Title: | Multivariate AutoRegressive Analysis |
---|---|
Description: | R functions for the estimation and eigen-decomposition of multivariate autoregressive models. |
Authors: | Susana Barbosa |
Maintainer: | S. M. Barbosa <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.2-0 |
Built: | 2024-12-11 06:54:32 UTC |
Source: | CRAN |
Eigen-decomposition of the estimated matrix of autoregressive coefficients from an m-variate AR(p) model
mAr.eig(A, C = NULL, ...)
mAr.eig(A, C = NULL, ...)
A |
matrix of estimated autoregression coefficients |
C |
noise covariance matrix |
... |
additional arguments for specific methods |
A list with components:
modes |
periods and damping times associated to each eigenmode |
eigv |
m*p m-dimensional eigenvectors |
S. M. Barbosa
Barbosa S.M., Silva M.E., Fernandes M.J. (2006), Multivariate autoregressive modelling of sea level time series from TOPEX/Poseidon satellite altimetry. Nonlinear Processes in Geophysics, 13, 177-184.
Neumaier, A. and Schneider, T. (2001), Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software, 27, 1, 27-57.
Schneider, T. and Neumaier, A. (2001), A Matlab package fo the estimation of parameters and eigenmodes of multivariate autoregressive models, 27, 1, 58-65.
data(pinkham) y=mAr.est(pinkham,2,5) mAr.eig(y$AHat,y$CHat)
data(pinkham) y=mAr.est(pinkham,2,5) mAr.eig(y$AHat,y$CHat)
Stepwise least-squares estimation of a multivariate AR(p) model based on the algorithm of Neumaier and Schneider (2001).
mAr.est(x, p, ...)
mAr.est(x, p, ...)
x |
matrix of multivariate time series |
p |
model order |
... |
additional arguments for specific methods |
Fits by stepwise least squares an m-variate AR(p) model given by
where
X[t]=[X1(t)...Xm(t)]' is a vector of length m
w is a m-length vector of intercept terms
A=[A1 ... Ap] is a mp x m matrix of autoregressive coefficients
e(t) is a m-length uncorrelated noise vector with mean 0 and m x m covariance matrix C
A list with components:
SBC |
Schwartz Bayesian Criterion |
wHat |
vector of intercept terms |
AHat |
matrix of estimated autoregression coefficients for the fitted model |
CHat |
noise covariance matrix |
resid |
residuals from the fitted model |
S. M. Barbosa
Barbosa S.M., Silva M.E., Fernandes M.J. (2006), Multivariate autoregressive modelling of sea level time series from TOPEX/Poseidon satellite altimetry. Nonlinear Processes in Geophysics, 13, 177-184.
Neumaier, A. and Schneider, T. (2001), Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software, 27, 1, 27-57.
Schneider, T. and Neumaier, A. (2001), A Matlab package fo the estimation of parameters and eigenmodes of multivariate autoregressive models, 27, 1, 58-65.
Lutkepohl, H. (1993), Introduction to Multiple Time Series Analysis. Springer-Verlag, Berlin.
data(pinkham) y=mAr.est(pinkham,2,5)
data(pinkham) y=mAr.est(pinkham,2,5)
Estimation of m-variate AR(p) model in reduced PCA space (for dimensionality reduction) and eigen-decomposition of augmented coefficient matrix
mAr.pca(x, p, k = dim(x)[2], ...)
mAr.pca(x, p, k = dim(x)[2], ...)
x |
matrix of multivariate time series |
p |
model order |
k |
number of principal components to retain |
... |
additional arguments for specific methods |
A list with components:
p |
model order |
SBC |
Schwartz Bayesian Criterion |
fraction.variance |
fraction of variance explained by the retained components |
resid |
residuals from the fitted model |
eigv |
m*p m-dimensional eigenvectors |
modes |
periods and damping times associated to each eigenmode |
S. M. Barbosa
Neumaier, A. and Schneider, T. (2001), Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software, 27, 1, 27-57.
data(sparrows) A=mAr.est(sparrows,1)$AHat mAr.eig(A)$modes mAr.pca(sparrows,1,k=4)$modes
data(sparrows) A=mAr.est(sparrows,1)$AHat mAr.eig(A)$modes mAr.pca(sparrows,1,k=4)$modes
Simulation from an m-variate AR(p) model
mAr.sim(w, A, C, N, ...)
mAr.sim(w, A, C, N, ...)
w |
vector of intercept terms |
A |
matrix of AR coefficients |
C |
noise covariance matrix |
N |
length of output time series |
... |
additional arguments |
Simulation from an m-variate AR(p) model given by
where
X[t]=[X1(t)...Xm(t)]' is a vector of length m
w is a m-length vector of intercept terms
A=[A1 ... Ap] is a m x mp matrix of autoregressive coefficients
e(t) is a m-length uncorrelated noise vector with mean 0 and m x m covariance matrix C
returns a list containg the N simulated observations for each of the m time series
S. M. Barbosa
Neumaier, A. and Schneider, T. (2001), Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software, 27, 1, 27-57.
Schneider, T. and Neumaier, A. (2001), A Matlab package fo the estimation of parameters and eigenmodes of multivariate autoregressive models, 27, 1, 58-65.
Lutkepohl, H. (1993), Introduction to Multiple Time Series Analysis. Springer-Verlag, Berlin.
w=c(0.25,0.1) C=rbind(c(1,0.5),c(0.5,1.5)) A=rbind(c(0.4,1.2,0.35,-0.3),c(0.3,0.7,-0.4,-0.5)) x=mAr.sim(w,A,C,N=300)
w=c(0.25,0.1) C=rbind(c(1,0.5),c(0.5,1.5)) A=rbind(c(0.4,1.2,0.35,-0.3),c(0.3,0.7,-0.4,-0.5)) x=mAr.sim(w,A,C,N=300)
Annual domestic advertising and sales of Lydia E. Pinkham Medicine Company in thousands of dollars 1907-1960
data(pinkham)
data(pinkham)
A data frame with 54 observations on the 2 variables.
Pankratz, A. (1991) Forecasting With Dynamic Regression Models, Wiley.
Wei, W. (1994) Time series analysis - univariate and multivariate methods
Body measurements of 48 female sparrows.
data(sparrows)
data(sparrows)
A data frame with 48 observations on 5 variables
Manly, B. F. J. (1994). Multivariate Statistical Methods, second edition, Chapman and Hall.
Ocean wave height measurements from an wire wave gauge and an infrared wave gauge
data(waves)
data(waves)
A data frame with 4096 observations on the following 2 variables.
height of ocean waves from wire wave gauge
height of ocean waves from infrared wave gauge
Time series of ocean wave height measurements (sampling = 1/ 30 seconds)
Applied Physics Laboratory (Andy Jessup)
Jessup, A. T., Melville, W. K., Keller, W. C. (1991). Breaking Waves Affecting Microwave Backscatter: Detection and Verification (1991). Journal of Geophysical Research, 96, C11, 20,547–59.
Percival, D. B. (1993). Spectral Analysis of Univariate and Bivariate Time Series, Chapter 11 of "Statistical Methods for Physical Science," Stanford, J. L. and Vardeman, S. B. (Eds), Academic Press