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Abstract

The R package lm.br delivers exact tests and exact con�dence regions

for a changepoint in linear or multiple linear regression. This package im-

plements the likelihood theory of conditional inference. Examples demon-

strate its use and show some properties of the broken-line models.

1 Theory

A broken-line model consists of two straight lines joined at a changepoint. Three
variants are

yi = α+ β(xi − θ)− + β′(xi − θ)+ + ei (1)

yi = α+ β(xi − θ)− + ei (2)

yi = β(xi − θ)− + ei (3)

denoting a− = min(a, 0) and a+ = max(a, 0), where e ∼ N(0, σ2Σ). Parame-
ters θ, α, β, β′, σ are unknown but Σ is known. Model (2) is a threshold model,
while model (3) would apply for a known threshold level. Inference about a
parameter uses the assumed model and resulting distribution of a test statistic.

A test statistic D assigns a numeric value to a postulate parameter value, p0,
depending on the model and the observations. D(p0) is itself a random vari-
able because it is a function of the random observations. A signi�cance level
is the probability that D could be worse than the observed value, SL(p0) =
Pr[D(p0) > D(p0)obs], based on the model. The set of postulate values such
that SL > α is a 100(1− α)% con�dence region for the true parameter value.

Conditional inference incorporates su�cient statistics that account for the other,
unknown parameters. This re�nement determines the exact distribution of a
test statistic, even for small data sets. Student's t, for example, is the distribu-
tion of a sample mean conditional on a su�cient statistic for the variance. See
Kalb�eisch (1985, ch. 15), Cox and Hinkley (1974, ex. 5.1, 5.5).
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The likelihood-ratio is an optimal test statistic. Knowles and Siegmund (1989)
examined an exact signi�cance test, using likelihood-ratio, for the null hypoth-
esis of a single line versus a broken line. Knowles, Siegmund, and Zhang (1991)
derived the conditional likelihood-ratio (CLR) signi�cance tests for the non-
linear parameter in semilinear regression. Siegmund and Zhang (1994) applied
these tests to get exact con�dence intervals for the changepoint θ in models (1)
and (2), and exact con�dence regions for the two-parameter changepoint (θ, α)
in model (2). Knowles et al. (1991) also developed a formula to evaluate these
tests rapidly, which lm.br implements.

lm.br extends this theory. Their method derives the conditional likelihood-
ratio test for (θ, α) in model (1). The theory adapts to the case σ known, which
is useful for the Normal approximation of a binary random variable (Cox and
Snell, 1989, eq. 2.28). And these tests simplify for a postulate changepoint
value outside the range of x-values.

For comparisons, Approximate-F (AF) is another inference method that is com-
mon in nonlinear regression. The AF method estimates the distribution of a
likelihood-ratio statistic by its asymptotic χ2 distribution with partial condi-
tioning on a su�cient statistic for the variance. See Draper and Smith (1998,
sec. 24.6). Simulations and examples cover all of the above theory.

2 Simulation Tests

Coverage frequencies of the 95% con�dence interval on 100 arbitrary models

CLR AF

10 observations, x1 − 1 < θ < x10 + 1 95.0 � 95.2 90.0 � 97.5

30 observations, x10 < θ < x20 95.0 � 95.2 90.8 � 95.0

100 observations, x10 < θ < x20 95.0 � 95.2 91.3 � 95.0

To give one speci�c example, coverage frequency is 95.2% by CLR but 90.7%
by AF for a �rst-line slope -1, second-line slope +0.5, changepoint θ = 3, and
10 observations at x = (1.0, 1.1, 1.3, 1.7, 2.4, 3.9, 5.7, 7.6, 8.4, 8.6) with σ = 1.

A program created the arbitrary models using U ∼ Uniform(0, 1) with

n = 10 x1 = 1 xi = xi−1 + 2U for i > 1 θ = x1 − 1 + (xn − x1 + 2)U

α = 0 β = −1 β′ = 2− 2.5U σ = 0.1 + 2U

or n= 30 or n= 100 and θ = x10 + (x20 − x10)U . For each model, the program
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generated one million sets of random yi = α+β(xi−θ)−+β′(xi−θ)++σN(0, 1)
and counted how often SL(θ) > .05. These coverage frequencies should be
accurate to ±0.05%.

3 Examples

3.1 Broken Line Regression

A broken-line model could �t drinking-and-driving survey results. Yearly sur-
veys, taken in di�erent months over the years, were adjusted by a seasonal in-
dex based on monthly surveys for a similar question (TIRF, 1998�2007; CAMH,
2003). The annual surveys asked respondents if in the past 30 days they had
driven within two hours after one drink, while the monthly surveys asked if in
the past 30 days they had driven within one hour after two drinks. Figure 1
shows the survey results without and with seasonal adjustment, and the exact
90% con�dence region for a changepoint if the adjustment were valid.
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Figure 1: Drinking-and-driving surveys log-odds (blank squares) and log-odds
with seasonal adjustment (solid squares) versus year, and the exact 90% con�-
dence region for a changepoint (θ, α) by CLR.

Data input, and commands to get con�dence intervals for the changepoint, are

> log_odds <- c( -1.194, -2.023, -2.285, -1.815, -1.673,

+ -1.444, -1.237, -1.228 )
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> year <- c( 1998.92, 2001.25, 2002.29, 2003.37, 2004.37,

+ 2005.71, 2006.71, 2007.71 )

> VarCov <- matrix( c(0.0361, 0, 0, 0, 0, 0, 0, 0,

+ 0, 0.0218, 0.0129, 0, 0, 0, 0, 0,

+ 0, 0.0129, 0.0319, 0, 0, 0, 0, 0,

+ 0, 0, 0, 0.0451, 0.0389, 0, 0, 0,

+ 0, 0, 0, 0.0389, 0.0445, 0, 0, 0,

+ 0, 0, 0, 0, 0, 0.0672, 0.0607, 0.0607,

+ 0, 0, 0, 0, 0, 0.0607, 0.0664, 0.0607,

+ 0, 0, 0, 0, 0, 0.0607, 0.0607, 0.0662), nrow=8, ncol=8)

> dd <- lm.br( log_odds ~ year, w= VarCov, inv= T, var.known= T )

> dd$ci( )

95-percent confidence interval for changepoint 'theta' by CLR

[ 2001.29, 2002.88 ]

> dd$ci( method = "AF" )

95-percent confidence interval for changepoint 'theta' by AF

[ 1998.92, 2002.82 ]

The wide di�erence between the CLR and AF con�dence intervals above is due
to plateaus in the signi�cance level on end-intervals. Both the CLR and AF
methods give a constant signi�cance level for all postulate values θ0 on [x1, x2],
on [xn−1, xn], or outside of [x1, xn], in a model (1) with x1 < x2 < ... < xn.
(Coverage probability on these intervals is still exactly 95% by CLR, as the
simulation tests show.) The inference assumes that any line slope is possible,
extending to an instantaneous drop near December 1998 in this example.

3.2 Multiple Regression

lm.br can test for a changepoint in multiple linear regression. lm.br tests for a
change in one coe�cient of the regression model, assuming continuity. It does
not test for an arbitrary structural change that might include changes of two or
more coe�cients or discontinuity.

Liu, Wu, and Zidek (1997) suggested a changepoint for the coe�cient of car
weight in a linear �t of miles-per-gallon against weight and horsepower, for
38 cars of 1978-79 models. One of R's included datasets is the ratings for 32
cars, 1973-74 models. Analysis of this 1973-74 dataset by the exact conditional
likelihood-ratio inference also shows evidence for a changepoint:

> lm.br( mpg ~ wt + hp, data = mtcars )

Call:

lm.br(formula = mpg ~ wt + hp, type = "LL", data = mtcars)
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Changepoint and coefficients:

theta alpha wt < theta wt > theta hp

2.62000 25.02750 -8.81519 -2.51738 -0.03003

Significance Level of H0:"no changepoint" vs H1:"one changepoint"

SL= 0.0110841 for theta0 = 1.32 by method CLR

95-percent confidence interval for changepoint 'theta' by CLR

[ 2.13813, 5.14625 ]

For multiple regression, lm.br applies an orthogonal transformation to a canoni-
cal model (Siegmund and Zhang, 1994). One way to see how this method works
is formulaic. The composite likelihood-ratio statistic uses optimal values for
unknown parameters. A canonical model lets these optimal coe�cients of lin-
ear terms reduce their correspondent errors to zero always. Thus they have no
e�ect on inference, so the algebra can omit them. This elimination reduces a
multiple-predictor model to a single-predictor model. See Ho�man and Kunze
(1971, ch. 6), Lehmann and Romano (2005, sec. 7.1).

4 Summary

If a broken line with Normal errors represents the relationship between a fac-
tor and responses, then lm.br solves the inference step for the changepoint.
This package uses the technique of conditional inference to allow for the other,
unknown terms in the model. Fitting a broken line can reveal the plausible in-
terval for a changepoint, although practical cause-e�ect relations usually have a
smooth transition. Any statistical analysis should examine the �t of the model
and the error distribution with graphs and signi�cance tests, interpret results,
and consider adjustments to the model or alternate models.
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