Package: Inmixsurv (via r-universe)

October 4, 2024

Type Package

Title Bayesian Mixture Log-Normal Survival Model

Version 3.1.6 **Date** 2024-08-21

Description Bayesian Survival models via the mixture of Log-Normal distribution extends the well-known survival models and accommodates different behaviour over time and considers higher censored survival times. The proposal combines mixture distributions Fruhwirth-Schnatter(2006) <doi:10.1007/s11336-009-9121-4>, and data augmentation techniques Tanner and Wong (1987)

License MIT + file LICENSE

Imports stats, posterior, hardhat (>= 1.3.0), rlang, generics, dplyr, readr, purrr, tidyr, tibble, Rcpp, RcppParallel, tidyselect, broom

LinkingTo Rcpp, RcppArmadillo, RcppGSL, RcppParallel

<doi:10.1080/01621459.1987.10478458>.

Depends parsnip (>= 1.1.0), R (>= 4.1.0), survival, ggplot2

Suggests ggsurvfit, plotly, bayesplot, censored, knitr, rmarkdown, tidymodels, testthat (>= 3.0.0), covr, withr, pec

Encoding UTF-8

SystemRequirements C++, GNU, GNU make, GSL

VignetteBuilder knitr

Config/testthat/edition 3

LazyData true

URL https://vivianalobo.github.io/lnmixsurv/

RoxygenNote 7.3.2

NeedsCompilation yes

Author Viviana das Graças Ribeiro Lobo [aut], Thaís Cristina Oliveira da Fonseca [aut], Mariane Branco Alves [aut], Vitor Capdeville [aut], Victor Hugo Soares Ney [cre]

Maintainer Victor Hugo Soares Ney <victor.s.ney@gmail.com>

Repository CRAN

Date/Publication 2024-09-03 15:20:08 UTC

Contents

Index		16
	tidy.survival_ln_mixture_em	14
	tidy.survival_ln_mixture	13
	survival_ln_mixture_em	11
	survival_ln_mixture	9
	sim_data	9
	simulate_data	
	predict.survival_ln_mixture_em	
	predict.survival_ln_mixture	
	plot_fit_on_data	
	plot.survival_ln_mixture_em	
	nobs.survival_ln_mixture	
	join_empirical_hazard	
	augment.survival_ln_mixture_em	
	augment.survival_ln_mixture	

augment.survival_ln_mixture

Augment data with information from a survival_ln_mixture object

Description

Include information about hazard and survival distribution for each individual in a dataset.

Usage

```
## S3 method for class 'survival_ln_mixture'
augment(x, newdata, eval_time, ...)
```

Arguments

X	A survival_ln_mixture object.
newdata	A base::data.frame() or tibble::tiblle() containing all the original predictors used to create x .
eval_time	a vector with the times where the hazard and survival distribution will be evaluated.
	Not used.

Value

A tibble::tibble() with the original covariates and ther survvial and hazard distributions.

```
augment.survival_ln_mixture_em
```

Augment data with information from a survival_ln_mixture_em object

Description

Include information about hazard and survival distribution for each individual in a dataset.

Usage

```
## S3 method for class 'survival_ln_mixture_em'
augment(x, newdata, eval_time, ...)
```

Arguments

x A survival_ln_mixture_em object.

newdata A base::data.frame() or tibble::tiblle() containing all the original pre-

dictors used to create x.

eval_time a vector with the times where the hazard and survival distribuition will be eval-

uated.

... Not used.

Value

A tibble::tibble() with the original covariates and ther surviial and hazard distributions.

join_empirical_hazard Function used to join the empirical hazard to the data

Description

join_empirical_hazard() takes a Kaplan Meier empirical estimate which includes the survival estimates and joins the hazard estimates to it.

Usage

```
join_empirical_hazard(km)
```

Arguments

km

Kaplan-Meier estimates, i.e., object generated after running broom::tidy(survfit_obj), in which survfit_obj is a survfit object. Can also be a survfit object.

Value

The same object as inputed, but with the hazard estimates column (hazard_estimate) joined to it.

```
nobs.survival_ln_mixture
```

Extract the number of observations from survival_ln_mixture fit.

Description

Extract the number of observations used in a survival_ln_mixture fit.

Usage

```
## S3 method for class 'survival_ln_mixture'
nobs(object, ...)
```

Arguments

object A fitted survival_ln_mixture object.

... Not used.

Value

A single integer.

```
plot.survival_ln_mixture_em
```

Visualizes the path of the EM algorithm

Description

Visualizes the path of the EM algorithm

Usage

```
## S3 method for class 'survival_ln_mixture_em'
plot(x, ...)
```

Arguments

x A fitted survival_ln_mixture_em object.

... Not used.

Value

A ggplot object (or plotly, if the package is avaiable) of the EM algorithm iterations.

plot_fit_on_data 5

plot_fit_on_data	Function used to quick visualize the fitted values (survival estimate) on the data used to fit the model (via EM algorithm or Gibbs).

Description

plot_fit_on_data() estimates survival/hazard for the data the model was fitted on and plots the results.

Usage

```
plot_fit_on_data(
   model,
   data,
   type = "survival",
   interval = "none",
   level = 0.95
)
```

Arguments

model	A survival_ln_mixture or survival_ln_mixture_em object.
data	A data.frame() or tibble() containing the data used to fit the model. For appropriate behavior, should be the same object used to generate survival_ln_mixture/survival_ln_mixture_e objects.
type	A character string specifying the type of plot. The default is "survival", but can be "hazard".
interval	A character string specifying the type of interval to be plotted. The default is "none", but can be "credible". The EM algorithm does not provide confidence intervals and this parameter is only support for the Bayesian version

A numeric value between 0 and 1 specifying the level of the confidence interval. The default is 0.95.

Value

level

A list with two objects, one ggplot (\$ggplot) with the predictions plotted against the empirical data and a tibble with the predictions (\$preds).

(survival_ln_mixture object).

```
predict.survival\_ln\_mixture \\ Predict\,from\,\,a\,\,Lognormal\,\,Mixture\,\,Model
```

Description

Predict from a Lognormal Mixture Model

Usage

```
## S3 method for class 'survival_ln_mixture'
predict(
  object,
  new_data,
  type,
  eval_time,
  interval = "none",
  level = 0.95,
   ...
)
```

Arguments

object A survival_ln_mixture object. new_data A data frame or matrix of new predictors. A single character. The type of predictions to generate. Valid options are: type • "time" for the survival time. not implmeented • "survival" for the survival probability. • "hazard" for the hazard. eval_time For type = "hazard" or type = "survival", the times for the distribution. interval should interval estimates be added? Options are "none" and "credible". level the tail area of the intervals. Default value is 0.95. Not used, but required for extensibility. . . .

Value

A tibble of predictions. The number of rows in the tibble is guaranteed to be the same as the number of rows in new_data.

Note

Categorical predictors must be converted to factors before the fit, otherwise the predictions will fail.

Examples

```
# Categorical variables must be converted to factor before the fit.

require(survival)
# Wrong way of doing
set.seed(1)
mod <- survival_ln_mixture(Surv(time, status == 2) ~ factor(sex), lung, intercept = TRUE)

## Not run:
# this piece of code will throw error
predict(mod, data.frame(sex = 1), type = "survival", eval_time = 100)

## End(Not run)

# Correct way
lung$sex <- factor(lung$sex) # converting to factor before
set.seed(1)
mod2 <- survival_ln_mixture(Surv(time, status == 2) ~ sex, lung, intercept = TRUE)
# Note: the categorical predictors must be a character.
predict(mod2, data.frame(sex = "1"), type = "survival", eval_time = 100)</pre>
```

```
predict.survival_ln_mixture_em
```

Predict from a lognormal_em Mixture Model fitted using EM algorithm.

Description

Predict from a lognormal_em Mixture Model fitted using EM algorithm.

Usage

```
## S3 method for class 'survival_ln_mixture_em'
predict(object, new_data, type, eval_time, ...)
```

Arguments

object	A survival_ln_mixture_em object.
new_data	A data frame or matrix of new predictors.
type	A single character. The type of predictions to generate. Valid options are:
	 "survival" for the survival probability.
	 "hazard" for the hazard theoretical hazard.
eval_time	For type = "hazard" or type = "survival", the times for the distribution.
	Not used, but required for extensibility.

8 simulate_data

Value

A tibble of predictions. The number of rows in the tibble is guaranteed to be the same as the number of rows in new_data.

Note

Categorical predictors must be converted to factors before the fit, otherwise the predictions will fail.

simulate_data Function to simulate survival data from a mixture of normal distribution.

Description

simulate_data() simulates data from a mixture model.

Usage

```
simulate_data(
  n = 4000,
  mixture_components = 2,
  k = 2,
  percentage_censored = 0.4,
  starting_seed = sample(1:2^28, 1)
)
```

Arguments

n Number of observations desired.

mixture_components

Number of mixtures to include in the generation of the data.

k number of covariates generated (the total of covariates will be intercept + (k - 1) covariates).

percentage_censored

Percentage of censored observations (defined as decimal value between 0 and 1). This will generate a delta vector in which 1 is an event that ocurred and 0 is a censored observation.

starting_seed Seed to start the random number generation.

Value

A list with two elements: data and real_values. The data element is a tibble with the simulated data. The real_values is a tibble with the real values of the parameters used to generate the data.

sim_data 9

sim_data

Simulated lognormal mixture data.

Description

A simulated dataset with 10000 observations from a lognormal mixutre model with 2 componentes.

Usage

```
sim_data
```

Format

sim_data:

A list with two componentes:

• \$data: A data frame with 10,000 rows and 3 columns:

y observed survival time

delta event indicator. 1 == event, 0 == censored.

x binary covariate

• \$true_vals: A named vector with the true values used to generate the data.

survival_ln_mixture

Lognormal mixture model - Gibbs sampler

Description

survival_ln_mixture() fits a Bayesian lognormal mixture model with Gibbs sampling (optional EM algorithm to find local maximum at the likelihood function), as described in LOBO, Viviana GR; FONSECA, Thaís CO; ALVES, Mariane B. Lapse risk modeling in insurance: a Bayesian mixture approach. Annals of Actuarial Science, v. 18, n. 1, p. 126-151, 2024.

Usage

```
survival_ln_mixture(
  formula,
  data,
  intercept = TRUE,
  iter = 1000,
  warmup = floor(iter/10),
  thin = 1,
  chains = 1,
  cores = 1,
  mixture_components = 2,
  show_progress = FALSE,
```

10 survival_ln_mixture

```
em_iter = 0,
    starting_seed = sample(1:2^28, 1),
    use_W = FALSE,
    number_em_search = 200,
    iteration_em_search = 1,
    fast_groups = TRUE,
    ...
)

## Default S3 method:
survival_ln_mixture(formula, ...)

## S3 method for class 'formula'
survival_ln_mixture(formula, data, intercept = TRUE, ...)
```

Arguments

formula A formula specifying the outcome terms on the left-hand side, and the predictor

terms on the right-hand side. The outcome must be a survival::Surv object.

data A data frame containing both the predictors and the outcome.

A logical. Should an intercept be included in the processed data?

iter A positive integer specifying the number of iterations for each chain (including

warmup).

warmup A positive integer specifying the number of warmup (aka burnin) iterations per

chain. The number of warmup iterations should be smaller than iter.

thin A positive integer specifying the period for saving samples.

chains A positive integer specifying the number of Markov chains.

cores A positive integer specifying the maximum number of cores to run the chains.

Setting this to a value bigger than 1 will automatically trigger the parallel mode

mixture_components

number of mixture componentss ≥ 2 .

show_progress Indicates if the code shows the progress of the EM algorithm and the Gibbs

Sampler.

em_iter A positive integer specifying the number of iterations for the EM algorithm. The

EM algorithm is performed before the Gibbs sampler to find better initial values for the chains. On simulations, values lower than 200 seems to work piece

for the chains. On simulations, values lower than 200 seems to work nice.

starting_seed Starting seed for the sampler. If not specified by the user, uses a random integer

between 1 and 2^28 This way we ensure, when the user sets a seed in R, that

this is passed into the C++ code.

use_W Specifies is the W (groups weight's matrix for each observation) should be used

from EM. It holds W constant through the code, resulting in a faster Bayesian Inference (close to what Empirical Bayes would do). It may helps generating credible intervals for the survival and hazard curves, using the information from the previous EM iteration. Make sure the EM have converged before setting this

parameter to true. In doubt, leave this as FALSE, the default.

survival_ln_mixture_em

11

number_em_search

Number of different EM's to search for maximum likelihoods. Recommended to leave, at least, at 100. This value can be set to 0 to disable the search for maximum likelihood initial values.

iteration_em_search

Number of iterations for each of the EM's used to find the maximum likelihoods. Recommended to leave at small values, such as from 1 to 5.

fast_groups

Use fast computation of groups allocations probabilities, defaults to TRUE. Setting it to FALSE can increase the computation time (a lot) but it's worth trying if the chains are not converging.

... Not currently used, but required for extensibility.

Value

A survival_ln_mixture object, which is a list with the following componentes:

posterior A posterior::draws_matrix with the posterior of the parameters of the model.

nobs A integer holding the number of observations used to generate the fit.

blueprint The blueprint component of the output of hardhat::mold

Note

Categorical predictors must be converted to factors before the fit, otherwise the predictions will fail.

Examples

```
# Formula interface
library(survival)
set.seed(1)
mod <- survival_ln_mixture(Surv(time, status == 2) ~ NULL, lung, intercept = TRUE)</pre>
```

```
survival_ln_mixture_em
```

Lognormal mixture model - Expectation-Maximization Algorithm

Description

survival_ln_mixture_em() fits an EM algorithm, as described in LOBO, Viviana GR; FON-SECA, Thaís CO; ALVES, Mariane B. Lapse risk modeling in insurance: a Bayesian mixture approach. Annals of Actuarial Science, v. 18, n. 1, p. 126-151, 2024, for modelling mixtures of lognormal distributions applied to survival data.

Usage

```
survival_ln_mixture_em(
  formula,
  data,
  intercept = TRUE,
  iter = 50,
  mixture_components = 2,
  starting_seed = sample(1:2^28, 1),
  number_em_search = 200,
  iteration_em_search = 1,
  show_progress = FALSE,
  ...
)

## Default S3 method:
survival_ln_mixture_em(formula, ...)

## S3 method for class 'formula'
survival_ln_mixture_em(formula, data, intercept = TRUE, ...)
```

Arguments

formula A formula specifying the outcome terms on the left-hand side, and the predictor

terms on the right-hand side. The outcome must be a survival::Surv object.

data A data frame containing both the predictors and the outcome.

intercept A logical. Should an intercept be included in the processed data?

iter A positive integer specifying the number of iterations for the EM algorithm.

mixture_components

number of mixture components ≥ 2 .

starting_seed Starting seed for the algorithm. If not specified by the user, uses a random

integer between 1 and 2^28 This way we ensure, when the user sets a seed in R,

that this is passed into the C++ code.

number_em_search

Number of different EM's to search for maximum likelihoods. Recommended

to leave, at least, at 100.

iteration_em_search

Number of iterations for each of the EM's used to find the maximum likelihoods.

Recommended to leave at small values, such as from 1 to 5.

show_progress A logical. Should the progress of the EM algorithm be shown?

. . . Not currently used, but required for extensibility.

Value

An object of class survival_ln_mixture_em containing the following elements:

• em_iterations: A data frame containing the EM iterations.

- nobs: The number of observations.
- predictors_name: The names of the predictors.
- logLik: The log-likelihood of the model.
- mixture_groups: The number of mixture groups.
- blueprint: The blueprint used to process the formula

```
tidy.survival_ln_mixture
```

Tidying method for a Lognormal Mixture model.

Description

These method tidy the estimates from survival_ln_mixture fits into a summary.

Usage

```
## S3 method for class 'survival_ln_mixture'
tidy(
    x,
    effects = "fixed",
    conf.int = FALSE,
    conf.level = 0.9,
    digits = NULL,
    ...
)
```

Arguments

X	Fitted model object (survival_ln_mixture).
effects	A character vector including one or more of "fixed" and "auxiliary.
conf.int	If TRUE columns for lower (cred.low) and upper (cred.high) bounds of the posterior uncertainty intervals are included.
conf.level	A number between 0 and 1 indicating the desired probability mass to include in the intervals. Only used if $conf.int = TRUE$.
digits	How many significant digits should be displayed?
	Not used.

Value

A data. frame without rownames. When effects="fixed" (the default), tidy.survival_ln_mixutre returns one row for each coefficient for each component of the mixture with three columns:

```
term The name of the corresponding term in the model.
estimate A point estimate of the coefficient (posterior median).
```

A standard error for the point estimate based on mad. See the *Uncertainty esti- mates* section in print.stanreg for more details.

Setting effects="auxiliary" will select the precision and proportion of mixture components parameters.

Examples

```
require(survival)
lung$sex <- factor(lung$sex)
set.seed(1)
mod2 <- survival_ln_mixture(Surv(time, status == 2) ~ sex, lung)
tidy(mod2)
tidy(mod2, conf.int = TRUE)
tidy(mod2, effects = c("fixed", "auxiliary"), conf.int = TRUE)</pre>
```

```
tidy.survival_ln_mixture_em
```

Tidying method for a Lognormal Mixture model (fitted via Expectation-Maximization algorithm).

Description

These method tidy the estimates from survival_ln_mixture fits into a short summary. It doesn't contain uncertainty estimates since it's a likelihood maximization algorithm.

Usage

```
## S3 method for class 'survival_ln_mixture_em'
tidy(x, effects = "fixed", digits = NULL, ...)
```

Arguments

x Fitted model object (survival_ln_mixture_em).

effects A character vector including one or more of "fixed" and "auxiliary.

digits How many significant digits should be displayed?

Not used.

Value

A data.frame without rownames. When effects="fixed" (the default), tidy.survival_ln_mixutre returns one row for each coefficient for each component of the mixture with two columns:

term The name of the corresponding term in the model.
estimate A point estimate of the coefficient (last iteration value).

Setting effects="auxiliary" will select the precision and proportion of mixture components parameters.

Examples

```
require(survival)
lung$sex <- factor(lung$sex)
set.seed(1)
mod2 <- survival_ln_mixture_em(Surv(time, status == 2) ~ sex, lung)
tidy(mod2)
tidy(mod2, effects = c("fixed", "auxiliary"))</pre>
```

Index

```
* datasets
    sim_data, 9
\verb|augment.survival_ln_mixture|, 2
\verb|augment.survival_ln_mixture_em|, 3
hardhat::mold, 11
join\_empirical\_hazard, 3
mad, 14
nobs.survival_ln_mixture, 4
plot.survival_ln_mixture_em, 4
plot_fit_on_data, 5
posterior::draws_matrix, 11
predict.survival_ln_mixture, 6
predict.survival_ln_mixture_em, 7
print.stanreg, 14
sim_data, 9
simulate_data, 8
survival::Surv, 10, 12
survival_ln_mixture, 9
survival_ln_mixture_em, 11
tidy.survival_ln_mixture, 13
tidy.survival_ln_mixture_em, 14
```