
Package: mRMRe (via r-universe)
October 26, 2024

Type Package

Title Parallelized Minimum Redundancy, Maximum Relevance (mRMR)

Version 2.1.2.1

Date 2021-09-03

Description Computes mutual information matrices from continuous,
categorical and survival variables, as well as feature
selection with minimum redundancy, maximum relevance (mRMR) and
a new ensemble mRMR technique. Published in De Jay et al.
(2013) <doi:10.1093/bioinformatics/btt383>.

License Artistic-2.0

Depends R (>= 3.5), survival, igraph, methods

URL https://www.pmgenomics.ca/bhklab/

RoxygenNote 7.1.1

NeedsCompilation yes

Author Nicolas De Jay [aut], Simon Papillon-Cavanagh [aut], Catharina
Olsen [aut], Gianluca Bontempi [aut], Bo Li [aut], Christopher
Eeles [ctb], Benjamin Haibe-Kains [aut, cre]

Maintainer Benjamin Haibe-Kains <benjamin.haibe.kains@utoronto.ca>

Repository CRAN

Date/Publication 2023-04-25 05:57:25 UTC

Contents
adjacencyMatrix . 2
causality . 3
cgps . 4
correlate . 5
export_concordance_index . 6
export_filters . 7
export_filters_bootstrap . 8
export_mim . 9

1

https://doi.org/10.1093/bioinformatics/btt383
https://www.pmgenomics.ca/bhklab/

2 adjacencyMatrix

featureCount . 10
featureData . 11
featureNames . 11
get.thread.count . 12
get_thread_count . 13
mim . 13
mRMRe.Data-class . 14
mRMRe.Filter-class . 16
mRMRe.Network-class . 19
priors . 20
sampleCount . 21
sampleNames . 22
sampleStrata . 22
sampleWeights . 23
scores . 24
set.thread.count . 25
set_thread_count . 26
solutions . 26
subsetData . 27
target . 28
visualize . 29

Index 30

adjacencyMatrix Accessor function for the ’adjacencyMatrix’ information in a
mRMRe.Network object.

Description

The adjency matrix is a directed matrix of 0’s and 1’s indicating if there is a link between features.

Usage

S4 method for signature 'mRMRe.Network'
adjacencyMatrix(object)

Arguments

object a mRMRe.Network object.

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

causality 3

Examples

set.thread.count(2)
data(cgps)
feature_data <- mRMR.data(data = data.frame(cgps.ge))

Build an mRMR-based network and display adjacency matrix (topology)
network <- new("mRMRe.Network", data = feature_data, target_indices = c(1, 2),

levels = c(2, 1), layers = 1)
adjacencyMatrix(network)

causality Accessor function for the ’causality’ information in a mRMRe.Filter
and mRMRe.Network object.

Description

The causality data is compute using the co-information lattice algorithm on each V-structure (fea-
ture, target, feature). Given that this procedure is computed for each pair of features, the minimum
result is kept. A negative score indicates putative causality of the feature to the target.

Usage

S4 method for signature 'mRMRe.Filter'
causality(object)
S4 method for signature 'mRMRe.Network'
causality(object)

Arguments

object a mRMRe.Filter or mRMRe.Network object.

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

Examples

set.thread.count(2)
data(cgps)
feature_data <- mRMR.data(data = data.frame(cgps.ge))
filter <- mRMR.classic("mRMRe.Filter", data = feature_data, target_indices = 3:5,

feature_count = 2)
causality(filter)

4 cgps

cgps Part of the large pharmacogenomic dataset published by Garnett et al.
within the Cancer Genome Project (CGP)

Description

This dataset contains gene expression of 200 cancer cell lines for which sensitivity (IC50) to Camp-
tothecin was measured (release 2).

Usage

data(cgps)

Format

The cgps dataset is composed of three objects

cgps.annot Dataframe containing gene annotations

cgps.ge Matrix containing expressions of 1000 genes; cell lines in rows, genes in columns

cgps.ic50 Drug sensitivity measurements (IC50) for Camptothecin

Details

Camptothecin is a drug mainly used in colorectal cancer.

Source

http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-783

http://www.nature.com/nature/journal/v483/n7391/extref/nature11005-s2.zip

References

Garnett MJ et al. "Systematic identification of genomic markers of drug sensitivity in cancer cells",
Nature, 483:570-575, 2012.

Examples

set.thread.count(2)
data(cgps)

message("Gene expression data:")
print(cgps.ge[1:3, 1:3])

message("Gene annotations:")
print(head(cgps.annot))

message("Drug sensitivity (IC50) values:")
print(head(cgps.ic50))

correlate 5

correlate Function to compute various correlation measures between two vari-
ables

Description

Correlate is a function that cestimates correlation between two variables, which can be either con-
tinuous, categorical (ordered factor) or censored (survival data).

Usage

correlate(X, Y, method = c("pearson", "spearman", "kendall", "frequency", "cramersv",
"cindex"),strata, weights, outX = TRUE, bootstrap_count = 0, alpha = 0.05,
alternative = c("two.sided", "less", "greater"))

Arguments

X Vector of type numeric, ordered factor, or Surv.

Y Vector of type numeric, ordered factor, or Surv of same length as X.

method One of the following values: pearson, spearman, kendall, frequency, cramersv,
or cindex.

strata Vector of type factor corresponding to the sample strata.

weights Vector of type numeric corresponding to the sample weights.

outX For cindex, if set to TRUE, ignore ties; otherwise, take them into account when
computing the concordance index.

bootstrap_count

If set to 0, analytical standard error for the correlation estimate in each strata is
used to compute the meta-estimate (inverse-variance weighting avarega); other-
wise a number of bootstraps are used to computes standard errors.

alpha The probability of Type I error that is, rejecting a null hypothesis when it is in
fact true

alternative a character string specifying the alternative hypothesis,must be one of two.sided
(default), greater or less. You can specify just the initial letter.

Details

The correlate function could be used to measure correlation between any types of variables:

numeric vs. numeric Pearson, Spearman, Kendall or concordance index

numeric vs. ordered factor concordance index (Somers’ Dxy)

numeric vs. survival data concordance index (Somers’ Dxy)

ordered factor vs. ordered factor Carmer’s V

ordered factor vs. survival data concordance index (Somers’ Dxy)

survival data vs. survival data concordance index (Somers’ Dxy)

6 export_concordance_index

Part of the code underlying correlate is also used in mim method of the mRMRe.Data object because
correlations are used to build the mutual information matrix in order for feature selection to take
place. This is why these two functions have many argiuments in common.

Value

estimate point estimate

se standard error

lower lower confidence bound

upper upper confidence bound

p p-value

n sample size

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

See Also

mRMRe.Data-class

Examples

set.thread.count(2)

load data
data(cgps)

spearman correlation coefficent between the first gene and Camptothecin IC50
correlate(X=cgps.ge[,1], Y=cgps.ic50, method="spearman")

concordance index between the first gene and Camptothecin IC50
correlate(X=cgps.ge[,1], Y=cgps.ic50, method="cindex")

export_concordance_index

Export concordance index

Description

Export the concordance index

export_filters 7

Arguments

samplesA ...

samplesB ...

samplesC ...

samplesD ...

sampleStrata ...

sampleWeights ...
sampleStratumCount

...

outX ...

ratio ...
concordantWeights

...
discordantWeights

...
uninformativeWeights

...
relevantWeights

...

Value

No return. Modifies the ratio argument by reference.

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

export_filters Export filters

Description

Export the filters

Arguments

childrenCountPerLevel

...

dataMatrix ...

priorsMatrix ...

priorsWeight ...

sampleStrata ...

8 export_filters_bootstrap

sampleWeights ...

featureTypes ...

sampleCount ...

featureCount ...
sampleStratumCount

...
targetFeatureIndices

...
continuousEstimator

...

outX ...

bootstrapCount ...

miMatrix ...

Value

Exhaustively computes the minimum redudancy maximim relevance features from the mutual in-
formation matrix, returing a list of solutions where each item is a numeric index of selected features.

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

export_filters_bootstrap

Export filters bootstrap

Description

Export the filters

Arguments

solutionCount ...

solutionLength ...

dataMatrix ...

priorsMatrix ...

priorsWeight ...

sampleStrata ...

sampleWeights ...

featureTypes ...

sampleCount ...

featureCount ...

export_mim 9

sampleStratumCount

...
targetFeatureIndices

...
continuousEstimator

...

outX ...

bootstrapCount ...

miMatrix ...

Value

Bootstraps and estimate of the minimum redundancy maximim relevance features from the mutual
information, returning a list where each item is a numeric vector of selected feature indices.

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

export_mim Export mim

Description

Export mim

Arguments

dataMatrix ...

priorsMatrix ...

priorsWeight ...

sampleStrata ...

sampleWeights ...

featureTypes ...

sampleCount ...

featureCount ...
sampleStratumCount

...
continuousEstimator

...

outX ...

bootstrapCount ...

miMatrix ...

10 featureCount

Value

Returns the mutual information matrix.

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

featureCount Accessor function for the ’featureCount’ information in a
mRMRe.Data, mRMRe.Filter and mRMRe.Network object.

Description

The feature count is simply the total number of feature considered in the mRMRe procedure.

Usage

S4 method for signature 'mRMRe.Data'
featureCount(object)
S4 method for signature 'mRMRe.Filter'
featureCount(object)
S4 method for signature 'mRMRe.Network'
featureCount(object)

Arguments

object a mRMRe.Data, mRMRe.Filter or mRMRe.Network object.

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

Examples

set.thread.count(2)
data(cgps)
feature_data <- mRMR.data(data = data.frame(cgps.ge))
featureCount(feature_data)
filter <- mRMR.classic("mRMRe.Filter", data = feature_data, target_indices = 3:5,

feature_count = 2)
featureCount(filter)

featureData 11

featureData Accessor function for the ’featureData’ information in a mRMRe.Data
object

Description

the featureData consists of the numerical value of each feature for each sample considered

Usage

S4 method for signature 'mRMRe.Data'
featureData(object)

Arguments

object a mRMRe.Data object.

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

Examples

set.thread.count(2)
data(cgps)
feature_data <- mRMR.data(data = data.frame(cgps.ge))
featureData(feature_data)

featureNames Accessor function for the ’featureNames’ information in a
mRMRe.Data, mRMRe.Filter and mRMRe.Network object

Description

featureNames are the names of the features given as input to the mRMRe procedure.

Usage

S4 method for signature 'mRMRe.Data'
featureNames(object)
S4 method for signature 'mRMRe.Filter'
featureNames(object)
S4 method for signature 'mRMRe.Network'
featureNames(object)

12 get.thread.count

Arguments

object a mRMRe.Data, mRMRe.Filter or mRMRe.Network object.

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

Examples

set.thread.count(2)
data(cgps)
feature_data <- mRMR.data(data = data.frame(cgps.ge))
featureNames(feature_data)
filter <- mRMR.classic("mRMRe.Filter", data = feature_data, target_indices = 3:5,

feature_count = 2)
featureNames(filter)

get.thread.count openMP Thread Count

Description

This methods allows you to retrieve the number of cores currently accessible to openMP

Usage

get.thread.count()

Value

Return the number of cores accessible to openMP for C level parallelization.

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

Examples

get.thread.count()

get_thread_count 13

get_thread_count openMP Thread Count

Description

This methods allows you to get the number of cores currently accessible to openMP

Arguments

thread_count number of OPENMP threads to be used

Value

Return the current number of cores accessible to openMP for C level parallelization

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

mim Accessor function for the ’mim’ information in a mRMRe.Data,
mRMRe.Filter and mRMRe.Network object

Description

In both mRMRe.Filter and mRMRe.Network objects, a sparse mutual information matrix is com-
puted for the mRMRe procedure and this lazy-evaluated matrix is returned. In the context of a a
mRMRe.Data ’mim’, the full pairwise mutual information matrix is computed and returned.

Usage

S4 method for signature 'mRMRe.Data'
mim(object, prior_weight, continuous_estimator, outX, bootstrap_count)
S4 method for signature 'mRMRe.Filter'
mim(object, method)
S4 method for signature 'mRMRe.Network'
mim(object)

Arguments

object a mRMRe.Data, mRMRe.Filter or mRMRe.Network object.

prior_weight a numeric value [0,1] of indicating the impact of priors (mRMRe.Data only).
continuous_estimator

an estimator of the mutual information between features: either "pearson", "spear-
man", "kendall", "frequency" (mRMRe.Data only).

14 mRMRe.Data-class

outX a boolean used in the concordance index estimator to keep or throw out ties
(mRMRe.Data only).

bootstrap_count

an integer indicating the number of bootstrap resampling used in estimation
(mRMRe.Data only).

method either "mi" or "cor"; the latter will return the correlation coefficients (rho) while
the former will return the mutual information (-0.5 * log(1 - (rho^2))).

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

Examples

set.thread.count(2)
data(cgps)
feature_data <- mRMR.data(data = data.frame(cgps.ge))

Calculate the pairwise mutual information matrix
mim(feature_data)
filter <- mRMR.classic("mRMRe.Filter", data = feature_data, target_indices = 3:5,

feature_count = 2)

Obtain the sparse (lazy-evaluated) mutual information matrix.
mim(filter)

mRMRe.Data-class Class "mRMRe.Data"

Description

mRMRe.Data is the class containing datasets. Most if not all of the routines in the mRMRe package
use mRMRe.Data objects as primary input.

Such an object is instantiated with a data frame containing the sample sets and optionally, stratum,
weight vectors and a prior matrix. In addition to basic accession functions, we describe several
methods which serve to manipulate the contents of the dataset.

Note that mRMR.data function is a wrapper to easily create mRMRe.Data objects.

Instantiation

Objects are created via calls of the form new("mRMRe.Data", data, strata, weights, priors).

data: is expected to be a data frame with samples and features respectively organized as rows and
columns. The columns have to be of type :numeric, ordered factor, Surv and respectively interpreted
as :continuous, discrete and survival variables.

strata: is expected to be a vector of type :ordered factor with the strata associated to the samples
provided in data.

mRMRe.Data-class 15

weights: is expected to be a vector of type :numeric with the weights associated to the samples
provided in data.

priors: is expected to be a matrix of type :numeric where priors[i, j]: denotes an forced asso-
ciation between features i and j in data. The latter takes into consideration the directionality of the
relationship and must be a value between 0 and 1.

Mutual Information Matrix

The mim method computes and returns a mutual information matrix. A correlation between contin-
uous features is estimated using an estimator specified in continuous_estimator; currently, :pear-
son, spearman, kendall, frequency are supported. The estimator for discrete features is Cramer’s V
and for all other combinations, concordance index.

When outX is set to TRUE, ties are ignored when computing the concordance index and otherwise,
these are considered. The correlations are first computed per strata and these are then combined by
the inverse variance weight mean of the estimates using a bootstrap_count number of bootstraps
if the former parameter is greater than 0, and by the relative weights of each strata otherwise. The
resulting correlation is then summated with the corresponding value in the priors matrix with the
latter being weighed for a proportion prior_weight of a final, biased correlation.

Slots

sample_names: Object of class "character" containing the sample names.

feature_names: Object of class "character" containing the feature names.

feature_types: Object of class "numeric" containing the internal representation of features/variables:
1 for numeric, 2 for ordered factor, and 3 for survival data

data: Object of class "matrix" containing the internal representation of the data set.

strata: Object of class "numeric" containing the feature strata.

weights: Object of class "numeric" containing sample weights.

priors: Object of class "matrix" containing the priors.

Methods

featureCount signature(object = "mRMRe.Data"): Returns the number of features.

featureData signature(object = "mRMRe.Data"): Returns a data frame corresponding to the
data set.

featureNames signature(object = "mRMRe.Data"): Returns a vector containing the feature names.

mim signature(object = "mRMRe.Data", prior_weight = 0, continuous_estimator = c("pearson",
"spearman", "kendall", "frequency"), outX = TRUE, bootstrap_count = 0): Computes
and returns the mutual information matrix.

priors signature(object = "mRMRe.Data"): Returns a matrix containing the priors.

priors<- signature(object = "mRMRe.Data", value): Sets the prior matrix.

sampleCount signature(object = "mRMRe.Data"): Returns the number of samples.

sampleNames signature(object = "mRMRe.Data"): Returns a vector containing sample names.

sampleStrata signature(object = "mRMRe.Data"): Returns a vector containing sample strata.

16 mRMRe.Filter-class

sampleStrata<- signature(object = "mRMRe.Data", value): Sets the sample strata.

sampleWeights signature(object = "mRMRe.Data"): Returns a vector containing sample weights.

sampleWeights<- signature(object = "mRMRe.Data"): Sets the sample weights.

subsetData signature(object = "mRMRe.Data", row_indices, column_indices): Returns an-
other data object containing only the specified samples and features (rows and columns, re-
spectively.)

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

See Also

mRMRe.Filter-class, mRMRe.Network-class

Examples

showClass("mRMRe.Data")

set.thread.count(2)

load data
data(cgps)

equivalent ways of building an mRMRe.Data object
ge <- mRMR.data(data = data.frame(cgps.ge[, 1:10, drop=FALSE]))
ge <- new("mRMRe.Data", data = data.frame(cgps.ge[, 1:10, drop=FALSE]))

print data
print(featureData(ge)[1:3, 1:3])

print feature names
print(featureNames(ge))

print the first sample names
print(head(sampleNames(ge)))

print the first sample weights
print(head(sampleWeights(ge)))

mRMRe.Filter-class Class "mRMRe.Filter"

Description

mRMRe.Filter is a wrapper for various variants of the maximum relevance minimum redundancy
(mRMR) feature selection/filter.

Note that mRMR.classic and mRMR.ensemble functions are wrappers to easily perform classical
(single) and ensemble mRMR feature selection.

mRMRe.Filter-class 17

Instantiation

Objects are created via calls of the form new("mRMRe.Filter", data, prior_weight,target_indices,levels,method,
continuous_estimator, outX, bootstrap_count).

data: is expected to be a mRMRe.Data object.

target_indices: is expected to be a vector of type integer containing the indices of the features
that will serve as targets for the feature selections.

levels: is expected to be a vector of type integer containing the number of children of each
element at each level of the resulting filter tree.

method: is expected to be either exhaustive or bootstrap. The former uses the whole dataset
to pick siblings in the tree according to the mRMR metric, while the latter perform the classical
mRMR feature selection on several bootrstap selections of the dataset.

continuous_estimator: it specifies the estimators for correlation between two continuous vari-
ables; value is either pearson, spearman, kendall, frequency,

outX: set to TRUE (default value) to not count pairs of observations tied on x as a relevant pair. This
results in a Goodman-Kruskal gamma type rank correlation.

bootstrap_count: Number of bootstraps to statistically compare the mRMR scores of each solu-
tion.

Since a mutual information matrix must be computed in order for feature selection to take place, the
remaining arguments are identical to those required by the mim method of the mRMRe.Data object.

Slots

filters: Object of class "list" containing for each target a solutions matrix.

mi_matrix: Object of class "matrix" containing the combined mutual information matrix of the
relevant targets.

causality_list: Object of class "list" containing for each target a vector of causality coeffi-
cients between the target and its predictors.

sample_names: Object of class "character" containing the sample names.

feature_names: Object of class "character" containing the feature names.

target_indices: Object of class "integer" containing the target indices.

fixed_feature_count: Object of class "integer" containing the number of fixed features.

levels: Object of class "integer" containing the desired topology of the tree.

scores: Object of class "list" containing the mRMR score of selected features, respective to
filters.

Methods

causality signature(object = "mRMRe.Filter"): ...

featureCount signature(object = "mRMRe.Filter"): Returns the number of features.

featureNames signature(object = "mRMRe.Filter"): Returns a vector containing the feature
names.

mim signature(object = "mRMRe.Filter"): Returns the potentially partial mutual information
matrix used for feature selection.

18 mRMRe.Filter-class

sampleCount signature(object = "mRMRe.Filter"): Returns the number of samples.

sampleNames signature(object = "mRMRe.Filter"): Returns a vector containing sample names.

solutions signature(object = "mRMRe.Filter", mi_threshold = -Inf, causality_threshold
= Inf): Returns a matrix in which each column represents a different solution (path from root
of the tree to a leaf.)

target signature(object = "mRMRe.Filter"): Returns a vector containing the target indices.

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

References

Ding, C. and Peng, H. (2005). "Minimum redundancy feature selection from microarray gene
expression data". Journal of bioinformatics and computational biology, 3(2):185–205.

See Also

mRMRe.Data-class

Examples

showClass("mRMRe.Filter")

set.thread.count(2)

load data
data(cgps)

build an mRMRe.Data object
ge <- mRMR.data(data = data.frame(cgps.ge[, 1:100, drop=FALSE]))

perform a classic (single) mRMR to select the 10 genes the most correlated with
the first gene but the less correlated between each other
exect <- system.time(fs <- new("mRMRe.Filter", data = ge, target_indices = 1,

levels = c(8, 1, 1, 1, 1)))
print(exect)

print the index of the selected features for each distinct mRMR solutions
print(solutions(fs)[[1]])

print the names of the selected features for each distinct mRMR solutions
print(apply(solutions(fs)[[1]], 2, function(x, y) { return(y[x]) }, y=featureNames(ge)))

mRMRe.Network-class 19

mRMRe.Network-class Class "mRMRe.Network"

Description

mRMRe.Network is a wrapper for inferring a network of features based on mRMR feature selection.

Instantiation

Objects are created via calls of the form new("mRMRe.Network", data, prior_weight,target_indices,
levels, layers, ..., mi_threshold, causality_threshold).

layers: is expected to be an integer specifying the number of layers of network inference desired.
When multiple layers are desired, the elements of the solutions found in the last step of feature
selection are used as the targets of the next step.

Since networking involves filter processing, the remaining arguments are identical to those required
by solutions method of the mRMRe.Filter object and mim method of the mRMRe.Data object.

Slots

topologies: Object of class "list" ~~

mi_matrix: Object of class "matrix" containing the combined mutual information matrix of the
network elements.

causality_list: Object of class "list" containing for each target a vector of causality coeffi-
cients between the target and its predictors.

sample_names: Object of class "character" containing the sample names.

feature_names: Object of class "character" containing the feature names.

target_indices: Object of class "integer" containing the target indices.

Methods

adjacencyMatrix signature(object = "mRMRe.Network"): Returns a matrix describing the topol-
ogy of the network.

adjacencyMatrixSum signature(object = "mRMRe.Network"): ...

causality signature(object = "mRMRe.Network"): Returns a list containing vectors containing
causality coefficients between targets and predictors.

featureNames signature(object = "mRMRe.Network"): Returns a vector containing the feature
names.

mim signature(object = "mRMRe.Network"): ...

sampleNames signature(object = "mRMRe.Network"): Returns a vector containing sample names.

solutions signature(object = "mRMRe.Network"): ...

visualize signature(object = "mRMRe.Network"): ...

20 priors

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

See Also

mRMRe.Filter-class, mRMRe.Data-class

Examples

showClass("mRMRe.Network")

set.thread.count(2)

load data
data(cgps)

build an mRMRe.Data object
ge <- mRMR.data(data = data.frame(cgps.ge[, 1:100, drop=FALSE]))

build a network object with the 10 first genes and their children,
8 distinct mRMR feature selections of 5 genes for each gene
exect <- system.time(netw <- new("mRMRe.Network", data = ge, target_indices = 1:10,

levels = c(8, 1, 1, 1, 1), layers = 2))
print(exect)

plot network using igraph
Not run: visualize(netw)

priors Accessor function for the ’priors’ information in a mRMRe.Data ob-
ject

Description

The priors matrix consists of a prior bias to be used in computation to mutual information between
features.

Usage

S4 method for signature 'mRMRe.Data'
priors(object)
S4 replacement method for signature 'mRMRe.Data'
priors(object) <- value

Arguments

object a mRMRe.Data object.
value a numeric matrix containing values from 0 to 1 (or NA), one per pairwise feature

bias.

sampleCount 21

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

Examples

set.thread.count(2)
data(cgps)
feature_data <- mRMR.data(data = data.frame(cgps.ge))
priors(feature_data)

sampleCount Accessor function for the ’sampleCount’ information in a
mRMRe.Data, mRMRe.Filter and mRMRe.Network object.

Description

The feature count is simply the total number of samples considered in the mRMRe procedure.

Usage

S4 method for signature 'mRMRe.Data'
sampleCount(object)
S4 method for signature 'mRMRe.Filter'
sampleCount(object)
S4 method for signature 'mRMRe.Network'
sampleCount(object)

Arguments

object a mRMRe.Data, mRMRe.Filter or mRMRe.Network object.

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

Examples

set.thread.count(2)
data(cgps)
feature_data <- mRMR.data(data = data.frame(cgps.ge))
sampleCount(feature_data)
filter <- mRMR.classic("mRMRe.Filter", data = feature_data, target_indices = 3:5,

feature_count = 2)
sampleCount(filter)

22 sampleStrata

sampleNames Accessor function for the ’sampleNames’ information in a
mRMRe.Data, mRMRe.Filter and mRMRe.Network object.

Description

sampleNames are the names of the samples given as input to the mRMRe procedure.

Usage

S4 method for signature 'mRMRe.Data'
sampleNames(object)
S4 method for signature 'mRMRe.Filter'
sampleNames(object)
S4 method for signature 'mRMRe.Network'
sampleNames(object)

Arguments

object a mRMRe.Data, mRMRe.Filter or mRMRe.Network object.

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

Examples

set.thread.count(2)
data(cgps)
feature_data <- mRMR.data(data = data.frame(cgps.ge))
sampleNames(feature_data)
filter <- mRMR.classic("mRMRe.Filter", data = feature_data, target_indices = 3:5,

feature_count = 2)
sampleNames(filter)

sampleStrata Accessor function for the ’sampleStrata’ information in a
mRMRe.Data object

Description

The sampleStrata vector consists of a sampling stratification that will be used in computing mutual
information between features. If known batch effects or sample stratification is present between
samples, identify such subsets using this.

sampleWeights 23

Usage

S4 method for signature 'mRMRe.Data'
sampleStrata(object)
S4 replacement method for signature 'mRMRe.Data'
sampleStrata(object) <- value

Arguments

object a mRMRe.Data object.

value a factor vector identifying the stratification of samples.

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

Examples

set.thread.count(2)
data(cgps)
feature_data <- mRMR.data(data = data.frame(cgps.ge))

No stratification (default)
sampleStrata(feature_data)

Random stratification
sampleStrata(feature_data) <- as.factor(sample(c(0,1),

sampleCount(feature_data), replace=TRUE))
Show result
sampleStrata(feature_data)

sampleWeights Accessor function for the ’sampleWeights’ information in a
mRMRe.Data object

Description

TODO

Usage

S4 method for signature 'mRMRe.Data'
sampleWeights(object)
S4 replacement method for signature 'mRMRe.Data'
sampleWeights(object) <- value

24 scores

Arguments

object a mRMRe.Data object.

value a numeric vector containing the biases of each sample in the mutual information
computation.

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

Examples

set.thread.count(2)
data(cgps)
feature_data <- mRMR.data(data = data.frame(cgps.ge))

Uniform weight (default)
sampleWeights(feature_data)

Random weighting
sampleWeights(feature_data) <- runif(sampleCount(feature_data))
Show result
sampleWeights(feature_data)

scores mRMR Scores as per the MI gain for each feature

Description

The scores method returns the scores of individual features in respect to previously selected fea-
tures as per standard mRMR procedure. For each target, the score of a feature is defined as the
mutual information between the target and this feature minus the average mutual information of
previously selected features and this feature.

Usage

S4 method for signature 'mRMRe.Data'
scores(object, solutions)
S4 method for signature 'mRMRe.Filter'
scores(object)
S4 method for signature 'mRMRe.Network'
scores(object)

Arguments

object a mRMRe.Data, mRMRe.Filter or mRMRe.Network object.

solutions a set of solutions from mRMRe.Filter or mRMRe.Network to be used in com-
puting the scores from a mRMRe.Data set.

set.thread.count 25

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

Examples

set.thread.count(2)
data(cgps)
feature_data <- mRMR.data(data = data.frame(cgps.ge))

Create an mRMR filter and obtain the indices of selected features
filter <- mRMR.classic("mRMRe.Filter", data = feature_data, target_indices = 3:5,

feature_count = 2)
scores(filter)

set.thread.count openMP Thread Count

Description

This methods allows you to set the number of cores currently accessible to openMP

Usage

set.thread.count(thread_count)

Arguments

thread_count number of OPENMP threads to be used

Value

No return, sets the number of cores available to openMP for C level parallelization.

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

Examples

Access to number of available threads
threads <- get.thread.count()
Force a single threaded openMP job
set.thread.count(1)

Revert back to all accessible threads
set.thread.count(threads)

26 solutions

set_thread_count openMP Thread Count

Description

This methods allows you to set the number of cores currently accessible to openMP

Arguments

thread_count number of OPENMP threads to be used

Value

No return, sets the number of cores available to openMP for C level parallelization.

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

solutions Basic result of the mRMR procedure

Description

The ’solutions’ method allows one to access the set of selected features resulting of the mRMR
algorithm. More generally, the set of feature are identified by their indices in the inputed feature set
(1 being the first feature (column)). At the network level, ’solutions’ consists of the topology of the
network, identifying which features is connected to others.

Usage

S4 method for signature 'mRMRe.Filter'
solutions(object, mi_threshold, causality_threshold, with_fixed_features)
S4 method for signature 'mRMRe.Network'
solutions(object)

Arguments

object a mRMRe.Filter or mRMRe.Network object.

mi_threshold a numeric value used in filtering the features based on their mRMR scores, fea-
tures that do not pass the threshold will be set at NA.

causality_threshold

a numeric value used in filtering the features based on their causality scores,
features that do not pass the threshold will be set at NA

with_fixed_features

a boolean indicating if fixed features are used in the computation, default TRUE

subsetData 27

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

Examples

set.thread.count(2)
data(cgps)
feature_data <- mRMR.data(data = data.frame(cgps.ge))

Create an mRMR filter and obtain the indices of selected features
filter <- mRMR.classic("mRMRe.Filter", data = feature_data, target_indices = 3:5,

feature_count = 2)
solutions(filter)

Build an mRMR-based network and obtain feature connections (topology)
network <- new("mRMRe.Network", data = feature_data, target_indices = c(1, 2),

levels = c(2, 1), layers = 1)
solutions(network)

subsetData Returns a mRMRe.Data object using a subset of the current
mRMRe.Data object.

Description

This method is used to extract a subset of the current mRMRe.Data object.

Usage

S4 method for signature 'mRMRe.Data'
subsetData(object, row_indices, column_indices)

Arguments

object a mRMRe.Data object.

row_indices An integer vector of the rows to be included in the subset.

column_indices An integer vector of the columns to be included in the subset.

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

28 target

Examples

set.thread.count(2)
data(cgps)
feature_data <- mRMR.data(data = data.frame(cgps.ge))
Subset the same dimensions, equivalent to making a copy
feature_data_copy <- subsetData(feature_data,

row_indices=sampleCount(feature_data),
column_indices=featureCount(feature_data))

Use only half of the samples
feature_data_samples <- subsetData(feature_data, row_indices=sampleCount(feature_data)/2)

Use only half of the features
feature_data_features <- subsetData(feature_data,

column_indices=featureCount(feature_data))

target mRMR Target(s)

Description

The ’target’ method allows you to access the target of a mRMR procedure. In a mRMRe.Network
setting, the target consists of the seed or the starting set of features given in the network building.

Usage

S4 method for signature 'mRMRe.Filter'
target(object)
S4 method for signature 'mRMRe.Network'
target(object)

Arguments

object a mRMRe.Filter or mRMRe.Network object.

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

Examples

set.thread.count(2)
data(cgps)
feature_data <- mRMR.data(data = data.frame(cgps.ge))

Create an mRMR filter and obtain the targets of that filter
filter <- mRMR.classic("mRMRe.Filter", data = feature_data, target_indices = 3:5,

feature_count = 2)
target(filter)

visualize 29

Build an mRMR-based network and obtain targets (seeds) of the network
network <- new("mRMRe.Network", data = feature_data, target_indices = c(1, 2),

levels = c(2, 1), layers = 1)
target(network)

visualize mRMRe Network display

Description

The ’visualize’ methods allows the visual display of an inferred mRMRe.Network topology.

Usage

S4 method for signature 'mRMRe.Network'
visualize(object)

Arguments

object a mRMRe.Network object.

Author(s)

Nicolas De Jay, Simon Papillon-Cavanagh, Benjamin Haibe-Kains

Examples

set.thread.count(2)
data(cgps)
feature_data <- mRMR.data(data = data.frame(cgps.ge))

Build an mRMR-based network and display it
network <- new("mRMRe.Network", data = feature_data, target_indices = c(1),

levels = c(3, 1), layers = 2)
visualize(network)

Index

∗ classes
mRMRe.Data-class, 14
mRMRe.Filter-class, 16
mRMRe.Network-class, 19

∗ datasets
cgps, 4

∗ methods
adjacencyMatrix, 2
causality, 3
export_concordance_index, 6
export_filters, 7
export_filters_bootstrap, 8
export_mim, 9
featureCount, 10
featureData, 11
featureNames, 11
get.thread.count, 12
get_thread_count, 13
mim, 13
priors, 20
sampleCount, 21
sampleNames, 22
sampleStrata, 22
sampleWeights, 23
scores, 24
set.thread.count, 25
set_thread_count, 26
solutions, 26
subsetData, 27
target, 28
visualize, 29

∗ univar
correlate, 5

adjacencyMatrix, 2
adjacencyMatrix,mRMRe.Network-method

(adjacencyMatrix), 2
adjacencyMatrixSum (adjacencyMatrix), 2
adjacencyMatrixSum,mRMRe.Network-method

(adjacencyMatrix), 2

causality, 3
causality,mRMRe.Filter-method

(causality), 3
causality,mRMRe.Network-method

(causality), 3
cgps, 4, 4
correlate, 5

export_concordance_index, 6
export_filters, 7
export_filters_bootstrap, 8
export_mim, 9

featureCount, 10
featureCount,mRMRe.Data-method

(featureCount), 10
featureCount,mRMRe.Filter-method

(featureCount), 10
featureCount,mRMRe.Network-method

(featureCount), 10
featureData, 11
featureData,mRMRe.Data-method

(featureData), 11
featureNames, 11
featureNames,mRMRe.Data-method

(featureNames), 11
featureNames,mRMRe.Filter-method

(featureNames), 11
featureNames,mRMRe.Network-method

(featureNames), 11

get.thread.count, 12
get_thread_count, 13

mim, 13
mim,mRMRe.Data-method (mim), 13
mim,mRMRe.Filter-method (mim), 13
mim,mRMRe.Network-method (mim), 13
mRMR.classic (mRMRe.Filter-class), 16
mRMR.data (mRMRe.Data-class), 14

30

INDEX 31

mRMR.ensemble (mRMRe.Filter-class), 16
mRMR.network (mRMRe.Network-class), 19
mRMRe.Data-class, 14
mRMRe.Filter-class, 16
mRMRe.Network-class, 19

priors, 20
priors,mRMRe.Data-method (priors), 20
priors<- (priors), 20
priors<-,mRMRe.Data-method (priors), 20

sampleCount, 21
sampleCount,mRMRe.Data-method

(sampleCount), 21
sampleCount,mRMRe.Filter-method

(sampleCount), 21
sampleCount,mRMRe.Network-method

(sampleCount), 21
sampleNames, 22
sampleNames,mRMRe.Data-method

(sampleNames), 22
sampleNames,mRMRe.Filter-method

(sampleNames), 22
sampleNames,mRMRe.Network-method

(sampleNames), 22
sampleStrata, 22
sampleStrata,mRMRe.Data-method

(sampleStrata), 22
sampleStrata<- (sampleStrata), 22
sampleStrata<-,mRMRe.Data-method

(sampleStrata), 22
sampleWeights, 23
sampleWeights,mRMRe.Data-method

(sampleWeights), 23
sampleWeights<- (sampleWeights), 23
sampleWeights<-,mRMRe.Data-method

(sampleWeights), 23
scores, 24
scores,mRMRe.Data-method (scores), 24
scores,mRMRe.Filter-method (scores), 24
scores,mRMRe.Network-method (scores), 24
set.thread.count, 25
set_thread_count, 26
solutions, 26
solutions,mRMRe.Filter-method

(solutions), 26
solutions,mRMRe.Network-method

(solutions), 26
subsetData, 27

subsetData,mRMRe.Data-method
(subsetData), 27

target, 28
target,mRMRe.Filter-method (target), 28
target,mRMRe.Network-method (target), 28

visualize, 29
visualize,mRMRe.Network-method

(visualize), 29

	adjacencyMatrix
	causality
	cgps
	correlate
	export_concordance_index
	export_filters
	export_filters_bootstrap
	export_mim
	featureCount
	featureData
	featureNames
	get.thread.count
	get_thread_count
	mim
	mRMRe.Data-class
	mRMRe.Filter-class
	mRMRe.Network-class
	priors
	sampleCount
	sampleNames
	sampleStrata
	sampleWeights
	scores
	set.thread.count
	set_thread_count
	solutions
	subsetData
	target
	visualize
	Index

