Package: ljr (via r-universe)

September 9, 2024

Version 1.4-0 Date 2016-4-30 Title Logistic Joinpoint Regression Author Michal Czajkowski, Ryan Gill, Greg Rempala Maintainer Ryan Gill <ryan.gill@louisville.edu> Description Fits and tests logistic joinpoint models. License GPL (>= 2) NeedsCompilation yes Repository CRAN Date/Publication 2016-05-01 18:55:59

Contents

kcm					•				•			•	•							•	•	•	•				2
1jr0 .					•			•				•	•			•		•		•	•		•				2
ljr01									•																		3
ljr1 .																											5
ljr11					•			•	•			•	•			•		•		•	•	•	•				6
ljrb .					•			•				•	•			•		•		•	•		•				7
ljrf .			•		•	•	•		•			•	•	•						•	•		•				8
ljrjk					•			•	•			•	•			•		•		•	•	•	•				9
ljrk .					•			•	•			•	•			•		•		•		•					10
ljrkk			•		•	•	•	•	•			•	•	•		•		•		•	•	•	•			•	12

14

Index

kcm

Description

This table gives the yearly mortality counts due to neoplasms (ICD 10 codes C00-D48) and population sizes for Kentucky from 1999-2005. For more information, see http://wonder.cdc.gov/wonder/help/cmf.html.

Usage

data(kcm)

Format

A 7 by 3 data frame.

Source

Centers for Disease Control and Prevention, National Center for Health Statistics. Compressed Mortality File 1999-2005. CDC WONDER On-line Database, compiled from Compressed Mortality File 1999-2005 Series 20 No. 2K, 2008. Accessed at http://wonder.cdc.gov/cmf-icd10.html on May 5, 2008.

ljr0

MLE with 0 joinpoints

Description

Determines the maximum likelihood estimate of model coefficients in the logistic joinpoint regression model with no joinpoints.

Usage

ljr0(y,n,tm,X,ofst)

Arguments

У	the vector of Binomial responses.
n	the vector of sizes for the Binomial random variables.
tm	the vector of observation times.
Х	a design matrix containing other covariates.
ofst	a vector of known offsets for the logit of the response.

ljr01

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of n.

Value

Coef	A table of coefficient estimates.
wlik	The maximum value of the re-weighted log-likelihood.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill <rsgill01@louisville.edu>.

References

Czajkowski, M., Gill, R. and Rempala, G. (2008). Model selection in logistic joinpoint regression with applications to analyzing cohort mortality patterns. *Statistics in Medicine* 27, 1508-1526.

See Also

ljr01,ljrb,ljrf

Examples

data(kcm)
attach(kcm)
ljr0(Count,Population,Year+.5)

ljr01

Perform test of 0 vs 1 joinpoints.

Description

This function tests the null hypothesis of 0 joinpoints versus the alternative of one joinpoint based on the likelihood ratio test statistic. The p-value is determined by a Monte Carlo method.

Usage

ljr01(y,n,tm,X,ofst,R=1000,alpha=.05)

Arguments

У	the vector of Binomial responses.
n	the vector of sizes for the Binomial random variables.
tm	the vector of ordered observation times.
Х	a design matrix containing other covariates.
ofst	a vector of known offsets for the logit of the response.
R	number of Monte Carlo simulations.
alpha	significance level of the test.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of n.

Value

pval	The estimate of the p-value via simulation.
Coef	A table of coefficient estimates.
Joinpoint	The estimates of the joinpoint, if it is significant.
wlik	The maximum value of the re-weighted log-likelihood.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill <rsgill01@louisville.edu>.

References

Czajkowski, M., Gill, R. and Rempala, G. (2008). Model selection in logistic joinpoint regression with applications to analyzing cohort mortality patterns. *Statistics in Medicine* 27, 1508-1526.

See Also

ljr0,ljr1

Examples

```
data(kcm)
attach(kcm)
set.seed(12345)
## Not run: ljr01(Count,Population,Year+.5,R=20)
```

ljr1

Description

Determines the maximum likelihood estimates of model coefficients in the logistic joinpoint regression model with one joinpoint.

Usage

ljr1(y,n,tm,X,ofst,summ=TRUE)

Arguments

У	the vector of Binomial responses.
n	the vector of sizes for the Binomial random variables.
tm	the vector of ordered observation times.
Х	a design matrix containing other covariates.
ofst	a vector of known offsets for the logit of the response.
summ	a boolean indicator of whether summary tables should be returned.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of n.

Value

Coef	A table of coefficient estimates.
Joinpoint	The estimate of the joinpoint.
wlik	The maximum value of the re-weighted log-likelihood.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill <rsgill01@louisville.edu>.

References

Czajkowski, M., Gill, R. and Rempala, G. (2008). Model selection in logistic joinpoint regression with applications to analyzing cohort mortality patterns. *Statistics in Medicine* 27, 1508-1526.

See Also

ljr01,ljrb,ljrf

Examples

```
data(kcm)
attach(kcm)
ljr1(Count,Population,Year+.5)
```

ljr11

Test coefficients conditioned on K=1 joinpoint.

Description

This function performs the likelihood ratio tests to find p-values in testing the significance of each of the coefficients as well as the intercept and ordered observation times. The p-values are determined by a Monte Carlo method.

Usage

ljr11(y,n,tm,X,ofst,R=1000)

Arguments

У	the vector of Binomial responses.
n	the vector of sizes for the Binomial random variables.
tm	the vector of ordered observation times.
Х	a design matrix containing other covariates.
ofst	a vector of known offsets for the logit of the response.
R	number of Monte Carlo simulations.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of n.

Value

```
pvals The estimates of the p-values via simulation.
```

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill <rsgill01@louisville.edu>.

References

Czajkowski, M., Gill, R. and Rempala, G. (2008). Model selection in logistic joinpoint regression with applications to analyzing cohort mortality patterns. *Statistics in Medicine* 27, 1508-1526.

ljrb

See Also

ljr1

Examples

```
data(kcm)
attach(kcm)
set.seed(12345)
## Not run: ljr11(Count,Population,Year+.5,R=20)
```

ljrb

Perform backward joinpoint selection algorithm with upper bound K.

Description

This function performs the backward joinpoint selection algorithm with K maximum possible number of joinpoints based on the likelihood ratio test statistic. The p-value is determined by a Monte Carlo method.

Usage

ljrb(K,y,n,tm,X,ofst,R=1000,alpha=.05)

Arguments

К	the pre-specified maximum possible number of joinpoints
У	the vector of Binomial responses.
n	the vector of sizes for the Binomial random variables.
tm	the vector of ordered observation times.
Х	a design matrix containing other covariates.
ofst	a vector of known offsets for the logit of the response.
R	number of Monte Carlo simulations.
alpha	significance level of the test.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of n.

Value

pvals	The estimates of the p-values via simulation.
Coef	A table of coefficient estimates.
Joinpoints	The estimates of the joinpoint, if it is significant.
wlik	The maximum value of the re-weighted log-likelihood.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill <rsgill01@louisville.edu>.

References

Czajkowski, M., Gill, R. and Rempala, G. (2008). Model selection in logistic joinpoint regression with applications to analyzing cohort mortality patterns. *Statistics in Medicine* 27, 1508-1526.

See Also

ljrk,ljrf

Examples

```
data(kcm)
attach(kcm)
set.seed(12345)
## Not run: ljrb(1,Count,Population,Year+.5,R=20)
```

ljrf	Perform forward joinpoint selection algorithm with unlimited upper
	bound.

Description

This function performs the full forward joinpoint selection algorithm based on the likelihood ratio test statistic. The p-value is determined by a Monte Carlo method.

Usage

ljrf(y,n,tm,X,ofst,R=1000,alpha=.05)

Arguments

У	the vector of Binomial responses.
n	the vector of sizes for the Binomial random variables.
tm	the vector of ordered observation times.
Х	a design matrix containing other covariates.
ofst	a vector of known offsets for the logit of the response.
R	number of Monte Carlo simulations.
alpha	significance level of the test.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of n.

ljrjk

Value

pvals	The estimates of the p-values via simulation.
Coef	A table of coefficient estimates.
Joinpoints	The estimates of the joinpoint, if it is significant.
wlik	The maximum value of the re-weighted log-likelihood.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill <rsgill01@louisville.edu>.

References

Czajkowski, M., Gill, R. and Rempala, G. (2008). Model selection in logistic joinpoint regression with applications to analyzing cohort mortality patterns. *Statistics in Medicine* 27, 1508-1526.

See Also

ljrk,ljrb

Examples

```
data(kcm)
attach(kcm)
set.seed(12345)
## Not run: ljrf(Count,Population,Year+.5,R=20)
```

ljrjk

Perform test of j vs k joinpoints.

Description

This function tests the null hypothesis of j joinpoint(s) versus the alternative of k joinpoint(s) based on the likelihood ratio test statistic. The p-value is determined by a Monte Carlo method.

Usage

ljrjk(j,k,y,n,tm,X,ofst,R=1000,alpha=.05)

Arguments

j, k	pre-specified number of joinpoints in the null and alternative hpyotheses (the smaller is used for the null).
У	the vector of Binomial responses.
n	the vector of sizes for the Binomial random variables.
tm	the vector of ordered observation times.

X	a design matrix containing other covariates.
ofst	a vector of known offsets for the logit of the response.
R	number of Monte Carlo simulations.
alpha	significance level of the test.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of n.

Value

pval	The estimate of the p-value via simulation.
Coef	A table of coefficient estimates.
Joinpoint	The estimates of the joinpoint, if it is significant.
wlik	The maximum value of the re-weighted log-likelihood.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill <rsgill01@louisville.edu>.

References

Czajkowski, M., Gill, R. and Rempala, G. (2008). Model selection in logistic joinpoint regression with applications to analyzing cohort mortality patterns. *Statistics in Medicine* 27, 1508-1526.

See Also

ljrk

Examples

```
data(kcm)
attach(kcm)
set.seed(12345)
## Not run: ljrjk(0,1,Count,Population,Year+.5,R=20)
```

ljrk

MLE with k joinpoints

Description

Determines the maximum likelihood estimates of model coefficients in the logistic joinpoint regression model with k joinpoints.

ljrk

Usage

ljrk(k,y,n,tm,X,ofst)

Arguments

k	the pre-specified number of joinpoints (with unknown locations).
У	the vector of Binomial responses.
n	the vector of sizes for the Binomial random variables.
tm	the vector of ordered observation times.
Х	a design matrix containing other covariates.
ofst	a vector of known offsets for the logit of the response.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of n.

Value

Coef	A table of coefficient estimates.
Joinpoints	The estimates of the joinpoints.
wlik	The maximum value of the re-weighted log-likelihood.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill <rsgill01@louisville.edu>.

References

Czajkowski, M., Gill, R. and Rempala, G. (2008). Model selection in logistic joinpoint regression with applications to analyzing cohort mortality patterns. *Statistics in Medicine* 27, 1508-1526.

See Also

ljrb,ljrf

Examples

```
data(kcm)
attach(kcm)
ljrk(1,Count,Population,Year+.5)
```

11

ljrkk

Description

This function performs the likelihood ratio tests to find p-values in testing the significance of each of the coefficients as well as the intercept and ordered observation times. The p-values are determined by a Monte Carlo method.

Usage

ljrkk(k,y,n,tm,X,ofst,R=1000)

Arguments

k	the pre-specified number of joinpoints (with unknown locations).
У	the vector of Binomial responses.
n	the vector of sizes for the Binomial random variables.
tm	the vector of ordered observation times.
Х	a design matrix containing other covariates.
ofst	a vector of known offsets for the logit of the response.
R	number of Monte Carlo simulations.

Details

The re-weighted log-likelihood is the log-likelihood divided by the largest component of n.

Value

pvals The estimates of the p-values via simulation.

Author(s)

The authors are Michal Czajkowski, Ryan Gill, and Greg Rempala. The software is maintained by Ryan Gill <rsgill01@louisville.edu>.

References

Czajkowski, M., Gill, R. and Rempala, G. (2008). Model selection in logistic joinpoint regression with applications to analyzing cohort mortality patterns. *Statistics in Medicine* 27, 1508-1526.

See Also

ljrk

ljrkk

Examples

```
data(kcm)
attach(kcm)
set.seed(12345)
## Not run: ljrkk(1,Count,Population,Year+.5,R=20)
```

Index

* datasets kcm, 2 * nonlinear ljr0,<mark>2</mark> ljr01,3 ljr1,<mark>5</mark> ljr11,<mark>6</mark> ljrb,7 ljrf,<mark>8</mark> ljrjk,<mark>9</mark> ljrk, <mark>10</mark> ljrkk, <mark>12</mark> kcm, 2ljr0,2,4 ljr01, *3*, *3*, *5* ljr1,4,5,7 ljr11,<mark>6</mark> ljrb, *3*, *5*, *7*, *9*, *11* ljrf, 3, 5, 8, 8, 11 ljrjk,9 ljrk, 8-10, 10, 12 ljrkk, 12