <- delta_med(x = "x",

y = "y",
m = "m",
fit = fit)

dm
print(dm, full = TRUE)

Call do_boot() to generate
bootstrap estimates
Use 2000 or even 5000 for R in real studies
Set parallel to TRUE in real studies for faster bootstrapping
boot_out <- do_boot(fit,

R = 45,
seed = 879,
parallel = FALSE,
progress = FALSE)

Remove 'progress = FALSE' in practice
dm_boot <- delta_med(x = "x",

y = "y",
m = "m",
fit = fit,
boot_out = boot_out,
progress = FALSE)

dm_boot
confint(dm_boot)

do_boot Bootstrap Estimates for ’indirect_effects’ and ’cond_indirect_effects’

Description

Generate bootstrap estimates to be used by cond_indirect_effects(), indirect_effect(), and
cond_indirect(),

do_boot 63

Usage

do_boot(
fit,
R = 100,
seed = NULL,
parallel = TRUE,
ncores = max(parallel::detectCores(logical = FALSE) - 1, 1),
make_cluster_args = list(),
progress = TRUE

)

Arguments

fit It can be (a) a list of lm class objects, or the output of lm2list() (i.e., an
lm_list-class object), or (b) the output of lavaan::sem(). If it is a single
model fitted by lm(), it will be automatically converted to a list by lm2list().

R The number of bootstrap samples. Default is 100.

seed The seed for the bootstrapping. Default is NULL and seed is not set.

parallel Logical. Whether parallel processing will be used. Default is TRUE.

ncores Integer. The number of CPU cores to use when parallel is TRUE. Default is
the number of non-logical cores minus one (one minimum). Will raise an error
if greater than the number of cores detected by parallel::detectCores(). If
ncores is set, it will override make_cluster_args.

make_cluster_args

A named list of additional arguments to be passed to parallel::makeCluster().
For advanced users. See parallel::makeCluster() for details. Default is
list(), no additional arguments.

progress Logical. Display progress or not. Default is TRUE.

Details

It does nonparametric bootstrapping to generate bootstrap estimates of the parameter estimates in
a model fitted either by lavaan::sem() or by a sequence of calls to lm(). The stored estimates
can then be used by cond_indirect_effects(), indirect_effect(), and cond_indirect() to
form bootstrapping confidence intervals.

This approach removes the need to repeat bootstrapping in each call to cond_indirect_effects(),
indirect_effect(), and cond_indirect(). It also ensures that the same set of bootstrap samples
is used in all subsequent analysis.

It determines the type of the fit object automatically and then calls lm2boot_out(), fit2boot_out(),
or fit2boot_out_do_boot().

Multigroup Models:
Since Version 0.1.14.2, support for multigroup models has been added for models fitted by lavaan.
The implementation of bootstrapping is identical to that used by lavaan, with resampling done
within each group.

64 do_mc

Value

A boot_out-class object that can be used for the boot_out argument of cond_indirect_effects(),
indirect_effect(), and cond_indirect() for forming bootstrap confidence intervals. The ob-
ject is a list with the number of elements equal to the number of bootstrap samples. Each element
is a list of the parameter estimates and sample variances and covariances of the variables in each
bootstrap sample.

See Also

lm2boot_out(), fit2boot_out(), and fit2boot_out_do_boot(), which implements the boot-
strapping.

Examples

data(data_med_mod_ab1)
dat <- data_med_mod_ab1
lm_m <- lm(m ~ x*w + c1 + c2, dat)
lm_y <- lm(y ~ m*w + x + c1 + c2, dat)
lm_out <- lm2list(lm_m, lm_y)
In real research, R should be 2000 or even 5000
In real research, no need to set parallel and progress to FALSE
Parallel processing is enabled by default and
progress is displayed by default.
lm_boot_out <- do_boot(lm_out, R = 50, seed = 1234,

parallel = FALSE,
progress = FALSE)

wlevels <- mod_levels(w = "w", fit = lm_out)
wlevels
out <- cond_indirect_effects(wlevels = wlevels,

x = "x",
y = "y",
m = "m",
fit = lm_out,
boot_ci = TRUE,
boot_out = lm_boot_out)

out

do_mc Monte Carlo Estimates for ’indirect_effects’ and
’cond_indirect_effects’

Description

Generate Monte Carlo estimates to be used by cond_indirect_effects(), indirect_effect(),
and cond_indirect(),

do_mc 65

Usage

do_mc(
fit,
R = 100,
seed = NULL,
parallel = TRUE,
ncores = max(parallel::detectCores(logical = FALSE) - 1, 1),
make_cluster_args = list(),
progress = TRUE

)

gen_mc_est(fit, R = 100, seed = NULL)

Arguments

fit The output of lavaan::sem(). It can also be a lavaan.mi object returned by
semTools::runMI() or its wrapper, such as semTools::sem.mi(). The output
of stats::lm() is not supported.

R The number of replications. Default is 100.

seed The seed for the generating Monte Carlo estimates. Default is NULL and seed is
not set.

parallel Not used. Kept for compatibility with do_boot().

ncores Not used. Kept for compatibility with do_boot().

make_cluster_args

Not used. Kept for compatibility with do_boot().

progress Logical. Display progress or not. Default is TRUE.

Details

It uses the parameter estimates and their variance-covariance matrix to generate Monte Carlo es-
timates of the parameter estimates in a model fitted by lavaan::sem(). The stored estimates can
then be used by cond_indirect_effects(), indirect_effect(), and cond_indirect() to form
Monte Carlo confidence intervals.

It also supports a model estimated by multiple imputation using semTools::runMI() or its wrapper,
such as semTools::sem.mi(). The pooled estimates and their variance-covariance matrix will be
used to generate the Monte Carlo estimates.

This approach removes the need to repeat Monte Carlo simulation in each call to cond_indirect_effects(),
indirect_effect(), and cond_indirect(). It also ensures that the same set of Monte Carlo es-
timates is used in all subsequent analysis.

Multigroup Models:
Since Version 0.1.14.2, support for multigroup models has been added for models fitted by lavaan.

66 factor2var

Value

A mc_out-class object that can be used for the mc_out argument of cond_indirect_effects(),
indirect_effect(), and cond_indirect() for forming Monte Carlo confidence intervals. The
object is a list with the number of elements equal to the number of Monte Carlo replications. Each
element is a list of the parameter estimates and sample variances and covariances of the variables
in each Monte Carlo replication.

Functions

• do_mc(): A general purpose function for creating Monte Carlo estimates to be reused by other
functions. It returns a mc_out-class object.

• gen_mc_est(): Generate Monte Carlo estimates and store them in the external slot: external$manymome$mc.
For advanced users.

See Also

fit2mc_out(), which implements the Monte Carlo simulation.

Examples

library(lavaan)
data(data_med_mod_ab1)
dat <- data_med_mod_ab1
mod <-
"
m ~ x + w + x:w + c1 + c2
y ~ m + w + m:w + x + c1 + c2
"
fit <- sem(mod, dat)
In real research, R should be 5000 or even 10000
mc_out <- do_mc(fit, R = 100, seed = 1234)
wlevels <- mod_levels(w = "w", fit = fit)
wlevels
out <- cond_indirect_effects(wlevels = wlevels,

x = "x",
y = "y",
m = "m",
fit = fit,
mc_ci = TRUE,
mc_out = mc_out)

out

factor2var Create Dummy Variables

Description

Create dummy variables from a categorical variable.

fit2boot_out 67

Usage

factor2var(
x_value,
x_contrasts = "contr.treatment",
prefix = "",
add_rownames = TRUE

)

Arguments

x_value The vector of categorical variable.

x_contrasts The contrast to be used. Default is "constr.treatment".

prefix The prefix to be added to the variables to be created. Default is "".

add_rownames Whether row names will be added to the output. Default is TRUE.

Details

Its main use is for creating dummy variables (indicator variables) from a categorical variable, to be
used in lavaan::sem().

Optionally, the other contrasts can be used through the argument x_contrasts.

Value

It always returns a matrix with the number of rows equal to the length of the vector (x_value). If
the categorical has only two categories and so only one dummy variable is needed, the output is still
a one-column "matrix" in R.

Examples

dat <- data_mod_cat
dat <- data.frame(dat,

factor2var(dat$w, prefix = "gp", add_rownames = FALSE))
head(dat[, c("w", "gpgroup2", "gpgroup3")], 15)

fit2boot_out Bootstrap Estimates for a lavaan Output

Description

Generate bootstrap estimates from the output of lavaan::sem().

68 fit2boot_out

Usage

fit2boot_out(fit)

fit2boot_out_do_boot(
fit,
R = 100,
seed = NULL,
parallel = FALSE,
ncores = max(parallel::detectCores(logical = FALSE) - 1, 1),
make_cluster_args = list(),
progress = TRUE,
internal = list()

)

Arguments

fit The fit object. This function only supports a lavaan::lavaan object.

R The number of bootstrap samples. Default is 100.

seed The seed for the random resampling. Default is NULL.

parallel Logical. Whether parallel processing will be used. Default is NULL.

ncores Integer. The number of CPU cores to use when parallel is TRUE. Default is
the number of non-logical cores minus one (one minimum). Will raise an error
if greater than the number of cores detected by parallel::detectCores(). If
ncores is set, it will override make_cluster_args.

make_cluster_args

A named list of additional arguments to be passed to parallel::makeCluster().
For advanced users. See parallel::makeCluster() for details. Default is
list().

progress Logical. Display progress or not. Default is TRUE.

internal A list of arguments to be used internally for debugging. Default is list().

Details

This function is for advanced users. do_boot() is a function users should try first because do_boot()
has a general interface for input-specific functions like this one.

If bootstrapping confidence intervals was requested when calling lavaan::sem() by setting se =
"boot", fit2boot_out() can be used to extract the stored bootstrap estimates so that they can be
reused by indirect_effect(), cond_indirect_effects() and related functions to form boot-
strapping confidence intervals for effects such as indirect effects and conditional indirect effects.

If bootstrapping confidence was not requested when fitting the model by lavaan::sem(), fit2boot_out_do_boot()
can be used to generate nonparametric bootstrap estimates from the output of lavaan::sem() and
store them for use by indirect_effect(), cond_indirect_effects(), and related functions.

This approach removes the need to repeat bootstrapping in each call to indirect_effect(), cond_indirect_effects(),
and related functions. It also ensures that the same set of bootstrap samples is used in all subsequent
analyses.

fit2boot_out 69

Value

A boot_out-class object that can be used for the boot_out argument of indirect_effect(),
cond_indirect_effects(), and related functions for forming bootstrapping confidence intervals.

The object is a list with the number of elements equal to the number of bootstrap samples. Each
element is a list of the parameter estimates and sample variances and covariances of the variables
in each bootstrap sample.

Functions

• fit2boot_out(): Process stored bootstrap estimates for functions such as cond_indirect_effects().

• fit2boot_out_do_boot(): Do bootstrapping and store information to be used by cond_indirect_effects()
and related functions. Support parallel processing.

See Also

do_boot(), the general purpose function that users should try first before using this function.

Examples

library(lavaan)
data(data_med_mod_ab1)
dat <- data_med_mod_ab1
dat$"x:w" <- dat$x * dat$w
dat$"m:w" <- dat$m * dat$w
mod <-
"
m ~ x + w + x:w + c1 + c2
y ~ m + w + m:w + x + c1 + c2
"

Bootstrapping not requested in calling lavaan::sem()
fit <- sem(model = mod, data = dat, fixed.x = FALSE,

se = "none", baseline = FALSE)
fit_boot_out <- fit2boot_out_do_boot(fit = fit,

R = 40,
seed = 1234,
progress = FALSE)

out <- cond_indirect_effects(wlevels = "w",
x = "x",
y = "y",
m = "m",
fit = fit,
boot_ci = TRUE,
boot_out = fit_boot_out)

out

70 fit2mc_out

fit2mc_out Monte Carlo Estimates for a lavaan Output

Description

Generate Monte Carlo estimates from the output of lavaan::sem().

Usage

fit2mc_out(fit, progress = TRUE)

Arguments

fit The fit object. This function only supports a lavaan::lavaan object. It can also
be a lavaan.mi object returned by semTools::runMI() or its wrapper, such as
semTools::sem.mi().

progress Logical. Display progress or not. Default is TRUE.

Details

This function is for advanced users. do_mc() is a function users should try first because do_mc()
has a general interface for input-specific functions like this one.

fit2mc_out() can be used to extract the stored Monte Carlo estimates so that they can be reused
by indirect_effect(), cond_indirect_effects() and related functions to form Monte Carlo
confidence intervals for effects such as indirect effects and conditional indirect effects.

This approach removes the need to repeat Monte Carlo simulation in each call to indirect_effect(),
cond_indirect_effects(), and related functions. It also ensures that the same set of Monte Carlo
estimates is used in all subsequent analyses.

Value

A mc_out-class object that can be used for the mc_out argument of indirect_effect(), cond_indirect_effects(),
and related functions for forming Monte Carlo confidence intervals.

The object is a list with the number of elements equal to the number of Monte Carlo replications.
Each element is a list of the parameter estimates and sample variances and covariances of the vari-
ables in each Monte Carlo replication.

See Also

do_mc(), the general purpose function that users should try first before using this function.

get_one_cond_indirect_effect 71

Examples

library(lavaan)
data(data_med_mod_ab1)
dat <- data_med_mod_ab1
dat$"x:w" <- dat$x * dat$w
dat$"m:w" <- dat$m * dat$w
mod <-
"
m ~ x + w + x:w + c1 + c2
y ~ m + w + m:w + x + c1 + c2
"

fit <- sem(model = mod, data = dat, fixed.x = FALSE,
baseline = FALSE)

In real research, R should be 5000 or even 10000.
fit <- gen_mc_est(fit, R = 100, seed = 453253)
fit_mc_out <- fit2mc_out(fit)
out <- cond_indirect_effects(wlevels = "w",

x = "x",
y = "y",
m = "m",
fit = fit,
mc_ci = TRUE,
mc_out = fit_mc_out)

out

get_one_cond_indirect_effect

Get The Conditional Indirect Effect for One Row of
’cond_indirect_effects’ Output

Description

Return the conditional indirect effect of one row of the output of cond_indirect_effects().

Usage

get_one_cond_indirect_effect(object, row)

get_one_cond_effect(object, row)

print_all_cond_indirect_effects(object, ...)

print_all_cond_effects(object, ...)

72 get_one_cond_indirect_effect

Arguments

object The output of cond_indirect_effects().

row The row number of the row to be retrieved.

... Optional arguments to be passed to teh print method of the output of indirect_effect()
and cond_indirect()

Details

get_one_cond_indirect_effect() extracts the corresponding output of cond_indirect() from
the requested row.

get_one_cond_effect() is an alias of get_one_cond_indirect_effect().

print_all_cond_indirect_effects() loops over the conditional effects and print all of them.

print_all_cond_effects() is an alias of print_all_cond_indirect_effects().

Value

get_one_cond_indirect_effect() returns an indirect-class object, similar to the output of
indirect_effect() and cond_indirect(). See indirect_effect() and cond_indirect() for
details on these classes.

print_all_cond_indirect_effects() returns the object invisibly. Called for its side effect.

See Also

cond_indirect_effects

Examples

library(lavaan)
dat <- modmed_x1m3w4y1
mod <-
"
m1 ~ x + w1 + x:w1
m2 ~ m1
y ~ m2 + x + w4 + m2:w4
"
fit <- sem(mod, dat,

meanstructure = TRUE, fixed.x = FALSE,
se = "none", baseline = FALSE)

est <- parameterEstimates(fit)

Examples for cond_indirect():

Conditional effects from x to m1
when w1 is equal to each of the default levels
out1 <- cond_indirect_effects(x = "x", y = "m1",

wlevels = c("w1", "w4"), fit = fit)
get_one_cond_indirect_effect(out1, 3)

Conditional Indirect effect from x1 through m1 to y,

get_prod 73

when w1 is equal to each of the levels
out2 <- cond_indirect_effects(x = "x", y = "y", m = c("m1", "m2"),

wlevels = c("w1", "w4"), fit = fit)
get_one_cond_indirect_effect(out2, 4)

print_all_cond_indirect_effects(out2, digits = 2)

get_prod Product Terms (if Any) Along a Path

Description

Identify the product term(s), if any, along a path in a model and return the term(s), with the variables
involved and the coefficient(s) of the term(s).

Usage

get_prod(
x,
y,
operator = ":",
fit = NULL,
est = NULL,
data = NULL,
expand = FALSE

)

Arguments

x Character. Variable name.

y Character. Variable name.

operator Character. The string used to indicate a product term. Default is ":", used in
both lm() and lavaan::sem() for observed variables.

fit The fit object. Currently only supports a lavaan::lavaan object. It can also be
a lavaan.mi object returned by semTools::runMI() or its wrapper, such as
semTools::sem.mi().

est The output of lavaan::parameterEstimates(). If NULL, the default, it will be
generated from fit. If supplied, fit will ge ignored.

data Data frame (optional). If supplied, it will be used to identify the product terms.

expand Whether products of more than two terms will be searched. FALSE by default.

74 get_prod

Details

This function is used by several functions in manymome to identify product terms along a path. If
possible, this is done by numerically checking whether a column in a dataset is the product of two
other columns. If not possible (e.g., the "product term" is the "product" of two latent variables,
formed by the products of indicators), then it requires the user to specify an operator.

The detailed workflow of this function can be found in the article https://sfcheung.github.io/
manymome/articles/get_prod.html

This function is not intended to be used by users. It is exported such that advanced users or devel-
opers can use it.

Value

If at least one product term is found, it returns a list with these elements:

• prod: The names of the product terms found.

• b: The coefficients of these product terms.

• w: The variable, other than x, in each product term.

• x: The x-variable, that is, where the path starts.

• y: The y-variable, that is, where the path ends.

It returns NA if no product term is found along the path.

Examples

dat <- modmed_x1m3w4y1
library(lavaan)
mod <-
"
m1 ~ x + w1 + x:w1
m2 ~ m1 + w2 + m1:w2
m3 ~ m2
y ~ m3 + w4 + m3:w4 + x + w3 + x:w3 + x:w4
"
fit <- sem(model = mod,

data = dat,
meanstructure = TRUE,
fixed.x = FALSE)

One product term
get_prod(x = "x", y = "m1", fit = fit)
Two product terms
get_prod(x = "x", y = "y", fit = fit)
No product term
get_prod(x = "m2", y = "m3", fit = fit)

https://sfcheung.github.io/manymome/articles/get_prod.html
https://sfcheung.github.io/manymome/articles/get_prod.html

index_of_mome 75

index_of_mome Index of Moderated Mediation and Index of Moderated Moderated
Mediation

Description

It computes the index of moderated mediation and the index of moderated moderated mediation
proposed by Hayes (2015, 2018).

Usage

index_of_mome(
x,
y,
m = NULL,
w = NULL,
fit = NULL,
boot_ci = FALSE,
level = 0.95,
boot_out = NULL,
R = 100,
seed = NULL,
progress = TRUE,
mc_ci = FALSE,
mc_out = NULL,
ci_type = NULL,
ci_out = NULL,
boot_type = c("perc", "bc"),
...

)

index_of_momome(
x,
y,
m = NULL,
w = NULL,
z = NULL,
fit = NULL,
boot_ci = FALSE,
level = 0.95,
boot_out = NULL,
R = 100,
seed = NULL,
progress = TRUE,
mc_ci = FALSE,
mc_out = NULL,
ci_type = NULL,

76 index_of_mome

ci_out = NULL,
boot_type = c("perc", "bc"),
...

)

Arguments

x Character. The name of the predictor at the start of the path.

y Character. The name of the outcome variable at the end of the path.

m A vector of the variable names of the mediator(s). The path goes from the first
mediator successively to the last mediator. If NULL, the default, the path goes
from x to y.

w Character. The name of the moderator.

fit The fit object. Can be a lavaan::lavaan-class object, a list of lm() outputs,
or an object created by lm2list(). It can also be a lavaan.mi object returned
by semTools::runMI() or its wrapper, such as semTools::sem.mi().

boot_ci Logical. Whether bootstrap confidence interval will be formed. Default is
FALSE.

level The level of confidence for the bootstrap confidence interval. Default is .95.

boot_out If boot_ci is TRUE, users can supply pregenerated bootstrap estimates. This can
be the output of do_boot(). For indirect_effect() and cond_indirect_effects(),
this can be the output of a previous call to cond_indirect_effects(), indirect_effect(),
or cond_indirect() with bootstrap confidence intervals requested. These stored
estimates will be reused such that there is no need to do bootstrapping again. If
not supplied, the function will try to generate them from fit.

R Integer. If boot_ci is TRUE, boot_out is NULL, and bootstrap standard errors not
requested if fit is a lavaan-class object, this function will do bootstrapping
on fit. R is the number of bootstrap samples. Default is 100. For Monte Carlo
simulation, this is the number of replications.

seed If bootstrapping or Monte Carlo simulation is conducted, this is the seed for the
bootstrapping or simulation. Default is NULL and seed is not set.

progress Logical. Display bootstrapping progress or not. Default is TRUE.

mc_ci Logical. Whether Monte Carlo confidence interval will be formed. Default is
FALSE.

mc_out If mc_ci is TRUE, users can supply pregenerated Monte Carlo estimates. This can
be the output of do_mc(). For indirect_effect() and cond_indirect_effects(),
this can be the output of a previous call to cond_indirect_effects(), indirect_effect(),
or cond_indirect() with Monte Carlo confidence intervals requested. These
stored estimates will be reused such that there is no need to do Monte Carlo
simulation again. If not supplied, the function will try to generate them from
fit.

ci_type The type of confidence intervals to be formed. Can be either "boot" (boot-
strapping) or "mc" (Monte Carlo). If not supplied or is NULL, will check other
arguments (e.g, boot_ci and mc_ci). If supplied, will override boot_ci and
mc_ci.

index_of_mome 77

ci_out If ci_type is supplied, this is the corresponding argument. If ci_type is "boot",
this argument will be used as boot_out. If ci_type is "mc", this argument will
be used as mc_out.

boot_type If bootstrap confidence interval is to be formed, the type of bootstrap confidence
interval. The supported types are "perc" (percentile bootstrap confidence in-
terval, the default and recommended type) and "bc" (bias-corrected, or BC,
bootstrap confidence interval).

... Arguments to be passed to cond_indirect_effects()

z Character. The name of the second moderator, for computing the index of mod-
erated moderated mediation.

Details

The function index_of_mome() computes the index of moderated mediation proposed by Hayes
(2015). It supports any path in a model with one (and only one) component path moderated. For
example, x->m1->m2->y with x->m1 moderated by w. It measures the change in indirect effect when
the moderator increases by one unit.

The function index_of_momome() computes the index of moderated moderated mediation proposed
by Hayes (2018). It supports any path in a model, with two component paths moderated, each by
one moderator. For example, x->m1->m2->y with x->m1 moderated by w and m2->y moderated by
z. It measures the change in the index of moderated mediation of one moderator when the other
moderator increases by one unit.

Value

It returns a cond_indirect_diff-class object. This class has a print method (print.cond_indirect_diff()),
a coef method for extracting the index (coef.cond_indirect_diff()), and a confint method for
extracting the confidence interval if available (confint.cond_indirect_diff()).

Functions

• index_of_mome(): Compute the index of moderated mediation.

• index_of_momome(): Compute the index of moderated moderated mediation.

References

Hayes, A. F. (2015). An index and test of linear moderated mediation. Multivariate Behavioral
Research, 50(1), 1-22. doi:10.1080/00273171.2014.962683

Hayes, A. F. (2018). Partial, conditional, and moderated moderated mediation: Quantification, in-
ference, and interpretation. Communication Monographs, 85(1), 4-40. doi:10.1080/03637751.2017.1352100

See Also

cond_indirect_effects()

https://doi.org/10.1080/00273171.2014.962683
https://doi.org/10.1080/03637751.2017.1352100

78 index_of_mome

Examples

library(lavaan)
dat <- modmed_x1m3w4y1
dat$xw1 <- dat$x * dat$w1
mod <-
"
m1 ~ a * x + f * w1 + d * xw1
y ~ b * m1 + cp * x
ind_mome := d * b
"
fit <- sem(mod, dat,

meanstructure = TRUE, fixed.x = FALSE,
se = "none", baseline = FALSE)

est <- parameterEstimates(fit)

R should be at least 2000 or even 5000 in real research.
parallel is set to TRUE by default.
Therefore, in research, the argument parallel can be omitted.
out_mome <- index_of_mome(x = "x", y = "y", m = "m1", w = "w1",

fit = fit,
boot_ci = TRUE,
R = 42,
seed = 4314,
parallel = FALSE,
progress = FALSE)

out_mome
coef(out_mome)
From lavaan
print(est[19,], nd = 8)
confint(out_mome)

library(lavaan)
dat <- modmed_x1m3w4y1
dat$xw1 <- dat$x * dat$w1
dat$m1w4 <- dat$m1 * dat$w4
mod <-
"
m1 ~ a * x + f1 * w1 + d1 * xw1
y ~ b * m1 + f4 * w4 + d4 * m1w4 + cp * x
ind_momome := d1 * d4
"
fit <- sem(mod, dat,

meanstructure = TRUE, fixed.x = FALSE,
se = "none", baseline = FALSE)

est <- parameterEstimates(fit)

See the example of index_of_mome on how to request
bootstrap confidence interval.
out_momome <- index_of_momome(x = "x", y = "y", m = "m1",

w = "w1", z = "w4",

indirect_effects_from_list 79

fit = fit)
out_momome
coef(out_momome)
print(est[32,], nd = 8)

indirect_effects_from_list

Coefficient Table of an ’indirect_list’ Class Object

Description

Create a coefficient table for the point estimates and confidence intervals (if available) in the output
of many_indirect_effects().

Usage

indirect_effects_from_list(object, add_sig = TRUE, pvalue = FALSE, se = FALSE)

Arguments

object The output of many_indirect_effects() or other functions that return an ob-
ject of the class indirect_list.

add_sig Whether a column of significance test results will be added. Default is TRUE.

pvalue Logical. If TRUE, asymmetric p-values based on bootstrapping will be added
available. Default is FALSE.

se Logical. If TRUE and confidence intervals are available, the standard errors of
the estimates are also added. They are simply the standard deviations of the
bootstrap estimates or Monte Carlo simulated values, depending on the method
used to form the confidence intervals.

Details

If bootstrapping confidence interval was requested, this method has the option to add p-values
computed by the method presented in Asparouhov and Muthén (2021). Note that these p-values is
asymmetric bootstrap p-values based on the distribution of the bootstrap estimates. They are not
computed based on the distribution under the null hypothesis.

For a p-value of a, it means that a 100(1 - a)% bootstrapping confidence interval will have one of
its limits equal to 0. A confidence interval with a higher confidence level will include zero, while a
confidence interval with a lower confidence level will exclude zero.

Value

A data frame with the indirect effect estimates and confidence intervals (if available). It also has A
string column, "Sig", for #’ significant test results if add_sig is TRUE and confidence intervals are
available.

80 indirect_i

References

Asparouhov, A., & Muthén, B. (2021). Bootstrap p-value computation. Retrieved from https://www.statmodel.com/download/FAQ-
Bootstrap%20-%20Pvalue.pdf

See Also

many_indirect_effects()

Examples

library(lavaan)
data(data_serial_parallel)
mod <-
"
m11 ~ x + c1 + c2
m12 ~ m11 + x + c1 + c2
m2 ~ x + c1 + c2
y ~ m12 + m2 + m11 + x + c1 + c2
"
fit <- sem(mod, data_serial_parallel,

fixed.x = FALSE)

All indirect paths from x to y
paths <- all_indirect_paths(fit,

x = "x",
y = "y")

paths

Indirect effect estimates
out <- many_indirect_effects(paths,

fit = fit)
out

Create a data frame of the indirect effect estimates

out_df <- indirect_effects_from_list(out)
out_df

indirect_i Indirect Effect (No Bootstrapping)

Description

It computes an indirect effect, optionally conditional on the value(s) of moderator(s) if present.

indirect_i 81

Usage

indirect_i(
x,
y,
m = NULL,
fit = NULL,
est = NULL,
implied_stats = NULL,
wvalues = NULL,
standardized_x = FALSE,
standardized_y = FALSE,
computation_digits = 5,
prods = NULL,
get_prods_only = FALSE,
data = NULL,
expand = TRUE,
warn = TRUE,
allow_mixing_lav_and_obs = TRUE,
group = NULL,
est_vcov = NULL,
df_residual = NULL

)

Arguments

x Character. The name of the predictor at the start of the path.

y Character. The name of the outcome variable at the end of the path.

m A vector of the variable names of the mediator(s). The path goes from the first
mediator successively to the last mediator. If NULL, the default, the path goes
from x to y.

fit The fit object. Currently only supports lavaan::lavaan objects. Support for lists
of lm() output is implemented by high level functions such as indirect_effect()
and cond_indirect_effects(). It can also be a lavaan.mi object returned by
semTools::runMI() or its wrapper, such as semTools::sem.mi().

est The output of lavaan::parameterEstimates(). If NULL, the default, it will be
generated from fit. If supplied, fit will be ignored.

implied_stats Implied means, variances, and covariances of observed variables and latent vari-
ables (if any), of the form of the output of lavaan::lavInspect() with what
set to "implied", but with means extracted with what set to "mean.ov" and
"mean.lv". The standard deviations are extracted from this object for standard-
ization. Default is NULL, and implied statistics will be computed from fit if
required.

wvalues A numeric vector of named elements. The names are the variable names of the
moderators, and the values are the values to which the moderators will be set to.
Default is NULL.

standardized_x Logical. Whether x will be standardized. Default is FALSE.

82 indirect_i

standardized_y Logical. Whether y will be standardized. Default is FALSE.

computation_digits

The number of digits in storing the computation in text. Default is 3.

prods The product terms found. For internal use.

get_prods_only IF TRUE, will quit early and return the product terms found. The results can be
passed to the prod argument when calling this function. Default is FALSE. For
internal use.

data Data frame (optional). If supplied, it will be used to identify the product terms.
For internal use.

expand Whether products of more than two terms will be searched. TRUE by default. For
internal use.

warn If TRUE, the default, the function will warn against possible misspecification,
such as not setting the value of a moderator which moderate one of the compo-
nent path. Set this to FALSE will suppress these warnings. Suppress them only
when the moderators are omitted intentionally.

allow_mixing_lav_and_obs

If TRUE, it accepts a path with both latent variables and observed variables. De-
fault is TRUE.

group Either the group number as appeared in the summary() or lavaan::parameterEstimates()
output of an lavaan-class object, or the group label as used in the lavaan-class
object. Used only when the number of groups is greater than one. Default is
NULL.

est_vcov A list of variance-covariance matrix of estimates, one for each response variable
(y-variable). Used only for models fitted by stats::lm() for now. It is used to
compute the standard error for a path with no mediator, and both x and y are not
standardized.

df_residual A numeric vector of the residual degrees of freedom for the model of each re-
sponse variable (y-variable). Used only for models fitted by stats::lm() for
now. It is used to compute the p-value and confidence interval for a path with
no mediator and both x and y are not standardized.

Details

This function is a low-level function called by indirect_effect(), cond_indirect_effects(),
and cond_indirect(), which call this function multiple times if bootstrap confidence interval is
requested.

This function usually should not be used directly. It is exported for advanced users and developers

Value

It returns an indirect-class object. This class has the following methods: coef.indirect(),
print.indirect(). The confint.indirect() method is used only when called by cond_indirect()
or cond_indirect_effects().

indirect_proportion 83

See Also

indirect_effect(), cond_indirect_effects(), and cond_indirect(), the high level func-
tions that should usually be used.

Examples

library(lavaan)
dat <- modmed_x1m3w4y1
mod <-
"
m1 ~ a1 * x + b1 * w1 + d1 * x:w1
m2 ~ a2 * m1 + b2 * w2 + d2 * m1:w2
m3 ~ a3 * m2 + b3 * w3 + d3 * m2:w3
y ~ a4 * m3 + b4 * w4 + d4 * m3:w4
"
fit <- sem(mod, dat, meanstructure = TRUE,

fixed.x = FALSE, se = "none", baseline = FALSE)
est <- parameterEstimates(fit)

wvalues <- c(w1 = 5, w2 = 4, w3 = 2, w4 = 3)

Compute the conditional indirect effect by indirect_i()
indirect_1 <- indirect_i(x = "x", y = "y", m = c("m1", "m2", "m3"), fit = fit,

wvalues = wvalues)

Manually compute the conditional indirect effect
indirect_2 <- (est[est$label == "a1", "est"] +

wvalues["w1"] * est[est$label == "d1", "est"]) *
(est[est$label == "a2", "est"] +

wvalues["w2"] * est[est$label == "d2", "est"]) *
(est[est$label == "a3", "est"] +

wvalues["w3"] * est[est$label == "d3", "est"]) *
(est[est$label == "a4", "est"] +

wvalues["w4"] * est[est$label == "d4", "est"])
They should be the same
coef(indirect_1)
indirect_2

indirect_proportion Proportion of Effect Mediated

Description

It computes the proportion of effect mediated along a pathway.

Usage

indirect_proportion(x, y, m = NULL, fit = NULL)

84 indirect_proportion

Arguments

x The name of the x variable. Must be supplied as a quoted string.

y The name of the y variable. Must be supplied as a quoted string.

m A vector of the variable names of the mediator(s). The path goes from the first
mediator successively to the last mediator. Cannot be NULL for this function.

fit The fit object. Can be a lavaan::lavaan object or a list of lm() outputs. It can also
be a lavaan.mi object returned by semTools::runMI() or its wrapper, such as
semTools::sem.mi().

Details

The proportion of effect mediated along a path from x to y is the indirect effect along this path
divided by the total effect from x to y (Alwin & Hauser, 1975). This total effect is equal to the sum
of all indirect effects from x to y and the direct effect from x to y.

To ensure that the proportion can indeed be interpreted as a proportion, this function computes the
the proportion only if the signs of all the indirect and direct effects from x to y are same (i.e., all
effects positive or all effects negative).

Value

An indirect_proportion class object. It is a list-like object with these major elements:

• proportion: The proportion of effect mediated.

• x: The name of the x-variable.

• y: The name of the y-variable.

• m: A character vector of the mediator(s) along a path. The path runs from the first element to
the last element.

This class has a print method and a coef method.

References

Alwin, D. F., & Hauser, R. M. (1975). The decomposition of effects in path analysis. American
Sociological Review, 40(1), 37. doi:10.2307/2094445

See Also

print.indirect_proportion() for the print method, and coef.indirect_proportion() for
the coef method.

Examples

library(lavaan)
dat <- data_med
head(dat)
mod <-
"
m ~ x + c1 + c2

https://doi.org/10.2307/2094445

lm2boot_out 85

y ~ m + x + c1 + c2
"
fit <- sem(mod, dat, fixed.x = FALSE)
out <- indirect_proportion(x = "x",

y = "y",
m = "m",
fit = fit)

out

lm2boot_out Bootstrap Estimates for lm Outputs

Description

Generate bootstrap estimates for models in a list of ’lm’ outputs.

Usage

lm2boot_out(outputs, R = 100, seed = NULL, progress = TRUE)

lm2boot_out_parallel(
outputs,
R = 100,
seed = NULL,
parallel = FALSE,
ncores = max(parallel::detectCores(logical = FALSE) - 1, 1),
make_cluster_args = list(),
progress = TRUE

)

Arguments

outputs A list of lm class objects, or the output of lm2list() (i.e., an lm_list-class
object).

R The number of bootstrap samples. Default is 100.

seed The seed for the random resampling. Default is NULL.

progress Logical. Display progress or not. Default is TRUE.

parallel Logical. Whether parallel processing will be used. Default is NULL.

ncores Integer. The number of CPU cores to use when parallel is TRUE. Default is
the number of non-logical cores minus one (one minimum). Will raise an error
if greater than the number of cores detected by parallel::detectCores(). If
ncores is set, it will override make_cluster_args.

make_cluster_args

A named list of additional arguments to be passed to parallel::makeCluster().
For advanced users. See parallel::makeCluster() for details. Default is
list().

86 lm2boot_out

Details

This function is for advanced users. do_boot() is a function users should try first because do_boot()
has a general interface for input-specific functions like this one.

It does nonparametric bootstrapping to generate bootstrap estimates of the regression coefficients in
the regression models of a list of lm() outputs, or an lm_list-class object created by lm2list().
The stored estimates can be used by indirect_effect(), cond_indirect_effects(), and re-
lated functions in forming bootstrapping confidence intervals for effects such as indirect effect and
conditional indirect effects.

This approach removes the need to repeat bootstrapping in each call to indirect_effect(), cond_indirect_effects(),
and related functions. It also ensures that the same set of bootstrap samples is used in all subsequent
analyses.

Value

A boot_out-class object that can be used for the boot_out argument of indirect_effect(),
cond_indirect_effects(), and related functions for forming bootstrapping confidence intervals.
The object is a list with the number of elements equal to the number of bootstrap samples. Each
element is a list of the parameter estimates and sample variances and covariances of the variables
in each bootstrap sample.

Functions

• lm2boot_out(): Generate bootstrap estimates using one process (serial, without paralleliza-
tion).

• lm2boot_out_parallel(): Generate bootstrap estimates using parallel processing.

See Also

do_boot(), the general purpose function that users should try first before using this function.

Examples

data(data_med_mod_ab1)
dat <- data_med_mod_ab1
lm_m <- lm(m ~ x*w + c1 + c2, dat)
lm_y <- lm(y ~ m*w + x + c1 + c2, dat)
lm_out <- lm2list(lm_m, lm_y)
In real research, R should be 2000 or even 5000
In real research, no need to set progress to FALSE
Progress is displayed by default.
lm_boot_out <- lm2boot_out(lm_out, R = 100, seed = 1234,

progress = FALSE)
out <- cond_indirect_effects(wlevels = "w",

x = "x",
y = "y",
m = "m",
fit = lm_out,
boot_ci = TRUE,
boot_out = lm_boot_out)

lm2list 87

out

lm2list Join ’lm()’ Output to Form an ’lm_list‘-Class Object

Description

The resulting model can be used by indirect_effect(), cond_indirect_effects(), or cond_indirect()
as a path method, as if fitted by lavaan::sem().

Usage

lm2list(...)

Arguments

... The lm() outputs to be grouped in a list.

Details

If a path model with mediation and/or moderation is fitted by a set of regression models using lm(),
this function can combine them to an object of the class lm_list that represents a path model,
as one fitted by structural equation model functions such as lavaan::sem(). This class of object
can be used by some functions, such as indirect_effect(), cond_indirect_effects(), and
cond_indirect() as if they were the output of fitting a path model, with the regression coefficients
treated as path coefficients.

The regression outputs to be combined need to meet the following requirements:

• All models must be connected to at least one another model. That is, a regression model must
either have (a) at least on predictor that is the outcome variable of another model, or (b) its
outcome variable the predictor of another model.

• All models must be fitted to the same sample. This implies that the sample size must be the
same in all analysis.

Value

It returns an lm_list-class object that forms a path model represented by a set of regression models.
This class has a summary method that shows the summary of each regression model stored (see
summary.lm_list()), and a print method that prints the models stored (see print.lm_list()).

See Also

summary.lm_list() and print.lm_list() for related methods, indirect_effect() and cond_indirect_effects()
which accept lm_list-class objects as input.

88 lm_from_lavaan_list

Examples

data(data_serial_parallel)
lm_m11 <- lm(m11 ~ x + c1 + c2, data_serial_parallel)
lm_m12 <- lm(m12 ~ m11 + x + c1 + c2, data_serial_parallel)
lm_m2 <- lm(m2 ~ x + c1 + c2, data_serial_parallel)
lm_y <- lm(y ~ m11 + m12 + m2 + x + c1 + c2, data_serial_parallel)
Join them to form a lm_list-class object
lm_serial_parallel <- lm2list(lm_m11, lm_m12, lm_m2, lm_y)
lm_serial_parallel
summary(lm_serial_parallel)

Compute indirect effect from x to y through m11 and m12
outm11m12 <- cond_indirect(x = "x", y = "y",

m = c("m11", "m12"),
fit = lm_serial_parallel)

outm11m12
Compute indirect effect from x to y
through m11 and m12 with bootstrapping CI
R should be at least 2000 or even 5000 in read study.
In real research, parallel and progress can be omitted.
They are est to TRUE by default.
outm11m12 <- cond_indirect(x = "x", y = "y",

m = c("m11", "m12"),
fit = lm_serial_parallel,
boot_ci = TRUE,
R = 100,
seed = 1234,
parallel = FALSE,
progress = FALSE)

outm11m12

lm_from_lavaan_list ’lavaan’-class to ’lm_from_lavaan_list’-Class

Description

Converts the regression models in a lavaan-class model to an lm_from_lavaan_list-class object.

Usage

lm_from_lavaan_list(fit)

Arguments

fit A lavaan-class object, usually the output of lavaan::lavaan() or its wrap-
pers.

math_indirect 89

Details

It identifies all dependent variables in a lavaan model and creates an lm_from_lavaan-class object
for each of them.

This is an advanced helper used by plot.cond_indirect_effects(). Exported for advanced
users and developers.

Value

An lm_from_lavaan_list-class object, which is a list of lm_from_lavaan objects. It has a
predict-method (predict.lm_from_lavaan_list()) for computing the predicted values from
one variable to another.

See Also

predict.lm_from_lavaan_list

Examples

library(lavaan)
data(data_med)
mod <-
"
m ~ a * x + c1 + c2
y ~ b * m + x + c1 + c2
"
fit <- sem(mod, data_med, fixed.x = FALSE)
fit_list <- lm_from_lavaan_list(fit)
tmp <- data.frame(x = 1, c1 = 2, c2 = 3, m = 4)
predict(fit_list, x = "x", y = "y", m = "m", newdata = tmp)

math_indirect Math Operators for ’indirect’-Class Objects

Description

Mathematic operators for ’indirect’-class object, the output of indirect_effect() and cond_indirect().

Usage

S3 method for class 'indirect'
e1 + e2

S3 method for class 'indirect'
e1 - e2

90 math_indirect

Arguments

e1 An ’indirect’-class object.

e2 An ’indirect’-class object.

Details

For now, only + operator and - operator are supported. These operators can be used to estimate and
test a function of effects between the same pair of variables.

For example, they can be used to compute and test the total effects along different paths. They can
also be used to compute and test the difference between the effects along two paths.

The operators will check whether an operation is valid. An operation is not valid if

1. the two paths do not start from the same variable,

2. the two paths do not end at the same variable,

3. moderators are involved but they are not set to the same values in both objects, and

4. bootstrap estimates stored in boot_out, if any, are not identical.

5. Monte Carlo simulated estimates stored in mc_out, if any, are not identical.

If bootstrap estimates are stored and both objects used the same type of bootstrap confidence inter-
val, that type will be used. Otherwise, percentile bootstrap confidence interval, the recommended
method, will be used.

Multigroup Models:
Since Version 0.1.14.2, support for multigroup models has been added for models fitted by lavaan.
Both bootstrapping and Monte Carlo confidence intervals are supported. These operators can be
used to compute and test the difference of an indirect effect between two groups. This can also
be used to compute and test the difference between a function of effects between groups, for
example, the total indirect effects between two groups.
The operators are flexible and allow users to do many possible computations. Therefore, users
need to make sure that the function of effects is meaningful.

Value

An ’indirect’-class object with a list of effects stored. See indirect_effect() on details for this
class.

See Also

indirect_effect() and cond_indirect()

Examples

library(lavaan)
dat <- modmed_x1m3w4y1
mod <-
"
m1 ~ a1 * x + d1 * w1 + e1 * x:w1
m2 ~ m1 + a2 * x

math_indirect 91

y ~ b1 * m1 + b2 * m2 + cp * x
"
fit <- sem(mod, dat,

meanstructure = TRUE, fixed.x = FALSE,
se = "none", baseline = FALSE)

est <- parameterEstimates(fit)
hi_w1 <- mean(dat$w1) + sd(dat$w1)

Examples for cond_indirect():

Conditional effect from x to m1 when w1 is 1 SD above mean
out1 <- cond_indirect(x = "x", y = "y", m = c("m1", "m2"),

wvalues = c(w1 = hi_w1), fit = fit)
out2 <- cond_indirect(x = "x", y = "y", m = c("m2"),

wvalues = c(w1 = hi_w1), fit = fit)
out3 <- cond_indirect(x = "x", y = "y",

wvalues = c(w1 = hi_w1), fit = fit)

out12 <- out1 + out2
out12
out123 <- out1 + out2 + out3
out123
coef(out1) + coef(out2) + coef(out3)

Multigroup model with indirect effects

dat <- data_med_mg
mod <-
"
m ~ x + c1 + c2
y ~ m + x + c1 + c2
"
fit <- sem(mod, dat, meanstructure = TRUE, fixed.x = FALSE, se = "none", baseline = FALSE,

group = "group")

If a model has more than one group,
the argument 'group' must be set.
ind1 <- indirect_effect(x = "x",

y = "y",
m = "m",
fit = fit,
group = "Group A")

ind1
ind2 <- indirect_effect(x = "x",

y = "y",
m = "m",
fit = fit,
group = 2)

ind2

Compute the difference in indirect effects between groups
ind2 - ind1

92 merge_mod_levels

merge_mod_levels Merge the Generated Levels of Moderators

Description

Merge the levels of moderators generated by mod_levels() into a data frame.

Usage

merge_mod_levels(...)

Arguments

... The output from mod_levels(), or a list of levels generated by mod_levels_list().

Details

It merges the levels of moderators generated by mod_levels() into a data frame, with each row
represents a combination of the levels. The output is to be used by cond_indirect_effects().

Users usually do not need to use this function because cond_indirect_effects() will merge the
levels internally if necessary. This function is used when users need to customize the levels for each
moderator and so cannot use mod_levels_list() or the default levels in cond_indirect_effects().

Value

A wlevels-class object, which is a data frame of the combinations of levels, with additional at-
tributes about the levels.

See Also

mod_levels() on generating the levels of a moderator.

Examples

data(data_med_mod_ab)
dat <- data_med_mod_ab
Form the levels from a list of lm() outputs
lm_m <- lm(m ~ x*w1 + c1 + c2, dat)
lm_y <- lm(y ~ m*w2 + x + w1 + c1 + c2, dat)
lm_out <- lm2list(lm_m, lm_y)
w1_levels <- mod_levels(lm_out, w = "w1")
w1_levels
w2_levels <- mod_levels(lm_out, w = "w2")
w2_levels
merge_mod_levels(w1_levels, w2_levels)

modmed_x1m3w4y1 93

modmed_x1m3w4y1 Sample Dataset: Moderated Serial Mediation

Description

Generated from a serial mediation model with one predictor, three mediators, and one outcome
variable, with one moderator in each stage.

Usage

modmed_x1m3w4y1

Format

A data frame with 200 rows and 11 variables:

x Predictor. Numeric.

w1 Moderator 1. Numeric.

w2 Moderator 2. Numeric.

w3 Moderator 3. Numeric.

w4 Moderator 4. Numeric.

m1 Mediator 1. Numeric.

m2 Mediator 2. Numeric.

m3 Mediator 3. Numeric.

y Outcome variable. Numeric.

gp Three values: "earth", "mars", "venus". String.

city Four values: "alpha", "beta", "gamma", "sigma". String.

mod_levels Create Levels of Moderators

Description

Create levels of moderators to be used by indirect_effect(), cond_indirect_effects(), and
cond_indirect().

94 mod_levels

Usage

mod_levels(
w,
fit,
w_type = c("auto", "numeric", "categorical"),
w_method = c("sd", "percentile"),
sd_from_mean = c(-1, 0, 1),
percentiles = c(0.16, 0.5, 0.84),
extract_gp_names = TRUE,
prefix = NULL,
values = NULL,
reference_group_label = NULL,
descending = TRUE

)

mod_levels_list(
...,
fit,
w_type = "auto",
w_method = "sd",
sd_from_mean = NULL,
percentiles = NULL,
extract_gp_names = TRUE,
prefix = NULL,
descending = TRUE,
merge = FALSE

)

Arguments

w Character. The names of the moderator. If the moderator is categorical with 3
or more groups, this is the vector of the indicator variables.

fit The fit object. Can be a lavaan::lavaan object or a list of lm() outputs. It can
also be a lavaan.mi object returned by semTools::runMI() or its wrapper,
such as semTools::sem.mi(). If it is a single model fitted by lm(), it will be
automatically converted to a list by lm2list().

w_type Character. Whether the moderator is a "numeric" variable or a "categorical"
variable. If "auto", the function will try to determine the type automatically.

w_method Character, either "sd" or "percentile". If "sd", the levels are defined by the
distance from the mean in terms of standard deviation. if "percentile", the
levels are defined in percentiles.

sd_from_mean A numeric vector. Specify the distance in standard deviation from the mean for
each level. Default is c(-1, 0, 1) for mod_levels(). For mod_levels_list(),
the default is c(-1, 0, 1) when there is only one moderator, and c(-1, 1) when
there are more than one moderator. Ignored if w_method is not equal to "sd".

percentiles A numeric vector. Specify the percentile (in proportion) for each level. Default
is c(.16, .50, .84) for mod_levels(), corresponding approximately to one

mod_levels 95

standard deviation below mean, mean, and one standard deviation above mean
in a normal distribution. For mod_levels_list(), default is c(.16, .50, .84)
if there is one moderator, and c(.16, .84) when there are more than one mod-
erator. Ignored if w_method is not equal to "percentile".

extract_gp_names

Logical. If TRUE, the default, the function will try to determine the name of each
group from the variable names.

prefix Character. If extract_gp_names is TRUE and prefix is supplied, it will be
removed from the variable names to create the group names. Default is NULL,
and the function will try to determine the prefix automatically.

values For numeric moderators, a numeric vector. These are the values to be used and
will override other options. For categorical moderators, a named list of numeric
vector, each vector has length equal to the number of indicator variables. If the
vector is named, the names will be used to label the values. For example, if set
to list(gp1 = c(0, 0), gp3 = c(0, 1), two levels will be returned, one
named gp1 with the indicator variables equal to 0 and 0, the other named gp3
with the indicator variables equal to 0 and 1. Default is NULL.

reference_group_label

For categorical moderator, if the label for the reference group (group with all in-
dicators equal to zero) cannot be determined, the default label is "Reference".
To change it, set reference_group_label to the desired label. Ignored if
values is set.

descending If TRUE (default), the rows are sorted in descending order for numerical moder-
ators: The highest value on the first row and the lowest values on the last row.
For user supplied values, the first value is on the last row and the last value is on
the first row. If FALSE, the rows are sorted in ascending order.

... The names of moderators variables. For a categorical variable, it should be a
vector of variable names.

merge If TRUE, mod_levels_list() will call merge_mod_levels() and return the
merged levels. Default is FALSE.

Details

It creates values of a moderator that can be used to compute conditional effect or conditional indirect
effect. By default, for a numeric moderator, it uses one standard deviation below mean, mean, and
one standard deviation above mean. The percentiles of these three levels in a normal distribution
(16th, 50th, and 84th) can also be used. For categorical variable, it will simply collect the unique
categories in the data.

The generated levels are then used by cond_indirect() and cond_indirect_effects().

If a model has more than one moderator, mod_levels_list() can be used to generate combinations
of levels. The output can then passed to cond_indirect_effects() to compute the conditional
effects or conditional indirect effects for all the combinations.

Value

mod_levels() returns a wlevels-class object which is a data frame with additional attributes about
the levels.

96 mod_levels

mod_levels_list() returns a list of wlevels-class objects, or a wlevels-class object which is a
data frame of the merged levels if merge = TRUE.

Functions

• mod_levels(): Generate levels for one moderator.

• mod_levels_list(): Generate levels for several moderators.

See Also

cond_indirect_effects() for computing conditional indiret effects; merge_mod_levels() for
merging levels of moderators.

Examples

library(lavaan)
data(data_med_mod_ab)
dat <- data_med_mod_ab
Form the levels from a list of lm() outputs
lm_m <- lm(m ~ x*w1 + c1 + c2, dat)
lm_y <- lm(y ~ m*w2 + x + w1 + c1 + c2, dat)
lm_out <- lm2list(lm_m, lm_y)
w1_levels <- mod_levels(lm_out, w = "w1")
w1_levels
w2_levels <- mod_levels(lm_out, w = "w2")
w2_levels
Indirect effect from x to y through m, at the first levels of w1 and w2
cond_indirect(x = "x", y = "y", m = "m",

fit = lm_out,
wvalues = c(w1 = w1_levels$w1[1],

w2 = w2_levels$w2[1]))
Can form the levels based on percentiles
w1_levels2 <- mod_levels(lm_out, w = "w1", w_method = "percentile")
w1_levels2
Form the levels from a lavaan output
Compute the product terms before fitting the model
dat$mw2 <- dat$m * dat$w2
mod <-
"
m ~ x + w1 + x:w1 + c1 + c2
y ~ m + x + w1 + w2 + mw2 + c1 + c2
"
fit <- sem(mod, dat, fixed.x = FALSE)
cond_indirect(x = "x", y = "y", m = "m",

fit = fit,
wvalues = c(w1 = w1_levels$w1[1],

w2 = w2_levels$w2[1]))
Can pass all levels to cond_indirect_effects()
First merge the levels by merge_mod_levels()
w1w2_levels <- merge_mod_levels(w1_levels, w2_levels)
cond_indirect_effects(x = "x", y = "y", m = "m",

fit = fit,

plot.cond_indirect_effects 97

wlevels = w1w2_levels)

mod_levels_list() forms a combinations of levels in one call
It returns a list, by default.
Form the levels from a list of lm() outputs
"merge = TRUE" is optional. cond_indirect_effects will merge the levels
automatically.
w1w2_levels <- mod_levels_list("w1", "w2", fit = fit, merge = TRUE)
w1w2_levels
cond_indirect_effects(x = "x", y = "y", m = "m",

fit = fit, wlevels = w1w2_levels)
Can work without merge = TRUE:
w1w2_levels <- mod_levels_list("w1", "w2", fit = fit)
w1w2_levels
cond_indirect_effects(x = "x", y = "y", m = "m",

fit = fit, wlevels = w1w2_levels)

plot.cond_indirect_effects

Plot Conditional Effects

Description

Plot the conditional effects for different levels of moderators.

Usage

S3 method for class 'cond_indirect_effects'
plot(
x,
x_label,
w_label = "Moderator(s)",
y_label,
title,
x_from_mean_in_sd = 1,
x_method = c("sd", "percentile"),
x_percentiles = c(0.16, 0.84),
x_sd_to_percentiles = NA,
note_standardized = TRUE,
no_title = FALSE,
line_width = 1,
point_size = 5,
graph_type = c("default", "tumble"),
use_implied_stats = TRUE,

98 plot.cond_indirect_effects

facet_grid_cols = NULL,
facet_grid_rows = NULL,
facet_grid_args = list(as.table = FALSE, labeller = "label_both"),
digits = 4,
...

)

Arguments

x The output of cond_indirect_effects(). (Named x because it is required in
the naming of arguments of the plot generic function.)

x_label The label for the X-axis. Default is the value of the predictor in the output of
cond_indirect_effects().

w_label The label for the legend for the lines. Default is "Moderator(s)".

y_label The label for the Y-axis. Default is the name of the response variable in the
model.

title The title of the graph. If not supplied, it will be generated from the variable
names or labels (in x_label, y_label, and w_label). If "", no title will be
printed. This can be used when the plot is for manuscript submission and figures
are required to have no titles.

x_from_mean_in_sd

How many SD from mean is used to define "low" and "high" for the focal vari-
able. Default is 1.

x_method How to define "high" and "low" for the focal variable levels. Default is in terms
of the standard deviation of the focal variable, "sd". If equal to "percentile",
then the percentiles of the focal variable in the dataset is used. If the focal
variable is a latent variable, only "sd" can be used.

x_percentiles If x_method is "percentile", then this argument specifies the two percentiles
to be used, divided by 100. It must be a vector of two numbers. The default is
c(.16, .84), the 16th and 84th percentiles, which corresponds approximately
to one SD below and above mean for a normal distribution, respectively.

x_sd_to_percentiles

If x_method is "percentile" and this argument is set to a number, this number
will be used to determine the percentiles to be used. The lower percentile is
the percentile in a normal distribution that is x_sd_to_percentiles SD below
the mean. The upper percentile is the percentile in a normal distribution that is
x_sd_to_percentiles SD above the mean. Therefore, if x_sd_to_percentiles
is set to 1, then the lower and upper percentiles are 16th and 84th, respectively.
Default is NA.

note_standardized

If TRUE, will check whether a variable has SD nearly equal to one. If yes, will
report this in the plot. Default is TRUE.

no_title If TRUE, title will be suppressed. Default is FALSE.

line_width The width of the lines as used in ggplot2::geom_segment(). Default is 1.

point_size The size of the points as used in ggplot2::geom_point(). Default is 5.

plot.cond_indirect_effects 99

graph_type If "default", the typical line-graph with equal end-points will be plotted. If
"tumble", then the tumble graph proposed by Bodner (2016) will be plotted.
Default is "default" for single-group models, and "tumble" for multigroup
models.

use_implied_stats

For a multigroup model, if TRUE, the default, model implied statistics will be
used in computing the means and SDs, which take into equality constraints, if
any. If FALSE, then the raw data is used to compute the means and SDs. For
latent variables, model implied statistics are always used.

facet_grid_cols, facet_grid_rows
If either or both of them are set to character vector(s) of moderator names, then
ggplot2::facet_grid() will be used to plot the graph, with facet_grid_cols
used as cols and facet_grid_rows used as rows when calling ggplot2::facet_grid().

facet_grid_args

The list of arguments to be used in calling ggplot2::facet_grid(). Ignored
if ggplot2::facet_grid() is not used.

digits The number of decimal places to be printed for numerical moderators when
facet_grid is used. Default is 4.

... Additional arguments. Ignored.

Details

This function is a plot method of the output of cond_indirect_effects(). It will use the levels
of moderators in the output.

It plots the conditional effect from x to y in a model for different levels of the moderators. For
multigroup models, the group will be the ’moderator’ and one line is drawn for each group.

It does not support conditional indirect effects. If there is one or more mediators in x, it will raise
an error.

Multigroup Models:
Since Version 0.1.14.2, support for multigroup models has been added for models fitted by lavaan.
If the effect for each group is drawn, the graph_type is automatically switched to "tumble" and
the means and SDs in each group will be used to determine the locations of the points.
If the multigroup model has any equality constraints, the implied means and/or SDs may be dif-
ferent from those of the raw data. For example, the mean of the x-variable may be constrained
to be equal in this model. To plot the tumble graph using the model implied means and SDs, set
use_implied_stats to TRUE.

Latent Variables:
A path that involves a latent x-variable and/or a latent y-variable can be plotted. Because the latent
variables have no observed data, the model implied statistics will always be used to get the means
and SDs to compute values such as the low and high points of the x-variable.

Value

A ggplot2 graph. Plotted if not assigned to a name. It can be further modified like a usual ggplot2
graph.

100 plot.cond_indirect_effects

References

Bodner, T. E. (2016). Tumble graphs: Avoiding misleading end point extrapolation when graphing
interactions from a moderated multiple regression analysis. Journal of Educational and Behavioral
Statistics, 41(6), 593-604. doi:10.3102/1076998616657080

See Also

cond_indirect_effects()

Examples

library(lavaan)
dat <- modmed_x1m3w4y1
n <- nrow(dat)
set.seed(860314)
dat$gp <- sample(c("gp1", "gp2", "gp3"), n, replace = TRUE)
dat <- cbind(dat, factor2var(dat$gp, prefix = "gp", add_rownames = FALSE))

Categorical moderator

mod <-
"
m3 ~ m1 + x + gpgp2 + gpgp3 + x:gpgp2 + x:gpgp3
y ~ m2 + m3 + x
"
fit <- sem(mod, dat, meanstructure = TRUE, fixed.x = FALSE)
out_mm_1 <- mod_levels(c("gpgp2", "gpgp3"),

sd_from_mean = c(-1, 1),
fit = fit)

out_1 <- cond_indirect_effects(wlevels = out_mm_1, x = "x", y = "m3", fit = fit)
plot(out_1)
plot(out_1, graph_type = "tumble")

Numeric moderator

dat <- modmed_x1m3w4y1
mod2 <-
"
m3 ~ m1 + x + w1 + x:w1
y ~ m3 + x
"
fit2 <- sem(mod2, dat, meanstructure = TRUE, fixed.x = FALSE)
out_mm_2 <- mod_levels("w1",

w_method = "percentile",
percentiles = c(.16, .84),
fit = fit2)

out_mm_2
out_2 <- cond_indirect_effects(wlevels = out_mm_2, x = "x", y = "m3", fit = fit2)
plot(out_2)
plot(out_2, graph_type = "tumble")

Multigroup models

https://doi.org/10.3102/1076998616657080

plot_effect_vs_w 101

dat <- data_med_mg
mod <-
"
m ~ x + c1 + c2
y ~ m + x + c1 + c2
"
fit <- sem(mod, dat, meanstructure = TRUE, fixed.x = FALSE, se = "none", baseline = FALSE,

group = "group")

For a multigroup model, group will be used as
a moderator
out <- cond_indirect_effects(x = "m",

y = "y",
fit = fit)

out
plot(out)

plot_effect_vs_w Plot an Effect Against a Moderator

Description

It plots an effect, direct or indirect, against a moderator, with confidence band if available.

Usage

plot_effect_vs_w(
object,
w = NULL,
w_label = NULL,
effect_label = NULL,
add_zero_line = TRUE,
always_draw_zero_line = FALSE,
line_linewidth = 1,
line_color = "blue",
shade_the_band = TRUE,
draw_the_intervals = TRUE,
band_fill_color = "lightgrey",
band_alpha = 0.5,
intervals_color = "black",
intervals_linetype = "longdash",
intervals_linewidth = 1,
zero_line_color = "grey",
zero_line_linewidth = 1,
zero_line_linetype = "solid",

102 plot_effect_vs_w

line_args = list(),
band_args = list(),
intervals_args = list(),
zero_line_args = list(),
level = 0.95

)

fill_wlevels(to_fill, cond_out = NULL, k = 21)

Arguments

object The output of cond_indirect_effects().

w The name of the moderator. Must be present in object. If NULL, the default,
and object has only one moderator, then it will be set to that moderator. Be-
cause this function currently only supports a path with only one moderator, this
argument can be left as NULL for now.

w_label The label of the horizontal axis. If NULL, the default, it will be paste0("Moderator:
", w).

effect_label The label of the vertical axis. If NULL, the default, it will be generated from the
path.

add_zero_line Whether a horizontal line at zero will be drawn. Default is TRUE.
always_draw_zero_line

If FALSE, the default, then the line at zero, if requested will be drawn only if
zero is within the range of the plot. If TRUE, then the line at zero will always be
drawn.

line_linewidth The width of the line of the effect for each level of the moderator, to be used by
ggplot2::geom_line(). Default is 1. Always overrides the value of line_args.

line_color The color of the line of the effect for each level of the moderator, to be used
by ggplot2::geom_line(). Default is "blue". Always overrides the value of
line_args.

shade_the_band If TRUE, the default, a confidence band will be drawn as a region along the line
if confidence intervals can be retrieved from object.

draw_the_intervals

If TRUE, the default, two lines will be drawn for the confidence intervals along
the line if they can be retrieved from object.

band_fill_color

The color of of the confidence band, to be used by ggplot2::geom_ribbon().
Default is "lightgrey". Always overrides the value of band_args.

band_alpha A number from 0 to 1 for the level of transparency of the confidence band, to be
used by ggplot2::geom_ribbon(). Default is .50. Always overrides the value
of band_args.

intervals_color

The color of the lines of the confidence intervals, to be used by ggplot2::geom_line().
Default is "black". Always overrides the value of intervals_args.

plot_effect_vs_w 103

intervals_linetype

The line type of the lines of the confidence intervals, to be used by ggplot2::geom_line().
Default is "longdash". Always overrides the value of intervals_args.

intervals_linewidth

The line width of the lines of the confidence intervals, to be used by ggplot2::geom_line().
Default is 1. Always overrides the value of intervals_args.

zero_line_color

The color of the line at zero, to be used by ggplot2::geom_line(). Default is
"grey". Always overrides the value of zero_line_args.

zero_line_linewidth

The line width of the line at zero, to be used by ggplot2::geom_line(). De-
fault is 1. Always overrides the value of zero_line_args.

zero_line_linetype

The line type of the line at zero, to be used by ggplot2::geom_line(). Default
is "solid". Always overrides the value of zero_line_args.

line_args A named list of additional arguments to be passed to ggplot2::geom_line()
for the line of the effect against moderator. Default is list().

band_args A named list of additional arguments to be passed to ggplot2::geom_ribbon()
for the confidence band. Default is list().

intervals_args A named list of additional arguments to be passed to ggplot2::geom_line()
for the lines of confidence intervals. Default is list().

zero_line_args A named list of additional arguments to be passed to ggplot2::geom_line()
for the line at zero. Default is list().

level The level of confidence for the confidence intervals computed from the orig-
inal standard errors. Used only for paths without mediators and both x- and
y-variables are not standardized.

to_fill The output of cond_indirect_effects() or pseudo_johnson_neyman(), for
which additional levels of the moderator will be added.

cond_out If to_fill is the output of pseudo_johnson_neyman(), the original output
of cond_indirect_effects() used in the call to pseudo_johnson_neyman()
need to be supplied through this argument.

k The desired number of levels of the moderator.

Details

It receives an output of cond_indirect_effects() and plot the effect against the moderator. The
effect can be an indirect effect or a direct effect.

It uses the levels of the moderator stored in the output of cond_indirect_effects(). Therefore,
the desired levels of the moderator to be plotted needs to be specified when calling cond_indirect_effects(),
as illustrated in the example.

Currently, this function only supports a path with exactly one moderator, and the moderator is a
numeric variable.

Using Original Standard Errors:
If the following conditions are met, the stored standard errors, if available, will be used to form
the confidence intervals:

104 plot_effect_vs_w

• Confidence intervals have not been formed (e.g., by bootstrapping or Monte Carlo).
• The path has no mediators.
• The model has only one group.
• The path is moderated by one or more moderator.
• Both the x-variable and the y-variable are not standardized.

If the model is fitted by OLS regression (e.g., using stats::lm()), then the variance-covariance
matrix of the coefficient estimates will be used, and confidence intervals are computed from the t
statistic.
If the model is fitted by structural equation modeling using lavaan, then the variance-covariance
computed by lavaan will be used, and confidence intervals are computed from the z statistic.

Caution:
If the model is fitted by structural equation modeling and has moderators, the standard errors,
p-values, and confidence interval computed from the variance-covariance matrices for conditional
effects can only be trusted if all covariances involving the product terms are free. If any of them
are fixed, for example, fixed to zero, it is possible that the model is not invariant to linear transfor-
mation of the variables.

The function fill_wlevels() is a helper to automatically fill in additional levels of the moderators,
to plot a graph with smooth confidence band. It accepts the output of cond_indirect_effects()
or pseudo_johnson_neyman(), finds the range of the values of the moderator, and returns an output
of cond_indirect_effects() with the desired number of levels within this range. It is intended
to be a helper. If it does not work, users can still get the desired number of levels by setting the
values manually when calling cond_indirect_effects().

Value

plot_effect_vs_w() returns a ggplot2 graph. Plotted if not assigned to a name. It can be further
modified like a usual ggplot2 graph.

fill_wlevels() returns an updated output of cond_indirect_effects() with the desired num-
ber of levels of the moderator.

See Also

cond_indirect_effects()

Examples

dat <- data_med_mod_a
lm_m <- lm(m ~ x*w + c1 + c2, dat)
lm_y <- lm(y ~ m + x + c1 + c2, dat)
fit_lm <- lm2list(lm_m, lm_y)
Set R to a large value in real research.
boot_out_lm <- do_boot(fit_lm,

R = 50,
seed = 54532,
parallel = FALSE,
progress = FALSE)

predict.lm_from_lavaan 105

Compute the conditional indirect effects
from 2 SD below mean to 2 SD above mean of the moderator,
by setting sd_from_mean of cond_indirect_effects().
Set length.out to a larger number for a smooth graph.
out_lm <- cond_indirect_effects(wlevels = "w",

x = "x",
y = "y",
m = "m",
fit = fit_lm,
sd_from_mean = seq(-2, 2, length.out = 10),
boot_ci = TRUE,
boot_out = boot_out_lm)

p <- plot_effect_vs_w(out_lm)
p
The output is a ggplot2 graph and so can be further customized
library(ggplot2)
Add the line for the mean of w, the moderator
p2 <- p + geom_vline(xintercept = mean(dat$w),

color = "red")
p2

Use fill_wlevels to add moderator levels:

dat <- data_med_mod_a
lm_m <- lm(m ~ x*w + c1 + c2, dat)
lm_y <- lm(y ~ m + x + c1 + c2, dat)
fit_lm <- lm2list(lm_m, lm_y)
wlevels <- mod_levels(w = "w",

sd_from_mean = c(-3, 0, 3),
fit = fit_lm)

wlevels
cond_out <- cond_indirect_effects(wlevels = wlevels,

x = "x",
y = "m",
fit = fit_lm)

cond_out
Only 3 points
p1 <- plot_effect_vs_w(cond_out)
p1
Increase the number of levels to 15
cond_out_filled <- fill_wlevels(cond_out,

k = 15)
cond_out_filled
p2 <- plot_effect_vs_w(cond_out_filled)
p2

106 predict.lm_from_lavaan

predict.lm_from_lavaan

Predicted Values of a ’lm_from_lavaan’-Class Object

Description

Compute the predicted values based on the model stored in a ’lm_from_lavaan‘-class object.

Usage

S3 method for class 'lm_from_lavaan'
predict(object, newdata, ...)

Arguments

object A ’lm_from_lavaan’-class object.

newdata Required. A data frame of the new data. It must be a data frame.

... Additional arguments. Ignored.

Details

An lm_from_lavaan-class method that converts a regression model for a variable in a lavaan
model to a formula object. This function uses the stored model to compute predicted values using
user-supplied data.

This is an advanced helper used by plot.cond_indirect_effects(). Exported for advanced
users and developers.

Value

A numeric vector of the predicted values, with length equal to the number of rows of user-supplied
data.

See Also

lm_from_lavaan_list()

Examples

library(lavaan)
data(data_med)
mod <-
"
m ~ a * x + c1 + c2
y ~ b * m + x + c1 + c2
"
fit <- sem(mod, data_med, fixed.x = FALSE)
fit_list <- lm_from_lavaan_list(fit)
tmp <- data.frame(x = 1, c1 = 2, c2 = 3, m = 4)
predict(fit_list$m, newdata = tmp)

predict.lm_from_lavaan_list 107

predict(fit_list$y, newdata = tmp)

predict.lm_from_lavaan_list

Predicted Values of an ’lm_from_lavaan_list’-Class Object

Description

It computes the predicted values based on the models stored in an ’lm_from_lavaan_list‘-class ob-
ject.

Usage

S3 method for class 'lm_from_lavaan_list'
predict(object, x = NULL, y = NULL, m = NULL, newdata, ...)

Arguments

object A ’lm_from_lavaan’-class object.

x The variable name at the start of a path.

y The variable name at the end of a path.

m Optional. The mediator(s) from x to y. A numeric vector of the names of the
mediators. The path goes from the first element to the last element. For example,
if m = c("m1", "m2"), then the path is x -> m1 -> m2 -> y.

newdata Required. A data frame of the new data. It must be a data frame.

... Additional arguments. Ignored.

Details

An lm_from_lavaan_list-class object is a list of lm_from_lavaan-class objects.

This is an advanced helper used by plot.cond_indirect_effects(). Exported for advanced
users and developers.

Value

A numeric vector of the predicted values, with length equal to the number of rows of user-supplied
data.

See Also

lm_from_lavaan_list()

108 predict.lm_list

Examples

library(lavaan)
data(data_med)
mod <-
"
m ~ a * x + c1 + c2
y ~ b * m + x + c1 + c2
"
fit <- sem(mod, data_med, fixed.x = FALSE)
fit_list <- lm_from_lavaan_list(fit)
tmp <- data.frame(x = 1, c1 = 2, c2 = 3, m = 4)
predict(fit_list, x = "x", y = "y", m = "m", newdata = tmp)

predict.lm_list Predicted Values of an ’lm_list’-Class Object

Description

Compute the predicted values based on the models stored in an ’lm_list‘-class object.

Usage

S3 method for class 'lm_list'
predict(object, x = NULL, y = NULL, m = NULL, newdata, ...)

Arguments

object An ’lm_list’-class object.

x The variable name at the start of a path.

y The variable name at the end of a path.

m Optional. The mediator(s) from x to y. A numeric vector of the names of the
mediators. The path goes from the first element to the last element. For example,
if m = c("m1", "m2"), then the path is x -> m1 -> m2 -> y.

newdata Required. A data frame of the new data. It must be a data frame.

... Additional arguments. Ignored.

Details

An lm_list-class object is a list of lm-class objects, this function is similar to the stats::predict()
method of lm() but it works on a system defined by a list of regression models.

This is an advanced helper used by some functions in this package. Exported for advanced users.

Value

A numeric vector of the predicted values, with length equal to the number of rows of user-supplied
data.

print.all_paths 109

See Also

lm2list()

Examples

data(data_serial_parallel)
lm_m11 <- lm(m11 ~ x + c1 + c2, data_serial_parallel)
lm_m12 <- lm(m12 ~ m11 + x + c1 + c2, data_serial_parallel)
lm_m2 <- lm(m2 ~ x + c1 + c2, data_serial_parallel)
lm_y <- lm(y ~ m11 + m12 + m2 + x + c1 + c2, data_serial_parallel)
Join them to form a lm_list-class object
lm_serial_parallel <- lm2list(lm_m11, lm_m12, lm_m2, lm_y)
lm_serial_parallel
summary(lm_serial_parallel)
newdat <- data_serial_parallel[3:5,]
predict(lm_serial_parallel,

x = "x",
y = "y",
m = "m2",
newdata = newdat)

print.all_paths Print ’all_paths’ Class Object

Description

Print the content of ’all_paths’-class object, which can be generated by all_indirect_paths().

Usage

S3 method for class 'all_paths'
print(x, ...)

Arguments

x A ’all_paths’-class object.

... Optional arguments.

Details

This function is used to print the paths identified in a readable format.

Value

x is returned invisibly. Called for its side effect.

110 print.boot_out

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

See Also

all_indirect_paths()

Examples

library(lavaan)
data(data_serial_parallel)
mod <-
"
m11 ~ x + c1 + c2
m12 ~ m11 + x + c1 + c2
m2 ~ x + c1 + c2
y ~ m12 + m2 + m11 + x + c1 + c2
"
fit <- sem(mod, data_serial_parallel,

fixed.x = FALSE)
All indirect paths
out1 <- all_indirect_paths(fit)
out1

print.boot_out Print a boot_out-Class Object

Description

Print the content of the output of do_boot() or related functions.

Usage

S3 method for class 'boot_out'
print(x, ...)

Arguments

x The output of do_boot(), or any boot_out-class object returned by similar
functions.

... Other arguments. Not used.

Value

x is returned invisibly. Called for its side effect.

https://orcid.org/0000-0002-9871-9448

print.cond_indirect_diff 111

Examples

data(data_med_mod_ab1)
dat <- data_med_mod_ab1
lm_m <- lm(m ~ x*w + c1 + c2, dat)
lm_y <- lm(y ~ m*w + x + c1 + c2, dat)
lm_out <- lm2list(lm_m, lm_y)
In real research, R should be 2000 or even 5000
In real research, no need to set parallel to FALSE
In real research, no need to set progress to FALSE
Progress is displayed by default.
lm_boot_out <- do_boot(lm_out, R = 100,

seed = 1234,
progress = FALSE,
parallel = FALSE)

Print the output of do_boot()
lm_boot_out

library(lavaan)
data(data_med_mod_ab1)
dat <- data_med_mod_ab1
dat$"x:w" <- dat$x * dat$w
dat$"m:w" <- dat$m * dat$w
mod <-
"
m ~ x + w + x:w + c1 + c2
y ~ m + w + m:w + x + c1 + c2
"
fit <- sem(model = mod, data = dat, fixed.x = FALSE,

se = "none", baseline = FALSE)
In real research, R should be 2000 or even 5000
In real research, no need to set progress to FALSE
In real research, no need to set parallel to FALSE
Progress is displayed by default.
fit_boot_out <- do_boot(fit = fit,

R = 40,
seed = 1234,
parallel = FALSE,
progress = FALSE)

Print the output of do_boot()
fit_boot_out

print.cond_indirect_diff

Print the Output of ’cond_indirect_diff’

Description

Print the output of cond_indirect_diff().

112 print.cond_indirect_diff

Usage

S3 method for class 'cond_indirect_diff'
print(x, digits = 3, pvalue = FALSE, pvalue_digits = 3, se = FALSE, ...)

Arguments

x The output of cond_indirect_diff().

digits The number of decimal places in the printout.

pvalue Logical. If TRUE, asymmetric p-value based on bootstrapping will be printed if
available. Default is FALSE.

pvalue_digits Number of decimal places to display for the p-value. Default is 3.

se Logical. If TRUE and confidence intervals are available, the standard errors of
the estimates are also printed. They are simply the standard deviations of the
bootstrap estimates or Monte Carlo simulated values, depending on the method
used to form the confidence intervals.

... Optional arguments. Ignored.

Details

The print method of the cond_indirect_diff-class object.

If bootstrapping confidence interval was requested, this method has the option to print a p-value
computed by the method presented in Asparouhov and Muthén (2021). Note that this p-value is
asymmetric bootstrap p-value based on the distribution of the bootstrap estimates. It is not computed
based on the distribution under the null hypothesis.

For a p-value of a, it means that a 100(1 - a)% bootstrapping confidence interval will have one of
its limits equal to 0. A confidence interval with a higher confidence level will include zero, while a
confidence interval with a lower confidence level will exclude zero.

Value

It returns x invisibly. Called for its side effect.

References

Asparouhov, A., & Muthén, B. (2021). Bootstrap p-value computation. Retrieved from https://www.statmodel.com/download/FAQ-
Bootstrap%20-%20Pvalue.pdf

See Also

cond_indirect_diff()

print.cond_indirect_effects 113

print.cond_indirect_effects

Print a ’cond_indirect_effects’ Class Object

Description

Print the content of the output of cond_indirect_effects()

Usage

S3 method for class 'cond_indirect_effects'
print(
x,
digits = 3,
annotation = TRUE,
pvalue = NULL,
pvalue_digits = 3,
se = NULL,
level = 0.95,
se_ci = TRUE,
...

)

S3 method for class 'cond_indirect_effects'
as.data.frame(
x,
row.names = NULL,
optional = NULL,
digits = 3,
add_sig = TRUE,
pvalue = NULL,
pvalue_digits = 3,
se = NULL,
level = 0.95,
se_ci = TRUE,
to_string = FALSE,
...

)

Arguments

x The output of cond_indirect_effects().

digits Number of digits to display. Default is 3.

annotation Logical. Whether the annotation after the table of effects is to be printed. Default
is TRUE.

114 print.cond_indirect_effects

pvalue Logical. If TRUE, asymmetric p-values based on bootstrapping will be printed
if available. Default to FALSE if confidence intervals have already computed.
Default to TRUE if no confidence intervals have been computed and the original
standard errors are to be used. See Details on when the original standard errors
will be used by default.

pvalue_digits Number of decimal places to display for the p-values. Default is 3.

se Logical. If TRUE and confidence intervals are available, the standard errors of
the estimates are also printed. They are simply the standard deviations of the
bootstrap estimates or Monte Carlo simulated values, depending on the method
used to form the confidence intervals. Default to FALSE if confidence intervals
are available. Default to TRUE if no confidence intervals have been computed
and the original standard errors are to be used. See Details on when the original
standard errors will be used by default.

level The level of confidence for the confidence intervals computed from the orig-
inal standard errors. Used only for paths without mediators and both x- and
y-variables are not standardized.

se_ci Logical. If TRUE and confidence interval has not been computed, the function
will try to compute them from stored standard errors if the original standard er-
rors are to be used. Ignored if confidence intervals have already been computed.
Default to TRUE.

... Other arguments. Not used.

row.names Not used. Included to be compatible with the generic method.

optional Not used. Included to be compatible with the generic method.

add_sig Whether a column of significance test results will be added. Default is TRUE.

to_string If TRUE, numeric columns will be converted to string columns, formatted based
on digits and pvalue_digits. For printing. Default is FALSE.

Details

The print method of the cond_indirect_effects-class object.

If bootstrapping confidence intervals were requested, this method has the option to print p-values
computed by the method presented in Asparouhov and Muthén (2021). Note that these p-values
are asymmetric bootstrap p-values based on the distribution of the bootstrap estimates. They not
computed based on the distribution under the null hypothesis.

For a p-value of a, it means that a 100(1 - a)% bootstrapping confidence interval will have one of
its limits equal to 0. A confidence interval with a higher confidence level will include zero, while a
confidence interval with a lower confidence level will exclude zero.

Using Original Standard Errors:
If these conditions are met, the stored standard errors, if available, will be used test an effect and
form it confidence interval:

• Confidence intervals have not been formed (e.g., by bootstrapping or Monte Carlo).
• The path has no mediators.
• The model has only one group.
• The path is moderated by one or more moderator.

print.cond_indirect_effects 115

• Both the x-variable and the y-variable are not standardized.

If the model is fitted by OLS regression (e.g., using stats::lm()), then the variance-covariance
matrix of the coefficient estimates will be used, and the p-value and confidence intervals are
computed from the t statistic.
If the model is fitted by structural equation modeling using lavaan, then the variance-covariance
computed by lavaan will be used, and the p-value and confidence intervals are computed from
the z statistic.

Caution:
If the model is fitted by structural equation modeling and has moderators, the standard errors,
p-values, and confidence interval computed from the variance-covariance matrices for conditional
effects can only be trusted if all covariances involving the product terms are free. If any of them
are fixed, for example, fixed to zero, it is possible that the model is not invariant to linear transfor-
mation of the variables.

The method as.data.frame() for cond_indirect_effects objects is used to convert this class
of objects to data frames. Used internally by the print method but can also be used for getting a data
frame with columns such as p-values and standard errors added.

Value

The print-method returns x invisibly. Called for its side effect.

The as.data.frame-method returns a data frame with the conditional effects and confidence inter-
vals (if available), as well as other columns requested.

Functions

• as.data.frame(cond_indirect_effects): The as.data.frame-method for cond_indirect_effects
objects. Used internally by the print-method but can also be used directly.

References

Asparouhov, A., & Muthén, B. (2021). Bootstrap p-value computation. Retrieved from https://www.statmodel.com/download/FAQ-
Bootstrap%20-%20Pvalue.pdf

See Also

cond_indirect_effects() and cond_effects()

Examples

library(lavaan)
dat <- modmed_x1m3w4y1
mod <-
"
m1 ~ a1 * x + d1 * w1 + e1 * x:w1
m2 ~ a2 * x
y ~ b1 * m1 + b2 * m2 + cp * x
"
fit <- sem(mod, dat,

116 print.delta_med

meanstructure = TRUE, fixed.x = FALSE, se = "none", baseline = FALSE)

Conditional effects from x to m1 when w1 is equal to each of the default levels
cond_indirect_effects(x = "x", y = "m1",

wlevels = "w1", fit = fit)

Conditional Indirect effect from x1 through m1 to y,
when w1 is equal to each of the default levels
out <- cond_indirect_effects(x = "x", y = "y", m = "m1",

wlevels = "w1", fit = fit)
out

print(out, digits = 5)

print(out, annotation = FALSE)

Convert to data frames

as.data.frame(out)

as.data.frame(out, to_string = TRUE)

print.delta_med Print a ’delta_med’ Class Object

Description

Print the content of a delta_med-class object.

Usage

S3 method for class 'delta_med'
print(x, digits = 3, level = NULL, full = FALSE, boot_type, ...)

Arguments

x A delta_med-class object.
digits The number of digits after the decimal. Default is 3.
level The level of confidence of bootstrap confidence interval, if requested when cre-

ated. If NULL, the default, the level requested when calling delta_med() is used.
If not null, then this level will be used.

full Logical. Whether additional information will be printed. Default is FALSE.
boot_type If bootstrap confidence interval is to be formed, the type of bootstrap confidence

interval. The supported types are "perc" (percentile bootstrap confidence in-
terval, the recommended method) and "bc" (bias-corrected, or BC, bootstrap
confidence interval). If not supplied, the stored boot_type will be used.

... Optional arguments. Ignored.

print.delta_med 117

Details

It prints the output of delta_med(), which is a delta_med-class object.

Value

x is returned invisibly. Called for its side effect.

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

See Also

delta_med()

Examples

library(lavaan)
dat <- data_med
mod <-
"
m ~ x
y ~ m + x
"
fit <- sem(mod, dat)
dm <- delta_med(x = "x",

y = "y",
m = "m",
fit = fit)

dm
print(dm, full = TRUE)

Call do_boot() to generate
bootstrap estimates
Use 2000 or even 5000 for R in real studies
Set parallel to TRUE in real studies for faster bootstrapping
boot_out <- do_boot(fit,

R = 45,
seed = 879,
parallel = FALSE,
progress = FALSE)

Remove 'progress = FALSE' in practice
dm_boot <- delta_med(x = "x",

y = "y",
m = "m",
fit = fit,
boot_out = boot_out,
progress = FALSE)

dm_boot
confint(dm_boot)
confint(dm_boot,

level = .90)

https://orcid.org/0000-0002-9871-9448

118 print.indirect

print.indirect Print an ’indirect’ Class Object

Description

Print the content of the output of indirect_effect() or cond_indirect().

Usage

S3 method for class 'indirect'
print(
x,
digits = 3,
pvalue = NULL,
pvalue_digits = 3,
se = NULL,
level = 0.95,
se_ci = TRUE,
wrap_computation = TRUE,
...

)

Arguments

x The output of indirect_effect() or cond_indirect().

digits Number of digits to display. Default is 3.

pvalue Logical. If TRUE, asymmetric p-values based on bootstrapping will be printed
if available. Default to FALSE if confidence intervals have already computed.
Default to TRUE if no confidence intervals have been computed and the original
standard errors are to be used. See Details on when the original standard errors
will be used by default. Default is NULL and its value determined as stated above.

pvalue_digits Number of decimal places to display for the p-value. Default is 3.

se Logical. If TRUE and confidence interval has been formed, the standard error of
the estimates are also printed. It is simply the standard deviation of the bootstrap
estimates or Monte Carlo simulated values, depending on the method used to
form the confidence intervals. Default to FALSE if confidence interval has been
formed. Default to TRUE if no confidence interval has been computed and the
original standard errors are to be used. See Details on when the original standard
errors will be used by default. Default is NULL and its value determined as stated
above.

level The level of confidence for the confidence interval computed from the origi-
nal standard errors. Used only for paths without mediators and both x- and
y-variables are not standardized.

print.indirect 119

se_ci Logical. If TRUE and confidence interval has not been computed, the function
will try to compute them from stored standard error if the original standard error
is to be used. Ignored if confidence interval has already been computed. Default
to TRUE.

wrap_computation

Logical. If TRUE, the default, long computational symbols and values will be
wrapped to fit to the screen width.

... Other arguments. Not used.

Details

The print method of the indirect-class object.

If bootstrapping confidence interval was requested, this method has the option to print a p-value
computed by the method presented in Asparouhov and Muthén (2021). Note that this p-value is
asymmetric bootstrap p-value based on the distribution of the bootstrap estimates. It is not computed
based on the distribution under the null hypothesis.

For a p-value of a, it means that a 100(1 - a)% bootstrapping confidence interval will have one of
its limits equal to 0. A confidence interval with a higher confidence level will include zero, while a
confidence interval with a lower confidence level will exclude zero.

We recommend using confidence interval directly. Therefore, p-value is not printed by default.
Nevertheless, users who need it can request it by setting pvalue to TRUE.

Using Original Standard Errors:
If these conditions are met, the stored standard error, if available, will be used to test an effect and
form it confidence interval:

• Confidence interval has not been formed (e.g., by bootstrapping or Monte Carlo).
• The path has no mediators.
• The model has only one group.
• Both the x-variable and the y-variable are not standardized.

If the model is fitted by OLS regression (e.g., using stats::lm()), then the variance-covariance
matrix of the coefficient estimates will be used, and the p-value and confidence interval are com-
puted from the t statistic.
If the model is fitted by structural equation modeling using lavaan, then the variance-covariance
computed by lavaan will be used, and the p-value and confidence interval are computed from the
z statistic.

Caution:
If the model is fitted by structural equation modeling and has moderators, the standard errors,
p-values, and confidence interval computed from the variance-covariance matrices for conditional
effects can only be trusted if all covariances involving the product terms are free. If any some of
them are fixed, for example, fixed to zero, it is possible that the model is not invariant to linear
transformation of the variables.

Value

x is returned invisibly. Called for its side effect.

120 print.indirect

References

Asparouhov, A., & Muthén, B. (2021). Bootstrap p-value computation. Retrieved from https://www.statmodel.com/download/FAQ-
Bootstrap%20-%20Pvalue.pdf

See Also

indirect_effect() and cond_indirect()

Examples

library(lavaan)
dat <- modmed_x1m3w4y1
mod <-
"
m1 ~ a1 * x + b1 * w1 + d1 * x:w1
m2 ~ a2 * m1 + b2 * w2 + d2 * m1:w2
m3 ~ a3 * m2 + b3 * w3 + d3 * m2:w3
y ~ a4 * m3 + b4 * w4 + d4 * m3:w4
"
fit <- sem(mod, dat,

meanstructure = TRUE, fixed.x = FALSE,
se = "none", baseline = FALSE)

est <- parameterEstimates(fit)

wvalues <- c(w1 = 5, w2 = 4, w3 = 2, w4 = 3)

indirect_1 <- cond_indirect(x = "x", y = "y",
m = c("m1", "m2", "m3"),
fit = fit,
wvalues = wvalues)

indirect_1

dat <- modmed_x1m3w4y1
mod2 <-
"
m1 ~ a1 * x
m2 ~ a2 * m1
m3 ~ a3 * m2
y ~ a4 * m3 + x
"
fit2 <- sem(mod2, dat,

meanstructure = TRUE, fixed.x = FALSE,
se = "none", baseline = FALSE)

est <- parameterEstimates(fit)

indirect_2 <- indirect_effect(x = "x", y = "y",
m = c("m1", "m2", "m3"),
fit = fit2)

indirect_2
print(indirect_2, digits = 5)

print.indirect_list 121

print.indirect_list Print an ’indirect_list’ Class Object

Description

Print the content of the output of many_indirect_effects().

Usage

S3 method for class 'indirect_list'
print(
x,
digits = 3,
annotation = TRUE,
pvalue = FALSE,
pvalue_digits = 3,
se = FALSE,
for_each_path = FALSE,
...

)

Arguments

x The output of many_indirect_effects().

digits Number of digits to display. Default is 3.

annotation Logical. Whether the annotation after the table of effects is to be printed. Default
is TRUE.

pvalue Logical. If TRUE, asymmetric p-values based on bootstrapping will be printed if
available.

pvalue_digits Number of decimal places to display for the p-values. Default is 3.

se Logical. If TRUE and confidence intervals are available, the standard errors of
the estimates are also printed. They are simply the standard deviations of the
bootstrap estimates or Monte Carlo simulated values, depending on the method
used to form the confidence intervals.

for_each_path Logical. If TRUE, each of the paths will be printed individually, using the print-
method of the output of indirect_effect(). Default is FALSE.

... Other arguments. If for_each_path is TRUE, they will be passed to the print
method of the output of indirect_effect(). Ignored otherwise.

Details

The print method of the indirect_list-class object.

If bootstrapping confidence interval was requested, this method has the option to print a p-value
computed by the method presented in Asparouhov and Muthén (2021). Note that this p-value is

122 print.indirect_list

asymmetric bootstrap p-value based on the distribution of the bootstrap estimates. It is not computed
based on the distribution under the null hypothesis.

For a p-value of a, it means that a 100(1 - a)% bootstrapping confidence interval will have one of
its limits equal to 0. A confidence interval with a higher confidence level will include zero, while a
confidence interval with a lower confidence level will exclude zero.

Value

x is returned invisibly. Called for its side effect.

References

Asparouhov, A., & Muthén, B. (2021). Bootstrap p-value computation. Retrieved from https://www.statmodel.com/download/FAQ-
Bootstrap%20-%20Pvalue.pdf

See Also

many_indirect_effects()

Examples

library(lavaan)
data(data_serial_parallel)
mod <-
"
m11 ~ x + c1 + c2
m12 ~ m11 + x + c1 + c2
m2 ~ x + c1 + c2
y ~ m12 + m2 + m11 + x + c1 + c2
"
fit <- sem(mod, data_serial_parallel,

fixed.x = FALSE)
All indirect paths from x to y
paths <- all_indirect_paths(fit,

x = "x",
y = "y")

paths
Indirect effect estimates
out <- many_indirect_effects(paths,

fit = fit)
out

print.indirect_proportion 123

print.indirect_proportion

Print an ’indirect_proportion’-Class Object

Description

Print the content of an ’indirect_proportion’-class object, the output of indirect_proportion().

Usage

S3 method for class 'indirect_proportion'
print(x, digits = 3, annotation = TRUE, ...)

Arguments

x An ’indirect_proportion’-class object.

digits Number of digits to display. Default is 3.

annotation Logical. Whether additional information should be printed. Default is TRUE.

... Optional arguments. Not used.

Details

The print method of the indirect_proportion-class object, which is produced by indirect_proportion().
In addition to the proportion of effect mediated, it also prints additional information such as the path
for which the proportion is computed, and all indirect path(s) from the x-variable to the y-variable.

To get the proportion as a scalar, use the coef method of indirect_proportion objects.

Value

x is returned invisibly. Called for its side effect.

See Also

indirect_proportion()

Examples

library(lavaan)
dat <- data_med
head(dat)
mod <-
"
m ~ x + c1 + c2
y ~ m + x + c1 + c2
"
fit <- sem(mod, dat, fixed.x = FALSE)
out <- indirect_proportion(x = "x",

124 print.lm_list

y = "y",
m = "m",
fit = fit)

out
print(out, digits = 5)

print.lm_list Print an lm_list-Class Object

Description

Print the content of the output of lm2list().

Usage

S3 method for class 'lm_list'
print(x, ...)

Arguments

x The output of lm2list().

... Other arguments. Not used.

Value

x is returned invisibly. Called for its side effect.

Examples

data(data_serial_parallel)
lm_m11 <- lm(m11 ~ x + c1 + c2, data_serial_parallel)
lm_m12 <- lm(m12 ~ m11 + x + c1 + c2, data_serial_parallel)
lm_m2 <- lm(m2 ~ x + c1 + c2, data_serial_parallel)
lm_y <- lm(y ~ m11 + m12 + m2 + x + c1 + c2, data_serial_parallel)
Join them to form a lm_list-class object
lm_serial_parallel <- lm2list(lm_m11, lm_m12, lm_m2, lm_y)
lm_serial_parallel

print.mc_out 125

print.mc_out Print a mc_out-Class Object

Description

Print the content of the output of do_mc() or related functions.

Usage

S3 method for class 'mc_out'
print(x, ...)

Arguments

x The output of do_mc(), or any mc_out-class object returned by similar func-
tions.

... Other arguments. Not used.

Value

x is returned invisibly. Called for its side effect.

Examples

library(lavaan)
data(data_med_mod_ab1)
dat <- data_med_mod_ab1
mod <-
"
m ~ x + w + x:w + c1 + c2
y ~ m + w + m:w + x + c1 + c2
"
fit <- sem(mod, dat)
In real research, R should be 5000 or even 10000
mc_out <- do_mc(fit, R = 100, seed = 1234)

Print the output of do_boot()
mc_out

126 pseudo_johnson_neyman

pseudo_johnson_neyman Pseudo Johnson-Neyman Probing

Description

Use the pseudo Johnson-Neyman approach (Hayes, 2022) to find the range of values of a moderator
in which the conditional effect is not significant.

Usage

pseudo_johnson_neyman(
object = NULL,
w_lower = NULL,
w_upper = NULL,
optimize_method = c("uniroot", "optimize"),
extendInt = c("no", "yes", "downX", "upX"),
tol = .Machine$double.eps^0.25,
level = 0.95

)

johnson_neyman(
object = NULL,
w_lower = NULL,
w_upper = NULL,
optimize_method = c("uniroot", "optimize"),
extendInt = c("no", "yes", "downX", "upX"),
tol = .Machine$double.eps^0.25,
level = 0.95

)

S3 method for class 'pseudo_johnson_neyman'
print(x, digits = 3, ...)

Arguments

object A cond_indirect_effects-class object, which is the output of cond_indirect_effects().

w_lower The smallest value of the moderator when doing the search. If set to NULL, the
default, it will be 10 standard deviations below mean, which should be small
enough.

w_upper The largest value of the moderator when doing the search. If set to NULL, the
default, it will be 10 standard deviations above mean, which should be large
enough.

optimize_method

The optimization method to be used. Either "uniroot" (the default) or "optimize",
corresponding to stats::uniroot() and stats::optimize(), respectively.

pseudo_johnson_neyman 127

extendInt Used by stats::uniroot(). If "no", then search will be conducted strictly
within c(w_lower, w_upper). Otherwise, the range is extended based on this
argument if the solution is not found. Please refer to stats::uniroot() for
details.

tol The tolerance level used by both stats::uniroot() and stats::optimize().

level The level of confidence of the confidence level. One minus this level is the level
of significance. Default is .95, equivalent to a level of significance of .05.

x The output of pseudo_johnson_neyman().

digits Number of digits to display. Default is 3.

... Other arguments. Not used.

Details

This function uses the pseudo Johnson-Neyman approach proposed by Hayes (2022) to find the
values of a moderator at which a conditional effect is "nearly just significant" based on confidence
interval. If an effect is moderated, there will be two such points (though one can be very large or
small) forming a range. The conditional effect is not significant within this range, and significant
outside this range, based on the confidence interval.

This function receives the output of cond_indirect_effects() and search for, within a specific
range, the two values of the moderator at which the conditional effect is "nearly just significant",
that is, the confidence interval "nearly touches" zero.

Note that numerical method is used to find the points. Therefore, strictly speaking, the effects at the
end points are still either significant or not significant, even if the confidence limit is very close to
zero.

Though numerical method is used, if the test is conducted using the standard error (see below), the
result is equivalent to the (true) Johnson-Neyman (1936) probing. The function johnson_neyman()
is just an alias to pseudo_johnson_neyman(), with the name consistent with what it does in this
special case.

Supported Methods:
This function supports models fitted by lm(), lavaan::sem(), and semTools::sem.mi(). This
function also supports both bootstrapping and Monte Carlo confidence intervals. It also supports
conditional direct paths (no mediator) and conditional indirect paths (with one or more mediator),
with x and/or y standardized.

Requirements:
To be eligible for using this function, one of these conditions must be met:

• One form of confidence intervals (e.g, bootstrapping or Monte Carlo) must has been re-
quested (e.g., setting boot_ci = TRUE or mc_ci = TRUE) when calling cond_indirect_effects().

• Tests can be done using stored standard errors: A path with no mediator and both the x- and
y-variables are not standardized.

For pre-computed confidence intervals, the confidence level of the confidence intervals adopted
when calling cond_indirect_effects() will be used by this function.
For tests conducted by standard errors, the argument level is used to control the level of signifi-
cance.

128 pseudo_johnson_neyman

Possible failures:
Even if a path has only one moderator, it is possible that no solution, or more than one solution,
is/are found if the relation between this moderator and the conditional effect is not linear.
Solution may also be not found if the conditional effect is significant over a wide range of value
of the moderator.
It is advised to use plot_effect_vs_w() to examine the relation between the effect and the
moderator first before calling this function.

Speed:
Note that, for conditional indirect effects, the search can be slow because the confidence interval
needs to be recomputed for each new value of the moderator.

Limitations:

• This function currently only supports a path with only one moderator,
• This function does not yet support multigroup models.

Value

A list of the class pseudo_johnson_neyman (with a print method, print.pseudo_johnson_neyman()).
It has these major elements:

• cond_effects: An output of cond_indirect_effects() for the two levels of the moderator
found.

• w_min_valid: Logical. If TRUE, the conditional effect is just significant at the lower level of
the moderator found, and so is significant below this point. If FALSE, then the lower level of
the moderator found is just the lower bound of the range searched, that is, w_lower.

• w_max_valid: Logical. If TRUE, the conditional effect is just significant at the higher level of
the moderator found, and so is significant above this point. If FALSE, then the higher level of
the moderator found is just the upper bound of the range searched, that is, w_upper.

Methods (by generic)

• print(pseudo_johnson_neyman): Print method for output of pseudo_johnson_neyman().

References

Johnson, P. O., & Neyman, J. (1936). Test of certain linear hypotheses and their application to some
educational problems. Statistical Research Memoirs, 1, 57–93.

Hayes, A. F. (2022). Introduction to mediation, moderation, and conditional process analysis: A
regression-based approach (Third edition). The Guilford Press.

See Also

cond_indirect_effects()

simple_mediation_latent 129

Examples

library(lavaan)

dat <- data_med_mod_a
dat$wx <- dat$x * dat$w
mod <-
"
m ~ x + w + wx
y ~ m + x
"
fit <- sem(mod, dat)

In real research, R should be 2000 or even 5000
In real research, no need to set parallel and progress to FALSE
Parallel processing is enabled by default and
progress is displayed by default.
boot_out <- do_boot(fit,

R = 50,
seed = 4314,
parallel = FALSE,
progress = FALSE)

out <- cond_indirect_effects(x = "x", y = "y", m = "m",
wlevels = "w",
fit = fit,
boot_ci = TRUE,
boot_out = boot_out)

Visualize the relation first
plot_effect_vs_w(out)

out_jn <- pseudo_johnson_neyman(out)
out_jn

Plot the range
plot_effect_vs_w(out_jn$cond_effects)

simple_mediation_latent

Sample Dataset: A Simple Latent Mediation Model

Description

Generated from a simple mediation model among xthree latent factors, fx, fm, and fy, xeach has
three indicators.

Usage

simple_mediation_latent

130 subsetting_cond_indirect_effects

Format

A data frame with 200 rows and 11 variables:

x1 Indicator of fx. Numeric.

x2 Indicator of fx. Numeric.

x3 Indicator of fx. Numeric.

m1 Indicator of fm. Numeric.

m2 Indicator of fm. Numeric.

m3 Indicator of fm. Numeric.

y1 Indicator of fy. Numeric.

y2 Indicator of fy. Numeric.

y3 Indicator of fy. Numeric.

Details

The model:

fx =~ x1 + x2 + x3
fm =~ m1 + m2 + m3
fy =~ y1 + y2 + y3
fm ~ a * fx
fy ~ b * fm + cp * fx
indirect := a * b

subsetting_cond_indirect_effects

Extraction Methods for ’cond_indirect_effects’ Outputs

Description

For subsetting a ’cond_indirect_effects’-class object.

Usage

S3 method for class 'cond_indirect_effects'
x[i, j, drop = if (missing(i)) TRUE else length(j) == 1]

Arguments

x A ’cond_indirect_effects’-class object.

i A numeric vector of row number(s), a character vector of row name(s), or a
logical vector of row(s) to be selected.

j A numeric vector of column number(s), a character vector of column name(s),
or a logical vector of column(s) to be selected.

drop Whether dropping a dimension if it only have one row/column.

subsetting_wlevels 131

Details

Customized [for ’cond_indirect_effects’-class objects, to ensure that these operations work as
they would be on a data frame object, while information specific to conditional effects is modified
correctly.

Value

A ’cond_indirect_effects’-class object. See cond_indirect_effects() for details on this class.

Examples

library(lavaan)
dat <- modmed_x1m3w4y1
mod <-
"
m1 ~ x + w1 + x:w1
m2 ~ m1
y ~ m2 + x + w4 + m2:w4
"
fit <- sem(mod, dat, meanstructure = TRUE, fixed.x = FALSE, se = "none", baseline = FALSE)
est <- parameterEstimates(fit)

Examples for cond_indirect():

Conditional effects from x to m1 when w1 is equal to each of the levels
out1 <- cond_indirect_effects(x = "x", y = "m1",

wlevels = "w1", fit = fit)
out1[2,]

Conditional Indirect effect from x1 through m1 to y,
when w1 is equal to each of the levels
out2 <- cond_indirect_effects(x = "x", y = "y", m = c("m1", "m2"),

wlevels = c("w1", "w4"), fit = fit)
out2[c(1, 3),]

subsetting_wlevels Extraction Methods for a ’wlevels’-class Object

Description

For subsetting a ’wlevels’-class object. Attributes related to the levels will be preserved if appropri-
ate.

Usage

S3 method for class 'wlevels'
x[i, j, drop = if (missing(i)) TRUE else length(j) == 1]

132 subsetting_wlevels

S3 replacement method for class 'wlevels'
x[i, j] <- value

S3 replacement method for class 'wlevels'
x[[i, j]] <- value

Arguments

x A ’wlevels’-class object.

i A numeric vector of row number(s), a character vector of row name(s), or a
logical vector of row(s) to be selected.

j A numeric vector of column number(s), a character vector of column name(s),
or a logical vector of column(s) to be selected.

drop Whether dropping a dimension if it only have one row/column.

value Ignored.

Details

Customized [for ’wlevels’-class objects, to ensure that these operations work as they would be on
a data frame object, while information specific to a wlevels-class object modified correctly.

The assignment methods [<- and [[<- for wlevels-class objects will raise an error. This class of
objects should be created by mod_levels() or related functions.

Subsetting the output of mod_levels() is possible but not recommended. It is more reliable to
generate the levels using mod_levels() and related functions. Nevertheless, there are situations in
which subsetting is preferred.

Value

A ’wlevels’-class object. See mod_levels() and merge_mod_levels() for details on this class.

See Also

mod_levels(), mod_levels_list(), and merge_mod_levels()

Examples

data(data_med_mod_ab)
dat <- data_med_mod_ab
Form the levels from a list of lm() outputs
lm_m <- lm(m ~ x*w1 + c1 + c2, dat)
lm_y <- lm(y ~ m*w2 + x + w1 + c1 + c2, dat)
lm_out <- lm2list(lm_m, lm_y)
w1_levels <- mod_levels(lm_out, w = "w1")
w1_levels
w1_levels[2,]
w1_levels[c(2, 3),]

dat <- data_med_mod_serial_cat
lm_m1 <- lm(m1 ~ x*w1 + c1 + c2, dat)

summary.lm_list 133

lm_y <- lm(y ~ m1 + x + w1 + c1 + c2, dat)
lm_out <- lm2list(lm_m1, lm_y)
w1gp_levels <- mod_levels(lm_out, w = "w1")
w1gp_levels
w1gp_levels[2,]
w1gp_levels[3,]

merged_levels <- merge_mod_levels(w1_levels, w1gp_levels)
merged_levels

merged_levels[4:6,]
merged_levels[1:3, c(2, 3)]
merged_levels[c(1, 4, 7), 1, drop = FALSE]

summary.lm_list Summary of an lm_list-Class Object

Description

The summary of content of the output of lm2list().

Usage

S3 method for class 'lm_list'
summary(object, ...)

S3 method for class 'summary_lm_list'
print(x, digits = 3, ...)

Arguments

object The output of lm2list().

... Other arguments. Not used.

x An object of class summary_lm_list.

digits The number of significant digits in printing numerical results.

Value

summary.lm_list() returns a summary_lm_list-class object, which is a list of the summary()
outputs of the lm() outputs stored.

print.summary_lm_list() returns x invisibly. Called for its side effect.

Functions

• print(summary_lm_list): Print method for output of summary for lm_list.

134 terms.lm_from_lavaan

Examples

data(data_serial_parallel)
lm_m11 <- lm(m11 ~ x + c1 + c2, data_serial_parallel)
lm_m12 <- lm(m12 ~ m11 + x + c1 + c2, data_serial_parallel)
lm_m2 <- lm(m2 ~ x + c1 + c2, data_serial_parallel)
lm_y <- lm(y ~ m11 + m12 + m2 + x + c1 + c2, data_serial_parallel)
Join them to form a lm_list-class object
lm_serial_parallel <- lm2list(lm_m11, lm_m12, lm_m2, lm_y)
lm_serial_parallel
summary(lm_serial_parallel)

terms.lm_from_lavaan Model Terms of an ’lm_from_lavaan’-Class Object

Description

It extracts the terms object from an lm_from_lavaan-class object.

Usage

S3 method for class 'lm_from_lavaan'
terms(x, ...)

Arguments

x An ’lm_from_lavaan’-class object.

... Additional arguments. Ignored.

Details

A method for lm_from_lavaan-class that converts a regression model for a variable in a lavaan
model to a formula object. This function simply calls stats::terms() on the formula object to
extract the predictors of a variable.

Value

A terms-class object. See terms.object for details.

See Also

terms.object, lm_from_lavaan_list()

total_indirect_effect 135

Examples

library(lavaan)
data(data_med)
mod <-
"
m ~ a * x + c1 + c2
y ~ b * m + x + c1 + c2
"
fit <- sem(mod, data_med, fixed.x = FALSE)
fit_list <- lm_from_lavaan_list(fit)
terms(fit_list$m)
terms(fit_list$y)

total_indirect_effect Total Indirect Effect Between Two Variables

Description

Compute the total indirect effect between two variables in the paths estimated by many_indirect_effects().

Usage

total_indirect_effect(object, x, y)

Arguments

object The output of many_indirect_effects(), or a list of indirect-class objects.

x Character. The name of the x variable. All paths starting from x will be included.
Can be omitted if all paths have the same x.

y Character. The name of the y variable. All paths ending at y will be included.
Can be omitted if all paths have the same y.

Details

It extracts the indirect-class objects of relevant paths and then add the indirect effects together
using the + operator.

Value

An indirect-class object.

See Also

many_indirect_effects()

136 total_indirect_effect

Examples

library(lavaan)
data(data_serial_parallel)
mod <-
"
m11 ~ x + c1 + c2
m12 ~ m11 + x + c1 + c2
m2 ~ x + c1 + c2
y ~ m12 + m2 + m11 + x + c1 + c2
"
fit <- sem(mod, data_serial_parallel,

fixed.x = FALSE)

All indirect paths, control variables excluded
paths <- all_indirect_paths(fit,

exclude = c("c1", "c2"))
paths

Indirect effect estimates
out <- many_indirect_effects(paths,

fit = fit)
out

Total indirect effect from x to y
total_indirect_effect(out,

x = "x",
y = "y")

Index

∗ datasets
data_med, 36
data_med_complicated, 36
data_med_complicated_mg, 37
data_med_mg, 38
data_med_mod_a, 39
data_med_mod_ab, 40
data_med_mod_ab1, 41
data_med_mod_b, 42
data_med_mod_b_mod, 43
data_med_mod_parallel, 44
data_med_mod_parallel_cat, 45
data_med_mod_serial, 46
data_med_mod_serial_cat, 47
data_med_mod_serial_parallel, 48
data_med_mod_serial_parallel_cat,

49
data_mod, 50
data_mod2, 50
data_mod_cat, 51
data_mome_demo, 52
data_mome_demo_missing, 53
data_parallel, 54
data_sem, 55
data_serial, 56
data_serial_parallel, 57
data_serial_parallel_latent, 58
modmed_x1m3w4y1, 93
simple_mediation_latent, 129

+.indirect (math_indirect), 89
-.indirect (math_indirect), 89
[.cond_indirect_effects

(subsetting_cond_indirect_effects),
130

[.wlevels (subsetting_wlevels), 131
[<-.wlevels (subsetting_wlevels), 131
[[<-.wlevels (subsetting_wlevels), 131

all_indirect_paths, 4
all_indirect_paths(), 4, 5, 21, 109, 110

all_paths_to_df (all_indirect_paths), 4
all_paths_to_df(), 5
as.data.frame.cond_indirect_effects

(print.cond_indirect_effects),
113

check_path, 6
coef.cond_indirect_diff, 8
coef.cond_indirect_diff(), 27, 77
coef.cond_indirect_effects, 9
coef.cond_indirect_effects(), 23
coef.delta_med, 10
coef.delta_med(), 61, 62
coef.indirect, 11
coef.indirect(), 23, 82
coef.indirect_list, 12
coef.indirect_proportion, 14
coef.indirect_proportion(), 84
coef.lm_from_lavaan, 15
cond_effects (cond_indirect), 16
cond_effects(), 115
cond_indirect, 16
cond_indirect(), 11, 12, 19–23, 32, 33,

62–66, 72, 76, 82, 83, 87, 89, 90, 93,
95, 118, 120

cond_indirect_diff, 26
cond_indirect_diff(), 8, 27, 28, 111, 112
cond_indirect_effects, 72
cond_indirect_effects (cond_indirect),

16
cond_indirect_effects(), 9, 19–23, 26, 27,

29, 30, 62–66, 68–72, 76, 77, 81–83,
86, 87, 92, 93, 95, 96, 98–100,
102–104, 113, 115, 126–128, 131

confint.cond_indirect_diff, 28
confint.cond_indirect_diff(), 27, 77
confint.cond_indirect_effects, 29
confint.cond_indirect_effects(), 23
confint.delta_med, 31
confint.delta_med(), 61, 62

137

138 INDEX

confint.indirect, 32
confint.indirect(), 23, 82
confint.indirect_list, 34

data_med, 36
data_med_complicated, 36
data_med_complicated_mg, 37
data_med_mg, 38
data_med_mod_a, 39
data_med_mod_ab, 40
data_med_mod_ab1, 41
data_med_mod_b, 42
data_med_mod_b_mod, 43
data_med_mod_parallel, 44
data_med_mod_parallel_cat, 45
data_med_mod_serial, 46
data_med_mod_serial_cat, 47
data_med_mod_serial_parallel, 48
data_med_mod_serial_parallel_cat, 49
data_mod, 50
data_mod2, 50
data_mod_cat, 51
data_mome_demo, 52, 54
data_mome_demo_missing, 53
data_parallel, 54
data_sem, 55
data_serial, 56
data_serial_parallel, 57
data_serial_parallel_latent, 58
delta_med, 59
delta_med(), 10, 11, 31, 116, 117
do_boot, 23, 62
do_boot(), 19, 22, 60, 65, 68, 69, 76, 86, 110
do_mc, 64
do_mc(), 20, 22, 70, 76, 125

factor2var, 66
fill_wlevels (plot_effect_vs_w), 101
fill_wlevels(), 104
fit2boot_out, 67
fit2boot_out(), 63, 64, 68
fit2boot_out_do_boot (fit2boot_out), 67
fit2boot_out_do_boot(), 63, 64, 68
fit2mc_out, 70
fit2mc_out(), 66, 70

gen_mc_est (do_mc), 64
get_one_cond_effect

(get_one_cond_indirect_effect),
71

get_one_cond_effect(), 72
get_one_cond_indirect_effect, 71
get_one_cond_indirect_effect(), 72
get_prod, 73
ggplot2::facet_grid(), 99
ggplot2::geom_line(), 102, 103
ggplot2::geom_point(), 98
ggplot2::geom_ribbon(), 102, 103
ggplot2::geom_segment(), 98

igraph::all_simple_paths(), 5
index_of_mome, 75
index_of_mome(), 26, 27, 77
index_of_momome (index_of_mome), 75
index_of_momome(), 27, 77
indirect_effect (cond_indirect), 16
indirect_effect(), 5, 11, 12, 19–23, 32, 33,

62–66, 68–70, 72, 76, 81–83, 86, 87,
89, 90, 93, 118, 120, 121

indirect_effects_from_list, 79
indirect_i, 80
indirect_proportion, 83
indirect_proportion(), 14, 123

johnson_neyman (pseudo_johnson_neyman),
126

johnson_neyman(), 127

lavaan::lav_model_implied(), 61
lavaan::lav_model_set_parameters(), 61
lavaan::lavaan, 4, 19–21, 60, 68, 70, 73, 81,

84, 94
lavaan::lavaan(), 4, 88
lavaan::lavInspect(), 19, 61, 81
lavaan::parameterEstimates(), 4, 7,

19–21, 73, 81, 82
lavaan::sem(), 4, 16, 21, 22, 63, 65, 67, 68,

70, 73, 87, 127
lm(), 4, 7, 16, 19, 21, 63, 73, 76, 81, 84, 86,

87, 94, 108, 127, 133
lm2boot_out, 85
lm2boot_out(), 63, 64
lm2boot_out_parallel (lm2boot_out), 85
lm2list, 87
lm2list(), 4, 5, 7, 19, 63, 76, 85, 86, 94, 109,

124, 133
lm_from_lavaan_list, 88
lm_from_lavaan_list(), 15, 106, 107, 134

INDEX 139

many_indirect_effects (cond_indirect),
16

many_indirect_effects(), 5, 12, 13, 21, 22,
34, 35, 79, 80, 121, 122, 135

math_indirect, 23, 89
merge_mod_levels, 92
merge_mod_levels(), 20, 23, 27, 95, 96, 132
mod_levels, 93
mod_levels(), 23, 27, 92, 94, 95, 132
mod_levels_list (mod_levels), 93
mod_levels_list(), 20, 21, 92, 94–96, 132
modmed_x1m3w4y1, 93

parallel::detectCores(), 19, 63, 68, 85
parallel::makeCluster(), 20, 63, 68, 85
plot.cond_indirect_effects, 97
plot.cond_indirect_effects(), 15, 89,

106, 107
plot_effect_vs_w, 101
plot_effect_vs_w(), 104, 128
predict.lm_from_lavaan, 105
predict.lm_from_lavaan_list, 89, 107
predict.lm_from_lavaan_list(), 89
predict.lm_list, 108
print.all_paths, 109
print.boot_out, 110
print.cond_indirect_diff, 111
print.cond_indirect_diff(), 27, 77
print.cond_indirect_effects, 113
print.cond_indirect_effects(), 23
print.delta_med, 116
print.delta_med(), 61, 62
print.indirect, 118
print.indirect(), 23, 82
print.indirect_list, 121
print.indirect_proportion, 123
print.indirect_proportion(), 84
print.lm_list, 124
print.lm_list(), 87
print.mc_out, 125
print.pseudo_johnson_neyman

(pseudo_johnson_neyman), 126
print.pseudo_johnson_neyman(), 128
print.summary_lm_list

(summary.lm_list), 133
print.summary_lm_list(), 133
print_all_cond_effects

(get_one_cond_indirect_effect),
71

print_all_cond_effects(), 72
print_all_cond_indirect_effects

(get_one_cond_indirect_effect),
71

print_all_cond_indirect_effects(), 72
pseudo_johnson_neyman, 126
pseudo_johnson_neyman(), 103, 104, 127,

128

semTools::runMI(), 7, 19, 65, 70, 73, 76, 81,
84, 94

semTools::sem.mi(), 7, 16, 19, 65, 70, 73,
76, 81, 84, 94, 127

simple_mediation_latent, 129
stats::lm(), 29, 33, 65, 82, 104, 115, 119
stats::optimize(), 126, 127
stats::predict(), 108
stats::terms(), 134
stats::uniroot(), 126, 127
subsetting_cond_indirect_effects, 130
subsetting_wlevels, 131
summary(), 4, 20, 21, 82, 133
summary.lm_list, 133
summary.lm_list(), 87, 133

terms.lm_from_lavaan, 134
terms.object, 134
total_indirect_effect, 135

	all_indirect_paths
	check_path
	coef.cond_indirect_diff
	coef.cond_indirect_effects
	coef.delta_med
	coef.indirect
	coef.indirect_list
	coef.indirect_proportion
	coef.lm_from_lavaan
	cond_indirect
	cond_indirect_diff
	confint.cond_indirect_diff
	confint.cond_indirect_effects
	confint.delta_med
	confint.indirect
	confint.indirect_list
	data_med
	data_med_complicated
	data_med_complicated_mg
	data_med_mg
	data_med_mod_a
	data_med_mod_ab
	data_med_mod_ab1
	data_med_mod_b
	data_med_mod_b_mod
	data_med_mod_parallel
	data_med_mod_parallel_cat
	data_med_mod_serial
	data_med_mod_serial_cat
	data_med_mod_serial_parallel
	data_med_mod_serial_parallel_cat
	data_mod
	data_mod2
	data_mod_cat
	data_mome_demo
	data_mome_demo_missing
	data_parallel
	data_sem
	data_serial
	data_serial_parallel
	data_serial_parallel_latent
	delta_med
	do_boot
	do_mc
	factor2var
	fit2boot_out
	fit2mc_out
	get_one_cond_indirect_effect
	get_prod
	index_of_mome
	indirect_effects_from_list
	indirect_i
	indirect_proportion
	lm2boot_out
	lm2list
	lm_from_lavaan_list
	math_indirect
	merge_mod_levels
	modmed_x1m3w4y1
	mod_levels
	plot.cond_indirect_effects
	plot_effect_vs_w
	predict.lm_from_lavaan
	predict.lm_from_lavaan_list
	predict.lm_list
	print.all_paths
	print.boot_out
	print.cond_indirect_diff
	print.cond_indirect_effects
	print.delta_med
	print.indirect
	print.indirect_list
	print.indirect_proportion
	print.lm_list
	print.mc_out
	pseudo_johnson_neyman
	simple_mediation_latent
	subsetting_cond_indirect_effects
	subsetting_wlevels
	summary.lm_list
	terms.lm_from_lavaan
	total_indirect_effect
	Index

