Title: | Different Types of Estimators to Deal with Multicollinearity |
---|---|
Description: | When multicollinearity exists among predictor variables of the linear model, least square estimators does not provide a better solution for estimating parameters. To deal with multicollinearity several estimators are proposed in the literature. Some of these estimators are Ordinary Least Square Estimator (OLSE), Ordinary Generalized Ordinary Least Square Estimator (OGOLSE), Ordinary Ridge Regression Estimator (ORRE), Ordinary Generalized Ridge Regression Estimator (OGRRE), Restricted Least Square Estimator (RLSE), Ordinary Generalized Restricted Least Square Estimator (OGRLSE), Ordinary Mixed Regression Estimator (OMRE), Ordinary Generalized Mixed Regression Estimator (OGMRE), Liu Estimator (LE), Ordinary Generalized Liu Estimator (OGLE), Restricted Liu Estimator (RLE), Ordinary Generalized Restricted Liu Estimator (OGRLE), Stochastic Restricted Liu Estimator (SRLE), Ordinary Generalized Stochastic Restricted Liu Estimator (OGSRLE), Type (1),(2),(3) Liu Estimator (Type-1,2,3 LTE), Ordinary Generalized Type (1),(2),(3) Liu Estimator (Type-1,2,3 OGLTE), Type (1),(2),(3) Adjusted Liu Estimator (Type-1,2,3 ALTE), Ordinary Generalized Type (1),(2),(3) Adjusted Liu Estimator (Type-1,2,3 OGALTE), Almost Unbiased Ridge Estimator (AURE), Ordinary Generalized Almost Unbiased Ridge Estimator (OGAURE), Almost Unbiased Liu Estimator (AULE), Ordinary Generalized Almost Unbiased Liu Estimator (OGAULE), Stochastic Restricted Ridge Estimator (SRRE), Ordinary Generalized Stochastic Restricted Ridge Estimator (OGSRRE), Restricted Ridge Regression Estimator (RRRE) and Ordinary Generalized Restricted Ridge Regression Estimator (OGRRRE). To select the best estimator in a practical situation the Mean Square Error (MSE) is used. Using this package scalar MSE value of all the above estimators and Prediction Sum of Square (PRESS) values of some of the estimators can be obtained, and the variation of the MSE and PRESS values for the relevant estimators can be shown graphically. |
Authors: | Ajith Dissanayake [aut, cre], P. Wijekoon [aut], R-core [cph] |
Maintainer: | Ajith Dissanayake <[email protected]> |
License: | GPL-2 | GPL-3 |
Version: | 3.0 |
Built: | 2024-11-28 06:31:29 UTC |
Source: | CRAN |
To combat multicollinearity several estimators have been introduced. By using this package some of those estimators and corresponding scalar Mean Square Error (MSE) values and Prediction Sum of Square (PRESS) values (Only for some estimators) can be found easily. In addition graphical methods are available to determine the variation of MSE values of those estimators and the variation of PRESS values of some of the estimators.
Package: | lrmest |
Type: | Package |
Version: | 3.0 |
Date: | 2016-05-13 |
License: | GPL-2 | GPL-3 |
In this package functions have been written for several types of estimators in the linear model. By using those functions relevant estimators can be found.
P.Wijekoon, A.Dissanayake
Maintainer: Ajith Dissanayake <[email protected]>
Akdeniz, F. and Erol, H. (2003) Mean Squared Error Matrix Comparisons of Some Biased Estimators in Linear Regression in Communications in Statistics - Theory and Methods, volume 32 DOI:10.1081/STA-120025385
Arumairajan, S. and Wijekoon, P. (2015) ] Optimal Generalized Biased Estimator in Linear Regression Model in Open Journal of Statistics, pp. 403–411
Hubert, M.H. and Wijekoon, P. (2006) Improvement of the Liu estimator in the linear regression medel, Chapter (4-8)
Liu, K. (1993) A new class of biased estimate in linear regression in Communications in Statistics-Theory and Methods 22, pp. 393–402
Nagler, J. (Updated 2011) Notes on Ordinary Least Square Estimators
Theil, H. and Goldberger, A.S. (1961) On pure and mixed statistical estimation in economics in International Economic review 2, pp. 65–78
Revan, M. (2009) A stochastic restricted ridge regression estimator in Journal of Multivariate Analysis, volume 100, issue 8, pp. 1706–1716
Rong,Jian-Ying (2010) Adjustive Liu Type Estimators in linear regression models in communication in statistics-simulation and computation, volume 39 DOI:10.1080/03610918.2010.484120
Sarkara, N. (1992), A new estimator combining the ridge regression and the restricted least squares methods of estimation in Communications in Statistics - Theory and Methods, volume 21, pp. 1987–2000. DOI:10.1080/03610929208830893
## Portland cement dataset is used. data(pcd) attach(pcd) k<-c(0:3/10) d<-c(-3:3/10) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) aa1<-c(0.958451,1.021155,0.857821,1.040296) aa2<-c(0.345454,1.387888,0.866466,1.354454) aa3<-c(0.344841,1.344723,0.318451,1.523316) optimum(Y~X1+X2+X3+X4-1,r,R,dpn,delt,aa1,aa2,aa3,k,d,data=pcd) # Model without the intercept is considered. ## Use "press=TRUE" to get the optimum PRESS values only for some of # the estimators.
## Portland cement dataset is used. data(pcd) attach(pcd) k<-c(0:3/10) d<-c(-3:3/10) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) aa1<-c(0.958451,1.021155,0.857821,1.040296) aa2<-c(0.345454,1.387888,0.866466,1.354454) aa3<-c(0.344841,1.344723,0.318451,1.523316) optimum(Y~X1+X2+X3+X4-1,r,R,dpn,delt,aa1,aa2,aa3,k,d,data=pcd) # Model without the intercept is considered. ## Use "press=TRUE" to get the optimum PRESS values only for some of # the estimators.
This function can be used to find the Type (1) Adjusted Liu Estimated values, corresponding scalar Mean Square Error (MSE) value and Prediction Sum of Square (PRESS) value in the linear model. Further the variation of MSE and PRESS values can be shown graphically.
alte1(formula, k, d, aa, press = FALSE, data = NULL, na.action, ...)
alte1(formula, k, d, aa, press = FALSE, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
k |
a single numeric value or a vector of set of numeric values. See ‘Examples’. |
d |
a single numeric value or a vector of set of numeric values. See ‘Examples’. |
aa |
this is a set of scalars belongs to real number system. Values for “aa” should be given as a |
press |
if “press=TRUE” then all the PRESS values and its corresponding parameter values are returned. Otherwise all the scalar MSE values and its corresponding parameter values are returned. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
In order to get the best results, optimal values for k
,d
and aa
should be selected.
The way of finding aa
can be determined from Rong,Jian-Ying (2010) Adjustive Liu Type Estimators in linear regression models in communication in statistics-simulation and computation, volume 39
Use matplot
so as to obtain the variation of scalar MSE values and PRESS values graphically. See ‘Examples’.
If k
and d
are single numeric values then alte1
returns the Type (1) Adjusted Liu Estimated values, standard error values, t statistic values, p value, corresponding scalar MSE value and PRESS value.
If k
and d
are vector of set of numeric values then alte1
returns the matrix of scalar MSE values and if “press=TRUE” then alte1
returns the matrix of PRESS values of Type (1) Adjusted Liu Estimator by representing k
and d
as column names and row names respectively.
P.Wijekoon, A.Dissanayake
Rong,Jian-Ying (2010) Adjustive Liu Type Estimators in linear regression models in communication in statistics-simulation and computation, volume 39 DOI:10.1080/03610918.2010.484120
## Portland cement data set is used. data(pcd) k<-0.1650 d<--0.1300 aa<-c(0.958451,1.021155,0.857821,1.040296) alte1(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Type (1) Adjusted Liu Estimator. data(pcd) k<-c(0:5/10) d<-c(5:20/10) aa<-c(0.958451,1.021155,0.857821,1.040296) msemat<-alte1(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd) matplot(d,alte1(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd),type="l",ylab=c("MSE"), main=c("Plot of MSE of Type (1) Adjusted Liu Estimator"), cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3) text(y=msemat[1,],x=d[1],labels=c(paste0("k=",k)),pos=4,cex=0.6) ## Use "press=TRUE" to obtain the variation of PRESS of Type (1) Adjusted Liu Estimator.
## Portland cement data set is used. data(pcd) k<-0.1650 d<--0.1300 aa<-c(0.958451,1.021155,0.857821,1.040296) alte1(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Type (1) Adjusted Liu Estimator. data(pcd) k<-c(0:5/10) d<-c(5:20/10) aa<-c(0.958451,1.021155,0.857821,1.040296) msemat<-alte1(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd) matplot(d,alte1(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd),type="l",ylab=c("MSE"), main=c("Plot of MSE of Type (1) Adjusted Liu Estimator"), cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3) text(y=msemat[1,],x=d[1],labels=c(paste0("k=",k)),pos=4,cex=0.6) ## Use "press=TRUE" to obtain the variation of PRESS of Type (1) Adjusted Liu Estimator.
This function can be used to find the Type (2) Adjusted Liu Estimated values, corresponding scalar Mean Square Error (MSE) value and Prediction Sum of Square (PRESS) value in the linear model. Further the variation of MSE and PRESS values can be shown graphically.
alte2(formula, k, d, aa, press = FALSE, data = NULL, na.action, ...)
alte2(formula, k, d, aa, press = FALSE, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
k |
a single numeric value or a vector of set of numeric values. See ‘Examples’. |
d |
a single numeric value or a vector of set of numeric values. See ‘Examples’. |
aa |
this is a set of scalars belongs to real number system. Values for “aa” should be given as a |
press |
if “press=TRUE” then all the PRESS values and its corresponding parameter values are returned. Otherwise all the scalar MSE values and its corresponding parameter values are returned. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
In order to get the best results, optimal values for k
,d
and aa
should be selected.
The way of finding aa
can be determined from Rong,Jian-Ying (2010) Adjustive Liu Type Estimators in linear regression models in communication in statistics-simulation and computation, volume 39
Use matplot
so as to obtain the variation of scalar MSE values and PRESS values graphically. See ‘Examples’.
If k
and d
are single numeric values then alte2
returns the Type (2) Adjusted Liu Estimated values, standard error values, t statistic values, p value, corresponding scalar MSE value and PRESS value.
If k
and d
are vector of set of numeric values then alte2
returns the matrix of scalar MSE values and if “press=TRUE” then alte2
returns the matrix of PRESS values of Type (2) Adjusted Liu Estimator by representing k
and d
as column names and row names respectively.
P.Wijekoon, A.Dissanayake
Rong,Jian-Ying (2010) Adjustive Liu Type Estimators in linear regression models in communication in statistics-simulation and computation, volume 39 DOI:10.1080/03610918.2010.484120
## Portland cement data set is used. data(pcd) k<-0.1650 d<--0.1300 aa<-c(0.958451,1.021155,0.857821,1.040296) alte2(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Type (2) Adjusted Liu Estimator. data(pcd) k<-c(0:5/10) d<-c(5:25/10) aa<-c(0.958451,1.021155,0.857821,1.040296) msemat<-alte2(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd) matplot(d,alte2(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd),type="l",ylab=c("MSE"), main=c("Plot of MSE of Type (2) Adjusted Liu Estimator"), cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3) text(y=msemat[1,],x=d[1],labels=c(paste0("k=",k)),pos=4,cex=0.6) ## Use "press=TRUE" to obtain the variation of PRESS of Type (2) Adjusted Liu Estimator.
## Portland cement data set is used. data(pcd) k<-0.1650 d<--0.1300 aa<-c(0.958451,1.021155,0.857821,1.040296) alte2(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Type (2) Adjusted Liu Estimator. data(pcd) k<-c(0:5/10) d<-c(5:25/10) aa<-c(0.958451,1.021155,0.857821,1.040296) msemat<-alte2(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd) matplot(d,alte2(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd),type="l",ylab=c("MSE"), main=c("Plot of MSE of Type (2) Adjusted Liu Estimator"), cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3) text(y=msemat[1,],x=d[1],labels=c(paste0("k=",k)),pos=4,cex=0.6) ## Use "press=TRUE" to obtain the variation of PRESS of Type (2) Adjusted Liu Estimator.
This function can be used to find the Type (3) Adjusted Liu Estimatd values, corresponding scalar Mean Square Error (MSE) value and Prediction Sum of Square (PRESS) value in the linear model. Further the variation of MSE and PRESS values can be shown graphically.
alte3(formula, k, d, aa, press = FALSE, data = NULL, na.action, ...)
alte3(formula, k, d, aa, press = FALSE, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
k |
a single numeric value or a vector of set of numeric values. See ‘Examples’. |
d |
a single numeric value or a vector of set of numeric values. See ‘Examples’. |
aa |
this is a set of scalars belongs to real number system. Values for “aa” should be given as a |
press |
if “press=TRUE” then all the PRESS values and its corresponding parameter values are returned. Otherwise all the scalar MSE values and its corresponding parameter values are returned. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
In order to get the best results, optimal values for k
,d
and aa
should be selected.
The way of finding aa
can be determined from Rong,Jian-Ying (2010) Adjustive Liu Type Estimators in linear regression models in communication in statistics-simulation and computation, volume 39
Use matplot
so as to obtain the variation of scalar MSE values and PRESS values graphically. See ‘Examples’.
If k
and d
are single numeric values then alte3
returns the Type (3) Adjusted Liu Estimated values, standard error values, t statistic values, p value, corresponding scalar MSE value and PRESS value.
If k
and d
are vector of set of numeric values then alte3
returns the matrix of scalar MSE values and if “press=TRUE” then alte3
returns the matrix of PRESS values of Type (3) Adjusted Liu Estimator by representing k
and d
as column names and row names respectively.
P.Wijekoon, A.Dissanayake
Rong,Jian-Ying (2010) Adjustive Liu Type Estimators in linear regression models in communication in statistics-simulation and computation, volume 39 DOI:10.1080/03610918.2010.484120
## Portland cement data set is used. data(pcd) k<-0.1650 d<--0.1300 aa<-c(0.958451,1.021155,0.857821,1.040296) alte3(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Type (3) Adjusted Liu Estimator. data(pcd) k<-c(50:51/5) d<-c(300:305/10) aa<-c(0.958451,1.021155,0.857821,1.040296) msemat<-alte3(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd) matplot(d,alte3(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd),type="l",ylab=c("MSE"), main=c("Plot of MSE of Type (3) Adjusted Liu Estimator"), cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3) text(y=msemat[1,],x=d[1],labels=c(paste0("k=",k)),pos=4,cex=0.6) ## Use "press=TRUE" to obtain the variation of PRESS of Type (3) Adjusted Liu Estimator.
## Portland cement data set is used. data(pcd) k<-0.1650 d<--0.1300 aa<-c(0.958451,1.021155,0.857821,1.040296) alte3(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Type (3) Adjusted Liu Estimator. data(pcd) k<-c(50:51/5) d<-c(300:305/10) aa<-c(0.958451,1.021155,0.857821,1.040296) msemat<-alte3(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd) matplot(d,alte3(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd),type="l",ylab=c("MSE"), main=c("Plot of MSE of Type (3) Adjusted Liu Estimator"), cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3) text(y=msemat[1,],x=d[1],labels=c(paste0("k=",k)),pos=4,cex=0.6) ## Use "press=TRUE" to obtain the variation of PRESS of Type (3) Adjusted Liu Estimator.
aul
can be used to find the Almost Unbiased Liu Estimated values and corresponding scalar Mean Square Error (MSE) value in the linear model. Further the variation of MSE can be shown graphically.
aul(formula, d, data = NULL, na.action, ...)
aul(formula, d, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
d |
a single numeric value or a vector of set of numeric values. See ‘Examples’. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use plot
so as to obtained the variation of scalar MSE values graphically. See ‘Examples’.
If d
is a single numeric value then aul
returns the Almost Unbiased Liu Estimated values, standard error values, t statistic values, p value and corresponding scalar MSE value.
If d
is a vector of set of numeric values then aul
returns all the scalar MSE values and corresponding parameter values of Almost Unbiased Liu Estimator.
P.Wijekoon, A.Dissanayake
Akdeniz, F. and Erol, H. (2003) Mean Squared Error Matrix Comparisons of Some Biased Estimators in Linear Regression in Communications in Statistics - Theory and Methods, volume 32 DOI:10.1081/STA-120025385
## Portland cement data set is used. data(pcd) d<-0.05 aul(Y~X1+X2+X3+X4-1,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Almost Unbiased Liu Estimator. data(pcd) d<-c(1:10/10) plot(aul(Y~X1+X2+X3+X4-1,d,data=pcd), main=c("Plot of MSE of Almost Unbiased Liu Estimator"),type="b", cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1, las=1,lty=3,cex=0.6) mseval<-data.frame(aul(Y~X1+X2+X3+X4-1,d,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
## Portland cement data set is used. data(pcd) d<-0.05 aul(Y~X1+X2+X3+X4-1,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Almost Unbiased Liu Estimator. data(pcd) d<-c(1:10/10) plot(aul(Y~X1+X2+X3+X4-1,d,data=pcd), main=c("Plot of MSE of Almost Unbiased Liu Estimator"),type="b", cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1, las=1,lty=3,cex=0.6) mseval<-data.frame(aul(Y~X1+X2+X3+X4-1,d,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
aur
can be used to find the Almost Unbiased Ridge Estimated values and corresponding scalar Mean Square Error (MSE) value in the linear model. Further the variation of MSE can be shown graphically.
aur(formula, k, data = NULL, na.action, ...)
aur(formula, k, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
k |
a single numeric value or a vector of set of numeric values. See ‘Examples’. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use plot
so as to obtained the variation of scalar MSE values graphically. See ‘Examples’.
If k
is a single numeric values then aur
returns the Almost Unbiased Ridge Estimated values, standard error values, t statistic values, p value and corresponding scalar MSE value.
If k
is a vector of set of numeric values then aur
returns all the scalar MSE values and corresponding parameter values of Almost Unbiased Ridge Estimator.
P.Wijekoon, A.Dissanayake
Akdeniz, F. and Erol, H. (2003) Mean Squared Error Matrix Comparisons of Some Biased Estimators in Linear Regression in Communications in Statistics - Theory and Methods, volume 32 DOI:10.1081/STA-120025385
## Portland cement data set is used. data(pcd) k<-0.05 aur(Y~X1+X2+X3+X4-1,k,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Almost Unbiased Ridge Estimator. data(pcd) k<-c(0:10/10) plot(aur(Y~X1+X2+X3+X4-1,k,data=pcd), main=c("Plot of MSE of Almost Unbiased Ridge Estimator"),type="b", cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(aur(Y~X1+X2+X3+X4-1,k,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
## Portland cement data set is used. data(pcd) k<-0.05 aur(Y~X1+X2+X3+X4-1,k,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Almost Unbiased Ridge Estimator. data(pcd) k<-c(0:10/10) plot(aur(Y~X1+X2+X3+X4-1,k,data=pcd), main=c("Plot of MSE of Almost Unbiased Ridge Estimator"),type="b", cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(aur(Y~X1+X2+X3+X4-1,k,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
Degree of multicollinearity present in the dataset can be determined by using two type of indicators, called VIF and Condition Number.
checkm(formula, data, na.action, ...)
checkm(formula, data, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
If all the values of VIF > 10 implies that multicollinearity present.
If condition number < 10 ; There is not multicollinearity.
30 < condition number < 100 ; There is a multicollinearity.
condition number >100 ; Severe multicollinearity.
checkm
returns the values of two multicllinearity indicators VIF and Condition Number.
P.Wijekoon, A.Dissanayake
## Portland cement data set is used. data(pcd) checkm(Y~X1+X2+X3+X4,data=pcd)
## Portland cement data set is used. data(pcd) checkm(Y~X1+X2+X3+X4,data=pcd)
liu
can be used to find the Liu Estimated values and corresponding scalar Mean Square Error (MSE) value in the linear model. Further the variation of MSE can be shown graphically.
liu(formula, d, data = NULL, na.action, ...)
liu(formula, d, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
d |
a single numeric value or a vector of set of numeric values. See ‘Examples’. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use plot
so as to obtain the variation of scalar MSE values graphically. See ‘Examples’.
If d
is a single numeric values then liu
returns the Liu Estimated values, standard error values, t statistic values, p value and corresponding scalar MSE value.
If d
is a vector of set of numeric values then liu
returns all the scalar MSE values and corresponding parameter values of Liu Estimator.
P.Wijekoon, A.Dissanayake
Liu, K. (1993) A new class of biased estimate in linear regression in Communications in Statistics-Theory and Methods 22, pp. 393–402.
## Portland cement data set is used. data(pcd) d<-0.05 liu(Y~X1+X2+X3+X4-1,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Liu Estimator. data(pcd) d<-c(0:10/10) plot(liu(Y~X1+X2+X3+X4-1,d,data=pcd),main=c("Plot of MSE of Liu Estimator"), type="b",cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(liu(Y~X1+X2+X3+X4-1,d,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
## Portland cement data set is used. data(pcd) d<-0.05 liu(Y~X1+X2+X3+X4-1,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Liu Estimator. data(pcd) d<-c(0:10/10) plot(liu(Y~X1+X2+X3+X4-1,d,data=pcd),main=c("Plot of MSE of Liu Estimator"), type="b",cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(liu(Y~X1+X2+X3+X4-1,d,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
This function can be used to find the Type (1) Liu Estimated values, corresponding scalar Mean Square Error (MSE) value and Prediction Sum of Square (PRESS) value in the linear model. Further the variation of MSE and PRESS values can be shown graphically.
lte1(formula, k, d, press = FALSE, data = NULL, na.action, ...)
lte1(formula, k, d, press = FALSE, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
k |
a single numeric value or a vector of set of numeric values. See ‘Examples’. |
d |
a single numeric value or a vector of set of numeric values. See ‘Examples’. |
press |
if “press=TRUE” then all the PRESS values and its corresponding parameter values are returned. Otherwise all the scalar MSE values and its corresponding parameter values are returned. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use matplot
so as to obtain the variation of scalar MSE values and PRESS values graphically. See ‘Examples’.
If k
and d
are single numeric values then lte1
returns the Type (1) Liu Estimated values, standard error values, t statistic values, p value, corresponding scalar MSE value and PRESS value.
If k
and d
are vector of set of numeric values then lte1
returns the matrix of scalar MSE values and if “press=TRUE” then lte1
returns the matrix of PRESS values of Type (1) Liu Estimator by representing k
and d
as column names and row names respectively.
P.Wijekoon, A.Dissanayake
Rong,Jian-Ying (2010) Adjustive Liu Type Estimators in linear regression models in communication in statistics-simulation and computation, volume 39 DOI:10.1080/03610918.2010.484120
## Portland cement data set is used. data(pcd) k<-0.1650 d<--0.1300 lte1(Y~X1+X2+X3+X4-1,k,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Type (1) Liu Estimator. data(pcd) k<-c(0:4/5) d<-c(0:25/10) msemat<-lte1(Y~X1+X2+X3+X4-1,k,d,data=pcd) matplot(d,lte1(Y~X1+X2+X3+X4-1,k,d,data=pcd),type="l",ylab=c("MSE"), main=c("Plot of MSE of Type (1) Liu Estimator"), cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3) text(y=msemat[1,],x=d[1],labels=c(paste0("k=",k)),pos=4,cex=0.6) ## Use "press=TRUE" to obtain the variation of PRESS of Type (1) Liu Estimator.
## Portland cement data set is used. data(pcd) k<-0.1650 d<--0.1300 lte1(Y~X1+X2+X3+X4-1,k,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Type (1) Liu Estimator. data(pcd) k<-c(0:4/5) d<-c(0:25/10) msemat<-lte1(Y~X1+X2+X3+X4-1,k,d,data=pcd) matplot(d,lte1(Y~X1+X2+X3+X4-1,k,d,data=pcd),type="l",ylab=c("MSE"), main=c("Plot of MSE of Type (1) Liu Estimator"), cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3) text(y=msemat[1,],x=d[1],labels=c(paste0("k=",k)),pos=4,cex=0.6) ## Use "press=TRUE" to obtain the variation of PRESS of Type (1) Liu Estimator.
This function can be used to find the Type (2) Liu Estimated values, corresponding scalar Mean Square Error (MSE) value and Prediction Sum of Square (PRESS) value in the linear model. Further the variation of MSE and PRESS values can be shown graphically.
lte2(formula, k, d, press = FALSE, data = NULL, na.action, ...)
lte2(formula, k, d, press = FALSE, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
k |
a single numeric value or a vector of set of numeric values. See ‘Examples’. |
d |
a single numeric value or a vector of set of numeric values. See ‘Examples’. |
press |
if “press=TRUE” then all the PRESS values and its corresponding parameter values are returned. Otherwise all the scalar MSE values and its corresponding parameter values are returned. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use matplot
so as to obtain the variation of scalar MSE values and PRESS values graphically. See ‘Examples’.
If k
and d
are single numeric values then lte2
returns the Type (2) Liu Estimated values, standard error values, t statistic values, p value, corresponding scalar MSE value and PRESS value.
If k
and d
are vector of set of numeric values then lte2
returns the matrix of scalar MSE values and if “press=TRUE” then lte2
returns the matrix of PRESS values of Type (2) Liu Estimator by representing k
and d
as column names and row names respectively.
P.Wijekoon, A.Dissanayake
Rong,Jian-Ying (2010) Adjustive Liu Type Estimators in linear regression models in communication in statistics-simulation and computation, volume 39 DOI:10.1080/03610918.2010.484120
## Portland cement data set is used. data(pcd) k<-0.1650 d<--0.1300 lte2(Y~X1+X2+X3+X4-1,k,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Type (2) Liu Estimator. data(pcd) k<-c(0:4/10) d<-c(5:25/10) msemat<-lte2(Y~X1+X2+X3+X4-1,k,d,data=pcd) matplot(d,lte2(Y~X1+X2+X3+X4-1,k,d,data=pcd),type="l",ylab=c("MSE"), main=c("Plot of MSE of Type (2) Liu Estimator"), cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3) text(y=msemat[1,],x=d[1],labels=c(paste0("k=",k)),pos=4,cex=0.6) ## Use "press=TRUE" to obtain the variation of PRESS of Type (2) Liu Estimator.
## Portland cement data set is used. data(pcd) k<-0.1650 d<--0.1300 lte2(Y~X1+X2+X3+X4-1,k,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Type (2) Liu Estimator. data(pcd) k<-c(0:4/10) d<-c(5:25/10) msemat<-lte2(Y~X1+X2+X3+X4-1,k,d,data=pcd) matplot(d,lte2(Y~X1+X2+X3+X4-1,k,d,data=pcd),type="l",ylab=c("MSE"), main=c("Plot of MSE of Type (2) Liu Estimator"), cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3) text(y=msemat[1,],x=d[1],labels=c(paste0("k=",k)),pos=4,cex=0.6) ## Use "press=TRUE" to obtain the variation of PRESS of Type (2) Liu Estimator.
This function can be used to find the Type (3) Liu Estimated values, corresponding scalar Mean Square Error (MSE) value and Prediction Sum of Square (PRESS) value in the linear model. Further the variation of MSE and PRESS values can be shown graphically.
lte3(formula, k, d, press = FALSE, data = NULL, na.action, ...)
lte3(formula, k, d, press = FALSE, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
k |
a single numeric value or a vector of set of numeric values. See ‘Examples’. |
d |
a single numeric value or a vector of set of numeric values. See ‘Examples’. |
press |
if “press=TRUE” then all the PRESS values and its corresponding parameter values are returned. Otherwise all the scalar MSE values and its corresponding parameter values are returned. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use matplot
so as to obtain the variation of scalar MSE values and PRESS values graphically. See ‘Examples’.
If k
and d
are single numeric values then lte3
returns the Type (3) Liu Estimated values, standard error values, t statistic values, p value, corresponding scalar MSE value and PRESS value.
If k
and d
are vector of set of numeric values then lte3
returns the matrix of scalar MSE values and if “press=TRUE” then lte3
returns the matrix of PRESS values of Type (3) Liu Estimator by representing k
and d
as column names and row names respectively.
P.Wijekoon, A.Dissanayake
Rong,Jian-Ying (2010) Adjustive Liu Type Estimators in linear regression models in communication in statistics-simulation and computation, volume 39 DOI:10.1080/03610918.2010.484120
## Portland cement data set is used. data(pcd) k<-0.1650 d<--0.1300 lte3(Y~X1+X2+X3+X4-1,k,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Type (3) Liu Estimator. data(pcd) k<-c(50:51/10) d<-c(300:305/10) msemat<-lte3(Y~X1+X2+X3+X4-1,k,d,data=pcd) matplot(d,lte3(Y~X1+X2+X3+X4-1,k,d,data=pcd),type="l",ylab=c("MSE"), main=c("Plot of MSE of Type (3) Liu Estimator"), cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3) text(y=msemat[1,],x=d[1],labels=c(paste0("k=",k)),pos=4,cex=0.6) ## Use "press=TRUE" to obtain the variation of PRESS of Type (3) Liu Estimator.
## Portland cement data set is used. data(pcd) k<-0.1650 d<--0.1300 lte3(Y~X1+X2+X3+X4-1,k,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Type (3) Liu Estimator. data(pcd) k<-c(50:51/10) d<-c(300:305/10) msemat<-lte3(Y~X1+X2+X3+X4-1,k,d,data=pcd) matplot(d,lte3(Y~X1+X2+X3+X4-1,k,d,data=pcd),type="l",ylab=c("MSE"), main=c("Plot of MSE of Type (3) Liu Estimator"), cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3) text(y=msemat[1,],x=d[1],labels=c(paste0("k=",k)),pos=4,cex=0.6) ## Use "press=TRUE" to obtain the variation of PRESS of Type (3) Liu Estimator.
mixe
can be used to obtain the Mixed Regression Estimated values and corresponding scalar Mean Square Error (MSE) value.
mixe(formula, r, R, dpn, delt, data, na.action, ...)
mixe(formula, r, R, dpn, delt, data, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
r |
is a |
R |
is a |
dpn |
dispersion matrix of vector of disturbances of linear restricted model, |
delt |
values of |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
In order to calculate the Mixed Regression Estimator the prior information are required. Therefore those prior information should be mentioned within the function.
mixe
returns the Mixed Regression Estimated values, standard error values, t statistic values,p value and corresponding scalar MSE value.
P.Wijekoon, A.Dissanayake
Theil, H. and Goldberger, A.S. (1961) On pure and mixed statistical estimation in economics in International Economic review, volume 2, pp. 65–78
## Portland cement data set is used. data(pcd) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) mixe(Y~X1+X2+X3+X4-1,r,R,dpn,delt,data=pcd) # Model without the intercept is considered.
## Portland cement data set is used. data(pcd) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) mixe(Y~X1+X2+X3+X4-1,r,R,dpn,delt,data=pcd) # Model without the intercept is considered.
This function can be used to find the Ordinary Generalized Type (1) Adjusted Liu Estimated values, corresponding scalar Mean Square Error (MSE) value in the linear model. Further the variation of MSE values can be shown graphically.
ogalt1(formula, k, d, aa, data = NULL, na.action, ...)
ogalt1(formula, k, d, aa, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
k |
a single numeric value or a vector of set of numeric values. See ‘Example’. |
d |
a single numeric value or a vector of set of numeric values. See ‘Example’. |
aa |
this is a set of scalars belongs to real number system. Values for “aa” should be given as a |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
In order to get the best results, optimal values for k
,d
and aa
should be selected.
The way of finding aa
can be determined from Rong,Jian-Ying (2010) Adjustive Liu Type Estimators in linear regression models in communication in statistics-simulation and computation, volume 39
Use matplot
so as to obtain the variation of scalar MSE values graphically. See ‘Examples’.
If k
and d
are single numeric values then ogalt1
returns the Ordinary Generalized Type (1) Adjusted Liu Estimated values, standard error values, t statistic values, p value, corresponding scalar MSE value.
If k
and d
are vector of set of numeric values then ogalt1
returns the matrix of scalar MSE values of Ordinary Generalized Type (1) Adjusted Liu Estimator by representing k
and d
as column names and row names respectively.
P.Wijekoon, A.Dissanayake
Arumairajan, S. and Wijekoon, P. (2015) ] Optimal Generalized Biased Estimator in Linear Regression Model in Open Journal of Statistics, pp. 403–411
Rong,Jian-Ying (2010) Adjustive Liu Type Estimators in linear regression models in communication in statistics-simulation and computation, volume 39 DOI:10.1080/03610918.2010.484120
## Portland cement data set is used. data(pcd) k<-0.1650 d<--0.1300 aa<-c(0.958451,1.021155,0.857821,1.040296) ogalt1(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Ordinary Generalized ## Type (1) Adjusted Liu Estimator. data(pcd) k<-c(0:5/10) d<-c(390:420/10) aa<-c(0.958451,1.021155,0.857821,1.040296) msemat<-ogalt1(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd) matplot(d,ogalt1(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd),type="l",ylab=c("MSE"), main=c("Plot of MSE of Ordinary Generalized Type (1) Adjusted Liu Estimator"),cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3) text(y=msemat[1,],x=d[1],labels=c(paste0("k=",k)),pos=4,cex=0.6)
## Portland cement data set is used. data(pcd) k<-0.1650 d<--0.1300 aa<-c(0.958451,1.021155,0.857821,1.040296) ogalt1(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Ordinary Generalized ## Type (1) Adjusted Liu Estimator. data(pcd) k<-c(0:5/10) d<-c(390:420/10) aa<-c(0.958451,1.021155,0.857821,1.040296) msemat<-ogalt1(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd) matplot(d,ogalt1(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd),type="l",ylab=c("MSE"), main=c("Plot of MSE of Ordinary Generalized Type (1) Adjusted Liu Estimator"),cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3) text(y=msemat[1,],x=d[1],labels=c(paste0("k=",k)),pos=4,cex=0.6)
This function can be used to find the Ordinary Generalized Type (2) Adjusted Liu Estimated values, corresponding scalar Mean Square Error (MSE) in the linear model. Further the variation of MSE values can be shown graphically.
ogalt2(formula, k, d, aa, data = NULL, na.action, ...)
ogalt2(formula, k, d, aa, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
k |
a single numeric value or a vector of set of numeric values. See ‘Example’. |
d |
a single numeric value or a vector of set of numeric values. See ‘Example’. |
aa |
this is a set of scalars belongs to real number system. Values for “aa” should be given as a |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
In order to get the best results, optimal values for k
,d
and aa
should be selected.
The way of finding aa
can be determined from Rong,Jian-Ying (2010) Adjustive Liu Type Estimators in linear regression models in communication in statistics-simulation and computation, volume 39
Use matplot
so as to obtain the variation of scalar MSE values graphically. See ‘Examples’.
If k
and d
are single numeric values then ogalt2
returns the Ordinary Generalized Type (2) Adjusted Liu Estimated values, standard error values, t statistic values, p value, corresponding scalar MSE value.
If k
and d
are vector of set of numeric values then ogalt2
returns the matrix of scalar MSE values of Ordinary Generalized Type (2) Adjusted Liu Estimator by representing k
and d
as column names and row names respectively.
P.Wijekoon, A.Dissanayake
Arumairajan, S. and Wijekoon, P. (2015) ] Optimal Generalized Biased Estimator in Linear Regression Model in Open Journal of Statistics, pp. 403–411
Rong,Jian-Ying (2010) Adjustive Liu Type Estimators in linear regression models in communication in statistics-simulation and computation, volume 39 DOI:10.1080/03610918.2010.484120
## Portland cement data set is used. data(pcd) k<-0.1650 d<--0.1300 aa<-c(0.958451,1.021155,0.857821,1.040296) ogalt2(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Ordinary Generalized # Type (2) Adjusted Liu Estimator. data(pcd) k<-c(0:5/10) d<-c(390:430/10) aa<-c(0.958451,1.021155,0.857821,1.040296) msemat<-ogalt2(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd) matplot(d,ogalt2(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd),type="l",ylab=c("MSE"), main=c("Plot of MSE of Ordinary Generalized Type (2) Adjusted Liu Estimator"),cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3) text(y=msemat[1,],x=d[1],labels=c(paste0("k=",k)),pos=4,cex=0.6)
## Portland cement data set is used. data(pcd) k<-0.1650 d<--0.1300 aa<-c(0.958451,1.021155,0.857821,1.040296) ogalt2(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Ordinary Generalized # Type (2) Adjusted Liu Estimator. data(pcd) k<-c(0:5/10) d<-c(390:430/10) aa<-c(0.958451,1.021155,0.857821,1.040296) msemat<-ogalt2(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd) matplot(d,ogalt2(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd),type="l",ylab=c("MSE"), main=c("Plot of MSE of Ordinary Generalized Type (2) Adjusted Liu Estimator"),cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3) text(y=msemat[1,],x=d[1],labels=c(paste0("k=",k)),pos=4,cex=0.6)
This function can be used to find the Ordinary Generalized Type (3) Adjusted Liu Estimatd values, corresponding scalar Mean Square Error (MSE) value in the linear model. Further the variation of MSE values can be shown graphically.
ogalt3(formula, k, d, aa, data = NULL, na.action, ...)
ogalt3(formula, k, d, aa, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
k |
a single numeric value or a vector of set of numeric values. See ‘Example’. |
d |
a single numeric value or a vector of set of numeric values. See ‘Example’. |
aa |
this is a set of scalars belongs to real number system. Values for “aa” should be given as a |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
In order to get the best results, optimal values for k
,d
and aa
should be selected.
The way of finding aa
can be determined from Rong,Jian-Ying (2010) Adjustive Liu Type Estimators in linear regression models in communication in statistics-simulation and computation, volume 39
Use matplot
so as to obtain the variation of scalar MSE values graphically. See ‘Examples’.
If k
and d
are single numeric values then ogalt3
returns the Ordinary Generalized Type (3) Adjusted Liu Estimated values, standard error values, t statistic values, p value, corresponding scalar MSE value.
If k
and d
are vector of set of numeric values then ogalt3
returns the matrix of scalar MSE values of Ordinary Generalized Type (3) Adjusted Liu Estimator by representing k
and d
as column names and row names respectively.
P.Wijekoon, A.Dissanayake
Arumairajan, S. and Wijekoon, P. (2015) ] Optimal Generalized Biased Estimator in Linear Regression Model in Open Journal of Statistics, pp. 403–411
Rong,Jian-Ying (2010) Adjustive Liu Type Estimators in linear regression models in communication in statistics-simulation and computation, volume 39 DOI:10.1080/03610918.2010.484120
## Portland cement data set is used. data(pcd) k<-0.1650 d<--0.1300 aa<-c(0.958451,1.021155,0.857821,1.040296) ogalt3(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Ordinary Generalized # Type (3) Adjusted Liu Estimator. data(pcd) k<-c(0:5/10) d<-c(-420:-380/10) aa<-c(0.958451,1.021155,0.857821,1.040296) msemat<-ogalt3(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd) matplot(d,ogalt3(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd),type="l",ylab=c("MSE"), main=c("Plot of MSE of Ordinary Generalized Type (3) Adjusted Liu Estimator"),cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3) text(y=msemat[1,],x=d[1],labels=c(paste0("k=",k)),pos=4,cex=0.6)
## Portland cement data set is used. data(pcd) k<-0.1650 d<--0.1300 aa<-c(0.958451,1.021155,0.857821,1.040296) ogalt3(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Ordinary Generalized # Type (3) Adjusted Liu Estimator. data(pcd) k<-c(0:5/10) d<-c(-420:-380/10) aa<-c(0.958451,1.021155,0.857821,1.040296) msemat<-ogalt3(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd) matplot(d,ogalt3(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd),type="l",ylab=c("MSE"), main=c("Plot of MSE of Ordinary Generalized Type (3) Adjusted Liu Estimator"),cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3) text(y=msemat[1,],x=d[1],labels=c(paste0("k=",k)),pos=4,cex=0.6)
ogaul
can be used to find the Ordinary Generalized Almost Unbiased Liu Estimated values and corresponding scalar Mean Square Error (MSE) value in the linear model. Further the variation of MSE can be shown graphically.
ogaul(formula, d, data = NULL, na.action, ...)
ogaul(formula, d, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
d |
a single numeric value or a vector of set of numeric values. See ‘Example’. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use plot
so as to obtained the variation of scalar MSE values graphically. See ‘Examples’.
If d
is a single numeric value then ogaul
returns the Ordinary Generalized Almost Unbiased Liu Estimated values, standard error values, t statistic values, p value and corresponding scalar MSE value.
If d
is a vector of set of numeric values then ogaul
returns all the scalar MSE values and corresponding parameter values of Ordinary Generalized Almost Unbiased Liu Estimator.
P.Wijekoon, A.Dissanayake
Arumairajan, S. and Wijekoon, P. (2015) ] Optimal Generalized Biased Estimator in Linear Regression Model in Open Journal of Statistics, pp. 403–411
Akdeniz, F. and Erol, H. (2003) Mean Squared Error Matrix Comparisons of Some Biased Estimators in Linear Regression in Communications in Statistics - Theory and Methods, volume 32 DOI:10.1081/STA-120025385
## Portland cement data set is used. data(pcd) d<-0.05 ogaul(Y~X1+X2+X3+X4-1,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of # Ordinary Generalized Almost Unbiased Liu Estimator. data(pcd) d<-c(1:10/10) plot(ogaul(Y~X1+X2+X3+X4-1,d,data=pcd), main=c("Plot of MSE of Ordinary Generalized Almost Unbiased Liu Estimator"), type="b",cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(ogaul(Y~X1+X2+X3+X4-1,d,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
## Portland cement data set is used. data(pcd) d<-0.05 ogaul(Y~X1+X2+X3+X4-1,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of # Ordinary Generalized Almost Unbiased Liu Estimator. data(pcd) d<-c(1:10/10) plot(ogaul(Y~X1+X2+X3+X4-1,d,data=pcd), main=c("Plot of MSE of Ordinary Generalized Almost Unbiased Liu Estimator"), type="b",cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(ogaul(Y~X1+X2+X3+X4-1,d,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
ogaur
can be used to find the Ordinary Generalized Almost Unbiased Ridge Estimated values and corresponding scalar Mean Square Error (MSE) value in the linear model. Further the variation of MSE can be shown graphically.
ogaur(formula, k, data = NULL, na.action, ...)
ogaur(formula, k, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
k |
a single numeric value or a vector of set of numeric values. See ‘Example’. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use plot
so as to obtained the variation of scalar MSE values graphically. See ‘Examples’.
If k
is a single numeric values then ogaur
returns the Ordinary Generalized Almost Unbiased Ridge Estimated values, standard error values, t statistic values, p value and corresponding scalar MSE value.
If k
is a vector of set of numeric values then ogaur
returns all the scalar MSE values and corresponding parameter values of Ordinary Generalized Almost Unbiased Ridge Estimator.
P.Wijekoon, A.Dissanayake
Arumairajan, S. and Wijekoon, P. (2015) ] Optimal Generalized Biased Estimator in Linear Regression Model in Open Journal of Statistics, pp. 403–411
Akdeniz, F. and Erol, H. (2003) Mean Squared Error Matrix Comparisons of Some Biased Estimators in Linear Regression in Communications in Statistics - Theory and Methods, volume 32 DOI:10.1081/STA-120025385
## Portland cement data set is used. data(pcd) k<-0.05 ogaur(Y~X1+X2+X3+X4-1,k,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of # Ordinary Generalized Almost Unbiased Ridge Estimator. data(pcd) k<-c(0:10/10) plot(ogaur(Y~X1+X2+X3+X4-1,k,data=pcd), main=c("Plot of MSE of Ordinary Generalized Almost Unbiased Ridge Estimator"),type="b", cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(ogaur(Y~X1+X2+X3+X4-1,k,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
## Portland cement data set is used. data(pcd) k<-0.05 ogaur(Y~X1+X2+X3+X4-1,k,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of # Ordinary Generalized Almost Unbiased Ridge Estimator. data(pcd) k<-c(0:10/10) plot(ogaur(Y~X1+X2+X3+X4-1,k,data=pcd), main=c("Plot of MSE of Ordinary Generalized Almost Unbiased Ridge Estimator"),type="b", cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(ogaur(Y~X1+X2+X3+X4-1,k,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
ogliu
can be used to find the Ordinary Generalized Liu Estimated values and corresponding scalar Mean Square Error (MSE) value in the linear model. Further the variation of MSE can be shown graphically.
ogliu(formula, d, data = NULL, na.action, ...)
ogliu(formula, d, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
d |
a single numeric value or a vector of set of numeric values. See ‘Example’. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use plot
so as to obtain the variation of scalar MSE values graphically. See ‘Examples’.
If d
is a single numeric values then ogliu
returns the Ordinary Generalized Liu Estimated values, standard error values, t statistic values, p value and corresponding scalar MSE value.
If d
is a vector of set of numeric values then ogliu
returns all the scalar MSE values and corresponding parameter values of Ordinary Generalized Liu Estimator.
P.Wijekoon, A.Dissanayake
Arumairajan, S. and Wijekoon, P. (2015) ] Optimal Generalized Biased Estimator in Linear Regression Model in Open Journal of Statistics, pp. 403–411
Liu, K. (1993) A new class of biased estimate in linear regression in Communications in Statistics-Theory and Methods 22, pp. 393–402.
## Portland cement data set is used. data(pcd) d<-0.05 ogliu(Y~X1+X2+X3+X4-1,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Ordinary Generalized Liu Estimator. data(pcd) d<-c(0:10/10) plot(ogliu(Y~X1+X2+X3+X4-1,d,data=pcd),main=c("Plot of MSE of Ordinary Generalized Liu Estimator"),type="b",cex.lab=0.6,adj=1, cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(ogliu(Y~X1+X2+X3+X4-1,d,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
## Portland cement data set is used. data(pcd) d<-0.05 ogliu(Y~X1+X2+X3+X4-1,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Ordinary Generalized Liu Estimator. data(pcd) d<-c(0:10/10) plot(ogliu(Y~X1+X2+X3+X4-1,d,data=pcd),main=c("Plot of MSE of Ordinary Generalized Liu Estimator"),type="b",cex.lab=0.6,adj=1, cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(ogliu(Y~X1+X2+X3+X4-1,d,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
This function can be used to find the Ordinary Generalized Type (1) Liu Estimated values, corresponding scalar Mean Square Error (MSE) value in the linear model. Further the variation of MSE values can be shown graphically.
oglt1(formula, k, d, data = NULL, na.action, ...)
oglt1(formula, k, d, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
k |
a single numeric value or a vector of set of numeric values. See ‘Example’. |
d |
a single numeric value or a vector of set of numeric values. See ‘Example’. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use matplot
so as to obtain the variation of scalar MSE values graphically. See ‘Examples’.
If k
and d
are single numeric values then oglt1
returns the Ordinary Generalized Type (1) Liu Estimated values, standard error values, t statistic values, p value, corresponding scalar MSE value.
If k
and d
are vector of set of numeric values then oglt1
returns the matrix of scalar MSE values of Ordinary Generalized Type (1) Liu Estimator by representing k
and d
as column names and row names respectively.
P.Wijekoon, A.Dissanayake
Arumairajan, S. and Wijekoon, P. (2015) ] Optimal Generalized Biased Estimator in Linear Regression Model in Open Journal of Statistics, pp. 403–411
Rong,Jian-Ying (2010) Adjustive Liu Type Estimators in linear regression models in communication in statistics-simulation and computation, volume 39 DOI:10.1080/03610918.2010.484120
## Portland cement data set is used. data(pcd) k<-0.1650 d<--0.1300 oglt1(Y~X1+X2+X3+X4-1,k,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Ordinary Generalized Type (1) Liu # Estimator. data(pcd) k<-c(0:5/10) d<-c(420:450/10) msemat<-oglt1(Y~X1+X2+X3+X4-1,k,d,data=pcd) matplot(d,oglt1(Y~X1+X2+X3+X4-1,k,d,data=pcd),type="l",ylab=c("MSE"), main=c("Plot of MSE of Ordinary Generalized Type (1) Liu Estimator"), cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3) text(y=msemat[1,],x=d[1],labels=c(paste0("k=",k)),pos=4,cex=0.6)
## Portland cement data set is used. data(pcd) k<-0.1650 d<--0.1300 oglt1(Y~X1+X2+X3+X4-1,k,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Ordinary Generalized Type (1) Liu # Estimator. data(pcd) k<-c(0:5/10) d<-c(420:450/10) msemat<-oglt1(Y~X1+X2+X3+X4-1,k,d,data=pcd) matplot(d,oglt1(Y~X1+X2+X3+X4-1,k,d,data=pcd),type="l",ylab=c("MSE"), main=c("Plot of MSE of Ordinary Generalized Type (1) Liu Estimator"), cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3) text(y=msemat[1,],x=d[1],labels=c(paste0("k=",k)),pos=4,cex=0.6)
This function can be used to find the Type (2) Liu Estimated values, corresponding scalar Mean Square Error (MSE) value in the linear model. Further the variation of MSE values can be shown graphically.
oglt2(formula, k, d, data = NULL, na.action, ...)
oglt2(formula, k, d, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
k |
a single numeric value or a vector of set of numeric values. See ‘Example’. |
d |
a single numeric value or a vector of set of numeric values. See ‘Example’. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use matplot
so as to obtain the variation of scalar MSE values graphically. See ‘Examples’.
If k
and d
are single numeric values then oglt2
returns the Ordinary Generalized Type (2) Liu Estimated values, standard error values, t statistic values, p value, corresponding scalar MSE value.
If k
and d
are vector of set of numeric values then oglt2
returns the matrix of scalar MSE values of Ordinary Generalized Type (2) Liu Estimator by representing k
and d
as column names and row names respectively.
P.Wijekoon, A.Dissanayake
Arumairajan, S. and Wijekoon, P. (2015) ] Optimal Generalized Biased Estimator in Linear Regression Model in Open Journal of Statistics, pp. 403–411
Rong,Jian-Ying (2010) Adjustive Liu Type Estimators in linear regression models in communication in statistics-simulation and computation, volume 39 DOI:10.1080/03610918.2010.484120
## Portland cement data set is used. data(pcd) k<-0.1650 d<--0.1300 oglt2(Y~X1+X2+X3+X4-1,k,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Ordinary Generalized Type (2) Liu # Estimator. data(pcd) k<-c(0:5/10) d<-c(425:440/10) msemat<-oglt2(Y~X1+X2+X3+X4-1,k,d,data=pcd) matplot(d,oglt2(Y~X1+X2+X3+X4-1,k,d,data=pcd),type="l",ylab=c("MSE"), main=c("Plot of MSE of Ordinary Generalized Type (2) Liu Estimator"), cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3) text(y=msemat[1,],x=d[1],labels=c(paste0("k=",k)),pos=4,cex=0.6)
## Portland cement data set is used. data(pcd) k<-0.1650 d<--0.1300 oglt2(Y~X1+X2+X3+X4-1,k,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Ordinary Generalized Type (2) Liu # Estimator. data(pcd) k<-c(0:5/10) d<-c(425:440/10) msemat<-oglt2(Y~X1+X2+X3+X4-1,k,d,data=pcd) matplot(d,oglt2(Y~X1+X2+X3+X4-1,k,d,data=pcd),type="l",ylab=c("MSE"), main=c("Plot of MSE of Ordinary Generalized Type (2) Liu Estimator"), cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3) text(y=msemat[1,],x=d[1],labels=c(paste0("k=",k)),pos=4,cex=0.6)
This function can be used to find the Ordinary Generalized Type (3) Liu Estimated values, corresponding scalar Mean Square Error (MSE) value in the linear model. Further the variation of MSE values can be shown graphically.
oglt3(formula, k, d, data = NULL, na.action, ...)
oglt3(formula, k, d, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
k |
a single numeric value or a vector of set of numeric values. See ‘Example’. |
d |
a single numeric value or a vector of set of numeric values. See ‘Example’. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use matplot
so as to obtain the variation of scalar MSE values graphically. See ‘Examples’
If k
and d
are single numeric values then oglt3
returns the Ordinary Generalized Type (3) Liu Estimated values, standard error values, t statistic values, p value, corresponding scalar MSE value.
If k
and d
are vector of set of numeric values then oglt3
returns the matrix of scalar MSE values of Ordinary Generalized Type (3) Liu Estimator by representing k
and d
as column names and row names respectively.
P.Wijekoon, A.Dissanayake
Arumairajan, S. and Wijekoon, P. (2015) ] Optimal Generalized Biased Estimator in Linear Regression Model in Open Journal of Statistics, pp. 403–411
Rong,Jian-Ying (2010) Adjustive Liu Type Estimators in linear regression models in communication in statistics-simulation and computation, volume 39 DOI:10.1080/03610918.2010.484120
## Portland cement data set is used. data(pcd) k<-0.1650 d<--0.1300 oglt3(Y~X1+X2+X3+X4-1,k,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Ordinary Generalized Type (3) # Liu Estimator. data(pcd) k<-c(0:5/10) d<-c(-440:-420/10) msemat<-oglt3(Y~X1+X2+X3+X4-1,k,d,data=pcd) matplot(d,oglt3(Y~X1+X2+X3+X4-1,k,d,data=pcd),type="l",ylab=c("MSE"), main=c("Plot of MSE of Ordinary Generalized Type (3) Liu Estimator"), cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3) text(y=msemat[1,],x=d[1],labels=c(paste0("k=",k)),pos=4,cex=0.6)
## Portland cement data set is used. data(pcd) k<-0.1650 d<--0.1300 oglt3(Y~X1+X2+X3+X4-1,k,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Ordinary Generalized Type (3) # Liu Estimator. data(pcd) k<-c(0:5/10) d<-c(-440:-420/10) msemat<-oglt3(Y~X1+X2+X3+X4-1,k,d,data=pcd) matplot(d,oglt3(Y~X1+X2+X3+X4-1,k,d,data=pcd),type="l",ylab=c("MSE"), main=c("Plot of MSE of Ordinary Generalized Type (3) Liu Estimator"), cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3) text(y=msemat[1,],x=d[1],labels=c(paste0("k=",k)),pos=4,cex=0.6)
ogmix
can be used to obtain the Mixed Regression Estimated values and corresponding scalar Mean Square Error (MSE) value.
ogmix(formula, r, R, dpn, delt, data, na.action, ...)
ogmix(formula, r, R, dpn, delt, data, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
r |
is a |
R |
is a |
dpn |
dispersion matrix of vector of disturbances of linear restricted model, |
delt |
values of |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
In order to calculate the Ordinary Generalized Mixed Regression Estimator the prior information are required. Therefore those prior information should be mentioned within the function.
ogmix
returns the Ordinary Generalized Mixed Regression Estimated values, standard error values, t statistic values,p value and corresponding scalar MSE value.
P.Wijekoon, A.Dissanayake
Arumairajan, S. and Wijekoon, P. (2015) ] Optimal Generalized Biased Estimator in Linear Regression Model in Open Journal of Statistics, pp. 403–411
Theil, H. and Goldberger, A.S. (1961) On pure and mixed statistical estimation in economics in International Economic review, volume 2, pp. 65–78
## Portland cement data set is used. data(pcd) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) ogmix(Y~X1+X2+X3+X4-1,r,R,dpn,delt,data=pcd) # Model without the intercept is considered.
## Portland cement data set is used. data(pcd) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) ogmix(Y~X1+X2+X3+X4-1,r,R,dpn,delt,data=pcd) # Model without the intercept is considered.
ogols
can be used to calculate the values of Ordinary Generalized Ordinary Least Square Estimated values and corresponding scaler Mean Square Error (MSE) value.
ogols(formula, data, na.action, ...)
ogols(formula, data, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
ogols
returns the Ordinary Generalized Ordinary Least Square Estimated values, standard error values, t statistic values,p value and corresponding scalar MSE value.
P.Wijekoon, A.Dissanayake
Arumairajan, S. and Wijekoon, P. (2015) ] Optimal Generalized Biased Estimator in Linear Regression Model in Open Journal of Statistics, pp. 403–411
Nagler, J. (Updated 2011) Notes on Ordinary Least Square Estimators.
## Portland cement data set is used. data(pcd) ogols(Y~X1+X2+X3+X4-1,data=pcd) # Model without the intercept is considered.
## Portland cement data set is used. data(pcd) ogols(Y~X1+X2+X3+X4-1,data=pcd) # Model without the intercept is considered.
This function can be used to find the Ordinary Generalized Ridge Regression Estimated values and corresponding scalar Mean Square Error (MSE) value. Further the variation of MSE can be determined graphically.
ogre(formula, k, data = NULL, na.action, ...)
ogre(formula, k, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
k |
a single numeric value or a vector of set of numeric values. See ‘Example’. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use plot
so as to obtain the variation of scalar MSE values graphically. See ‘Examples’.
If k
is a single numeric values then ogre
returns the Ordinary Generalized Ridge Regression Estimated values, standard error values, t statistic values, p value and corresponding scalar MSE value.
If k
is a vector of set of numeric values then ogre
returns all the scalar MSE values and corresponding parameter values of Ordinary Generalized Ridge Regression Estimator.
P.Wijekoon, A.Dissanayake
Arumairajan, S. and Wijekoon, P. (2015) ] Optimal Generalized Biased Estimator in Linear Regression Model in Open Journal of Statistics, pp. 403–411
Hoerl, A.E. and Kennard, R.W. (1970) Ridge Regression Biased estimation for non orthogonal problem, 12, pp.55–67.
## Portland cement data set is used. data(pcd) k<-0.01 ogre(Y~X1+X2+X3+X4-1,k,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of # Ordinary Generalized Ridge Regression Estimator. data(pcd) k<-c(0:10/10) plot(ogre(Y~X1+X2+X3+X4-1,k,data=pcd), main=c("Plot of MSE of Ordinary Generalized Ridge Regression Estimator"),type="b",cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(ogre(Y~X1+X2+X3+X4-1,k,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
## Portland cement data set is used. data(pcd) k<-0.01 ogre(Y~X1+X2+X3+X4-1,k,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of # Ordinary Generalized Ridge Regression Estimator. data(pcd) k<-c(0:10/10) plot(ogre(Y~X1+X2+X3+X4-1,k,data=pcd), main=c("Plot of MSE of Ordinary Generalized Ridge Regression Estimator"),type="b",cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(ogre(Y~X1+X2+X3+X4-1,k,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
This function can be used to find the Ordinary Generalized Restricted Liu Estimated values and corresponding scalar Mean Square Error (MSE) value. Further the variation of MSE can be shown graphically.
ogrliu(formula, r, R, delt, d, data = NULL, na.action, ...)
ogrliu(formula, r, R, delt, d, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
r |
is a |
R |
is a |
delt |
values of |
d |
a single numeric value or a vector of set of numeric values. See ‘Example’. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use plot
so as to obtain the variation of scalar MSE values graphically. See ‘Examples’.
If d
is a single numeric values then rliu
returns the Restricted Liu Estimated values, standard error values, t statistic values, p value and corresponding scalar MSE value.
If d
is a vector of set of numeric values then ogrliu
returns all the scalar MSE values and corresponding parameter values of Ordinary Generalized Restricted Liu Estimator.
P.Wijekoon, A.Dissanayake
Arumairajan, S. and Wijekoon, P. (2015) ] Optimal Generalized Biased Estimator in Linear Regression Model in Open Journal of Statistics, pp. 403–411
Hubert, M.H. and Wijekoon, P. (2006) Improvement of the Liu estimator in the linear regression medel, Chapter (4-8)
data(pcd) d<-0.05 r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) delt<-c(0,0,0) ogrliu(Y~X1+X2+X3+X4-1,r,R,delt,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of # Ordinary Generalized Resticted Liu Estimator. data(pcd) d<-c(0:10/10) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) delt<-c(0,0,0) plot(ogrliu(Y~X1+X2+X3+X4-1,r,R,delt,d,data=pcd), main=c("Plot of MSE of Ordinary Generalized Restricted Liu Estimator"),type="b",cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(ogrliu(Y~X1+X2+X3+X4-1,r,R,delt,d,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
data(pcd) d<-0.05 r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) delt<-c(0,0,0) ogrliu(Y~X1+X2+X3+X4-1,r,R,delt,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of # Ordinary Generalized Resticted Liu Estimator. data(pcd) d<-c(0:10/10) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) delt<-c(0,0,0) plot(ogrliu(Y~X1+X2+X3+X4-1,r,R,delt,d,data=pcd), main=c("Plot of MSE of Ordinary Generalized Restricted Liu Estimator"),type="b",cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(ogrliu(Y~X1+X2+X3+X4-1,r,R,delt,d,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
This function can be used to find the Ordinary Generalized Restricted Least Square Estimated values and corresponding scalar Mean Square Error (MSE) value.
ogrls(formula, r, R, delt, data, na.action, ...)
ogrls(formula, r, R, delt, data, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
r |
is a |
R |
is a |
delt |
values of |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
In order to find the results of Ordinary Generalized Restricted Least Square Estimator, prior information should be specified.
ogrls
returns the Ordinary Generalized Restricted Least Square Estimated values, standard error values, t statistic values,p value and corresponding scalar MSE value.
P.Wijekoon, A.Dissanayake
Arumairajan, S. and Wijekoon, P. (2015) ] Optimal Generalized Biased Estimator in Linear Regression Model in Open Journal of Statistics, pp. 403–411
Hubert, M.H. and Wijekoon, P. (2006) Improvement of the Liu estimator in the linear regression medel, Chapter (4-8)
## Portland cement data set is used. data(pcd) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) delt<-c(0,0,0) ogrls(Y~X1+X2+X3+X4-1,r,R,delt,data=pcd) # Model without the intercept is considered.
## Portland cement data set is used. data(pcd) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) delt<-c(0,0,0) ogrls(Y~X1+X2+X3+X4-1,r,R,delt,data=pcd) # Model without the intercept is considered.
This function can be used to find the Ordinary Generalized Restricted Ridge Regression Estimated values and corresponding scalar Mean Square Error (MSE) value. Further the variation of MSE can be shown graphically.
ogrrre(formula, r, R, dpn, delt, k, data = NULL, na.action, ...)
ogrrre(formula, r, R, dpn, delt, k, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
r |
is a |
R |
is a |
dpn |
dispersion matrix of vector of disturbances of linear restricted model, |
delt |
values of |
k |
a single numeric value or a vector of set of numeric values. See ‘Example’. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use plot
so as to obtain the variation of scalar MSE values graphically. See ‘Examples’.
If k
is a single numeric values then ogrrre
returns the Ordinary Generalized Restricted Ridge Regression Estimated values, standard error values, t statistic values, p value and corresponding scalar MSE value.
If k
is a vector of set of numeric values then ogrrre
returns all the scalar MSE values and corresponding parameter values of Ordinary Generalized Restricted Ridge Regression Estimator.
P.Wijekoon, A.Dissanayake
Arumairajan, S. and Wijekoon, P. (2015) ] Optimal Generalized Biased Estimator in Linear Regression Model in Open Journal of Statistics, pp. 403–411
Sarkara, N. (1992), A new estimator combining the ridge regression and the restricted least squares methods of estimation in Communications in Statistics - Theory and Methods, volume 21, pp. 1987–2000. DOI:10.1080/03610929208830893
## Portland cement data set is used. data(pcd) k<-0.05 r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) ogrrre(Y~X1+X2+X3+X4-1,r,R,dpn,delt,k,data=pcd) # Model without the intercept is considered. ## To obtain variation of MSE of Ordinary Generalized Restricted # Ridge Regression Estimator. data(pcd) k<-c(0:10/10) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) plot(ogrrre(Y~X1+X2+X3+X4-1,r,R,dpn,delt,k,data=pcd), main=c("Plot of MSE of Ordinary Generalized Restricted Ridge Regression Estimator"),type="b",cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(ogrrre(Y~X1+X2+X3+X4-1,r,R,dpn,delt,k,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
## Portland cement data set is used. data(pcd) k<-0.05 r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) ogrrre(Y~X1+X2+X3+X4-1,r,R,dpn,delt,k,data=pcd) # Model without the intercept is considered. ## To obtain variation of MSE of Ordinary Generalized Restricted # Ridge Regression Estimator. data(pcd) k<-c(0:10/10) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) plot(ogrrre(Y~X1+X2+X3+X4-1,r,R,dpn,delt,k,data=pcd), main=c("Plot of MSE of Ordinary Generalized Restricted Ridge Regression Estimator"),type="b",cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(ogrrre(Y~X1+X2+X3+X4-1,r,R,dpn,delt,k,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
This function can be used to find the Ordinary Generalized Stochastic Restricted Liu Estimated values and corresponding scalar Mean Square Error (MSE) value. Further the variation of MSE can be shown graphically.
ogsrliu(formula, r, R, dpn, delt, d, data = NULL, na.action, ...)
ogsrliu(formula, r, R, dpn, delt, d, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
r |
is a |
R |
is a |
dpn |
dispersion matrix of vector of disturbances of linear restricted model, |
delt |
values of |
d |
a single numeric value or a vector of set of numeric values. See ‘Example’. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use plot
so as to obtain the variation of scalar MSE values graphically. See ‘Examples’.
If d
is a single numeric values then ogsrliu
returns the Ordinary Generalized Stochastic Restricted Liu Estimated values, standard error values, t statistic values, p value and corresponding scalar MSE value.
If d
is a vector of set of numeric values then ogsrliu
returns all the scalar MSE values and corresponding parameter values of Ordinary Generalized Stochastic Resticted Liu Estimator.
P.Wijekoon, A.Dissanayake
Arumairajan, S. and Wijekoon, P. (2015) ] Optimal Generalized Biased Estimator in Linear Regression Model in Open Journal of Statistics, pp. 403–411
Hubert, M.H. and Wijekoon, P. (2006) Improvement of the Liu estimator in the linear regression medel, Chapter (4-8)
## Portland cement data set is used. data(pcd) d<-0.05 r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) ogsrliu(Y~X1+X2+X3+X4-1,r,R,dpn,delt,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Ordinary Generalized Stochastic # Restricted Liu Estimator. data(pcd) d<-c(0:10/10) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) plot(ogsrliu(Y~X1+X2+X3+X4-1,r,R,dpn,delt,d,data=pcd), main=c("Plot of MSE of Ordinary Generalized Stochastic Restricted Liu Estimator"),type="b",cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(ogsrliu(Y~X1+X2+X3+X4-1,r,R,dpn,delt,d,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
## Portland cement data set is used. data(pcd) d<-0.05 r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) ogsrliu(Y~X1+X2+X3+X4-1,r,R,dpn,delt,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Ordinary Generalized Stochastic # Restricted Liu Estimator. data(pcd) d<-c(0:10/10) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) plot(ogsrliu(Y~X1+X2+X3+X4-1,r,R,dpn,delt,d,data=pcd), main=c("Plot of MSE of Ordinary Generalized Stochastic Restricted Liu Estimator"),type="b",cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(ogsrliu(Y~X1+X2+X3+X4-1,r,R,dpn,delt,d,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
This function can be used to find the Ordinary Generalized Stochastic Restricted Ridge Estimated values and corresponding scalar Mean Square Error (MSE) value. Further the variation of MSE can be shown graphically.
ogsrre(formula, r, R, dpn, delt, k, data = NULL, na.action, ...)
ogsrre(formula, r, R, dpn, delt, k, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
r |
is a |
R |
is a |
dpn |
dispersion matrix of vector of disturbances of linear restricted model, |
delt |
values of |
k |
a single numeric value or a vector of set of numeric values. See ‘Example’. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use plot
so as to obtain the variation of scalar MSE values graphically. See ‘Examples’.
If k
is a single numeric values then ogsrre
returns the Ordinary Generalized Stochastic Restricted Ridge Estimated values, standard error values, t statistic values, p value and corresponding scalar MSE value.
If k
is a vector of set of numeric values then ogsrre
returns all the scalar MSE values and corresponding parameter values of Ordinary Generalized Stochastic Restricted Ridge Estimator.
P.Wijekoon, A.Dissanayake
Arumairajan, S. and Wijekoon, P. (2015) ] Optimal Generalized Biased Estimator in Linear Regression Model in Open Journal of Statistics, pp. 403–411
Revan, M. (2009) A stochastic restricted ridge regression estimator in Journal of Multivariate Analysis, volume 100, issue 8, pp. 1706–1716
## Portland cement data set is used. data(pcd) k<-0.05 r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) ogsrre(Y~X1+X2+X3+X4-1,r,R,dpn,delt,k,data=pcd) # Model without the intercept is considered. ## To obtain variation of MSE of Ordinary Generalized Stochastic # Restricted Ridge Estimator. data(pcd) k<-c(0:10/10) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) plot(ogsrre(Y~X1+X2+X3+X4-1,r,R,dpn,delt,k,data=pcd), main=c("Plot of MSE of Ordinary Generalized Stochastic Restricted Ridge Estimator"),type="b",cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(ogsrre(Y~X1+X2+X3+X4-1,r,R,dpn,delt,k,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
## Portland cement data set is used. data(pcd) k<-0.05 r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) ogsrre(Y~X1+X2+X3+X4-1,r,R,dpn,delt,k,data=pcd) # Model without the intercept is considered. ## To obtain variation of MSE of Ordinary Generalized Stochastic # Restricted Ridge Estimator. data(pcd) k<-c(0:10/10) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) plot(ogsrre(Y~X1+X2+X3+X4-1,r,R,dpn,delt,k,data=pcd), main=c("Plot of MSE of Ordinary Generalized Stochastic Restricted Ridge Estimator"),type="b",cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(ogsrre(Y~X1+X2+X3+X4-1,r,R,dpn,delt,k,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
ols
can be used to calculate the values of Ordinary Least Square Estimated values and corresponding scaler Mean Square Error (MSE) value.
ols(formula, data, na.action, ...)
ols(formula, data, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
If there is any dependence present among the independent variables (multicollinearity) then it will be indicated as a warning massage. In case of multicollinearity Ordinary Least Square Estimators are not the best estimators.
ols
returns the Ordinary Least Square Estimated values, standard error values, t statistic values,p value and corresponding scalar MSE value. In addition if the dataset contains multicollinearity then it will be indicated as a warning massage.
P.Wijekoon, A.Dissanayake
Nagler, J. (Updated 2011) Notes on Ordinary Least Square Estimators.
## Portland cement data set is used. data(pcd) ols(Y~X1+X2+X3+X4-1,data=pcd) # Model without the intercept is considered.
## Portland cement data set is used. data(pcd) ols(Y~X1+X2+X3+X4-1,data=pcd) # Model without the intercept is considered.
optimum
can be used to obtain the optimal scalar Mean Square Error (MSE) values and its corresponding parameter values (k
and/or d
) of all estimators and the optimum Prediction Sum of Square (PRESS) values and its corresponding parameter values k
and d
of some of the estimators considered in this package.
optimum(formula , r, R, dpn, delt, aa1, aa2, aa3, k, d, press = FALSE, data = NULL, na.action, ...)
optimum(formula , r, R, dpn, delt, aa1, aa2, aa3, k, d, press = FALSE, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
r |
is a |
R |
is a |
dpn |
dispersion matrix of vector of disturbances of linear restricted model, |
delt |
values of |
aa1 |
adjusted parameters of Type (1) Adjusted Liu Estimators and that should be a set of scalars belongs to real number system. Values for “aa1” should be given as a |
aa2 |
adjusted parameters of Type (2) Adjusted Liu Estimators and that should be a set of scalars belongs to real number system. Values for “aa2” should be given as a |
aa3 |
adjusted parameters of Type (3) Adjusted Liu Estimators and that should be a set of scalars belongs to real number system. Values for “aa3” should be given as a |
k |
a vector of set of numeric values. See ‘Examples’. |
d |
a vector of set of numeric values. See ‘Examples’. |
press |
an optional object specifying the PRESS values. That is, if “press=TRUE” then summary of PRESS of some of the estimators are returned with corresponding |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Optimum scalar MSE values of all estimators can be found for a given range of parameters. Hence the best estimator can be found based on the MSE criteria. Further prior information should be given in order to obtained the results.
The way of finding aa1
, aa2
and aa3
can be determined from Rong,Jian-Ying, (2010), Adjustive Liu Type Estimators in linear regression models in communication in statistics-simulation and computation, volume 39
By default, optimum
returns the optimum scalar MSE values and corresponding parameter values of all estimators. If “press=TRUE” then optimum
return the optimum PRESS values and corresponding parameter values of some of the estimators.
Conversion of estimators and corresponding k
and/or d
values are given below.
SRRE = MIXE k=0
OGSRRE = MIXE k=0
RE = OLS k=0
OGRE = OLS k=0
RLE = RLS d=1
OGRLE = RLS d=1
LE = OLS d=1
OGLE = OLS d=1
RRRE = RLS k=0
OGRRRE = RLS k=0
SRLE = MIXE d=1
OGSRLE = MIXE d=1
AURE = OLS k=0
OGAURE = OLS k=0
AULE = OLS d=1
OGAULE = OLS d=1
LTE1 = RE d=0
OGLTE1 = RE d=0
LTE1 = OLS k=0 and d=0
OGLTE1 = OLS k=0 and d=0
LTE2 = RE d=0
OGLTE2 = RE d=0
LTE2 = OLS k=0 and d=0
OGLTE2 = OLS k=0 and d=0
P.Wijekoon, A.Dissanayake
## portland cement data set is used. data(pcd) attach(pcd) k<-c(0:3/10) d<-c(-3:3/10) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) aa1<-c(0.958451,1.021155,0.857821,1.040296) aa2<-c(0.345454,1.387888,0.866466,1.354454) aa3<-c(0.344841,1.344723,0.318451,1.523316) optimum(Y~X1+X2+X3+X4-1,r,R,dpn,delt,aa1,aa2,aa3,k,d,data=pcd) # Model without the intercept is considered. ## Use "press=TRUE" to get the optimum PRESS values only for some of the estimators.
## portland cement data set is used. data(pcd) attach(pcd) k<-c(0:3/10) d<-c(-3:3/10) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) aa1<-c(0.958451,1.021155,0.857821,1.040296) aa2<-c(0.345454,1.387888,0.866466,1.354454) aa3<-c(0.344841,1.344723,0.318451,1.523316) optimum(Y~X1+X2+X3+X4-1,r,R,dpn,delt,aa1,aa2,aa3,k,d,data=pcd) # Model without the intercept is considered. ## Use "press=TRUE" to get the optimum PRESS values only for some of the estimators.
These data come from an experiment investigation of the heat evolved during the setting and hardening of Portland cements of varied composition and the dependence of this heat on the percentages of four components in the clinkers from which the cement was produced.
data(pcd)
data(pcd)
A data frame with 13 observations on the following 5 variables.
Y
The heat evolved after 180 days of caring. (Calories per gram)
X1
Tricalcium Aluminate.
X2
Tricalcium Silicate.
X3
Tetracalcium Aluminoferrite.
X4
Dicalcium Silicate.
Mishra, S.K. (2004) Estimation under Multicollinearity: Application of Restricted Liu and Maximum Entropy Estimators to the Portland Cement Dataset,North-Eastern Hill University (NEHU).
data(pcd)
data(pcd)
This function can be used to find the Ordinary Ridge Regression Estimated values and corresponding scalar Mean Square Error (MSE) value. Further the variation of MSE can be determined graphically.
rid(formula, k, data = NULL, na.action, ...)
rid(formula, k, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
k |
a single numeric value or a vector of set of numeric values. See ‘Examples’. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use plot
so as to obtain the variation of scalar MSE values graphically. See ‘Examples’.
If k
is a single numeric values then rid
returns the Ordinary Ridge Regression Estimated values, standard error values, t statistic values, p value and corresponding scalar MSE value.
If k
is a vector of set of numeric values then rid
returns all the scalar MSE values and corresponding parameter values of Ordinary Ridge Regression Estimator.
P.Wijekoon, A.Dissanayake
Hoerl, A.E. and Kennard, R.W. (1970) Ridge Regression Biased estimation for non orthogonal problem, 12, pp.55–67.
## Portland cement data set is used. data(pcd) k<-0.01 rid(Y~X1+X2+X3+X4-1,k,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Ordinary Ridge Regression Estimator. data(pcd) k<-c(0:10/10) plot(rid(Y~X1+X2+X3+X4-1,k,data=pcd), main=c("Plot of MSE of Ordinary Ridge Regression Estimator"), type="b",cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(rid(Y~X1+X2+X3+X4-1,k,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
## Portland cement data set is used. data(pcd) k<-0.01 rid(Y~X1+X2+X3+X4-1,k,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Ordinary Ridge Regression Estimator. data(pcd) k<-c(0:10/10) plot(rid(Y~X1+X2+X3+X4-1,k,data=pcd), main=c("Plot of MSE of Ordinary Ridge Regression Estimator"), type="b",cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(rid(Y~X1+X2+X3+X4-1,k,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
This function can be used to find the Restricted Liu Estimated values and corresponding scalar Mean Square Error (MSE) value. Further the variation of MSE can be shown graphically.
rliu(formula, r, R, delt, d, data = NULL, na.action, ...)
rliu(formula, r, R, delt, d, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
r |
is a |
R |
is a |
delt |
values of |
d |
a single numeric value or a vector of set of numeric values. See ‘Examples’. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use plot
so as to obtain the variation of scalar MSE values graphically. See ‘Examples’.
If d
is a single numeric values then rliu
returns the Restricted Liu Estimated values, standard error values, t statistic values, p value and corresponding scalar MSE value.
If d
is a vector of set of numeric values then rliu
returns all the scalar MSE values and corresponding parameter values of Restricted Liu Estimator.
P.Wijekoon, A.Dissanayake
Hubert, M.H. and Wijekoon, P. (2006) Improvement of the Liu estimator in the linear regression medel, Chapter (4-8)
data(pcd) d<-0.05 r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) delt<-c(0,0,0) rliu(Y~X1+X2+X3+X4-1,r,R,delt,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Resticted Liu Estimator. data(pcd) d<-c(0:10/10) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) delt<-c(0,0,0) plot(rliu(Y~X1+X2+X3+X4-1,r,R,delt,d,data=pcd), main=c("Plot of MSE of Restricted Liu Estimator"),type="b", cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(rliu(Y~X1+X2+X3+X4-1,r,R,delt,d,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
data(pcd) d<-0.05 r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) delt<-c(0,0,0) rliu(Y~X1+X2+X3+X4-1,r,R,delt,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Resticted Liu Estimator. data(pcd) d<-c(0:10/10) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) delt<-c(0,0,0) plot(rliu(Y~X1+X2+X3+X4-1,r,R,delt,d,data=pcd), main=c("Plot of MSE of Restricted Liu Estimator"),type="b", cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(rliu(Y~X1+X2+X3+X4-1,r,R,delt,d,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
This function can be used to find the Restricted Least Square Estimated values and corresponding scalar Mean Square Error (MSE) value.
rls(formula, r, R, delt, data, na.action, ...)
rls(formula, r, R, delt, data, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
r |
is a |
R |
is a |
delt |
values of |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
In order to find the results of Restricted Least Square Estimator, prior information should be specified.
rls
returns the Restricted Least Square Estimated values, standard error values, t statistic values,p value and corresponding scalar MSE value.
P.Wijekoon, A.Dissanayake
Hubert, M.H. and Wijekoon, P. (2006) Improvement of the Liu estimator in the linear regression medel, Chapter (4-8)
## Portland cement data set is used. data(pcd) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) delt<-c(0,0,0) rls(Y~X1+X2+X3+X4-1,r,R,delt,data=pcd) # Model without the intercept is considered.
## Portland cement data set is used. data(pcd) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) delt<-c(0,0,0) rls(Y~X1+X2+X3+X4-1,r,R,delt,data=pcd) # Model without the intercept is considered.
This function can be used to find the Restricted Ridge Regression Estimated values and corresponding scalar Mean Square Error (MSE) value. Further the variation of MSE can be shown graphically.
rrre(formula, r, R, dpn, delt, k, data = NULL, na.action, ...)
rrre(formula, r, R, dpn, delt, k, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
r |
is a |
R |
is a |
dpn |
dispersion matrix of vector of disturbances of linear restricted model, |
delt |
values of |
k |
a single numeric value or a vector of set of numeric values. See ‘Examples’. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use plot
so as to obtain the variation of scalar MSE values graphically. See ‘Examples’.
If k
is a single numeric values then rrre
returns the Restricted Ridge Regression Estimated values, standard error values, t statistic values, p value and corresponding scalar MSE value.
If k
is a vector of set of numeric values then rrre
returns all the scalar MSE values and corresponding parameter values of Restricted Ridge Regression Estimator.
P.Wijekoon, A.Dissanayake
Sarkara, N. (1992), A new estimator combining the ridge regression and the restricted least squares methods of estimation in Communications in Statistics - Theory and Methods, volume 21, pp. 1987–2000. DOI:10.1080/03610929208830893
## Portland cement data set is used. data(pcd) k<-0.05 r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) rrre(Y~X1+X2+X3+X4-1,r,R,dpn,delt,k,data=pcd) # Model without the intercept is considered. ## To obtain variation of MSE of Restricted Ridge Regression Estimator. data(pcd) k<-c(0:10/10) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) plot(rrre(Y~X1+X2+X3+X4-1,r,R,dpn,delt,k,data=pcd), main=c("Plot of MSE of Restricted Ridge Regression Estimator"), type="b",cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(rrre(Y~X1+X2+X3+X4-1,r,R,dpn,delt,k,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
## Portland cement data set is used. data(pcd) k<-0.05 r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) rrre(Y~X1+X2+X3+X4-1,r,R,dpn,delt,k,data=pcd) # Model without the intercept is considered. ## To obtain variation of MSE of Restricted Ridge Regression Estimator. data(pcd) k<-c(0:10/10) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) plot(rrre(Y~X1+X2+X3+X4-1,r,R,dpn,delt,k,data=pcd), main=c("Plot of MSE of Restricted Ridge Regression Estimator"), type="b",cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(rrre(Y~X1+X2+X3+X4-1,r,R,dpn,delt,k,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
This function can be used to find the Stochastic Restricted Liu Estimated values and corresponding scalar Mean Square Error (MSE) value. Further the variation of MSE can be shown graphically.
srliu(formula, r, R, dpn, delt, d, data = NULL, na.action, ...)
srliu(formula, r, R, dpn, delt, d, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
r |
is a |
R |
is a |
dpn |
dispersion matrix of vector of disturbances of linear restricted model, |
delt |
values of |
d |
a single numeric value or a vector of set of numeric values. See ‘Examples’. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use plot
so as to obtain the variation of scalar MSE values graphically. See ‘Examples’.
If d
is a single numeric values then srliu
returns the Stochastic Restricted Liu Estimated values, standard error values, t statistic values, p value and corresponding scalar MSE value.
If d
is a vector of set of numeric values then srliu
returns all the scalar MSE values and corresponding parameter values of Stochastic Resticted Liu Estimator.
P.Wijekoon, A.Dissanayake
Hubert, M.H. and Wijekoon, P. (2006) Improvement of the Liu estimator in the linear regression medel, Chapter (4-8)
## Portland cement data set is used. data(pcd) d<-0.05 r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) srliu(Y~X1+X2+X3+X4-1,r,R,dpn,delt,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Stochastic Restricted Liu Estimator. data(pcd) d<-c(0:10/10) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) plot(srliu(Y~X1+X2+X3+X4-1,r,R,dpn,delt,d,data=pcd), main=c("Plot of MSE of Stochastic Restricted Liu Estimator"),type="b", cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(srliu(Y~X1+X2+X3+X4-1,r,R,dpn,delt,d,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
## Portland cement data set is used. data(pcd) d<-0.05 r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) srliu(Y~X1+X2+X3+X4-1,r,R,dpn,delt,d,data=pcd) # Model without the intercept is considered. ## To obtain the variation of MSE of Stochastic Restricted Liu Estimator. data(pcd) d<-c(0:10/10) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) plot(srliu(Y~X1+X2+X3+X4-1,r,R,dpn,delt,d,data=pcd), main=c("Plot of MSE of Stochastic Restricted Liu Estimator"),type="b", cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(srliu(Y~X1+X2+X3+X4-1,r,R,dpn,delt,d,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
This function can be used to find the Stochastic Restricted Ridge Estimated values and corresponding scalar Mean Square Error (MSE) value. Further the variation of MSE can be shown graphically.
srre(formula, r, R, dpn, delt, k, data = NULL, na.action, ...)
srre(formula, r, R, dpn, delt, k, data = NULL, na.action, ...)
formula |
in this section interested model should be given. This should be given as a |
r |
is a |
R |
is a |
dpn |
dispersion matrix of vector of disturbances of linear restricted model, |
delt |
values of |
k |
a single numeric value or a vector of set of numeric values. See ‘Examples’. |
data |
an optional data frame, list or environment containing the variables in the model. If not found in |
na.action |
if the dataset contain |
... |
currently disregarded. |
Since formula has an implied intercept term, use either y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use plot
so as to obtain the variation of scalar MSE values graphically. See ‘Examples’.
If k
is a single numeric values then srre
returns the Stochastic Restricted Ridge Estimated values, standard error values, t statistic values, p value and corresponding scalar MSE value.
If k
is a vector of set of numeric values then srre
returns all the scalar MSE values and corresponding parameter values of Stochastic Restricted Ridge Estimator.
P.Wijekoon, A.Dissanayake
Revan, M. (2009) A stochastic restricted ridge regression estimator in Journal of Multivariate Analysis, volume 100, issue 8, pp. 1706–1716
## Portland cement data set is used. data(pcd) k<-0.05 r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) srre(Y~X1+X2+X3+X4-1,r,R,dpn,delt,k,data=pcd) # Model without the intercept is considered. ## To obtain variation of MSE of Stochastic Restricted Ridge Estimator. data(pcd) k<-c(0:10/10) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) plot(srre(Y~X1+X2+X3+X4-1,r,R,dpn,delt,k,data=pcd), main=c("Plot of MSE of Stochastic Restricted Ridge Estimator"), type="b",cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(srre(Y~X1+X2+X3+X4-1,r,R,dpn,delt,k,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)
## Portland cement data set is used. data(pcd) k<-0.05 r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) srre(Y~X1+X2+X3+X4-1,r,R,dpn,delt,k,data=pcd) # Model without the intercept is considered. ## To obtain variation of MSE of Stochastic Restricted Ridge Estimator. data(pcd) k<-c(0:10/10) r<-c(2.1930,1.1533,0.75850) R<-c(1,0,0,0,0,1,0,0,0,0,1,0) dpn<-c(0.0439,0.0029,0.0325) delt<-c(0,0,0) plot(srre(Y~X1+X2+X3+X4-1,r,R,dpn,delt,k,data=pcd), main=c("Plot of MSE of Stochastic Restricted Ridge Estimator"), type="b",cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6) mseval<-data.frame(srre(Y~X1+X2+X3+X4-1,r,R,dpn,delt,k,data=pcd)) smse<-mseval[order(mseval[,2]),] points(smse[1,],pch=16,cex=0.6)