Package: locits (via r-universe)

September 7, 2024

Type Package Title Test of Stationarity and Localized Autocovariance Version 1.7.7 Date 2023-09-04 **Depends** R ($>= 3.3$), wavethresh, igraph Description Provides test of second-order stationarity for time series (for dyadic and arbitrary-n length data). Provides localized ``autocovariance, with confidence intervals, for locally stationary (nonstationary) time series. See Nason, G P (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariance for locally stationary time series.'' Journal of the Royal Statistical Society, Series B, 75, 879-904. [<doi:10.1111/rssb.12015>](https://doi.org/10.1111/rssb.12015).

License GPL $(>= 2)$

NeedsCompilation yes

Author Guy Nason [aut, cre]

Maintainer Guy Nason <g.nason@imperial.ac.uk>

Repository CRAN

Date/Publication 2023-09-05 15:10:02 UTC

Contents

locits-package *New test of second-order stationarity and confidence intervals for localized autocovariance.*

Description

Provides functionality to perform a new test of second-order stationarity for time series. The method works by computing a wavelet periodogram and then examining its Haar wavelet coefficients for significant ones. The other main feature of the software is to compute the localized autocovariance and pointwise confidence intervals.

locits-package 3

Details

For the test of stationarity there are two main functions. The original is the [hwtos2](#page-25-1) function and this returns a tos object. The [hwtos2](#page-25-1) function works on data sets whose length is a power of two. Version 1.5 introduced a new function, [hwtos](#page-21-1) which carries out the test on arbitrary length data. The summary. tos function performs a Bonferroni and FDR statistical analysis to detect which Haar wavelet coefficients are significant. The function plot, tos provides a plot of the original time series with any non-stationarities clearly indicated on the plot (actually locations and scales of the Haar wavelet coefficients).

For the localized autocovariance the main function is [Rvarlacf](#page-50-1). This computes the localized autocovariance values and approximate pointwise condifence intervals. The function [plot.lacfCI](#page-37-1) can then plot the localized autocovariance and its confidence intervals in a number of forms.

Author(s)

Guy Nason Maintainer: Guy Nason

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[Rvarlacf](#page-50-1), [hwtos2](#page-25-1)

```
#
# Here's a simple simulated example.
#
# A series which is a concatenation of two iid Gaussian series with
# different variances.
#
x <- c(rnorm(256, sd=1), rnorm(256, sd=2))
#
# Let's do a test of stationarity
#
st.test <- hwtos2(x)
#8 7 6 5 4 3
#
# Ok, that's the computation gone, let's look at the results.
#
st.test
#Class 'tos' : Stationarity Object :
#~~~~ : List with 9 components with names
# nreject rejpval spvals sTS AllTS AllPVal alpha x xSD
#
```

```
#
#summary(.):
#----------
#There are 186 hypothesis tests altogether
#There were 4 FDR rejects
#The rejection p-value was 0.0001376564
#Using Bonferroni rejection p-value is 0.0002688172
#And there would be 4 rejections.
#Listing FDR rejects... (thanks Y&Y!)
#P: 5 HWTlev: 0 indices on next line...[1] 1
#P: 6 HWTlev: 0 indices on next line...[1] 1
#P: 7 HWTlev: 0 indices on next line...[1] 1
#P: 8 HWTlev: 0 indices on next line...[1] 1
#
# In the lines above if there are any rejects then the series is
# deemed to be nonstationary, and note that there were 4 in both
# the lines above (sometimes FDR rejects a few more).
#
# You can also plot the object and it shows you where it thinks the
# nonstationarities are
#
## Not run: plot(st.test)
#
# See the help page for the hwtos2 function, where there is an example
# with a stationary series.
#
# For the localized autocovariance...
#
# Let's use the function tvar1sim which generates a time-varying AR model
# with AR(1) paramter varying over the extent of the series from 0.9
# to -0.9 (that is, near the start of the series it behaves like an
# AR(1) with parameter 0.9, and near the end like an AR(1) with parameter
# -0.9, and in between the parameter is somewhere between 0.9 and -0.9
# figured linearly between the two.
#
x \leftarrow \text{tvarlsim}()#
# Plot it, so you know what the series looks like, should always do this.
#
## Not run: ts.plot(x)
#
# Now, let's compute the localized autocovariance and also confidence intervals
# For the variance, let's look at the first 20 lags
#
# Do it at t=50 and t=450, ie what is the localized autocovariance at these
# two times.
#
x.lacf.50 <- Rvarlacf(x=x, nz=50, var.lag.max=20)
x.lacf.450 <- Rvarlacf(x=x, nz=450, var.lag.max=20)
#
# Now plot the answers, you may want to do this on two different plots
# so that you can compare the answers
#
```
 \triangle utoBestBW 5

```
#
## Not run: plot(x.lacf.50, plotcor=FALSE, type="acf")
## Not run: plot(x.lacf.450, plotcor=FALSE, type="acf")
#
# Note that the plotcor argument is set so covariances and not correlations
# are plotted. Also, the type is set to "acf" to make the plot *look* like
# the regular acf plot. But DON'T be fooled, it is not the regular acf
# that is plotted, but a time localized plot. The two plots should look
# very different, both like AR(1) but with different parameters (from the
# same time series).
#
# You could also plot the regular acf and see how it gets it wrong!
#
```


AutoBestBW *Choose a good bandwidth for running mean smoothing of a EWS spectral estimator.*

Description

Computes running mean estimator closest to wavelet estimator of evolutionary wavelet spectrum. The idea is to obtain a good linear bandwidth.

Usage

```
AutoBestBW(x, filter.number = 1, family = "DaubExPhase",
   smooth.dev = var, AutoReflect = TRUE, tol = 0.01, maxits = 200,
   plot.it = FALSE, verbose = 0, ReturnAll = FALSE)
```
Arguments

Details

Tries to find the best running mean fit to an estimated spectrum obtained via wavelet shrinkage. The goal is to try and find a reasonable linear bandwidth.

Value

If ReturnAll argument is FALSE then the best bandwidth is returned.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[Rvarlacf](#page-50-1)

Examples

```
#
# Generate synthetic data
#
x < - rnorm(256)
#
# Compute best linear bandwidth
#
tmp <- AutoBestBW(x=x)
#
# Printing it out in my example gives:
# tmp
# [1] 168
```
covI *Compute the covariance between two wavelet periodogram ordinates at the same scale, but different time locations.*

Description

Computes $cov(I_{\ell,m}, I_{\ell,n})$ using the formula given in Nason (2012) in Theorem 1. Note: one usually should use the [covIwrap](#page-6-1) function for efficiency.

Usage

covI(II, m, n, ll, ThePsiJ)

covIwrap 2008 and 20

Arguments

Value

The covariance is returned.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[covIwrap](#page-6-1)

Examples

```
P1 <- PsiJ(-5, filter.number=1, family="DaubExPhase")
#
# Compute the covariance
#
covI(II=c(1/2, 1/4, 1/8, 1/16, 1/32), m=1, n=3, ll=5, ThePsiJ=P1)
#
# [1] 0.8430809
```
covIwrap *A wrapper for the covI function.*

Description

Computation of the [covI](#page-5-1) function is intensive. This function permits values of covI to be stored in an object, and then if these values are requested again the values can be obtained from a store rather than being computed from scratch.

Usage

covIwrap(S, m, n, ll, storewrap, P)

Arguments

Details

Note: covIwrap could be removed from the function tree altogether. I.e. [varip2](#page-61-1) could call [covI](#page-5-1) directly. However, covIwrap considerably improves the efficiency of the algorithm as it stores intermediate calculations that can be reused rather than being computed repeatedly.

Value

A list containing the following components:

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[varip2](#page-61-1), [covI](#page-5-1)

Cvarip2 9

Examples

```
P1 <- PsiJ(-5, filter.number=1, family="DaubExPhase")
#
# First call to covIwrap
#
ans <- covIwrap(S=c(1/2, 1/4, 1/8, 1/16, 1/32), m=1, n=3, ll=5,
   storewrap=NULL, P=P1)
#
# Make sure you keep the storewrap component.
#
my.storewrap <- ans$storewrap
#
# What is the answer?
#
ans$ans
#[1] 0.8430809
#
# Issue next call to covIwrap: but storewrap argument is now the one we stored.
#
ans <- covIwrap(S=c(1/2, 1/4, 1/8, 1/16, 1/32), m=1, n=3, ll=5,
    storewrap=my.storewrap, P=P1)
#
# This call will reuse the stored value. However, if you change any of the
# arguments then the store won't be used.
```
Cvarip2 *Computes variance of Haar wavelet coefficients of wavelet periodogram using C code.*

Description

Performs precisely the same role as [varip2](#page-61-1) except it is implemented internally using C code and hence is much faster.

Usage

```
Cvarip2(i, p, ll, S, Pmat, PsiJL)
```
Arguments

Value

The list returned from the .C calling function. The only object of real interest is the ans component which contains the variance.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[hwtos2](#page-25-1), [varip2](#page-61-1)

Examples

```
#
# See example from varip2
#
#
my.Pmat <- PsiJmat(-5, filter.number=1, family="DaubExPhase")
my.PsiJ <- PsiJ(-5, filter.number=1, family="DaubExPhase")
my.PsiJL <- sapply(my.PsiJ, "length")
Cvarip2(i=1, p=10, ll=2, S=c(1/2,1/4,1/8,1/16,1/32),
    Pmat=my.Pmat, PsiJL=my.PsiJL)
#
# Gives answer 1.865244, which is the same as given in the example for varip2
```
EstBetaCov *Compute estimate of wavelet periodogram and the estimate's covariance matrix.*

Description

An estimate of the wavelet periodogram at a location nz is generated. This is obtained by first computing the empirical raw wavelet periodogram by squaring the results of the nondecimated wavelet transform of the time series. Then a running mean smooth is applied.

EstBetaCov 11

Usage

```
EstBetaCov(x, nz, filter.number = 1, family = "DaubExPhase", smooth.dev = var,
   AutoReflect = TRUE, WPsmooth.type = "RM", binwidth = 0, mkcoefOBJ,
   ThePsiJ, Cverbose = 0, verbose = 0, OPLENGTH = 10^5, ABB.tol = 0.1,
   ABB.plot.it = FALSE, ABB.verbose = 0, ABB.maxits = 10, do.init = TRUE,
    truedenom=FALSE, ...)
```
Arguments

Details

First optionally computes a good bandwidth using the [AutoBestBW](#page-4-1) function. Then computes raw wavelet periodogram using [ewspec3](#page-12-1) using running mean smoothing with the binwidth bandwith (which might be automatically chosen). This computes the estimate of the wavelet periodogram at time nz. The covariance matrix of this estimate is then computed in C using the CstarIcov function and this is returned.

Value

A list with two components:

Author(s)

Guy Nason

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[AutoBestBW](#page-4-1), [ewspec3](#page-12-1)

```
#
# Small example, not too computationally demanding on white noise
#
myb <- EstBetaCov(rnorm(64), nz=32)
#
# Let's see the results (of my run)
#
## Not run: myb$betahat
#[1] 0.8323344 0.7926963 0.7272328 1.3459313 2.1873395 0.8364632
#
# For white noise, these values should be 1 (they're estimates)
## Not run: myb$Sigma
# [,1] [,2] [,3] [,4] [,5] [,6]
#[1,] 0.039355673 0.022886994 0.008980497 0.01146325 0.003211176 0.001064377
#[2,] 0.022886994 0.054363333 0.035228164 0.06519112 0.017146883 0.006079162
#[3,] 0.008980497 0.035228164 0.161340373 0.38326812 0.111068916 0.040068318
#[4,] 0.011463247 0.065191118 0.383268115 1.31229598 0.632725858 0.228574601
#[5,] 0.003211176 0.017146883 0.111068916 0.63272586 1.587765187 0.919247252
#[6,] 0.001064377 0.006079162 0.040068318 0.22857460 0.919247252 2.767615374
#
```


ewspec3 13

```
# Here's an example for T (length of series) bigger, T=1024
#
## Not run: myb <- EstBetaCov(rnorm(1024), nz=512)
#
# Let's look at results
#
## Not run: myb$betahat
# [1] 1.0276157 1.0626069 0.9138419 1.1275545 1.4161028 0.9147333 1.1935089
# [8] 0.6598547 1.1355896 2.3374615
#
# These values (especially for finer scales) are closer to 1
#
```


ewspec3 *Compute evolutionary wavelet spectrum of a time series.*

Description

This function is a development of the ewspec function from wavethresh but with more features. The two new features are: the addition of running mean smoothing and autoreflection which mitigates the problems caused in ewspec which performed periodic transforms on data (time series) which were generally not periodic.

Usage

```
ewspec3(x, filter_number = 10, family = "DaubleAsymm",UseLocalSpec = TRUE, DoSWT = TRUE, WPsmooth = TRUE,
   WPsmooth.type = "RM", binwidth = 5, verbose = FALSE,
    smooth.filter.number = 10, smooth.family = "DaubLeAsymm",
    smooth. levels = 3:WPwst$nlevels - 1, smooth.dev = madmad,smooth.policy = "LSuniversal", smooth.value = 0,
    smooth.by.level = FALSE, smooth.type = "soft",
    smooth.verbose = FALSE, smooth.cvtol = 0.01,
    smooth.cvnorm = l2norm, smooth.transform = I,
    smooth.inverse = I, AutoReflect = TRUE)
```
Arguments

ewspec3 15

Value

Precisely the same kind of output as ewspec.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[AutoBestBW](#page-4-1), [lacf](#page-29-1)

```
#
# Generate time series
#
x \leftarrow \text{tvarlsim}()#
# Compute its evolutionary wavelet spectrum, with linear running mean smooth
#
x.ewspec3 <- ewspec3(x)#
# Plot the answer, probably its a bit variable, because the default bandwidth
# is 5, which is probably inappropriate for many series
#
## Not run: plot(x.ewspec3$S)
#
# Try a larger bandwidth
#
x.ewspec3 <- ewspec3(x, binwidth=100)
#
# Plot the answer, should look a lot smoother
#
# Note, a lot of high frequency power on the right hand side of the plot,
# which is expected as process looks like AR(1) with param of -0.9
#
## Not run: plot(x.ewspec3$S)
#
# Do smoothing like ewspec (but additionally AutoReflect)
#
x.ewspec3 <- ewspec3(x, WPsmooth.type="wavelet")
#
# Plot the results
#
## Not run: plot(x.ewspec3$S)
#
```

```
# Another possibility is to use AutoBestBW which tries to find the best
# linear smooth closest to a wavelet smooth. This makes use of ewspec3
#
```
ewspecHaarNonPer *Compute evolutionary wavelet spectrum (EWS) estimate based on the Haar wavelet transform.*

Description

This function uses the special HwdS function to compute the Haar wavelet transform with out boundary conditions (neither periodic, interval, mirror reflection). This is so all coefficients are genuine Haar coefficients without involving extra/repeated data.

Usage

```
ewspecHaarNonPer(x, filter.number = 1, family = "DaubExPhase",
   UseLocalSpec = TRUE, DoSWT = TRUE, WPsmooth = TRUE,
   verbose = FALSE, smooth.filter.number = 10,
    smooth.family = "DaubLeAsymm",
    smooth.levels = 3:WPwst$nlevels - 1, smooth.dev = madmad,
    smooth.policy = "LSuniversal", smooth.value = 0,
    smooth.by.level = FALSE, smooth.type = "soft",
    smooth.verbose = FALSE, smooth.cvtol = 0.01,
    smooth.cvnorm = l2norm, smooth.transform = I,
    smooth.inverse = I)
```
Arguments

Details

This function is very similar to ewspec from wavethresh, and many arguments here perform the same function as there.

Value

The same value as for the ewspec function.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[hwtos2](#page-25-1), [HwdS](#page-18-1)

```
#
# Requires wavethresh, so not run directly in installation of package
#
ewspecHaarNonPer(rnorm(512))
```


Replaces all NAs in vector by 0

Usage

getridofendNA(x)

Arguments

x Vector that might contain NAs

Details

Originally, this function did something more complex, but now it merely replaces NAs by 0

Value

The same vector as x but with NAs replaced by 0

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[HwdS](#page-18-1)

```
#
#
#
x \leq -c(3, 4, 6, NA, 3)getridofendNA(x)
#[1] 3 4 6 0 3
```
HwdS *Compute the non-decimated Haar wavelet transform without using periodic boundary conditions.*

Description

Function uses the filter function to achieve its aims.

Usage

HwdS(x)

Arguments

x A vector of dyadic length that you wish to transform.

Details

The regular wd function that can compute the non-decimated transform uses different kinds of boundary conditions, which can result in coefficients being used multiply for consideration in a test of stationarity, and distort results. This function only computes Haar coefficients on the data it can, without wrapround.

Value

An object of class wd which contains the nondecimated Haar transform of the input series, x without periodic boundary conditions (nor interval, nor reflection).

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[ewspecHaarNonPer](#page-15-1), [getridofendNA](#page-17-1)

Examples

```
#
# Apply Haar transform to Gaussian data
#
HwdS(rnorm(32))
#Class 'wd' : Discrete Wavelet Transform Object:
# ~~ : List with 8 components with names
# C D nlevels fl.dbase filter type bc date
#
#$C and $D are LONG coefficient vectors
#
#Created on : Tue Jul 17 15:14:59 2012
#Type of decomposition: station
#
#summary(.):
#----------
#Levels: 5
#Length of original: 32
#Filter was: Haar wavelet
#Boundary handling: periodic
#Transform type: station
#Date: Tue Jul 17 15:14:59 2012
```
hwt *Compute a Haar wavelet transform for data of arbitrary n length*

Description

Function computes Haar wavelet and scaling function coefficients for data set of any length. Algorithm computes every possible coefficient that it can for both decimated and nondecimated versions of the transform.

Usage

hwt(x, type = $c("wavelet", "station"),$ reindex = $FALSE)$

Arguments

 20

Details

Essentially, this algorithm attempts to compute every possible Haar wavelet coefficient. For example, if the length of the input series was 6 then this means that three coefficients at the finest scale can be computed using the first, second and third pair of input data points using the weights c(1, -1)/sqrt(2). However, from the three coefficients that result from this, there is only one pair, so only one "next coarser" coefficient can be computed.

The reindex option is subtle. Essentially, it tries to ensure that the returned coefficients end up at the same scales as if a data set of the next highest dyadic length was analyzed by the wd function. E.g. if the length of the series was 10 then with reindex=FALSE (default) only three levels are returned for each of the wavelet and scaling coefficients. If reindex=TRUE then the number of levels returned would be as if wd analysed a data set of length 16 (the smallest dyadic number larger than 10). The wd levels would be zero to three and this is what would be returned in this function if reindex=TRUE. However, note, in this case, the coarsest level coefficient happens to be NULL (or not computable). One can view the algorithm as computing a partial transform of 10 of the 16 elements and substituting NA for anything it can't compute.

Value

An object of class hwtANYN which is a list with the following components.

Author(s)

G. P. Nason

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

 hwt 21

Priestley, M.B. and Subba Rao (1969) A test for non-stationarity of time series. *J. R. Statist. Soc. B*, 31, 140-149.

von Sachs, R. and Neumann, M.H. (2000) A wavelet-based test for stationarity. *J. Time Ser. Anal.*, 21, 597-613.

See Also

[hwtos](#page-21-1), [plot.hwtANYN](#page-33-1), [print.hwtANYN](#page-43-1), [summary.hwtANYN](#page-54-1)

Examples

```
#
# Generate test data set of length 5 (note, NOT a power of two)
#
v2 \le - rnorm(5)#
# Compute its Haar transform
#
v2hwt < -hwt(v2)#
# How many levels does it have?
#
nlevelsWT(v2hwt)
#
# What are the coarsest scale wavelet coefficients
#
v2hwt$d[[1]]
#
# What are the finest scale scaling function coefficients
#
v2hwt$c[[nlevels(v2hwt$c)-1]]
```
hwtos *Haar wavelet test for (second-order) stationarity for arbitrary length time series.*

Description

NOTE: CURRENTLY THIS FUNCTION IS NOT INCLUDED IN THE PACKAGE. USE hwtos2. This function computes the raw wavelet periodogram of the arbitrary time series vector x. The periodogram is then subject to a hypothesis test to see if its expectation over time, for different scales, is constant. The constancy test is carried out using tests on its Haar wavelet coefficients. The overall test is for second-order stationarity (e.g. constant variance, constant acf function, mean is assumed zero).

Usage

```
hwtos(x, alpha = 0.05, lowlev = 1, WTscale = NULL, maxSD = NULL,
    verbose = FALSE, silent = FALSE, UseCForVarip2 = TRUE, OPLENGTH = 1e+05,
   mc.method = p.adjust.methods)
```
hwtos 23

Arguments

Details

This function computes all possible Haar wavelet coefficients of the time series x. Then, squares those to obtain the raw wavelet periodogram. Then the test of stationarity works by taking each level of the raw wavelet periodogram and subjecting it to another (decimated) Haar wavelet transform and then assessing whether any of those coefficients is significantly different to zero. It does this by using a Gaussian approximation first introduced by Neumann and von Sachs (2000). This is a multiple testing problem: many individual wavelet coefficients need to be assessed simultaneously and the user can choose the type of assessment using the mc.method argument.

An object of class tosANYN. This is a list containing the following components.

A vector of p-values that has not been adjusted by a multiple hypothesis test technique.

Author(s)

G. P. Nason

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

Priestley, M.B. and Subba Rao (1969) A test for non-stationarity of time series. *J. R. Statist. Soc. B*, 31, 140-149.

von Sachs, R. and Neumann, M.H. (2000) A wavelet-based test for stationarity. *J. Time Ser. Anal.*, 21, 597-613.

hwtos 25

See Also

link{hwt}, [hwtos2](#page-25-1), [plot.tosANYN](#page-41-1), [print.tosANYN](#page-48-1), [summary.tosANYN](#page-59-1)

```
#
# Generate test data set of non-dyadic length
#
v3 <- rnorm(300)
#
# Run the test of stationarity
#
## Not run: v3.TOS <- hwtos(v3)
#
#Scales get printed
#8 7 6 5 4 3 2
#
## Not run: print(v3.TOS)
#Class 'tosANYN' : Stationarity Object for Arbitrary Length Data :
# ~~~~~~~ : List with 14 components with names
# nreject mc.method AllTS AllPVal alpha x xSD allTS
# allpvals allbigscale alllitscale allindex alllv
# allpvals.unadjust
#
#
#summary(.):
#----------
#There are 54 hypothesis tests altogether
#There were 0 reject(s)
#P-val adjustment method was: holm
#
# Note, nothing got rejected. So accept the H_0 null hypothesis of stationarity.
# This is precisely what you'd expect operating on iid Gaussians.
#
# Let's construct obvious example of non-stationarity.
#
v4 <- c(rnorm(150), rnorm(150,sd=3))
#
# I.e. v4 has sharp variance change halfway along
# Now compute test of stationarity
#
## Not run: v4.TOS <- hwtos(v4)
#
# Print out results
#
## Not run: print(v4.TOS)
#
#Class 'tosANYN' : Stationarity Object for Arbitrary Length Data :
# ~~~~~~~ : List with 14 components with names
# nreject mc.method AllTS AllPVal alpha x xSD allTS
# allpvals allbigscale alllitscale allindex alllv
# allpvals.unadjust
```

```
#
#
#summary(.):
#----------
#There are 54 hypothesis tests altogether
#There were 5 reject(s)
#P-val adjustment method was: holm
#Listing rejects...
#P: 7 HWTlev: 2 Max Poss Ix: 2 Indices: 2
#P: 7 HWTlev: 1 Max Poss Ix: 1 Indices: 1
#P: 6 HWTlev: 1 Max Poss Ix: 1 Indices: 1
#P: 5 HWTlev: 1 Max Poss Ix: 1 Indices: 1
#P: 4 HWTlev: 1 Max Poss Ix: 1 Indices: 1
```


hwtos2 *Test of second-order stationarity using wavelets.*

Description

The main function to perform a test of second-order stationarity as outlined in Nason (2012). Essentially, this routine computes an evolutionary wavelet spectral estimate and then computes the Haar wavelet coefficients of each scale of the spectral estimate. Any large Haar coefficients are indicative of nonstationarity. A multiple hypothesis test assesses whether any of the Haar coefficients are large enough to reject the null hypothesis of stationarity.

Usage

```
hwtos2(x, alpha = 0.05, filter.number = 1, family = "DaubExPhase",
   lowlev = 3, WTscale = NULL, maxSD = NULL, verbose = FALSE,
   silent = FALSE, UseCForVarip2 = TRUE, OPLENGTH = 1e+05)
```
Arguments

hwtos2 27

Details

This function looks at the Haar wavelet coefficients of an evolutionary wavelet spectrum. This is a modification of the principle of von Sachs and Neumann (2000) which worked with the Haar wavelet coefficients of a local Fourier spectrum.

See also, the stationarity test which implements the Priestley-Subba Rao (1969) test. This function is contained in the fractal package.

Value

An object of class tos, a list containing the following components:

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

Priestley, M.B. and Subba Rao (1969) A test for non-stationarity of time series. *J. R. Statist. Soc. B*, 31, 140-149.

von Sachs, R. and Neumann, M.H. (2000) A wavelet-based test for stationarity. *J. Time Ser. Anal.*, 21, 597-613.

See Also

[varip2](#page-61-1), stationarity

```
#
# First, test a set of iid Gaussians: should be stationary!
#
hwtos2(rnorm(256))
# 8 7 6 5 4 3
#Class 'tos' : Stationarity Object :
# ~~~~ : List with 9 components with names
# nreject rejpval spvals sTS AllTS AllPVal alpha x xSD
#
#
#summary(.):
#----------
#There are 186 hypothesis tests altogether
#There were 0 FDR rejects
#No p-values were smaller than the FDR val of:
#Using Bonferroni rejection p-value is 0.0002688172
#And there would be 0 rejections.
#
# NOTE: the summary indicates that nothing was rejected: hence stationary!
#
# Second, example. Concatenated Gaussians with different variances
#
hwtos2(c(rnorm(256), rnorm(256,sd=2)))
# 9 8 7 6 5 4 3
#Class 'tos' : Stationarity Object :
# ~~~~ : List with 9 components with names
# nreject rejpval spvals sTS AllTS AllPVal alpha x xSD
#
#
#summary(.):
#----------
#There are 441 hypothesis tests altogether
```
idlastzero 29

```
#There were 5 FDR rejects
#The rejection p-value was 3.311237e-06
#Using Bonferroni rejection p-value is 0.0001133787
#And there would be 5 rejections.
#Listing FDR rejects... (thanks Y&Y!)
#P: 5 HWTlev: 0 indices on next line...[1] 1
#P: 6 HWTlev: 0 indices on next line...[1] 1
#P: 7 HWTlev: 0 indices on next line...[1] 1
#P: 8 HWTlev: 0 indices on next line...[1] 1
#P: 9 HWTlev: 0 indices on next line...[1] 1
#
# NOTE: This time 5 Haar wavelet coefficients got rejected: hence series
# is not stationary.
```
idlastzero *Return the index of the last zero in a vector*

Description

Return the index of the last zero in a vector, otherwise stop and return errror message. A helper routine for [mkcoef](#page-32-1).

Usage

idlastzero(v)

Arguments

v Vector you wish to investigate

Value

The index within v of the last (right-most or one with the largest index) zero.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[mkcoef](#page-32-1)

Examples

```
idlastzero(c(3,4,5,0,9))
#[1] 4
```
lacf *Compute localized autocovariance.*

Description

Compute localized autocovariance function for nonstationary time series. Note: this function is borrowed from the costat package, and modified to have linear smoothing, and when that package is complete, it will be removed from this package.

Usage

```
lacf(x, filter.number = 10, family = "DaubLeAsymm", smooth.dev = var,
    AutoReflect = TRUE, lag.max = NULL, WPsmooth.type = "RM",
   binwidth, tol=0.1, maxits=5, ABBverbose=0, verbose=FALSE, ...)
```
Arguments

 l acf 31

Details

In essence, this routine is fairly simple. First, the EWS of the time series is computed. Then formula (14) from Nason, von Sachs and Kroisandr (2000) is applied to obtain the time-localized autocovariance from the spectral estimate.

Value

An object of class lacf which contains the autocovariance. This object can be handled by functions from the costat package. The idea in this package is that the function gets used internally and much of the same functionality can be achieved by running [Rvarlacf](#page-50-1) and plot. lacfCI. However, running lacf on its own is much faster than [Rvarlacf](#page-50-1) as the CI computation is intenstive.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

Nason, G.P., von Sachs, R. and Kroisandt, G. (2000) Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum. *J. R. Statist. Soc.* Ser B, 62, 271-292.

See Also

[Rvarlacf](#page-50-1)

```
#
# With wavethresh attached, note binwidth is fabricated here,
# just to make the example work. The lacf implementation in
# the costat package performs wavelet (ie maybe better) smoothing automatically
#
v <- lacf(rnorm(256), binwidth=40)
#
# With costat attached also
#
## Not run: plot(v)
```


Computes a variance estimate for [hwtos2](#page-25-1) Merely takes a wavelet periodogram (actually wd class object), and a level argument. Then extracts the wavelet periodogram coefficients at that level and returns twice the mean of their squares.

Usage

littlevar(WP, ll)

Arguments

Value

Twice the mean of the square of the coefficients at the level extracted.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[hwtos2](#page-25-1)

Examples

Not intended for direct user use

For a given wavelet computes a list with each entry of the list containing that discrete wavelet at a different scale. The first entry corresponds to the finest wavelet, the next entry to the next finest, and so on.

Usage

 $mkcoef(J, filter.number = 10, family = "DaubleAsymm")$

Arguments

Value

A list of length J. The first entry contains the discrete wavelet at the finest scale, the 2nd entry contains the next most finest wavelet, and so on.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[Rvarlacf](#page-50-1), [whichlevel](#page-62-1)

```
#
# E.g. compute discrete Haar wavelets on scales 1, 2, 3.
#
mkcoef(-3, 1, "DaubExPhase")
#[[1]]
#[1] 0.7071068 -0.7071068
#
```

```
#[[2]]
#[1] 0.5 0.5 -0.5 -0.5
#
#[[3]]
#[1] 0.3535534 0.3535534 0.3535534 0.3535534 -0.3535534 -0.3535534 -0.3535534
#[8] -0.3535534
```


plot.hwtANYN *Plots the transform contained in an* hwtANYN *object.*

Description

An hwtANYN object contains the results of a Haar wavelet transform computed on an object of nondyadic length. It is the equivalent of the wd object for non-dyadic vectors for Haar wavelets. Note, the plot can only be carried out where the reindex slot of the object is TRUE.

Usage

```
## S3 method for class 'hwtANYN'
plot(x, xlabvals, xlabchars, ylabchars, first.level = 1,
   main = "Haar Wavelet Coefficients", scaling = c("global", "by.level"),
   rhlab = FALSE, sub, NotPlotVal = 0.005, xlab = "Translate",
   ylab = "wd-equivalent Resolution Level", miss.coef.col = 2,
   miss.coef.cex = 0.5, miss.coef.pch = 2, ...)
```
Arguments

plot.hwtANYN 35

Details

A plot of the different wavelet coefficients at the scales ranging from first.level to the finest scale. Note, in this plot the coefficients are NOT aligned with time at different scales in the same way as in the wd type plot - except the finest scale.

The Haar wavelet transform objects that this function plots are obtained originally from vectors of non-dyadic length. One can think of such a vector as a sub-vector of a longer vector of dyadic length. E.g. if your vector is of length 35 then it is a sub-vector of a vector of 64 (the next highest power of two). So, you can think of the Haar wavelet transform being of a vector of length 64 where 64-35=29 of the observations are missing. These missing observations "contribute" to wavelet (and scaling function) coefficients that are missing. This function has the ability to plot the "missing" coefficients, by default as small red triangles. The user can control the colour, size and plotting character of the missing observations.

Value

A single vector of length the number of levels plotted containing the value of the maximum absolute coefficient value.

Author(s)

G. P. Nason

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

Priestley, M.B. and Subba Rao (1969) A test for non-stationarity of time series. *J. R. Statist. Soc. B*, 31, 140-149.

von Sachs, R. and Neumann, M.H. (2000) A wavelet-based test for stationarity. *J. Time Ser. Anal.*, 21, 597-613.

See Also

[hwt](#page-19-1), [print.hwtANYN](#page-43-1)

Examples

```
#
# Generate test data of length 82
#
v3 \le rnorm(82)#
# Compute Haar wavelet transform, note reindex has to be true for subsequent
# plot.
#
v3.hwt <- hwt(v3, reindex=TRUE)
#
#
## Not run: plot(v3.hwt)
```
plot.lacf *Plot localized autocovariance (lacf) object.*

Description

Produces various ways of looking at a localized autocovariance (lacf) object.

Usage

```
## S3 method for class 'lacf'
plot(x, plotcor = TRUE, type = "line",lags = 0:\min(\text{as.integer}(10 * \text{log10}(nrow(x$last))), \text{ncol}(x$last) - 1),tcex = 1, lcol = 1, llty = 1, the.time = NULL, plot.it = TRUE,
 xlab, ylab, ...)
```
Arguments

plot.lacf 37

Details

This function produces pictures of the two-dimensional time-varying autocovariance or autocorrelation, $c(t, \tau)$, of a locally stationary time series. There are three types of plot depending on the argument to the type argument.

The line plot draws the autocorrelations as a series of lines, one for each lag, as lines over time. E.g. a sequence #of lines $c(t, \tau_i)$ is drawn, one for each τ_i . The zeroth lag line is the autocorrelation at lag 0 which is always 1. By default all the lags are drawn which can result in a confusing picture. Often, one is only interested in the low level lags, so only these can be plotted by changing the lags argument and any selection of lags can be plotted. The colour and line type of the plotted lines can be changed with the lcol and the llty arguments.

The acf plot produces pictures similar to the standard R acf() function plot. However, the regular acf is a 1D function, since it is defined to be constant over all time. The time-varying acf supplied to this function is not constant over all time (except for stationary processes, theoretically). So, this type of plot requires the user to specify a fixed time at which to produce the plot, and this is supplied by the the.time argument.

The persp plot plots the 2D function $c(t, \tau)$ as a perspective plot.

Value

For the acf type plot the acf values are returned invisibly. For the other types nothing is returned.

Author(s)

G.P. Nason

References

Cardinali, A. and Nason, G.P. (2012) Costationarity of Locally Stationary Time Series using costat.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. *J. Time Series Econometrics*, 2, Issue 2, Article 1.

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[lacf](#page-29-1)

Examples

Make some dummy data, e.g. white noise # $v < -$ rnorm (256) # # Compute the localized autocovariance (ok, the input is stationary # but this is just an example. More interesting things could be achieved # by putting the results of simulating from a LSW process, or piecewise # stationary by concatenating different stationary realizations, etc. # vlacf <- lacf(v, lag.max=30) # # Now let's do some plotting of the localized autocovariance # ## Not run: plot(vlacf, lags=0:6) # # Should get a plot where lag 0 is all up at value 1, and all other # autocorrelations are near zero (since its white noise). # # # How about just looking at lags 0, 2 and 4, and some different colours. # ## Not run: $plot($ vlacf, lags=c $(0, 2, 4)$, lcol=c $(1, 2, 3)$) # # O.k. Let's concentrate on time t=200, let's look at a standard acf # plot near there. # ## Not run: plot(vlacf, type="acf", the.time=200) # # Now plot the autocovariance, rather than the autocorrelation. # ## Not run: plot(vlacf, type="acf", the.time=200, plotcor=FALSE) # # Actually, the plot doesn't look a lot different as the series is white # noise, but it is different if you look closely.

plot.lacfCI *Plot confidence intervals for localized autocovariance for locally stationary time series.*

Description

Plot the localized autocovariance and approximate confidence intervals.

plot.lacfCI 39

Usage

```
## S3 method for class 'lacfCI'
plot(x, plotcor = TRUE, type = "line",
    lags = 0:as.integer(10 * log10(nrow(x$lacf))), tcex = 1,lcol = 1, llty = 1, ylim = NULL, segwid = 1,
    segandcross = TRUE, conf.level = 0.95, plot.it = TRUE,
    xlab, ylab, sub, ...)
```
Arguments

Details

This function can plot the localized autocovariance in three ways. Like a regular acf plot (but obviously a slice out of a time-varying autocovariance, not the regular acf), a line plot which shows the acfs over time and a perspective plot which can plot the estimate of $c(z, \tau)$ as a 2D function. Currently, the confidence intervals can only be displayed on the "acf" type plot.

Value

A vector of the extracted acfvals invisibly returned. Note: what is returned depends on the arguments, what is returned is what would have been plotted if plot.it were TRUE

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[Rvarlacf](#page-50-1)

```
#
# Simulate a TVAR(1) process
#
x \leftarrow \text{tvarlsim}()#
# Computes its time-localized autocovariance and confidence intervals
# Note: smoothing is done automatically!
#
x.lacf <- Rvarlacf(x=x, nz=50, var.lag.max=20)
#
# Now plot this, plot covariances as an acf plot, with the CIs
#
## Not run: plot(x.lacf, type="acf", plotcor=FALSE)
#
# Now plot it as a line plot, as correlations and can't do CIs
#
## Not run: plot(x.lacf)
```


plot.tos *Produces a graphical representation of the results of a test of stationarity contained in a* tos *object.*

Description

After a test of stationarity for dyadic data (e.g. [hwtos2](#page-25-1)) is applied to a time series it generates a results object of class tos. This function takes objects of that class and produces a graphical representation of the test.

Usage

```
## S3 method for class 'tos'
plot(x, metype = "FDR", sub = NULL, xlab = "Time",arrow.length = 0.05, verbose = FALSE, ...)
```
Arguments

Details

The following things are usually plotted. 1. The time series that was investigated. The left-hand axes is that for the time series. The horizontal axis is time (but just integers indexing). If the series was deemed stationary by the test then that's it except that the subtitle indicates that no Haar wavelet coefficients were rejected as being nonzero.

If the test indicated that the series was nonstationary then the subtitle indicates this by stating the number of rejections (this might be according to FDR or Bonferroni depending on the setting of the mctype argument. Then graphical representations of any significant Haar wavelet coefficients are plotted as double-headed red horizontal arrows on the plot. The horizontal extent corresponds to the support of the underlying wavelet. The vertical position of the arrows gives an indication of the wavelet periodogram scale where the significant coefficient was found. The wavelet periodogram scales are indexed by the right hand axis, and beware, the numbers might not be consecutive, but they will be ordered (so e.g. if no signficant coefficients were discovered at wavelet periodogram scale level 6, then that scale/axis label will not appear). The scale within the Haar wavelet transform is indicated by the vertical position WITHIN ticks between wavelet periodogram scales (ie, there are TWO scales: the wavelet periodogram scale that is currently being analyzed, and the Haar wavelet transform scale within the periodogram scale). So, if two right hand axis labels are, e.g., 4 and 5, and horizontal arrows appear between these two they actually correspond to different Haar wavelet transform scales AT wavelet periodogram level 4. It is not usually possible to tell precisely which Haar wavelet transform scale the coefficients can come from, but the information can be extracted from the summary. tos function which lists this.

Value

None.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[hwtos2](#page-25-1), [summary.tos](#page-57-1)

Examples

```
#
# Produces an interesting plot with high probability
#
#
# Note that the input time series is two concatenated white noise
# sequences with very different variances.
#
answer <- hwtos2(c(rnorm(256), rnorm(256, sd=5)))
## Not run: plot(answer)
```
plot.tosANYN *Produces a graphical representation of the results of a test of stationarity from a* tosANYN *object.*

Description

After a test of stationarity (e.g. [hwtos](#page-21-1)) is applied to a time series it generates a results object of class tosANYN. This function takes objects of that class and produces a graphical representation of the test.

plot.tosANYN 43

Usage

```
## S3 method for class 'tosANYN'
plot(x, sub = NULL, xlab = "Time",arrow.length = 0.05, verbose = FALSE, ...)
```
Arguments

Details

The following things are usually plotted. 1. The time series that was investigated. The left-hand axes is that for the time series. The horizontal axis is time (but just integers indexing). If the series was deemed stationary by the test then that's it except that the subtitle indicates that no Haar wavelet coefficients were rejected as being nonzero.

If the test indicated that the series was nonstationary then the subtitle indicates this by stating the number of rejections. Then graphical representations of any significant Haar wavelet coefficients are plotted as double-headed red horizontal arrows on the plot. The horizontal extent corresponds to the support of the underlying wavelet. The vertical position of the arrows gives an indication of the wavelet periodogram scale where the significant coefficient was found. The wavelet periodogram scales are indexed by the right hand axis, and beware, the numbers might not be consecutive, but the will be ordered (so e.g. if no signficant coefficients were discovered at wavelet periodogram scale level 6, then that scale/axis label will not appear). The scale within the Haar wavelet transform is indicated by the vertical position WITHIN ticks between wavelet periodogram scales (ie, there are TWO scales: the wavelet periodogram scale that is currently being analyzed, and the Haar wavelet transform scale within the periodogram scale). So, if two right hand axis labels are, e.g., 4 and 5, and horizontal arrows appear between these two they actually correspond to different Haar wavelet transform scales AT wavelet periodogram level 4. It is not usually possible to tell precisely which Haar wavelet transform scale the coefficients can come from, but the information can be extracted from the [summary.tosANYN](#page-59-1) function which lists this.

Value

None.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[hwtos](#page-21-1), [summary.tosANYN](#page-59-1)

Examples

```
#
# Produces an interesting plot with high probability
#
#
# Note that the input time series is two concatenated white noise
# sequences with very different variances.
#
## Not run: answer <- hwtos(c(rnorm(256), rnorm(256, sd=5)))
## Not run: plot(answer)
```
print.hwtANYN *Print out a* hwtANYN *class object, eg from the* link{hwt} *function.*

Description

Prints out very basic information on an object that represents a Haar wavelet transform of a data set of non-dyadic length.

Usage

```
## S3 method for class 'hwtANYN'
print(x, \ldots)
```
Arguments

Value

This function calls the [summary.hwtANYN](#page-54-1) function as its last action. So, the return from this function is the return from [summary.hwtANYN](#page-54-1)

Author(s)

Guy Nason.

print.lacf 45

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[hwt](#page-19-1), [summary.hwtANYN](#page-54-1)

Examples

```
#
# Generate test vector of length 5
#
v2 \le - rnorm(5)#
# Compute Haar wavelet transform
#
v2. hwt \leftarrow hwt(v2)#
# Print out the answer
#
print(v2.hwt)
#Class 'hwtANYN' : Haar Wavelet for Arbitrary Length Data object:
# ~~~~~~~ : List with 5 components with names
# c d nlevels type reindex
#
#
#summary(.):
#----------
#Levels: 2
#Filter was: Haar
#Transform type: wavelet
#Object was reindex to match wd: FALSE
```
print.lacf *Print lacf class object*

Description

Prints information about lacf class object.

Usage

```
## S3 method for class 'lacf'
print(x, \ldots)
```
46 print.lacf

Arguments

Value

None

Author(s)

Guy Nason

References

Cardinali, A. and Nason, G.P. (2012) Costationarity of Locally Stationary Time Series using costat.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. *J. Time Series Econometrics*, 2, Issue 2, Article 1.

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[lacf](#page-29-1), [plot.lacf](#page-35-1), [summary.lacf](#page-55-1)

```
#
# Make some dummy data, e.g. white noise
#
v < - rnorm(256)
#
# Compute the localized autocovariance (ok, the input is stationary
# but this is just an example. More interesting things could be achieved
# by putting the results of simulating from a LSW process, or piecewise
# stationary by concatenating different stationary realizations, etc.
#
vlacf <- lacf(v, lag.max=30)
#
# Now let's print the lacf object
#
print(vlacf)
#Class 'lacf' : Localized Autocovariance/correlation Object:
# ~~~~ : List with 3 components with names
# lacf lacr date
#
#
#summary(.):
#----------
#Name of originating time series:
```


print.lacfCI 47

```
#Date produced: Thu Oct 25 12:11:29 2012
#Number of times: 256
#Number of lags: 30
```
print.lacfCI *Print basic information about a* lacfCI *object.*

Description

Prints basic information about a lacfCI object, which contains information on confidence intervals for localized autocovariance.

Usage

```
## S3 method for class 'lacfCI'
print(x, \ldots)
```
Arguments

Value

The last action of this function is to compute [summary.tos](#page-57-1) so the return code is whatever that function returns.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[summary.lacfCI](#page-56-1), [Rvarlacf](#page-50-1)

Examples

#

See example on Rvarlacf help page

Prints out very basic information on an object that represents the output from a test of stationarity.

Usage

```
## S3 method for class 'tos'
print(x, \ldots)
```
Arguments

Value

This function calls the summary. tos function as its last action. So, the return from this function is the return from [summary.tos](#page-57-1)

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[hwtos2](#page-25-1)

```
#
# See example at end of help for hwtos2
#
```


Prints out very basic information on an object that represents the output from a test of stationarity.

Usage

```
## S3 method for class 'tosANYN'
print(x, \ldots)
```
Arguments

Value

This function calls the [summary.tosANYN](#page-59-1) function as its last action. So, the return from this function is the return from [summary.tosANYN](#page-59-1)

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[hwtos](#page-21-1),[summary.tosANYN](#page-59-1)

```
#
# See example at end of help for hwtos
#
```


This function essentially uses the running.mean function from the igraph package. However, adjustments are made to ensure that the output is always the same length as the input (by fiddling at the boundaries).

Usage

runmean(x, binwidth)

Arguments

Details

For example, if binwidth=2 and $x=1:6$ then the function averages each pair to get 1.5, 2.5, 3.5, 4.5, 5.5. However, this is only 5 numbers and the input had 6. So, in this case the function arranges for the output to be extended (in this case 1 gets padded onto the front. For vectors of length > 3 the padding depends on whether the vector is even or odd.

Value

The running mean of the input at the given bandwidth.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[ewspec3](#page-12-1)

Rvarlacf 51

Examples

```
runmean(1:6, 2)
#
# [1] 1.0 1.5 2.5 3.5 4.5 5.5
#
runmean(1:14, 4)
#
# [1] 1.75 2.50 3.50 4.50 5.50 6.50 7.50 8.50 9.50 10.50 11.50 12.5
# [13] 13.25 13.50
#
```


Description

Compute a localized autocovariance and associated confidence intervals for a locally stationary time series. The underlying theory assumes a locally stationary wavelet time series, but will work well for other time series that are not too far away.

Usage

```
Rvarlacf(x, nz, filter.number = 1, family = "DaubExPhase",
    smooth.dev = var, AutoReflect = TRUE, lag.max = NULL,WPsmooth.type = "RM", binwidth = \theta, mkcoefOBJ, ThePsiJ,
    Cverbose = 0, verbose = 0, OPLENGTH = 10^{\circ}5, var.lag.max = 3,
    ABB.tol = 0.1, ABB.plot.it = FALSE, ABB.verbose = 0,
    ABB.maxits = 10, truedenom=FALSE, ...)
```
Arguments

Details

1. If binwidth=0 the function first computes the 'best' linear running mean binwidth (bandwidth) for the smooth of the localized autocovariance. 2. The function computes the localized autocovariance smoothed with a running mean with the selected binwidth. Then, the variance of $\hat{c}(z, \tau)$ is computed for the selected value of time z=nz and for the lags specified (in var.lag.max). The results are returned in an object of class lacfCI.

Note, this function computes and plots localized autocovariances for a particular and fixed time location. Various other plots, including perspective plots or the localized autocovariance function over all time can be found in the costat package. (Indeed, this function returns a lacfCI object that contains a lacf object, and interesting plots can be plotted using the plot.lacf function within costast.

Rvarlacf 53

Value

An object of class lacfCI. This is a list with the following components.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[plot.lacfCI](#page-37-1), [print.lacfCI](#page-46-1), [summary.lacfCI](#page-56-1)

```
#
# Do localized autocovariance on a iid Gaussian sequence
#
tmp <- Rvarlacf(rnorm(256), nz=125)
#
# Plot the localized autocovariances over time (default plot, doesn't
# produce CIs)
#
## Not run: plot(tmp)
#
# You should get a plot where the lag 0 acs are all near 1 and all the
# others are near zero, the acfs over time.
#
## Not run: plot(tmp, plotcor=FALSE, type="acf")
#
# This plots the autocovariances (note: \code{plotcor=FALSE}) and the
# type of plot is \code{"acf"} which means like a regular ACF plot, except
# this is c(125, tau), ie the acf localized to time=125 The confidence
# intervals are also plotted.
# The plot subtitle indicates that it is c(125, tau) that is being plotted
#
```
StoreStatistics *Interogates calculation store to see how well we are reusing previous calculations (debugging)*

Description

The computation of the variance of the lacf estimator is intensive and we try to speed that up by reusing calculations. These calculations are stored in internal C arrays. This function interrogates those arrays and can provide details on how well the storage is working and provide hints if more storage needs to be allocated. For very large time series it is possible that values need to be calculated that can be stored and this function can monitor this.

Usage

StoreStatistics()

Details

The function prints out the state of the storage. Three numbers are reported on. 1. The number of values that were calculated but not stored "outside framework". Ideally you want this number to be low, if it gets persistently high then more storage needs to be allocated in the C code (notably MAXELL, MAXJ, MAXK, MAXD for the ThmStore and ValExists arrays).

The other two numbers are "Number stored" and "Number found". The first number corresponds to the number of values calculated once and then stored. The second number contains the number of times the software interogated the store and found a value that it did not have to then calculate. So, ideally, you'd like the latter number to be a high percentage of the former number, as this means the store is working efficiently.

Note, this function is definitely not intended for casual users. However, for users of very large series, who have the computational resources, these storage parameters might need to be increased.

The values will be zero if [Rvarlacf](#page-50-1) has not yet been called, and only refer to the last call to that function (as the function zeroes the store on invocation).

Value

None.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[Rvarlacf](#page-50-1)

Examples

```
#
# Simulate some data
#
x \leftarrow \text{tvarlsim}()#
# Calculate lacf and confidence intervals
#
x.lacf <- Rvarlacf(x=x, nz=50, var.lag.max=20)
#
# Find out how the store did
#
StoreStatistics()
#Number calculated outside framework: 0
#Number calculated then stored: 154440
#Number found in store: 14980680
#
#Overall % calculated: 1.020408
#% outside framework: 0
```


Description

This function summarizes the results of a hwtANYN object that contains the results of a Haar wavelet transform that had been carried out on an original vector of (potentially) non-dyadic length.

Usage

```
## S3 method for class 'hwtANYN'
summary(object, ...)
```
Arguments

Value

None.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[hwt](#page-19-1), [print.hwtANYN](#page-43-1)

Examples

See help for print.hwtANYN

summary.lacf *Summarizes a lacf object*

Description

Summarizes a lacf object

Usage

```
## S3 method for class 'lacf'
summary(object, ...)
```
Arguments

Value

None

Author(s)

Guy Nason

References

Cardinali, A. and Nason, G.P. (2012) Costationarity of Locally Stationary Time Series using costat.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. *J. Time Series Econometrics*, 2, Issue 2, Article 1.

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[lacf](#page-29-1), [plot.lacf](#page-35-1), [print.lacf](#page-44-1)

Examples

```
#
# Make some dummy data, e.g. white noise
#
v \le rnorm(256)
#
# Compute the localized autocovariance (ok, the input is stationary
# but this is just an example. More interesting things could be achieved
# by putting the results of simulating from a LSW process, or piecewise
# stationary by concatenating different stationary realizations, etc.
#
vlacf <- lacf(v, lag.max=20)
#
# Now let's summarize the lacf object
#
summary(vlacf)
#Name of originating time series:
#Date produced: Thu Oct 25 12:11:29 2012
#Number of times: 256
#Number of lags: 20
```
summary.lacfCI *Produce a brief summary of the contents of a* lacfCI *object*

Description

Produces brief summary of the contents of a lacfCI object.

Usage

```
## S3 method for class 'lacfCI'
summary(object, ...)
```
58 summary.tos

Arguments

Value

No value

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[print.lacfCI](#page-46-1),[Rvarlacf](#page-50-1)

Examples

See example in the Rvarlacf function

summary.tos *Summarize the results of a test of stationarity contained i a* tos *object.*

Description

This function summarizes the results of a tos object that contains information about a test of stationarity. The summary function prints out information about how many individual hypothesis tests there were, how many were rejected and what the (equivalent) rejection p-value was (in the last cases both for FDR and Bonferroni). If the hypothesis of stationarity is rejected then the routine also prints out a list of the Haar wavelet coefficients (and their scales, locations and scale of the wavelet periodogram) that were significant. The function also returns a lot of this information (invisibly).

Usage

```
## S3 method for class 'tos'
summary(object, size = 0.05, quiet = FALSE, mctype = "FDR", ...)
```
summary.tos 59

Arguments

Value

The function returns a list which contain a list of the rejected coefficients. Each list item contains the index of a particular rejected coefficient, which is a vector of at least three elements. The first element corresponds to the scale of the wavelet periodogram, the second is the level of the Haar wavelet transform, and all remaining values are the index of the significant wavelet coefficients at that Haar wavelet transform scale. The list also contains the total number of Haar wavelet coefficients rejected and the mctype argument also.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[hwtos2](#page-25-1), [print.tos](#page-47-1)

Examples

See example for hwtos2, this contains two examples where # summary.tos (as summary(.) is used in the output.

This function summarizes the results of a tosANYN object that contains information about a test of stationarity. The summary function prints out information about how many individual hypothesis tests there were, how many were rejected. If the hypothesis of stationarity is rejected then the routine also prints out a list of the Haar wavelet coefficients (and their scales, locations and scale of the wavelet periodogram) that were significant. The function also returns a lot of this information (invisibly).

Usage

S3 method for class 'tosANYN' summary(object, quiet = FALSE, ...)

Arguments

Value

The function returns a list which contain a list of the rejected coefficients. Each list item contains the index of a particular rejected coefficient, which is a vector of at least three elements. The first element corresponds to the scale of the wavelet periodogram, the second is the level of the Haar wavelet transform, and all remaining values are the index of the significant wavelet coefficients at that Haar wavelet transform scale. The list also contains the total number of Haar wavelet coefficients rejected and the mctype argument also.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[hwtos](#page-21-1), [print.tosANYN](#page-48-1)

tvar1sim 61

Examples

See example for hwtos, this contains two examples where

summary.tosANYN (as summary(.) is used in the output.

tvar1sim *Simulate a realization from a particular TVAR(1) model.*

Description

Simulates a realization from a TVAR(1) model where the AR(1) parameter moves from 0.9 to -0.9 in equal steps over 512 time points. The realization is also of length 512. The innovations are normally distributed with mean zero and standard deviation of sd.

Usage

tvar1sim(sd = 1)

Arguments

sd This is the standard deviation of the Gaussian innovation.

Details

This function is easily converted into one that does the same thing but for a different sample size.

Value

A realization of the aforementioned TVAR(1) process.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[Rvarlacf](#page-50-1)

62 varip2

Examples

```
#
# Generate realization from the TVAR(1) process
#
x \leftarrow \text{tvarlsim}()#
# Maybe plot it
#
## Not run: ts.plot(x)
```


Description

Performs a direct computation of an estimate of the variance of the Haar wavelet coefficients of the raw wavelet periodogram of a time series.

Usage

varip2(i, p, ll, S, P)

Arguments

Details

Computes the variance of the Haar wavelet coefficients of the raw wavelet periodogram. Note, that this is merely an estimate of the variances.

whichlevel 63

Value

A list with the following components:

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[Cvarip2](#page-8-1),[hwtos2](#page-25-1), [covIwrap](#page-6-1)

Examples

```
#
# Generate autocorrelation wavelets
#
P1 <- PsiJ(-5, filter.number=1, family="DaubExPhase")
#
#
# Now compute varip2: this is the variance of the Haar wavelet coefficient
# at the finest scale, location 10 and P1 autocorrelation wavelet.
# Note, I've used S to be the exact coefficients which would be for white noise.
# In practice, S would be an *estimate* calculated from the data.
#
varip2(i=1, p=10, ll=2, S=c(1/2, 1/4, 1/8, 1/16, 1/32), P=P1)
#
# Ans component is 1.865244
```
whichlevel *Helper routine for* mkcoef

Description

Helps [mkcoef](#page-32-1) by finding out how many more levels are required to compute a set of discrete wavelets to a given (other) level.

64 whichlevel

Usage

whichlevel(J, filter.number = 10, family = "DaubLeAsymm")

Arguments

Details

When computing the discrete wavelets up to a given scale we use the inverse wavelet transform to do this. However, to generate a wavelet within the range of a wavelet decomposition you have to use more scales in the inverse wavelet transform than first requested. This is because wavelet coefficients at the coarsest scales are associated with wavelets whose support is greater than the whole extent of the series. Hence, you have to have a larger wavelet transform, with more levels, insert a coefficient mid-level to generate a discrete wavelet whose support lies entirely within the extent of the series. This function figures out what the extra number of levels should be.

Value

Simply returns the required number of levels

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. *J. R. Statist. Soc.* B, 75, 879-904. [doi:10.1111/rssb.12015](https://doi.org/10.1111/rssb.12015)

See Also

[mkcoef](#page-32-1)

```
whichlevel(6)
# [1] 11
#
# E.g. mkcoef wanted to generate 6 levels of discrete wavelets and
# whichlevel tells it that it needs to generate a wavelet transform
# of at least 11 levels.
```


Take a vector of any length and then intersperse zeroes between existing elements (and add a further zero to the end).

Usage

zeropad(x)

Arguments

x Vector that you want to intersperse zeros into.

Details

Title says it all.

Value

A vector whose odd elements are just x and whose even elements are zeroes.

Author(s)

G.P. Nason

See Also

[hwt](#page-19-1)

```
#
# Operate on a test set
#
v \le -1:3zeropad(v)
#[1] 1 0 2 0 3 0
```
Index

∗ algebra HwdS , [19](#page-18-0) mkcoef, [33](#page-32-0) ∗ hplot plot.hwtANYN, [34](#page-33-0) ∗ kwd2 covIwrap , [7](#page-6-0) ∗ manip getridofendNA , [18](#page-17-0) idlastzero , [29](#page-28-0) littlevar , [32](#page-31-0) whichlevel , [63](#page-62-0) zeropad, [65](#page-64-0) ∗ math hwt , [20](#page-19-0) ∗ nonlinear hwt , [20](#page-19-0) ∗ smooth AutoBestBW, [5](#page-4-0) hwt , [20](#page-19-0) plot.hwtANYN, [34](#page-33-0) runmean , [50](#page-49-0) ∗ ts covI , [6](#page-5-0) covIwrap , [7](#page-6-0) Cvarip2 , [9](#page-8-0) EstBetaCov, [10](#page-9-0) ewspec3 , [13](#page-12-0) ewspecHaarNonPer , [16](#page-15-0) hwtos , [22](#page-21-0) hwtos2 , [26](#page-25-0) lacf , [30](#page-29-0) locits-package , [2](#page-1-0) plot.lacf , [36](#page-35-0) plot.lacfCI, [38](#page-37-0) plot.tos , [41](#page-40-0) plot.tosANYN, [42](#page-41-0) print.hwtANYN, [44](#page-43-0) print.lacf , [45](#page-44-0)

print.lacfCI , [47](#page-46-0) print.tos , [48](#page-47-0) print.tosANYN,4<mark>9</mark> Rvarlacf , [51](#page-50-0) summary.hwtANYN, [55](#page-54-0) summary.lacf, [56](#page-55-0) summary.lacfCI, [57](#page-56-0) summary.tos, [58](#page-57-0) summary.tosANYN, [60](#page-59-0) tvar1sim , [61](#page-60-0) varip2, [62](#page-61-0) ∗ utilities StoreStatistics , [54](#page-53-0) AutoBestBW , [5](#page-4-0) , *[11](#page-10-0) , [12](#page-11-0)* , *[15](#page-14-0)* , *[30](#page-29-0)* covI , [6](#page-5-0) , *[7,](#page-6-0) [8](#page-7-0)* covIwrap , *[6,](#page-5-0) [7](#page-6-0)* , [7](#page-6-0) , *[63](#page-62-0)* Cvarip2 , [9](#page-8-0) , *[63](#page-62-0)* EstBetaCov, [10](#page-9-0) ewspec3 , *[11](#page-10-0) , [12](#page-11-0)* , [13](#page-12-0) , *[30](#page-29-0)* , *[50](#page-49-0)* ewspecHaarNonPer , [16](#page-15-0) , *[19](#page-18-0)* getridofendNA , [18](#page-17-0) , *[19](#page-18-0)* HwdS , *[17,](#page-16-0) [18](#page-17-0)* , [19](#page-18-0) hwt , [20](#page-19-0) , *[35](#page-34-0)* , *[45](#page-44-0)* , *[55](#page-54-0) , [56](#page-55-0)* , *[65](#page-64-0)* hwtos , *[3](#page-2-0)* , *[22](#page-21-0)* , [22](#page-21-0) , *[42](#page-41-0)* , *[44](#page-43-0)* , *[49](#page-48-0)* , *[60](#page-59-0)* hwtos2 , *[3](#page-2-0)* , *[9](#page-8-0) , [10](#page-9-0)* , *[17](#page-16-0)* , *[25](#page-24-0)* , [26](#page-25-0) , *[32](#page-31-0)* , *[41](#page-40-0) , [42](#page-41-0)* , *[48](#page-47-0)* , *[59](#page-58-0)* , *[62](#page-61-0) , [63](#page-62-0)* idlastzero , [29](#page-28-0) lacf , *[15](#page-14-0)* , [30](#page-29-0) , *[38](#page-37-0)* , *[46](#page-45-0)* , *[52](#page-51-0)* , *[57](#page-56-0)* littlevar , [32](#page-31-0) locits *(*locits-package *)* , [2](#page-1-0) locits-package , [2](#page-1-0) mkcoef , *[11](#page-10-0)* , *[29](#page-28-0)* , [33](#page-32-0) , *[63](#page-62-0) , [64](#page-63-0)* plot.hwtANYN , *[22](#page-21-0)* , [34](#page-33-0)

INDEX 67

```
plot.lacf
, 36
, 46
, 57
plot.lacfCI
,
3
, 31
, 38
, 53
plot.tos
,
3
, 41
2542
print.hwtANYN
, 22
, 35
, 44
, 56
print.lacf
, 45
, 57
print.lacfCI
, 47
, 53
, 58
print.tos
, 48
, 59
print.tosANYN
, 25
, 49
, 60
PsiJ
, 11
runmean
, 50
Rvarlacf
,
3
,
6
, 31
, 33
, 40
, 47
, 51
, 54
, 55
, 58
,
        61
StoreStatistics
, 54
22444555
summary.lacf
, 46
, 56
summary.lacfCI
, 47
, 53
, 57
summary.tos
,
3
, 42
, 47, 48
, 58
2543444960
tvar1sim
, 61
varip2
,
8
–10
, 28
, 62
whichlevel
, 33
, 63
```
zeropad, [65](#page-64-0)