Title: | Local Polynomial Density Estimation and Inference |
---|---|
Description: | Without imposing stringent distributional assumptions or shape restrictions, nonparametric estimation has been popular in economics and other social sciences for counterfactual analysis, program evaluation, and policy recommendations. This package implements a novel density (and derivatives) estimator based on local polynomial regressions, documented in Cattaneo, Jansson and Ma (2022) <doi:10.18637/jss.v101.i02>: lpdensity() to construct local polynomial based density (and derivatives) estimator, and lpbwdensity() to perform data-driven bandwidth selection. |
Authors: | Matias D. Cattaneo [aut], Michael Jansson [aut], Xinwei Ma [aut, cre] |
Maintainer: | Xinwei Ma <[email protected]> |
License: | GPL-2 |
Version: | 2.5 |
Built: | 2024-12-06 06:53:37 UTC |
Source: | CRAN |
Without imposing stringent distributional assumptions or shape restrictions, nonparametric estimation has been popular in economics and other social sciences for counterfactual analysis, program evaluation, and policy recommendations. This package implements a novel density (and derivatives) estimator based on local polynomial regressions, documented in Cattaneo, Jansson and Ma (2020, 2023).
lpdensity
implements the local polynomial regression based density (and derivatives)
estimator. Robust bias-corrected inference methods, both pointwise (confidence intervals) and
uniform (confidence bands), are also implemented. lpbwdensity
implements the bandwidth
selection methods. See Cattaneo, Jansson and Ma (2022) for more implementation details and illustrations.
Related Stata
and R
packages useful for nonparametric estimation and inference are
available at https://nppackages.github.io/.
Matias D. Cattaneo, Princeton University. [email protected].
Michael Jansson, University of California Berkeley. [email protected].
Xinwei Ma (maintainer), University of California San Diego. [email protected].
Calonico, S., M. D. Cattaneo, and M. H. Farrell. 2018. On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference. Journal of the American Statistical Association, 113(522): 767-779. doi:10.1080/01621459.2017.1285776
Calonico, S., M. D. Cattaneo, and M. H. Farrell. 2022. Coverage Error Optimal Confidence Intervals for Local Polynomial Regression. Bernoulli, 28(4): 2998-3022. doi:10.3150/21-BEJ1445
Cattaneo, M. D., M. Jansson, and X. Ma. 2020. Simple Local Polynomial Density Estimators. Journal of the American Statistical Association, 115(531): 1449-1455. doi:10.1080/01621459.2019.1635480
Cattaneo, M. D., M. Jansson, and X. Ma. 2022. lpdensity: Local Polynomial Density Estimation and Inference. Journal of Statistical Software, 101(2): 1–25. doi:10.18637/jss.v101.i02
Cattaneo, M. D., M. Jansson, and X. Ma. 2023. Local Regression Distribution Estimators. Journal of Econometrics, 240(2): 105074. doi:10.1016/j.jeconom.2021.01.006
The coef method for local polynomial density bandwidth selection objects.
## S3 method for class 'lpbwdensity' coef(object, ...)
## S3 method for class 'lpbwdensity' coef(object, ...)
object |
Class "lpbwdensity" object, obtained by calling |
... |
Other arguments. |
A matrix containing grid points and selected bandwidths.
Matias D. Cattaneo, Princeton University. [email protected].
Michael Jansson, University of California Berkeley. [email protected].
Xinwei Ma (maintainer), University of California San Diego. [email protected].
lpbwdensity
for data-driven bandwidth selection.
Supported methods: coef.lpbwdensity
, print.lpbwdensity
, summary.lpbwdensity
.
# Generate a random sample set.seed(42); X <- rnorm(2000) # Construct bandwidth coef(lpbwdensity(X))
# Generate a random sample set.seed(42); X <- rnorm(2000) # Construct bandwidth coef(lpbwdensity(X))
The coef method for local polynomial density objects.
## S3 method for class 'lpdensity' coef(object, ...)
## S3 method for class 'lpdensity' coef(object, ...)
object |
Class "lpdensity" object, obtained by calling |
... |
Additional options. |
A matrix containing grid points and density estimates using p- and q-th order local polynomials.
Matias D. Cattaneo, Princeton University. [email protected].
Michael Jansson, University of California Berkeley. [email protected].
Xinwei Ma (maintainer), University of California San Diego. [email protected].
lpdensity
for local polynomial density estimation.
Supported methods: coef.lpdensity
, confint.lpdensity
,
plot.lpdensity
, print.lpdensity
, summary.lpdensity
,
vcov.lpdensity
.
# Generate a random sample set.seed(42); X <- rnorm(2000) # Estimate density and report results coef(lpdensity(data = X, bwselect = "imse-dpi"))
# Generate a random sample set.seed(42); X <- rnorm(2000) # Estimate density and report results coef(lpdensity(data = X, bwselect = "imse-dpi"))
The confint method for local polynomial density objects.
## S3 method for class 'lpdensity' confint(object, parm = NULL, level = NULL, ...)
## S3 method for class 'lpdensity' confint(object, parm = NULL, level = NULL, ...)
object |
Class "lpdensity" object, obtained by calling |
parm |
Integer, indicating which parameters are to be given confidence intervals. |
level |
Numeric scalar between 0 and 1, the significance level for computing confidence intervals |
... |
Additional options, including (i) |
A matrix containing grid points and confidence interval end points using p- and q-th order local polynomials.
Matias D. Cattaneo, Princeton University. [email protected].
Michael Jansson, University of California Berkeley. [email protected].
Xinwei Ma (maintainer), University of California San Diego. [email protected].
lpdensity
for local polynomial density estimation.
Supported methods: coef.lpdensity
, confint.lpdensity
,
plot.lpdensity
, print.lpdensity
, summary.lpdensity
,
vcov.lpdensity
.
# Generate a random sample set.seed(42); X <- rnorm(2000) # Estimate density and report 95% confidence intervals est1 <- lpdensity(data = X, bwselect = "imse-dpi") confint(est1) # Report results for a subset of grid points confint(est1, parm=est1$Estimate[4:10, "grid"]) confint(est1, grid=est1$Estimate[4:10, "grid"]) confint(est1, gridIndex=4:10) # Report the 99% uniform confidence band # Fix the seed for simulating critical values set.seed(42); confint(est1, level=0.99, CIuniform=TRUE) set.seed(42); confint(est1, alpha=0.01, CIuniform=TRUE)
# Generate a random sample set.seed(42); X <- rnorm(2000) # Estimate density and report 95% confidence intervals est1 <- lpdensity(data = X, bwselect = "imse-dpi") confint(est1) # Report results for a subset of grid points confint(est1, parm=est1$Estimate[4:10, "grid"]) confint(est1, grid=est1$Estimate[4:10, "grid"]) confint(est1, gridIndex=4:10) # Report the 99% uniform confidence band # Fix the seed for simulating critical values set.seed(42); confint(est1, level=0.99, CIuniform=TRUE) set.seed(42); confint(est1, alpha=0.01, CIuniform=TRUE)
lpbwdensity
implements the bandwidth selection methods for local
polynomial based density (and derivatives) estimation proposed and studied
in Cattaneo, Jansson and Ma (2020, 2023).
See Cattaneo, Jansson and Ma (2022) for more implementation details and illustrations.
Companion command: lpdensity
for estimation and robust bias-corrected inference.
Related Stata
and R
packages useful for nonparametric estimation and inference are
available at https://nppackages.github.io/.
lpbwdensity( data, grid = NULL, p = NULL, v = NULL, kernel = c("triangular", "uniform", "epanechnikov"), bwselect = c("mse-dpi", "imse-dpi", "mse-rot", "imse-rot"), massPoints = TRUE, stdVar = TRUE, regularize = TRUE, nLocalMin = NULL, nUniqueMin = NULL, Cweights = NULL, Pweights = NULL )
lpbwdensity( data, grid = NULL, p = NULL, v = NULL, kernel = c("triangular", "uniform", "epanechnikov"), bwselect = c("mse-dpi", "imse-dpi", "mse-rot", "imse-rot"), massPoints = TRUE, stdVar = TRUE, regularize = TRUE, nLocalMin = NULL, nUniqueMin = NULL, Cweights = NULL, Pweights = NULL )
data |
Numeric vector or one dimensional matrix/data frame, the raw data. |
grid |
Numeric, specifies the grid of evaluation points. When set to default, grid points will be chosen as 0.05-0.95 percentiles of the data, with a step size of 0.05. |
p |
Nonnegative integer, specifies the order of the local polynomial used to construct point
estimates. (Default is |
v |
Nonnegative integer, specifies the derivative of the distribution function to be estimated. |
kernel |
String, specifies the kernel function, should be one of |
bwselect |
String, specifies the method for data-driven bandwidth selection. This option will be
ignored if |
massPoints |
|
stdVar |
|
regularize |
|
nLocalMin |
Nonnegative integer, specifies the minimum number of observations in each local neighborhood. This option
will be ignored if |
nUniqueMin |
Nonnegative integer, specifies the minimum number of unique observations in each local neighborhood. This option
will be ignored if |
Cweights |
Numeric vector, specifies the weights used
for counterfactual distribution construction. Should have the same length as the data.
This option will be ignored if |
Pweights |
Numeric vector, specifies the weights used
in sampling. Should have the same length as the data.
This option will be ignored if |
BW |
A matrix containing (1) |
opt |
A list containing options passed to the function. |
Matias D. Cattaneo, Princeton University. [email protected].
Michael Jansson, University of California Berkeley. [email protected].
Xinwei Ma (maintainer), University of California San Diego. [email protected].
Cattaneo, M. D., M. Jansson, and X. Ma. 2020. Simple Local Polynomial Density Estimators. Journal of the American Statistical Association, 115(531): 1449-1455. doi:10.1080/01621459.2019.1635480
Cattaneo, M. D., M. Jansson, and X. Ma. 2022. lpdensity: Local Polynomial Density Estimation and Inference. Journal of Statistical Software, 101(2): 1–25. doi:10.18637/jss.v101.i02
Cattaneo, M. D., M. Jansson, and X. Ma. 2023. Local Regression Distribution Estimators. Journal of Econometrics, 240(2): 105074. doi:10.1016/j.jeconom.2021.01.006
Supported methods: coef.lpbwdensity
, print.lpbwdensity
, summary.lpbwdensity
.
# Generate a random sample set.seed(42); X <- rnorm(2000) # Construct bandwidth bw1 <- lpbwdensity(X) summary(bw1) # Display bandwidths for a subset of grid points summary(bw1, grid=bw1$BW[4:10, "grid"]) summary(bw1, gridIndex=4:10)
# Generate a random sample set.seed(42); X <- rnorm(2000) # Construct bandwidth bw1 <- lpbwdensity(X) summary(bw1) # Display bandwidths for a subset of grid points summary(bw1, grid=bw1$BW[4:10, "grid"]) summary(bw1, gridIndex=4:10)
lpdensity
implements the local polynomial regression based density (and derivatives)
estimator proposed in Cattaneo, Jansson and Ma (2020). Robust bias-corrected inference methods,
both pointwise (confidence intervals) and uniform (confidence bands), are also implemented
following the results in Cattaneo, Jansson and Ma (2020, 2023).
See Cattaneo, Jansson and Ma (2022) for more implementation details and illustrations.
Companion command: lpbwdensity
for bandwidth selection.
Related Stata
and R
packages useful for nonparametric estimation and inference are
available at https://nppackages.github.io/.
lpdensity( data, grid = NULL, bw = NULL, p = NULL, q = NULL, v = NULL, kernel = c("triangular", "uniform", "epanechnikov"), scale = NULL, massPoints = TRUE, bwselect = c("mse-dpi", "imse-dpi", "mse-rot", "imse-rot"), stdVar = TRUE, regularize = TRUE, nLocalMin = NULL, nUniqueMin = NULL, Cweights = NULL, Pweights = NULL )
lpdensity( data, grid = NULL, bw = NULL, p = NULL, q = NULL, v = NULL, kernel = c("triangular", "uniform", "epanechnikov"), scale = NULL, massPoints = TRUE, bwselect = c("mse-dpi", "imse-dpi", "mse-rot", "imse-rot"), stdVar = TRUE, regularize = TRUE, nLocalMin = NULL, nUniqueMin = NULL, Cweights = NULL, Pweights = NULL )
data |
Numeric vector or one dimensional matrix/data frame, the raw data. |
grid |
Numeric, specifies the grid of evaluation points. When set to default, grid points will be chosen as 0.05-0.95 percentiles of the data, with a step size of 0.05. |
bw |
Numeric, specifies the bandwidth
used for estimation. Can be (1) a positive scalar (common
bandwidth for all grid points); or (2) a positive numeric vector specifying bandwidths for
each grid point (should be the same length as |
p |
Nonnegative integer, specifies the order of the local polynomial used to construct point
estimates. (Default is |
q |
Nonnegative integer, specifies the order of the local polynomial used to construct
confidence intervals/bands (a.k.a. the bias correction order). Default is |
v |
Nonnegative integer, specifies the derivative of the distribution function to be estimated. |
kernel |
String, specifies the kernel function, should be one of |
scale |
Numeric, specifies how
estimates are scaled. For example, setting this parameter to 0.5 will scale down both the
point estimates and standard errors by half. Default is |
massPoints |
|
bwselect |
String, specifies the method for data-driven bandwidth selection. This option will be
ignored if |
stdVar |
|
regularize |
|
nLocalMin |
Nonnegative integer, specifies the minimum number of observations in each local neighborhood. This option
will be ignored if |
nUniqueMin |
Nonnegative integer, specifies the minimum number of unique observations in each local neighborhood. This option
will be ignored if |
Cweights |
Numeric, specifies the weights used for counterfactual distribution construction. Should have the same length as the data. |
Pweights |
Numeric, specifies the weights used in sampling. Should have the same length as the data. |
Bias correction is only used for the construction of confidence intervals/bands, but not for point
estimation. The point estimates, denoted by f_p
, are constructed using local polynomial estimates
of order p
, while the centering of the confidence intervals/bands, denoted by f_q
, are constructed
using local polynomial estimates of order q
. The confidence intervals/bands take the form:
[f_q - cv * SE(f_q) , f_q + cv * SE(f_q)]
, where cv
denotes the appropriate critical value and SE(f_q)
denotes an standard error estimate for the centering of the confidence interval/band. As a result,
the confidence intervals/bands may not be centered at the point estimates because they have been bias-corrected.
Setting q
and p
to be equal results on centered at the point estimate confidence intervals/bands,
but requires undersmoothing for valid inference (i.e., (I)MSE-optimal bandwdith for the density point estimator
cannot be used). Hence the bandwidth would need to be specified manually when q=p
, and the
point estimates will not be (I)MSE optimal. See Cattaneo, Jansson and Ma (2020, 2023) for details, and also
Calonico, Cattaneo, and Farrell (2018, 2022) for robust bias correction methods.
Sometimes the density point estimates may lie outside of the confidence intervals/bands, which can happen
if the underlying distribution exhibits high curvature at some evaluation point(s). One possible solution
in this case is to increase the polynomial order p
or to employ a smaller bandwidth.
Estimate |
A matrix containing (1) |
CovMat_p |
The variance-covariance matrix corresponding to |
CovMat_q |
The variance-covariance matrix corresponding to |
opt |
A list containing options passed to the function. |
Matias D. Cattaneo, Princeton University. [email protected].
Michael Jansson, University of California Berkeley. [email protected].
Xinwei Ma (maintainer), University of California San Diego. [email protected].
Calonico, S., M. D. Cattaneo, and M. H. Farrell. 2018. On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference. Journal of the American Statistical Association, 113(522): 767-779. doi:10.1080/01621459.2017.1285776
Calonico, S., M. D. Cattaneo, and M. H. Farrell. 2022. Coverage Error Optimal Confidence Intervals for Local Polynomial Regression. Bernoulli, 28(4): 2998-3022. doi:10.3150/21-BEJ1445
Cattaneo, M. D., M. Jansson, and X. Ma. 2020. Simple Local Polynomial Density Estimators. Journal of the American Statistical Association, 115(531): 1449-1455. doi:10.1080/01621459.2019.1635480
Cattaneo, M. D., M. Jansson, and X. Ma. 2022. lpdensity: Local Polynomial Density Estimation and Inference. Journal of Statistical Software, 101(2): 1–25. doi:10.18637/jss.v101.i02
Cattaneo, M. D., M. Jansson, and X. Ma. 2023. Local Regression Distribution Estimators. Journal of Econometrics, 240(2): 105074. doi:10.1016/j.jeconom.2021.01.006
Supported methods: coef.lpdensity
, confint.lpdensity
, plot.lpdensity
, print.lpdensity
, summary.lpdensity
, vcov.lpdensity
.
# Generate a random sample set.seed(42); X <- rnorm(2000) # Estimate density and report results est1 <- lpdensity(data = X, bwselect = "imse-dpi") summary(est1) # Report results for a subset of grid points summary(est1, grid=est1$Estimate[4:10, "grid"]) summary(est1, gridIndex=4:10) # Report the 99% uniform confidence band set.seed(42) # fix the seed for simulating critical values summary(est1, alpha=0.01, CIuniform=TRUE) # Plot the estimates and confidence intervals plot(est1, legendTitle="My Plot", legendGroups=c("X")) # Plot the estimates and the 99% uniform confidence band set.seed(42) # fix the seed for simulating critical values plot(est1, alpha=0.01, CIuniform=TRUE, legendTitle="My Plot", legendGroups=c("X")) # Adding a histogram to the background plot(est1, legendTitle="My Plot", legendGroups=c("X"), hist=TRUE, histData=X, histBreaks=seq(-1.5, 1.5, 0.25))
# Generate a random sample set.seed(42); X <- rnorm(2000) # Estimate density and report results est1 <- lpdensity(data = X, bwselect = "imse-dpi") summary(est1) # Report results for a subset of grid points summary(est1, grid=est1$Estimate[4:10, "grid"]) summary(est1, gridIndex=4:10) # Report the 99% uniform confidence band set.seed(42) # fix the seed for simulating critical values summary(est1, alpha=0.01, CIuniform=TRUE) # Plot the estimates and confidence intervals plot(est1, legendTitle="My Plot", legendGroups=c("X")) # Plot the estimates and the 99% uniform confidence band set.seed(42) # fix the seed for simulating critical values plot(est1, alpha=0.01, CIuniform=TRUE, legendTitle="My Plot", legendGroups=c("X")) # Adding a histogram to the background plot(est1, legendTitle="My Plot", legendGroups=c("X"), hist=TRUE, histData=X, histBreaks=seq(-1.5, 1.5, 0.25))
This has been replaced by plot.lpdensity
.
lpdensity.plot( ..., alpha = NULL, type = NULL, lty = NULL, lwd = NULL, lcol = NULL, pty = NULL, pwd = NULL, pcol = NULL, grid = NULL, CItype = NULL, CIuniform = FALSE, CIsimul = 2000, CIshade = NULL, CIcol = NULL, hist = FALSE, histData = NULL, histBreaks = NULL, histFillCol = 3, histFillShade = 0.2, histLineCol = "white", title = NULL, xlabel = NULL, ylabel = NULL, legendTitle = NULL, legendGroups = NULL )
lpdensity.plot( ..., alpha = NULL, type = NULL, lty = NULL, lwd = NULL, lcol = NULL, pty = NULL, pwd = NULL, pcol = NULL, grid = NULL, CItype = NULL, CIuniform = FALSE, CIsimul = 2000, CIshade = NULL, CIcol = NULL, hist = FALSE, histData = NULL, histBreaks = NULL, histFillCol = 3, histFillShade = 0.2, histLineCol = "white", title = NULL, xlabel = NULL, ylabel = NULL, legendTitle = NULL, legendGroups = NULL )
... |
Class "lpdensity" object, obtained from calling |
alpha |
Numeric scalar between 0 and 1, specifies the significance level for plotting confidence intervals/bands. If more than one is provided, they will be applied to each data series accordingly. |
type |
String, one of |
lty |
Line type for point estimates, only effective if |
lwd |
Line width for point estimates, only effective if |
lcol |
Line color for point estimates, only effective if |
pty |
Scatter plot type for point estimates, only effective if |
pwd |
Scatter plot size for point estimates, only effective if |
pcol |
Scatter plot color for point estimates, only effective if |
grid |
Numeric vector, specifies a subset of grid points
to plot point estimates. This option is effective only if |
CItype |
String, one of |
CIuniform |
|
CIsimul |
Positive integer, specifies the number of simulations used to construct critical values (default is |
CIshade |
Numeric, specifies the opaqueness of the confidence region, should be between 0 (transparent) and 1. Default is 0.2. If more than one is provided, they will be applied to each data series accordingly. |
CIcol |
Color of the confidence region. |
hist |
|
histData |
Numeric vector, specifies the data used to construct the histogram plot. |
histBreaks |
Numeric vector, specifies the breakpoints between histogram cells. |
histFillCol |
Color of the histogram cells. |
histFillShade |
Opaqueness of the histogram cells, should be between 0 (transparent) and 1. Default is 0.2. |
histLineCol |
Color of the histogram lines. |
title , xlabel , ylabel
|
Strings, specifies the title of the plot and labels for the x- and y-axis. |
legendTitle |
String, specifies the legend title. |
legendGroups |
String vector, specifies the group names used in legend. |
A stadnard ggplot
object is returned, hence can be used for further customization.
Matias D. Cattaneo, Princeton University. [email protected].
Michael Jansson, University of California Berkeley. [email protected].
Xinwei Ma (maintainer), University of California San Diego. [email protected].
The plot method for local polynomial density objects.
## S3 method for class 'lpdensity' plot( ..., alpha = NULL, type = NULL, lty = NULL, lwd = NULL, lcol = NULL, pty = NULL, pwd = NULL, pcol = NULL, grid = NULL, CItype = NULL, CIuniform = FALSE, CIsimul = 2000, CIshade = NULL, CIcol = NULL, hist = FALSE, histData = NULL, histBreaks = NULL, histFillCol = 3, histFillShade = 0.2, histLineCol = "white", title = NULL, xlabel = NULL, ylabel = NULL, legendTitle = NULL, legendGroups = NULL )
## S3 method for class 'lpdensity' plot( ..., alpha = NULL, type = NULL, lty = NULL, lwd = NULL, lcol = NULL, pty = NULL, pwd = NULL, pcol = NULL, grid = NULL, CItype = NULL, CIuniform = FALSE, CIsimul = 2000, CIshade = NULL, CIcol = NULL, hist = FALSE, histData = NULL, histBreaks = NULL, histFillCol = 3, histFillShade = 0.2, histLineCol = "white", title = NULL, xlabel = NULL, ylabel = NULL, legendTitle = NULL, legendGroups = NULL )
... |
Class "lpdensity" object, obtained from calling |
alpha |
Numeric scalar between 0 and 1, specifies the significance level for plotting confidence intervals/bands. If more than one is provided, they will be applied to each data series accordingly. |
type |
String, one of |
lty |
Line type for point estimates, only effective if |
lwd |
Line width for point estimates, only effective if |
lcol |
Line color for point estimates, only effective if |
pty |
Scatter plot type for point estimates, only effective if |
pwd |
Scatter plot size for point estimates, only effective if |
pcol |
Scatter plot color for point estimates, only effective if |
grid |
Numeric vector, specifies a subset of grid points
to plot point estimates. This option is effective only if |
CItype |
String, one of |
CIuniform |
|
CIsimul |
Positive integer, specifies the number of simulations used to construct critical values (default is |
CIshade |
Numeric, specifies the opaqueness of the confidence region, should be between 0 (transparent) and 1. Default is 0.2. If more than one is provided, they will be applied to each data series accordingly. |
CIcol |
Color of the confidence region. |
hist |
|
histData |
Numeric vector, specifies the data used to construct the histogram plot. |
histBreaks |
Numeric vector, specifies the breakpoints between histogram cells. |
histFillCol |
Color of the histogram cells. |
histFillShade |
Opaqueness of the histogram cells, should be between 0 (transparent) and 1. Default is 0.2. |
histLineCol |
Color of the histogram lines. |
title , xlabel , ylabel
|
Strings, specifies the title of the plot and labels for the x- and y-axis. |
legendTitle |
String, specifies the legend title. |
legendGroups |
String vector, specifies the group names used in legend. |
A stadnard ggplot
object is returned, hence can be used for further customization.
Matias D. Cattaneo, Princeton University. [email protected].
Michael Jansson, University of California Berkeley. [email protected].
Xinwei Ma (maintainer), University of California San Diego. [email protected].
lpdensity
for local polynomial density estimation.
Supported methods: coef.lpdensity
, confint.lpdensity
,
plot.lpdensity
, print.lpdensity
, summary.lpdensity
,
vcov.lpdensity
.
# Generate a random sample set.seed(42); X <- rnorm(2000) # Generate a density discontinuity at 0 X <- X - 0.5; X[X>0] <- X[X>0] * 2 # Density estimation, left of 0 (scaled by the relative sample size) est1 <- lpdensity(data = X[X<=0], grid = seq(-2.5, 0, 0.05), bwselect = "imse-dpi", scale = sum(X<=0)/length(X)) # Density estimation, right of 0 (scaled by the relative sample size) est2 <- lpdensity(data = X[X>0], grid = seq(0, 2, 0.05), bwselect = "imse-dpi", scale = sum(X>0)/length(X)) # Plot plot(est1, est2, legendTitle="My Plot", legendGroups=c("Left", "Right")) # Plot uniform confidence bands set.seed(42) # fix the seed for simulating critical values plot(est1, est2, legendTitle="My Plot", legendGroups=c("Left", "Right"), CIuniform=TRUE) # Adding a histogram to the background plot(est1, est2, legendTitle="My Plot", legendGroups=c("Left", "Right"), hist=TRUE, histBreaks=seq(-2.4, 2, 0.2), histData=X) # Plot point estimates for a subset of evaluation points plot(est1, est2, legendTitle="My Plot", legendGroups=c("Left", "Right"), type="both", CItype="all", grid=seq(-2, 2, 0.5))
# Generate a random sample set.seed(42); X <- rnorm(2000) # Generate a density discontinuity at 0 X <- X - 0.5; X[X>0] <- X[X>0] * 2 # Density estimation, left of 0 (scaled by the relative sample size) est1 <- lpdensity(data = X[X<=0], grid = seq(-2.5, 0, 0.05), bwselect = "imse-dpi", scale = sum(X<=0)/length(X)) # Density estimation, right of 0 (scaled by the relative sample size) est2 <- lpdensity(data = X[X>0], grid = seq(0, 2, 0.05), bwselect = "imse-dpi", scale = sum(X>0)/length(X)) # Plot plot(est1, est2, legendTitle="My Plot", legendGroups=c("Left", "Right")) # Plot uniform confidence bands set.seed(42) # fix the seed for simulating critical values plot(est1, est2, legendTitle="My Plot", legendGroups=c("Left", "Right"), CIuniform=TRUE) # Adding a histogram to the background plot(est1, est2, legendTitle="My Plot", legendGroups=c("Left", "Right"), hist=TRUE, histBreaks=seq(-2.4, 2, 0.2), histData=X) # Plot point estimates for a subset of evaluation points plot(est1, est2, legendTitle="My Plot", legendGroups=c("Left", "Right"), type="both", CItype="all", grid=seq(-2, 2, 0.5))
The print method for local polynomial density bandwidth selection objects.
## S3 method for class 'lpbwdensity' print(x, ...)
## S3 method for class 'lpbwdensity' print(x, ...)
x |
Class "lpbwdensity" object, obtained by calling |
... |
Other arguments. |
Matias D. Cattaneo, Princeton University. [email protected].
Michael Jansson, University of California Berkeley. [email protected].
Xinwei Ma (maintainer), University of California San Diego. [email protected].
lpbwdensity
for data-driven bandwidth selection.
Supported methods: coef.lpbwdensity
, print.lpbwdensity
, summary.lpbwdensity
.
# Generate a random sample set.seed(42); X <- rnorm(2000) # Construct bandwidth print(lpbwdensity(X))
# Generate a random sample set.seed(42); X <- rnorm(2000) # Construct bandwidth print(lpbwdensity(X))
The print method for local polynomial density objects.
## S3 method for class 'lpdensity' print(x, ...)
## S3 method for class 'lpdensity' print(x, ...)
x |
Class "lpdensity" object, obtained from calling |
... |
Additional options. |
Matias D. Cattaneo, Princeton University. [email protected].
Michael Jansson, University of California Berkeley. [email protected].
Xinwei Ma (maintainer), University of California San Diego. [email protected].
lpdensity
for local polynomial density estimation.
Supported methods: coef.lpdensity
, confint.lpdensity
,
plot.lpdensity
, print.lpdensity
, summary.lpdensity
,
vcov.lpdensity
.
# Generate a random sample set.seed(42); X <- rnorm(2000) # Estimate density and report results print(lpdensity(data = X, bwselect = "imse-dpi"))
# Generate a random sample set.seed(42); X <- rnorm(2000) # Estimate density and report results print(lpdensity(data = X, bwselect = "imse-dpi"))
The summary method for local polynomial density bandwidth selection objects.
## S3 method for class 'lpbwdensity' summary(object, ...)
## S3 method for class 'lpbwdensity' summary(object, ...)
object |
Class "lpbwdensity" object, obtained by calling |
... |
Additional options, including (i) |
Matias D. Cattaneo, Princeton University. [email protected].
Michael Jansson, University of California Berkeley. [email protected].
Xinwei Ma (maintainer), University of California San Diego. [email protected].
lpbwdensity
for data-driven bandwidth selection.
Supported methods: coef.lpbwdensity
, print.lpbwdensity
, summary.lpbwdensity
.
# Generate a random sample set.seed(42); X <- rnorm(2000) # Construct bandwidth bw1 <- lpbwdensity(X) summary(bw1) # Display bandwidths for a subset of grid points summary(bw1, grid=bw1$BW[4:10, "grid"]) summary(bw1, gridIndex=4:10)
# Generate a random sample set.seed(42); X <- rnorm(2000) # Construct bandwidth bw1 <- lpbwdensity(X) summary(bw1) # Display bandwidths for a subset of grid points summary(bw1, grid=bw1$BW[4:10, "grid"]) summary(bw1, gridIndex=4:10)
The summary method for local polynomial density objects.
## S3 method for class 'lpdensity' summary(object, ...)
## S3 method for class 'lpdensity' summary(object, ...)
object |
Class "lpdensity" object, obtained from calling |
... |
Additional options, including (i) |
Matias D. Cattaneo, Princeton University. [email protected].
Michael Jansson, University of California Berkeley. [email protected].
Xinwei Ma (maintainer), University of California San Diego. [email protected].
lpdensity
for local polynomial density estimation.
Supported methods: coef.lpdensity
, confint.lpdensity
,
plot.lpdensity
, print.lpdensity
, summary.lpdensity
,
vcov.lpdensity
.
# Generate a random sample set.seed(42); X <- rnorm(2000) # Estimate density and report results est1 <- lpdensity(data = X, bwselect = "imse-dpi") summary(est1) # Report results for a subset of grid points summary(est1, grid=est1$Estimate[4:10, "grid"]) summary(est1, gridIndex=4:10) # Report the 99% uniform confidence band set.seed(42) # fix the seed for simulating critical values summary(est1, alpha=0.01, CIuniform=TRUE)
# Generate a random sample set.seed(42); X <- rnorm(2000) # Estimate density and report results est1 <- lpdensity(data = X, bwselect = "imse-dpi") summary(est1) # Report results for a subset of grid points summary(est1, grid=est1$Estimate[4:10, "grid"]) summary(est1, gridIndex=4:10) # Report the 99% uniform confidence band set.seed(42) # fix the seed for simulating critical values summary(est1, alpha=0.01, CIuniform=TRUE)
The vcov method for local polynomial density objects.
## S3 method for class 'lpdensity' vcov(object, ...)
## S3 method for class 'lpdensity' vcov(object, ...)
object |
Class "lpdensity" object, obtained by calling |
... |
Additional options. |
stdErr |
A matrix containing grid points and standard errors using p- and q-th order local polynomials. |
CovMat_p |
The variance-covariance matrix corresponding to |
CovMat_q |
The variance-covariance matrix corresponding to |
Matias D. Cattaneo, Princeton University. [email protected].
Michael Jansson, University of California Berkeley. [email protected].
Xinwei Ma (maintainer), University of California San Diego. [email protected].
lpdensity
for local polynomial density estimation.
Supported methods: coef.lpdensity
, confint.lpdensity
,
plot.lpdensity
, print.lpdensity
, summary.lpdensity
,
vcov.lpdensity
.
# Generate a random sample set.seed(42); X <- rnorm(2000) # Estimate density and report results vcov(lpdensity(data = X, bwselect = "imse-dpi"))
# Generate a random sample set.seed(42); X <- rnorm(2000) # Estimate density and report results vcov(lpdensity(data = X, bwselect = "imse-dpi"))